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Convergence of Nonlinear Observers on R
n with

a Riemannian Metric (Part II)
Ricardo G. Sanfelice and Laurent Praly

Abstract—In [1], it is established that a convergent observer
with an infinite gain margin can be designed for a given nonlinear
system when a Riemannian metric showing that the system is
differentially detectable (i.e., the Lie derivative of the Riemannian
metric along the system vector field is negative in the space
tangent to the output function level sets) and the level sets of
the output function are geodesically convex is available. In this
paper, we propose techniques for designing a Riemannian metric
satisfying the first property in the case where the system is
strongly infinitesimally observable (i.e., each time-varying linear
system resulting from the linearization along a solution to the
system satisfies a uniform observability property) or where it is
strongly differentially observable (i.e. the mapping state to output
derivatives is an injective immersion) or where it is Lagrangian.
Also, we give results that are complementary to those in [1]. In
particular, we provide a locally convergent observer and make
a link to the existence of a reduced order observer. Examples
illustrating the results are presented.

I. INTRODUCTION

We consider a nonlinear system of the form 1

ẋ = f(x) , y = h(x), (1)

with x in R
n being the system’s state and y in R

p the measured

system’s output. We are interested in the design of a function

F such that the set

A := {(x, x̂) ∈ R
n × R

n : x = x̂} (2)

is asymptotically stable for the system

ẋ = f(x) , ˙̂x = F (x̂, h(x)) . (3)

A solution to this problem that was proposed in [1] is re-

stated in Theorem 2.3, which is in Section II. It relies on

the formalism of Riemannian geometry and gives conditions

under which a constructive procedure exists for getting an

appropriate function F . This solution requires the satisfaction

of mainly two conditions. The first condition is about the

geodesic convexity of the level sets of the output function

(see point 9 in Appendix A). This condition is not addressed

here. Instead, we focus our attention on the second condition,
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1 If the system is time varying (perhaps due to known exogenous inputs),
i.e., ẋ = f(x, t), y = h(x, t) most of the results of [1] as well as those here
can be extended readily by simply replacing x by xe = [x⊤ t]⊤, leading
to the time-invariant system with dynamics ẋe = [f(x, t)⊤ 1]⊤ =: fe(xe),
ye = [h(x, t)⊤ t]⊤ =: he(xe). The drawback of this simplifying viewpoint
is that, when time dependence is induced by exogenous inputs, for each
input we obtain a different time-varying system. And, maybe even more
handicapping, we need to know the time-variations for the design.

which is a differential detectability property2, made precise

in Definition 2.1 below. With the terminology used in the

study of contracting flows in Riemannian spaces, this property

means that f is strictly geodesically monotonic tangentially to

the output function level sets. Forthcoming examples related

to the so-called harmonic oscillator with unknown frequency

will illustrate these notions and provide metrics certifying both

weak and strong differential detectability.

In Section II, we establish results complementing those

in [1]. In Section II-A, we establish that the differential

detectability property only is already sufficient to obtain a

locally convergent observer. In Section II-B, we show that this

property implies also the existence of a locally convergent

reduced order observer, in this way, extending the result

established in [2, Corollary 3.1] for the particular case where

the metric is Euclidean. The conclusion we draw from Section

II is that the design of a locally convergent observer can

be reduced to the design a metric exhibiting the differential

stability property. Sections III, IV, and V are dedicated to such

designs in three different contexts.

In Section III, under a uniform observability property of

the family of time-varying linear systems resulting from the

linearization along solutions to the system, a symmetric covari-

ant 2-tensor giving the strong differential detectability property

is shown to exist as a solution to a Riccati equation which,

for linear systems, would be an algebraic Riccati equation.

Proposition 3.2 establishes this fact. The resulting metric leads

to an observer that resembles the Extended Kalman Filter; see,

e.g., [3]. In Section III, Proposition 3.5 shows that the metric

can instead be taken in the form of an exponentially weighted

observability Grammian, leading to an observer design method

that is in the spirit of the one proposed in [4].

In Section IV, for systems that are strongly differentially

observable [5, Chapter 2.4], we propose an expression for

the tensor that is based on the fact that, after writing the

system dynamics in an observer form, a high gain observer

can be used. This result leads to an observer which has some

similarity with the observer for linear systems obtained using

Ackerman’s formula.

Finally, in Section V, we show how a Riemannian metric

can be constructed for Euler-Lagrange systems whose La-

grangian is quadratic in the generalized velocities. This result

extends the result in [6].

The design methods proposed in Section III do not neces-

sarily lead to explicit expressions for the metric. Instead, they

give numerical procedures to compute it, only involving the

solution of ordinary differential equations over a grid of initial

conditions. On the other hand, the designs in Sections IV and

V involve computations that can be done symbolically. All of

2This expression was suggested to us by Vincent Andrieu.
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these various designs are coordinate independent and do not

require to have the system written in some specific form.

To ease the reading, we give a glossary in Appendix A

definitions of the main objects we employ from differential

geometry.

II. FULL AND REDUCED OBSERVERS UNDER STRONG

DIFFERENTIAL DETECTABILITY

In this section, we study what can be obtained when the

system satisfies the differential detectability property defined

as follows (see items 2, 9, and 11 in Appendix A).

Definition 2.1: The nonlinear system (1) is strongly differen-

tially detectable (respectively, weakly differentially detectable)

on a closed, weakly geodesically convex set C ⊂ R
n with

nonempty interior if there exists a symmetric covariant 2-

tensor P on R
n satisfying

v⊤LfP (x)v < 0 (respectively ≤ 0)

∀(x, v) ∈ C × S
n−1 : dh(x)v = 0 .

(4)

We illustrate this property with an example

Example 2.2: Consider a harmonic oscillator with unknown

frequency. Its dynamics are

ẋ = f(x) :=

(
x2−x3 x1
0

)
, y = h(x) := x1 (5)

with (x1, x2, x3) ∈ R×R×R>0. As a candidate to check the

differential detectability we pick, in the above coordinates,

P (x) =




1 + 2ℓk2 + 4ℓ2x2

1 −2ℓk 2ℓx1

−2ℓk 2ℓ 0
2ℓx1 0 1



 . (6)

where k and ℓ are strictly positive real numbers. The expres-

sion of its Lie derivative LfP in these coordinates is




4ℓkx3 + 8ℓ2x1x2 ⋆ ⋆

1 + 2ℓk2 + 4ℓ2x2
1 − 2ℓx3 −4ℓk ⋆

2ℓkx1 + 2ℓx2 0 0




where the various ⋆ should be replaced by their symmetric val-

ues. Then, since we have ∂h
∂x (x)v = v1, where v = (v1, v2, v3),

the evaluation of the Lie derivative of P for a vector v in the

kernel of dh gives

(
v2 v3

)( −4ℓk 0
0 0

)(
v2
v3

)
= −4ℓkv22 . (7)

This allows us to conclude that the harmonic oscillator with

unknown frequency is weakly differentially detectable. Actu-

ally, as we shall see later when we use a different metric, it

is strongly differentially detectable. △
With this property of differential detectability at hand, we

study in the next two subsections what it implies in terms of

existence of converging full and then reduced order observers.

A. Local Asymptotic Stabilization of the set A
In [1, Theorem 3.3 and Lemma 3.6] we have established

the following result (see also [7]).

Theorem 2.3: Assume there exist a Riemannian metric P
and a closed subset C of Rn, with nonempty interior, such that

A1 : C is weakly geodesically convex;

A2 : There exist a continuous function ρ : Rn → [0,+∞)
and a strictly positive real number q such that

LfP (x) ≤ ρ(x) dh(x)⊗dh(x) − q P (x) ∀x ∈ C ;
(8)

A3 : There exists a C2 function R
p × R

p ∋ (ya, yb) 7→
δ(ya, yb) ∈ [0,+∞) satisfying

δ(h(x), h(x)) = 0,
∂2δ

∂y2a
(ya, yb)

∣∣∣∣
ya=yb=h(x)

> 0

for all x ∈ C, and, such that, for any pair (xa, xb) in

C×C satisfying h(xa) 6= h(xb) and, for any minimizing

geodesic γ∗ between xa = γ∗(sa) and xb = γ∗(sb)
satisfying γ∗(s) ∈ C for all s in [sa, sb], sa ≤ sb, we

have

d

ds
δ(h(γ∗(s)), h(γ∗(sa))) > 0 ∀s ∈ (sa, sb] .

Then, for any positive real number E there exists a continuous

function kE : Rn → R such that, with the observer given by

(see item 4 in Appendix A)

F (x̂, y) = f(x̂) − kE(x̂) gradPh(x̂)
∂δ

∂ya
(h(x̂), y)⊤ , (9)

the following holds3:

D+d(x̂, x) ≤ − q

4
d(x̂, x)

for all (x, x̂) ∈ {(x, x̂) : d(x̂, x) < E} ⋂ (int(C)× int(C)) .
Theorem 2.3 establishes that, when assumptions A1-A3

hold, for every given positive number E, an observer with

vector field as in (9) renders the set A in (2) asymptoti-

cally stable with a domain of attraction containing the set

{(x, x̂) : d(x̂, x) < E} ⋂ (int(C)× int(C)).
Condition A2 is a stronger version of what we have called

differential detectability in the introduction. We come back to

it extensively below.

Condition A3 is a restrictive way of saying that the output

level sets are geodesically convex. Fortunately, even without

assumption A3, inspired by [6, Theorem 1], we can design an

observer making the set (2) asymptotically stable. As opposed

to Theorem 2.3, its domain of attraction cannot be made

arbitrarily large.

Proposition 2.4: Assume there exist a Riemannian metric

P and a closed subset C of Rn, with nonempty interior, such

that

A1’ : C is weakly geodesically convex and there exist coor-

dinates denoted x and positive numbers p and h̄1 such

that, for each x in C, we have

p ≤ |P (x)| , |HessPh(x)| ≤ h̄1 (10)

where HessPh is the p-uplet of the Hessian of the

components hi of h; see item 5 in Appendix A.

A2’ : There exist a positive real number ρ̄ and a strictly

3D+d(x̂, x) is the upper right Dini derivative along the solution, i.e., with

(X̂((x̂, x), t), X(x, t)) denoting a solution of (3),

D+d(x̂, x) = limsup
tց0

d(X̂((x̂, x), t), X(x, t)) − d(x̂, x)

t
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positive real number q such that

LfP (x) ≤ ρ̄ dh(x) ⊗ dh(x) − q P (x) ∀x ∈ C.
(11)

A3’ : There exists a C2 function R
p × R

p ∋ (ya, yb) 7→
δ(ya, yb) ∈ [0,+∞) and positive real numbers δ̄1 and

δ2 satisfying

δ(h(x), h(x)) = 0,
∂2δ

∂y2a
(ya, yb)

∣∣∣∣
ya=yb=h(x)

> δ2 I(12)

for all x ∈ C,
∣∣∣∣
∂δ

∂ya
(h(xa), h(xb))

∣∣∣∣ ≤ δ̄1 d(xa, xb) (13)

for all (xa, xb) ∈ C × C.

Then, with the observer given by

F (x̂, y) = f(x̂) − k gradPh(x̂)
∂δ

∂ya
(h(x̂), y)⊤ , (14)

the following holds:

D+d(x̂, x) ≤ −r d(x̂, x) (15)

for all (x, x̂) ∈
{
(x, x̂) : d(x̂, x) ≤ ε

k

} ⋂
(C × C) when we

have

k ≥ ρ̄

2δ2
, q > r , ε :=

(q − r)p

2h̄1δ̄1
. (16)

Remark 2.5: We make the following observations:

1) A key difference with respect to the result in Theo-

rem 2.3 is that, in the latter, the domain of attraction

gets larger with the increase of the observer gain, while

the domain of attraction guaranteed by the result in

Proposition 2.4 decreases when k increases.

2) When there exists a positive real number h̄2 satisfying
∣∣∣∣
∂h

∂x
(x)

∣∣∣∣ ≤ h̄2 ∀x ∈ C ,

a function δ satisfying A3’ is simply

δ(ya, yb) = |ya − yb|2

Indeed, let γ∗ : [sa, sb] → R
n be a minimizing geodesic

between xa and xb that stays in C. We have
∣∣∣∣
∂δ

∂ya
(h(xa), h(xb))

∣∣∣∣
= 2 |h(xa)− h(xb)| ,

= 2

∣∣∣∣
∫ sb

sa

∂h

∂x
(γ∗(r))

dγ∗

ds
(r)dr

∣∣∣∣ ,

= 2

∫ sb

sa

√
∂h

∂x
(γ∗(r))P (γ∗(r))−1

∂h

∂x
(γ∗(r))⊤

×
√

dγ∗

ds
(r)⊤P (γ∗(r))

dγ∗

ds
(r) dr ,

≤ 2h̄2√
p
d(xa, xb) .

✷

Proof: It is sufficient to show that the vector field x̂ 7→ F (x̂, y)
is geodesically strictly monotonic with respect to P (uniformly

in y), at least when x̂ and x are sufficiently close. See [1,

Lemma 2.2] and the discussion before it. With the coordinates

given by assumption A1’, and item 5 in Appendix A, we have

LFP (x̂, y) = LfP (x̂) − kLgradP hP (x̂, y)⊗ ∂δ

∂ya
(h(x̂), y)⊤

− 2k
∂h

∂x
(x̂)⊤

∂2δ

∂y2a
(h(x̂), y)

∂h

∂x
(x̂) ,

= LfP (x̂) − 2k HessPh(x̂)⊗
∂δ

∂ya
(h(x̂), y)⊤

− 2k
∂h

∂x
(x̂)⊤

∂2δ

∂y2a
(h(x̂), y)

∂h

∂x
(x̂) .

Here, the notation HessPh⊗ v, with v a vector in R
p stands

for
∑p

i=1 HessPhi vi , where each HessPhi vi is a covariant

2-tensor. So, with (10), (11), (12), (13) and (16), we obtain

successively

LFP (x̂, y) ≤ LfP (x̂) + 2k h̄1δ̄1d(x̂, x)

− 2k δ2
∂h

∂x
(x̂)⊤

∂h

∂x
(x̂) ,

≤ −qP (x̂) + k
2h̄1δ̄1

p
d(x̂, x)P (x̂)

− (2kδ2 − ρ̄)
∂h

∂x
(x̂)⊤

∂h

∂x
(x̂) ,

≤ −rP (x̂)

for all (x, x̂) ∈
{
(x, x̂) : d(x̂, x) ≤ ε

k

} ⋂
(C ×C). Since C is

weakly geodesically convex, (15) follows by integration along

a minimizing geodesic.

The proofs of Theorem 2.3 and Proposition 2.4 differ mainly

on the way the term HessPh(x̂)⊗ ∂δ
∂ya

(h(x̂), y)⊤ is handled.

With Assumption A3, related to the geodesic convexity of the

output level sets, it can be shown to be harmless because

of its sign. Instead, with Assumption A3’ only, we go with

upper bounds and show it is harmless at least when x̂ and x
are sufficiently close. Hence, a local convergence result in the

latter case and a regional one in the former are obtained.

B. A Link between the Existence of P and a Reduced Order

Observer

In [2, Corollary 3.1] it is established that, if, in some

coordinates, the expression of the metric P is constant and

that of h is linear, then there exists a reduced order observer.

In this section, we establish a similar result without imposing

the metric to be Euclidean. The interest of a reduced order

observer is that there is no correction term to design. This

task is replaced by that of finding appropriate coordinates. In

our context, the existence of such coordinates is guaranteed

by the following result from [8].

Theorem 2.6 ([8, p. 57 §19]): Let P be a complete Rieman-

nian metric on R
n. Assume p = 1 and h has rank 1 at x0 in

R
n. Then, there exists a neighborhood Nx0

of x0 on which

there exists coordinates

x = (y,X)

such that, for each x in Nx0
, the expression of h and P in

these coordinates can be decomposed as

y = h((y,X)) (17)
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and

P ((y,X)) =

(
Pyy(y,X) 0

0 PXX (y,X)

)
, (18)

with Pyy(y,X) in R
p×p and PXX(y,X) in R

(n−p)×(n−p).

Proof: See [8, p. 57 §19]. A sketch of another proof is as

follows. Note first that, the Constant Rank Theorem implies

the existence of a neighborhood of x0 on which coordinates

(y, X̄) are defined and satisfy h(x) = h((y, X̄)) = y . Let

the expression of the metric in the (y, X̄)-coordinates be

P ((y, X̄)) =

(
P yy(y, X̄) P yX̄(y, X̄)

P X̄y(y, X̄) P X̄ X̄(y, X̄)

)

and let ϕ(y, X̄) denote the solution, evaluated at time h(x0),
of the time-varying system dx

dy = −P X̄ X̄ (y, x)
−1P X̄y(y, x)

issued from x = X̄ at time y = y. The proof can be

completed by showing that the function ϕ defined this way

on a neighborhood of x0 satisfies all the required properties

for (y,X) = (y , ϕ(y, X̄)) to be the appropriate coordinates

in the neighborhood of x0.

Example 2.7: Consider the matrix P in (6) with y = x1,

X̄ = (x2, x3). We have

P X̄y(y, X̄) =

(
−2ℓk
2ℓy

)
, P X̄X̄ (y, X̄) =

(
2ℓ 0
0 1

)

This leads to the system

dx

dy
= f (y, x) = −P X̄X̄ (y, x)

−1P X̄y(y, x) =

(
k

−2ℓy

)

the solutions of which, at time y, going through x0 at time y0,

are

X(x0, y0; y) = x0 +

(
k[y− y0]

−ℓ[y2 − y20]

)

So in particular, we get

ϕ((y, X̄)) = X((x2, x3), y; 0) =

(
x2 − ky
x3 + ℓy2

)
.

From the proof above, it follows that the coordinates (y,X)
satisfying (18) in Theorem 2.6 are

(y,X1,X2) = ϕ(x) = ϕ((y, X̄)) =
(
x1, x2 − kx1, x3 + ℓx2

1

)
.

(19)

They are defined on the open set

Ω = Nx0
= ϕ(R2 × R>0) (20)

and they give

Pyy((y,X)) = 1 , PXX((y,X))

(
2ℓ 0
0 1

)
. △

Let us express the differential detectability and the observer

(9) in the special coordinates given by Theorem 2.6. The

dynamics of (1) in the coordinates (y,X) are

ẏ = fy(y,X) , Ẋ = fX(y,X)

We notice that, by decomposing a tangent vector as v =(
vy
vX

)
, and since ∂h

∂y (x0) 6= 0, we find that (17) gives, for

every x = (y,X) in Nx0
,

∂h

∂x
(x)v = 0 ⇐⇒ ∂h

∂y
(y,X)vy = 0 ⇐⇒ vy = 0 .

It follows that, with expression (18) and in (y,X) coordinates,

condition A2 in (8) is as follows:

2 v⊤
X
PXX (y,X)

∂fX

∂X
(X)vX +

∂

∂y

(
v⊤
X
PXX (y,X)vX

)
fy(y,X)+

∂

∂X

(
v⊤
X
PXX (y,X)vX

)
fX(y,X) ≤ −q v⊤

X
PXX (y,X)vX (21)

for all (y,X , vX ) such that (y,X) ∈ Nx0
, vX ∈ S

n−2. Also

our observer (9) takes the form

˙̂y = fy(ŷ, X̂) − kE((ŷ, X̂))
1

Pyy((ŷ, X̂))

∂δ

∂ya
(ŷ, y) ,

˙̂X = fX (ŷ, X̂)

The remarkable fact here is that there is no “correction term”

in the dynamics of X̂ . Hence, we may expect that, if P is a

complete Riemannian metric for which there exist coordinates

defined on some open set Ω satisfying (17), (18), and (21)

(with Ω replacing Nx0
), then the system

˙̂X = fX(y, X̂) (22)

(with y instead of ŷ!) could be an appropriate reduced order

observer in charge of estimating the unmeasured components

X . To show that this is indeed the case, we equip R
n−p, in

which this reduced order observer lives, with the y dependent

Riemannian metric X 7→ PXX (y,X). For each fixed y, we

define the distance

dX (Xa,Xb; y)=min
γ
X

∫ sb

sa

√
dγX

ds
(s)⊤PXX (y, γX(s))

dγX

ds
(s) ds

(23)

where γX is any piecewise C1 path satisfying γX(sa) = Xa,

γX(sb) = Xb. With this, we have the following result for the

reduced order observer (22).

Proposition 2.8: Let PXX be a y-dependent Riemannian

metric on R
n−p and C be a closed subset of R

n, with

nonempty interior, satisfying

A1” : C is weakly PXX -geodesically convex in the following

sense : if (Xa,Xb, y) is such that (y,Xa) and (y,Xb) are

in C, then there exists a minimizing geodesic [sa, sb] ∋
s 7→ γ∗

X
(s) in the sense of (23) such that (y, γ∗

X
(s)) is

in C for all s in [sa, sb]. Also, there exist coordinates

denoted X and positive numbers p, py1, f̄y1, such that,

for each (y,X) in C, we have

p In−p ≤ PXX (y,X) ,

∣∣∣∣
∂PXX

∂y
(y,X)

∣∣∣∣ ≤ py1∣∣∣∣
∂fy

∂X
(y,X)

∣∣∣∣ ≤ f̄y1

A2” : There exists a strictly positive real number q such that

(21) holds on C × S
n−p−1.

Then, along the solutions to the system

ẏ = fy(y,X) , Ẋ = fX (y,X) , ˙̂X = fX(y, X̂) ,

the following holds:

D+dX (X̂ ,X ; y) ≤ −r dX (X̂ ,X ; y) ,
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for all (X , X̂ , y) such that (y,X), (y, X̂) ∈ C and

dX (X̂ ,X) ≤
(q − 2r)p

√
p

p̄y1f̄y1
. (24)

The rationale is that, if the system is strongly differentially

detectable (see Definition 2.1), then there exists a reduced

order observer that is exponentially convergent as long as

(y,X) and (y, X̂) are in C and the the coordinates x = (y,X)
exist, which, when p = 1, we know is the case on a

neighborhood of any point where h has rank 1.
Proof: Let (X , X̂ , y) be such that (y,X) and (y, X̂) are in

C. From our assumption, there exists a minimizing geodesic

[s, ŝ] ∋ s′ 7→ γ∗
X
(s′) such that (y, γ∗

X
(s′)) is in C for all s′ in

[s, ŝ]. By following the same steps as in [9, Proof of Theorem

2] and with [1, (36)], we can show that we have

D+dX (X̂ ,X ; y) ≤
∫ ŝ

s

dγ∗

X

ds (r)⊤
[
LfXPXX (y, γ

∗
X
(r)) + ∂PXX

∂X
(y, γ∗

X
(r)) ẏ

]dγ∗

X

ds (r)

2

√
dγ∗

X

ds (r)⊤PXX (y, γ∗
X
(r))

dγ∗

X

ds (r)
dr

where ẏ = fy(y,X) . So our result holds if the term between

brackets is upper bounded by −2rP (y, γ∗
X
(r)). Note that, in

the coordinates given by A1”, (21) can be rewritten as

LfXPXX(y, γ
∗
X
) +

∂PXX

∂y
(y, γ∗

X
) ẏ ≤ −q PXX (y, γ

∗
X
)

+
∂PXX

∂y
(y, γ∗

X
) [fy(y,X)− fy(y, γ

∗
X
)] (25)

for all (X , γ∗
X
, y) such that (y,X) and (y, γ∗

X
) are in C. But we

have also∣∣∣∣
∂P

∂y
(y, γ∗

X
(r)) [fy(y,X)− fy(y, γ

∗
X
(r)]

∣∣∣∣ ≤

p̄y1f̄y1
dX (X̂ ,X ; y)√

p

PXX(y, γ
∗
X
(r))

p
.

Hence, the result holds when (24) holds.

In this proof we see that the restriction (24) disappears and q
can be zero, if p̄y1 is zero, i.e., if PXX does not depend on

y. This is indeed the case when the level sets of the output

function are totally geodesic as shown in [1]. Hence, we have

the following result.
Proposition 2.9: Under conditions A1” and A2” in Propo-

sition 2.8 with q possibly zero, if PXX does not depend on y,

we have

D+dX (X̂ ,X) ≤ −q d(X̂ ,X) (26)

for all (X , X̂ , y) such that (y,X) and (y, X̂) are in C.
Again, the rationale is that if, the system is strongly (respec-

tively weakly) differentially detectable and the output function

level sets are totally geodesic, then there exists a reduced order

observer which makes the zero error set {(y,X , X̂) : X = X̂}
exponentially stable (respectively stable) as long as (y,X) and

(y, X̂) are in C and the coordinates x = (y,X) exist.
Example 2.10: Consider the harmonic oscillator with un-

known frequency (5). Its dynamics expressed in the coordi-

nates (y,X1,X2) we have obtained in (19) are :

ẏ = X1 + ky,

Ẋ1 = −y (X2 − ℓy2) − k (X1 + ky),
Ẋ2 = 2ℓy (X1 + ky)

(27)

In Example 2.2, we have shown this system is weakly differ-

entially detectable with a metric the expression of which in

the (y,X1,X2) coordinates is

P ((y,X1,X2)) =

[[
∂ϕ

∂x
(x)

]−1
]⊤

P (x)

[
∂ϕ

∂x
(x)

]−1

=




1 0 0
0 2ℓ 0
0 0 1




(28)

As already observed in Example 2.7, the decomposition given

in (18) of Theorem 2.6 with even the PXX block independent

of y. So the assumptions of Proposition 2.9 are satisfied with

C = R
3, but with q = 0 and the zero error set (with Ω given

in (20))

Z = {(y,X1,X2, X̂1, X̂2) ∈ Ω× R
2 : X2 = X̂2}

is globally stable. To check that we have actually global

stability, we note that the Lie derivative of the PXX block

of P in (28) along the vector field given by (27) satisfies for

all y

2Sym



(

2ℓ 0
0 1

)(
−k −y
2ℓy 0

)

 =

(
−4ℓk 0
0 0

)

where for a matrix A, Sym(A) = A+A⊤

2 . This establishes that

the vector field fX defined as

fX(y,X) =

(
−y (X2 − ℓy2) − k (X1 + ky)

2ℓy (X1 + ky)

)

is weakly geodesically monotonic uniformly in y. This implies

that the flow it generates is a weak contraction. The solutions

of the harmonic oscillator being bounded, the same holds for

the solutions of
˙̂X = fX(y, X̂) (29)

Then, according to [10, Theorem 2], the set4

Z \(ϕ ({(0, 0)} × R>0

)
× R

2
)

,

with ϕ defined in (19), is globally asymptotically stable for

the interconnected system (5), (29). △

III. DESIGN OF RIEMANNIAN METRIC P FOR LINEARLY

RECONSTRUCTIBLE SYSTEMS

We have seen in [1, Theorem 2.9] (see also [11, Proposition

3.2]) that differential detectability implies that each linear

(time varying) system given by the first order approximation

of (1) (assumed to be forward complete) along any of its

solution is uniformly detectable. In [11, Proposition 3.2] it

is also shown that, if this uniform linear detectability is

strengthened into a uniform reconstructibility property (or, say,

uniform infinitesimal observability [5, Section I.2.1]), then a

Riemannian metric exhibiting differential detectability does

exist. In this section, we recover this last property through

the solution of a Riccati equation and propose a numerical

method to compute the metric P .5

4This means that the initial condition for (x1, x2) is not the origin.
5 Some of the material in this section is in [12], which we reproduce here

for the sake of completeness.
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To do all this, we assume the existence of a backward

invariant open set Ω for the system (1). This implies that,

for each x in Ω, there exists a strictly positive real number

σx, possibly infinite, such that the corresponding solution to

(1), t 7→ X(x, t), is defined with values in Ω over (−∞, σx).
For each such x, the linearization of f and h evaluated along

t 7→ X(x, t) gives the functions t 7→ Ax(t) = ∂f
∂x(X(x, t))

and t 7→ Cx(t) = ∂h
∂x (X(x, t)), which are defined on

(−∞, σx). To these functions, we associate the following

family of linear time-varying systems with state ξ in R
n and

output η in R
p:

ξ̇ = Ax(t) ξ , η = Cx(t) ξ, (30)

which is parameterized by the initial condition x of the chosen

solution t 7→ X(x, t). Below, Φx denotes the state transition

matrix for (30). It satisfies

∂Φx

∂s
(t, s) = Ax(t)Φx(t, s) , Φx(s, s) = I .

Definition 3.1 (reconstructibility): The family of systems

(30) is said to be reconstructible on a set Ω if there exist

strictly positive real numbers τ and ε such that we have
∫ 0

−τ

Φx(t, 0)
⊤Cx(t)

⊤Cx(t)Φx(t, 0)dt ≥ ε I ∀x ∈ Ω .

(31)

Proposition 3.2: Let Q be a symmetric contravariant 2-

tensor. Assume there exist

i) an open set Ω ⊂ R
n that is backward invariant for (1) and

on which the family of systems (30) is reconstructible;

ii) coordinates for x such that the derivatives of f and h are

bounded on Ω and we have

0 < q I ≤ Q(x) ≤ q I ∀x ∈ Ω . (32)

Then, there exists a symmetric covariant 2-tensor P defined

on Ω, which admits a Lie derivative LfP satisfying

LfP (x) = dh(x)⊗ dh(x) − P (x)Q(x)P (x) ∀x ∈ Ω ,
(33)

and there exist strictly positive real numbers p and p such that,

in the coordinates given above, we have

0 < p I ≤ P (x) ≤ p I ∀x ∈ Ω . (34)

Proof: The proof of Proposition 3.2 can be found in [12].

It relies on a fixed point argument, the core of which is the

fact the flow generated by the differential Riccati equation is

a contraction. This fact, first established for the discrete time

case in [13], is proved in [14] for the continuous-time case.

Remark 3.3: In his introduction of Riccati differential

equations for matrices in [15], [16], Radon has shown that such

equations can be solved via two coupled linear differential

equations. (See also [17].) In our framework, this leads to

obtain a solution to equation (33) by solving in (α, β) the

coupled system

n∑

i=1

∂α

∂xi
(x)fi(x) = −∂f

∂x
(x)⊤α(x)

+
∂h

∂x
(x)

∂h

∂x
(x)⊤β(x) ,

n∑

i=1

∂β

∂xi
(x)fi(x) = Q(x)α(x) +

∂f

∂x
(x)β(x)

(35)

with β invertible and then picking P (x) = α(x)β(x)−1 . ✷

Remark 3.4: Our observer in (3) with right-hand side given

by (9) or (14) resembles the Extended Kalman filter for a

particular choice of δ. In fact, when the metric is obtained by

solving (33), the observer we obtain from (9) (or (14)) with

δ(ya, yb) = |ya − yb|2 resembles an Extended Kalman Filter

(see [3] for instance) since, in some coordinates, our observer

is

˙̂x = f(x̂)− 2 kE(x̂)P (x̂)−1 ∂h

∂x
(x̂)⊤ (h(x̂)− y) , (36)

n∑

i=1

∂P

∂xi
(x̂)f(x̂) = −P (x̂)

∂f

∂x
(x̂)− ∂f

∂x
(x̂)⊤P (x̂)

+
∂h

∂x
(x̂)⊤

∂h

∂x
(x̂)− P (x̂)Q(x̂)P (x̂) (37)

while the corresponding extended Kalman filter would be

˙̂x = f(x̂) − P−1 ∂h

∂x
(x̂)⊤ (h(x̂)− y) , (38)

Ṗ = −P
∂f

∂x
(x̂)− ∂f

∂x
(x̂)⊤P

+
∂h

∂x
(x̂)⊤

∂h

∂x
(x̂)− PQ(x̂)P . (39)

The expressions for ˙̂x in (36) and (38) are the same except for

the presence of kE in (36). On the other hand, (37) and (39)

are significantly different. The former is a partial differential

equation which can be solved off-line as an algebraic Riccati

equation. If the assumptions in Proposition 3.2 are satisfied,

(37) has a solution, guaranteed to be bounded and positive

definite on Ω. Nevertheless, assumption A3 of Theorem 2.3

may not hold but then according to Proposition 2.4, we have

a locally convergent observer.

The differential Riccati equation (39) of the extended

Kalman filter is an ordinary differential equation with P being

part of the observer state. The corresponding observer is also

known to be locally convergent but under the extra assumption

that P is bounded and positive definite. See [18] for instance.

Unfortunately, even when the assumptions in Proposition 3.2

are satisfied, we have no guarantee that P has such properties

except may be if x̂ remains close enough to x (which is what

is to be proved). ✷

The quadratic term P (x)Q(x)P (x) in the “algebraic Riccati

equation” (33), can be replaced by λP (x). Specifically we

have the following reformulation of [11, Proposition 3.2].

Proposition 3.5: Under the conditions of Proposition 3.2,

there exists λ > 0 such that, for each λ > λ, there exists a

symmetric covariant 2-tensor P defined on Ω that admits a

Lie derivative LfP satisfying

LfP (x) = dh(x)⊗ dh(x) − λP (x) ∀x ∈ Ω , (40)
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and there exist strictly positive real numbers p and p such that

the expression of P in the coordinates given by the assumption

satisfies (34).

Proof: See [12].

Remark 3.6: When the metric is given by (40), the observer

we obtain from (9) with δ(ya, yb) = |ya − yb|2 resembles

the Kleinman’s observer, dual of the Kleinman’s controller

proposed in [4]. Indeed, in some coordinates, our observer is

˙̂x = f(x̂) − 2 kE(x̂)P (x̂)−1 ∂h

∂x
(x̂)⊤ (h(x̂)− y) ,

P (x) = lim
T→∞

∫ 0

−T

exp(λt)Φx(t, 0)
⊤Cx(t)

⊤Cx(t)Φx(t, 0)dt,

the latter being a solution to (40). Correspondingly, Klein-

man’s observer would be

˙̂x = f(x̂) − W (x̂)−1 ∂h

∂x
(x̂)⊤ (h(x̂)− y) ,

W (x) =

∫ 0

−T

Φx(t, 0)
⊤Cx(t)

⊤Cx(t)Φx(t, 0) dt

with T positive. ✷

Example 3.7: For the harmonic oscillator with unknown

frequency (5), it can be checked that the following expression

of P is a solution to (40):

P (x) = (41)




λ2 + 2x3

λ(λ2 + 4x3)
, ⋆ , ⋆

− 1

(λ2 + 4x3)
,

2

λ(λ2 + 4x3)
, ⋆

−λ3x1 + (λ2 − 4x3)x2

λ2(λ2 + 4x3)2
,
(3λ2 + 4x3)x1 − 4λx2

λ2(λ2 + 4x3)2
, a




where the various ⋆ should be replaced by their symmetric

values and

a =
6λ4 + 12λ2x3 + 16x2

3

λ3(λ2 + 4x3)3
x2
1 −

4(5λ2 + 4x3)

λ2(λ2 + 4x3)3
x1x2

+
4(5λ2 + 4x3)

λ3(λ2 + 4x3)3
x2
2

△

One way to prove Proposition 3.2, respectively Proposition

3.5, is to show that the system

ẋ = f(x) ,

π̇ = F (x, π) = −π
∂f

∂x
(x)− ∂f

∂x
(x)⊤ π

+
∂h

∂x
(x)⊤

∂h

∂x
(x)− πQ(x)π ,

respectively

ẋ = f(x) ,

π̇ = F (x, π) = −π
∂f

∂x
(x)− ∂f

∂x
(x)⊤ π

+
∂h

∂x
(x)⊤

∂h

∂x
(x) − λπ ,

admits an invariant manifold of the form {(x, π) : π =
P (x)}. These facts suggest the following method to approxi-

mate P .

Given x in Ω at which P is to be evaluated, pick T > 0 large

enough, and perform the following steps6:

Step 1) Compute the solution [−T, 0] ∋ t 7→ X(x, t) to

(1) backward in time from the initial condition x at time

t = 0, up to a negative time t = −T ;

Step 2) Using the function [−T, 0] ∋ t 7→ X(x, t)
obtained in Step 1, compute the solution [−T, 0] ∋ t 7→
Π(t) with initial condition π(−T ) = p In, to

π̇ = −π
∂f

∂x
(X(x, t)) − ∂f

∂x
(X(x, t))⊤π

+
∂h

∂x
(X(x, t))⊤

∂h

∂x
(X(x, t)) − πQ(X(x, t))π ,

respectively to

π̇ = −π
∂f

∂x
(X(x, t)) − ∂f

∂x
(X(x, t))⊤π

+
∂h

∂x
(X(x, t))⊤

∂h

∂x
(X(x, t)) − λπ

with λ large enough.

Step 3) Define the value of P at x as the value Π(0).

By griding the state space of x and approximating P at

each such x, the method suggested above can be considered

as a design tool, at least for low dimensional systems. Note

that the computations in Step 1 and Step 2 only require

the use of a scheme for integration of ordinary differential

equations. In the following example, we employ this method

to approximate the metric P for the harmonic oscillator after

a convenient reparameterization allowing a reduction of the

number of points needed in a grid for a given desired precision.

Example 3.8: The second version of the proposed algorithm

applied to the harmonic oscillator in (5) leads to an approx-

imation of the analytic expression of the metric P given in

Example 3.7. To this end, we exploit the fact that
√
x3 and

t have the same dimension and, similarly, x1√
x3

, and x2

x3

have

the same dimension. To exploit this property, we let

r =
√
x3x

2
1 + x2

2 , cos(θ) =

√
x3x1

r

sin(θ) =
x2

r
, ω =

λ√
x3

.

Then, it can be checked that the metric P can be factorized

as

P (x1, x2, x3, λ) = M(x3)
−1P (cos(θ), sin(θ), 1, ω)M(x3)

−1 ,

where M(x3) = diag

(
x
1/4
3 ,

√
x3x

1/4
3 ,

x3

√
x3x

1/4
3

r

)
. This

shows that it is sufficient to know the function (θ, ω) ∋
(S1 × R>0) 7→ P (cos(θ), sin(θ), 1, ω) and the value of x3

to know the function P everywhere on (R2 \ {0}) × R
2
>0.

6In the case where the system is time varying and its time variations are
dealt with as explained in footnote 1, these steps do require the knowledge
of the time functions. This imposes a difficulty when, for instance, the time
functions are induced by inputs provided by a feedback law.
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Further using the fact that

∂h

∂x
(x1, x2, x3) =

(
1 0 0

)
,

the gain of the proposed observer reduces to

P (x1, x2, x3, λ)
−1 ∂h

∂x
(x1, x2, x3)

⊤ =




√
x3 0 0
0 x3 0

0 0
x2
3

r


P (cos(θ), sin(θ), 1, ω)

−1




1

0

0




This shows that it is sufficient to know the function

(θ, ω) ∋ (S1 × R>0) 7→




P−1
11 (cos(θ), sin(θ), 1, ω)

P−1
12 (cos(θ), sin(θ), 1, ω)

P−1
13 (cos(θ), sin(θ), 1, ω)




to know the observer gain everywhere on (R2 \ {0})× R
2
>0.

Hence it is sufficient to grid the circle S
1 with mθ points and

the strictly positive real numbers with mω points, and therefore

to store only 3 ∗mθ ∗mω values in which the above function

is interpolated.

We note that for the computation of P using the algorithm

above, since a closed-form expression of the solutions to (5) is

available, Step 1 of the algorithm is not needed. To compute

an approximation of P , we define a grid of the (θ, ω)-region

[−π, π] × [4, 7] with mθ ∗ mω points with mθ = 360 and

mω = 100. The value of T used in the simulations is chosen

as a function of ω, namely, T (ω), so as to guarantee a desired

absolute error for the approximation of P for the given point

(θ, ω) from the grid.

Figure 1 shows state estimates x̂ using the observer in

(14) for a periodic solution to (5). These solutions start

from the same initial condition and are such that the state

estimates asymptotically converge to the periodic solution.

The solid blue/darkest solution corresponds to the estimate

obtained using in (14) the analytic expression of P in (41)

with parameter λ = 8, which is a large enough value to

satisfy the desired precision. The other solutions in Figure 1

correspond to estimates obtained with different computed

values of P using our algorithm. The dash dot blue/gray

solution is obtained when observer gain is discretized over

the chosen grid and provided to the observer using nearest

point interpolation. The dashed red/dark solution is obtained

when the observer gain is computed (over the same grid) using

the algorithm proposed above. For each simulation, the error

trajectories converge to zero. Note that the error between the

dash dot blue/gray solution and the dashed red/dark solution is

quite small. As the figures suggest, the estimates obtained with

the approximated gains are close to the one obtained with its

analytical expression. Additional numerical analysis confirms

that the error between the solutions gets smaller as the number

of points and the quality of the interpolation are increased. △

IV. DESIGN OF RIEMANNIAN METRIC P FOR STRONGLY

DIFFERENTIALLY OBSERVABLE SYSTEMS

According to [5, Definition 4.2 of Chapter 2], the nonlinear

system (1) is strongly differentially observable of order no

1.5
1

0.5
0

-0.5
-1

-1.5-1.5

-1

-0.5

0

0.5

1

1

2

3

1.5

x1, x̂1

x2, x̂2

x
3
,x̂

3

(a) Solutions.

0 0.5 1 1.5
-0.5

0

0.5

1

1.5

0 0.5 1 1.5
-0.5

0

0.5

1

1.5

0 0.5 1 1.5
-1.5

-1

-0.5

0

0.5

x
1
−
x̂
1

x
2
−
x̂
2

x
3
−
x̂
3

t[s]

t[s]

t[s]

(b) Estimation errors.

Fig. 1. Solutions to the observer converging to the estimate obtained with
exact gain with λ = 8 (solid blue/darkest), with exact gain discretized over a
grid (dash dot blue/gray), and with computed and interpolated gain (dashed
red/dark).

on an open set Ω if, for the positive integer no, the function

Hno
: Ω → R

m×no defined as

Hno
(x) =

(
h(x), Lfh(x), · · · , Lno−1

f h(x)
)⊤

(42)

is an injective immersion, i.e., an injective map whose differ-

ential is injective at each point x in Ω.

Example 4.1: For the system (5) in Example 3.7, successive

derivatives of y lead to

H3(x) =
(
x1, x2,−x3 x1

)⊤

H4(x) =
(
x1, x2,−x3 x1, −x3x2

)⊤
.

The map H3 is an injective immersion on Ω3 = (R \ {0})×
R × R>0 which is not an invariant set. Instead H4 is an

injective immersion on Ω4 =
(
R

2 × R>0

)
\ ({(0, 0)} × R+)
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which is an invariant set. Hence, the system in Example 3.7 is

strongly differentially observable of order 4 on the invariant

set Ω4. △
The property that Hno

is an injective immersion implies that

the family of systems (30) is reconstructible (on Ω). According

to Section III, this property further implies that differential

detectability holds with a metric obtained as a solution of

(33) or of (40). But we can take advantage of the strong

observability property to give another more explicit expression

for the metric. Precisely, we assume the following properties.

B : There are coordinates for x in Ω such that

• Hno
is Lipschitz and a uniform immersion, i.e., as-

sume the existence of strictly positive real numbers

h and h such that we have

h I ≤ ∂Hno

∂x
(x)⊤

∂Hno

∂x
(x) ≤ h I ∀x ∈ Ω ;

(43)

• There exists a strictly positive real number ν such

that, in the given coordinates for x, we have the

following Lipschitz-like condition7

∣∣∣∣
∂Lno

f h

∂x
(x)

∣∣∣∣ ≤ 1

ν

∣∣∣∣
∂Hno

∂x
(x)

∣∣∣∣ . (44)

To exploit these properties, we note first that we have

LfHno
(x) =

∂Hno

∂x
(x) f(x) = AHno

(x) + BLno

f h(x),

y = h(x) = CHno
(x) (45)

where A, B, and C are given by

A =




0 Im 0 . . . 0
...

. . .
. . .

. . .
...

...
. . .

. . . 0
...

. . . Im
0 . . . . . . . . . 0




, B =




0
...
...

0
Im




C =
(
Im 0 . . . . . . 0

)
.

Then, among the many results known about high gain ob-

servers, we have the following property.
Lemma 4.2: Given ν satisfying (44), there exist an (m ×

no)× (m×no) symmetric positive definite matrix Pν , a (m×
no)×m column vector Kν , and a strictly positive real number

q satisfying

Pν (A−KνC) + (A−KνC)
⊤
Pν

+ 2q Im×no
+

1

qν2
Pν BB

⊤
Pν ≤ 0 .

(46)

With Lemma 4.2, we pick P as the metric induced by the

immersion Hno
. (See [19, Example 2 of Chapter II].) Namely,

in the coordinates x given by assumption B so that (43) and

(44) hold, we express P on Ω as

P (x) =
∂Hno

∂x
(x)⊤Pν

∂Hno

∂x
(x) . (47)

7We say that (44) is a Lipschitz-like condition since, the function Hno ,
being injective, has a left inverse Hli

no
satisfying Hli

no
(Hno (x)) = x.

Consequently, we have L
no

f
h = L

no

f
(h ◦ Hli

no
◦ Hno ). It follows that, if

the function ξ 7→ L
no

f
(h ◦Hli

no
)(ξ) is Lipschitz, then (44) holds.

Remark 4.3: The above design of P relies strongly on the

high gain observer technique. Nevertheless, the observer we

obtain differs from a usual high gain observer, at least when

no is strictly larger than n, i.e., Hno
is an injective immersion

and not a diffeomorphism. Indeed, the state x̂ of our observer

lives in R
n, whereas the state of a usual high gain observer

would live in R
no , not diffeomorphic to R

n, and a left inverse

of Hno
would be needed to extract x̂ from this state.

Proposition 4.4: Suppose that, with Hno
defined in (42),

Assumption B holds and let Pν be any symmetric positive

definite matrix satisfying (46). Then, (47) defines a positive

definite symmetric covariant 2-tensor which satisfies the dif-

ferential detectability property (4) on Ω.

Here, similar to Ackerman’s formula for linear systems,

where the observer gain uses the inverse of the observability

matrix, the gain of our observer, namely, P (x̂)−1 ∂h
∂x (x̂)

⊤,

resulting from expressing the metric as in (47) is obtained

by writing the system in an observable form. This form can

be obtained using
∂Hno

∂x (x) as the observability matrix, the

inverse of which also appears in the gain of our observer.

Proof: We proceed by establishing the needed properties for

P .

• P is a symmetric covariant 2-tensor : Let x̃ be other

coordinates related to x by x̃ = ϕ(x) with ϕ being a

diffeomorphism. Let also h̃, P̃ , and H̃no
denote the expression

of h, P , and Hno
in the coordinates x̃, respectively. They

satisfy

h̃(x̃) = h(x) , f̃(x̃) =
∂ϕ

∂x
(x) f(x)

∂h

∂x
(x) =

∂h̃

∂x̃
(x̃)

∂ϕ

∂x
(x) , Hno

(x) = H̃no
(x̃)

∂ϕ

∂x
(x)

P (x) =
∂ϕ

∂x
(x)⊤P̃ (x̃)

∂ϕ

∂x
(x)

the latter showing that P satisfies the rule a linear operator

should obey under a change of coordinates to be a symmetric

covariant 2-tensor.

• P is positive definite : Using (47) and the positive definite-

ness of Pν , we have

0 < λmin(Pν)h I ≤ P (x) ≤ λmax(Pν)h I ∀x ∈ Ω .

• P satisfies (4) : With (45) and (51), we obtain

LfP (x) =
∂Hno

∂x
(x)⊤

(
Pν A+A

⊤
Pν

) ∂Hno

∂x
(x)

+
∂Hno

∂x
(x)⊤Pν B

∂Lno

f h

∂x
(x) +

∂Lno

f h

∂x
(x)⊤B⊤

Pν
∂Hno

∂x
(x)
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from where it follows that

LfP (x) ≤ ∂Hno

∂x
(x)⊤

(
PνKνC+ C

⊤
K

⊤
ν Pν

−2q I − 1

qν2
PνBB

⊤
Pν

)
∂Hno

∂x
(x)

+
∂Hno

∂x
(x)⊤PνB

∂Lno

f h

∂x
(x)

+
∂Lno

f h

∂x
(x)⊤B⊤

Pν
∂Hno

∂x
(x)

≤ ∂Hno

∂x
(x)⊤PνKν

∂h

∂x
(x) +

∂h

∂x
(x)⊤K⊤

ν Pν
∂Hno

∂x
(x)

− q

(
2
∂Hno

∂x
(x)⊤

∂Hno

∂x
(x) − ν2

∂Lno

f h

∂x
(x)⊤

∂Lno

f h

∂x
(x)

)
.

Then, using (44), we get

v⊤LfP (x)v ≤ −qv⊤
∂Hno

∂x
(x)⊤

∂Hno

∂x
(x)v

≤ − qh

λmax(Pν)h̄
v⊤P (x)v

for all (x, v) such that ∂h
∂x (x)v = 0, which is (4) in the given

coordinates).

Example 4.5: With the above, we see that a Riemannian

metric, appropriate for the design of an observer for the

harmonic oscillator with unknown frequency in Example 3.7,

can be parameterized on
(
R

2 × R>0

)
\ ({(0, 0)} × R>0) as

P (x)=




1 0 −x3 0
0 1 0 −x3

0 0 −x1 −x2


P




1 0 0
0 1 0

−x3 0 −x1

0 −x3 −x2


 ,

where P remains to be designed as a positive definite sym-

metric 4× 4 matrix. △

V. DESIGN OF RIEMANNIAN METRIC P FOR LAGRANGIAN

SYSTEMS

In this section, we show that, besides differentially observ-

able systems studied above Lagrangian systems make another

family for which we can easily get an expression for a

Riemannian metric that satisfies the differential detectability

property introduced in Definition 2.1, at least with symbolic

computations and with no need to solve any equation. To show

this, we follow the ideas in the seminal contribution [6] and

employ the metric used in [20], [19].

Let Q be an n-dimensional configuration manifold equipped

with a Riemannian metric g. Once we have a chart for Q
with coordinates qk, with k ∈ {1, 2, . . . , n}, we have also

coordinates (qk, vl) with (k, l) ∈ {1, 2, . . . , n}2 for its tangent

bundle with q being the generalized position and v the gener-

alized velocity. Assume we have a Lagrangian L : T Q → R

of the form L(q, v) = 1
2 v

⊤g(q) v − U(q), where the scalar

function U is the potential energy. The corresponding Euler-

Lagrange equations written via any chart are

q̇k = vk , v̇l = −Cl
abvavb + Sl(q, t) (49)

where k, l , a , b ∈ {1, 2, . . . , n}; S is a source term, a known

time-varying vector field on R
n; a, b are dummy indices

used for summation in Einstein notation8; and Cl
ab are the

Christoffel symbols associated with the metric g, namely

Cl
ab(q) =

1

2

(
g(q)−1

)
lm

(
∂gma

∂xb

(q) +
∂gmb

∂xa

(q)− ∂gab

∂xm
(q)

)
.

We consider the measurement y is q, namely y = h(q, v) =
q.

The metric we propose below is for the tangent bundle

T Q. There are many ways of defining a Riemannian metric

for the tangent bundle of a Riemannian manifold [21]. We

follow the same route as the one proposed in [6] to study the

local convergence of an observer by considering the following

modification of the Sasaki metric (see [20, (3.5)] or [19, page

55]):

P (q, v) =

(
Pqq(q, v) Pqv(q, v)
Pvq(q, v) Pvv(q, v)

)
,

where the entries of the n × n-dimensional blocks Pqq , Pqv ,

Pvq , and Pvv are, respectively, Pij , Piβ , Pαj , and Pαβ , defined

as

Pij(q, v) = agij(q)− c
(
gib(q)C

b
aj(q)va + gaj(q)C

a
bi(q)vb

)

+bgcd(q)C
c
ai(q)C

d
bj(q)vavb ,

Piβ(q, v) = −cgiβ(q) + bgβb(q)C
b
ai(q)va ,

Pαj(q, v) = −cgαj(q) + bgαa(q)C
a
bj(q)vb ,

Pαβ(q, v) = bgαβ(q) ,

where a, b and c are strictly positive real numbers satisfying

c2 < ab, gab are the entries of the metric g; and, here

and below, roman indices i, j, and k are used to index the

components of q, Greek indices α, β, and γ to index the

components of v, and a, b, c, and d are dummy roman or

Greek indices.

We obtain

(
η⊤ ω⊤ )

P

(
η
ω

)

= ηiPijηj + ηiPiβωβ + ωαPαjηj + ωαPαβωβ ,

= aηigijηj + b (ωα + Cα
aivaηi) gαβ

(
ωβ + C

β
bjvbηj

)

− 2cηigiβ

(
ωβ + C

β
ajvaηj

)
.

Since g is positive definite and c2 < ab, we see that P takes

positive definite values.

To check that we have the differential detectability property

(4), we rewrite (49) in the following compact form:

q̇ = v , v̇ = fv(q, v, t), y = h(q, v) = q .

Since we have

∂h

∂(q, v)
(q, v)

⊤ ∂h

∂(q, v)
(q, v) =

(
In 0
0 0

)
∈ R

2n×2n ,

inequality (4) is satisfied if we have, for some strictly positive

8
∑

m ambmk is denoted ambmk where the fact that the index m is used
twice means that we should sum in m.
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real number q,

(
Pvq Pvv

)
(

I
∂fv

∂v

)
+

(
I

∂fv

∂v

⊤
)(

Pqv

Pvv

)
+

∂Pvv

∂q
v

+
∂Pvv

∂v
fv ≤ −q Pvv .

With the component-wise expression of fv in (49), the sym-

metry of g, and using Kronecker’s delta to denote the identity

entries, the left-hand side above is nothing but

[
(−cgαc + bgαaC

a
bcvb)δcβ − bgαa(C

a
bβ + Ca

βb)vb
]

+ [δαc(−cgcβ + bgβaC
a
bcvb)− (Ca

αb + Ca
bα)vbbgaβ]

+ b
∂gαβ

∂qb
vb

= −2cgαβ− b

[
gαaC

a
βb + gβaCa

αb
− ∂gαβ

∂qb

]
vb = −2c gαβ .

Hence, (4) holds since b and c are strictly positive, and the

entries of Pvv are b gαβ .
Example 5.1: Consider a system with L(q, v) =

1
2 exp(−2q)v2 for all q, v ∈ R as Lagrangian. The associated

metric and its Christoffel symbols are g(q) = exp(−2q),
C = −1. Then, the system dynamics are given by q̇ = v,

v̇ = v2. Since the (unique) Christoffel symbol is C = −1, we

get

P (q, v) = exp(−2q)

(
a+ 2cv + bv2 −c− bv

−c− bv b

)
.

△

VI. CONCLUSION

We have established that strong differential detectability is

already sufficient for the observer proposed in [1] to guarantee

that, at least locally, a Riemannian distance between the

estimated state and the system state decreases along solutions.

Moreover in such a case, the existence of a full order observer

implies the existence of a reduced order one. This extends the

result in [2, Corollary 3.1] established for the particular case

of an Euclidean metric.
The design of the metric, exhibiting the strong differen-

tial detectability property and consequently allowing us to

design an observer, is possible when the system is strongly

infinitesimally observable (i.e., each time-varying linear sys-

tem resulting from the linearization along a solution to the

system satisfies a uniform observability property). In such

a case, one needs the solution of an “algebraic” (actually a

partial differential equation) Riccati equation. This leads to an

observer which resembles an Extended Kalman Filter.
With the same strong infinitesimal observability property,

we can also proceed with a linear equation instead of the

quadratic Riccati equation. In this case the metric we obtain

is nothing but an exponentially weighted observability Gram-

mian.
The two designs above need the solution of a partial differ-

ential equation. But thanks to the method of characteristics,

it can be obtained off-line by solving ordinary differential

equations on a sufficiently large time interval and over a grid

of initial conditions in the system state space.
A simpler design is possible when the system is strongly

differentially observable (i.e. the mapping state to output

derivatives is an injective immersion) . Indeed in this case the

metric can be expressed as a linear combination of functions

which can be obtained by symbolic computations. It then

remains to choose the linear coefficients.

As already shown in [6], another case where the metric can

be obtained via symbolic computations is for Euler-Lagrange

systems whose Lagrangian is quadratic in the generalized

velocities.

Unfortunately, to obtain observers for which convergence

holds globally or at least regionally and not only locally,

the metric may need to satisfy an extra property. As shown

in [1], such a property can be a geodesic convexity of the

level sets of the output function. This condition leads to

additional algebraic equations involving the Hessian of the

output function.
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APPENDIX

A. Notations and Short glossary of Riemannian geometry

1) S
n denotes the n-dimensional unit sphere.

2) Given a function h : Rn → R
p, dh denotes its differen-

tial form whose expression in coordinates x is ∂hk

∂xj
(x)

for each k in {1, . . . , p} and each j in {1, . . . , n}. With

⊗, a tensor product, dh(x) ⊗ dh(x) is a symmetric

covariant 2-tensor whose expression in coordinates x is∑p
k=1

∂hk

∂xj
(x)∂hk

∂xj
(x).

3) A Riemannian metric is a symmetric covariant 2-tensor

with positive definite values. The associated Christoffel

symbols in coordinates x are

Γl
ij=

1

2

∑

k

(P−1)kl

[
∂Pik

∂xj
+

∂Pjk

∂xi
− ∂Pij

∂xk

]
.

4) Given a Riemannian metric P and a real valued function

h, gradPh denotes the (Riemannian) gradient of h. It is

its first covariant derivative. Its expression in coordinates

x is (see [22, Sections 1.2 and 2])

gradPh(x) = P (x)−1 ∂h

∂x
(x)⊤ .

5) Given a Riemannian metric P and a real valued function

h, HessPh denotes the (Riemannian) Hessian of h.

It is its second covariant derivative. Its expression in

coordinates x is

[HessPh(x)]ij =
∂2h

∂xi∂xj
(x)−

∑

l

Γl
ij(x)

∂h

∂xl
(x) .

It satisfies (see [22, Sections 1.2 and 2])

LgradP hP (x) = 2HessPh(x) . (50)

6) The length of a C1 path γ between points xa and xb is

defined as

L(γ)
∣∣∣
sb

sa
=

∫ sb

sa

√
dγ

ds
(s)⊤P (γ(s))

dγ

ds
(s) ds,

where γ(sa) = xa and γ(sb) = xb.

7) The Riemannian distance d(xa, xb) is the minimum

of L(γ)
∣∣∣
sb

sa
among all possible piecewise C1 paths γ

between xa and xb. A minimizer giving the distance is

called a minimizing geodesic and is denoted γ∗.

8) A topological space equipped with a Riemannian dis-

tance is complete when every geodesic can be maximally

extended to R.

9) A subset S of R
n is said to be weakly geodesically

convex if, for any pair of points (xa, xb) in S × S,

there exists a minimizing geodesic γ∗ between xa =
γ∗(sa) and xb = γ∗(sb) satisfying γ∗(s) ∈ S for all

s ∈ [sa, sb]. A trivial consequence is that any two points

in a weakly geodesically convex can be linked by a

minimizing geodesic.

10) Given a C1 function h : Rn 7→ R
p and a closed subset

C of Rn, the set

S = {x ∈ R
n : h(x) = 0} ∩ C

is said to be totally geodesic if, for any pair (x, v) in

S × R
n such that ∂h

∂x (x) v = 0 and v⊤P (x) v = 1,
any geodesic γ with γ(0) = x, dγ

ds (0) = v satisfies

h(γ(s)) = 0 for all s ∈ Jγ , where Jγ is the maximal

interval containing 0 so that γ(Jγ) is contained in C.

11) Given a set of coordinates for x, the Lie derivative LfP
of a symmetric covariant 2-tensor P is, for all v in R

n,

v⊤LfP (x) v = lim
t→0

[
[(I + t∂f∂x (x))v]

⊤P (X(x, t))

t
×

[(I + t∂f∂x(x))v]

t
− v⊤P (x)v

t

]

=
∂

∂x

(
v⊤P (x) v

)
f(x)

+ 2 v⊤P (x)

(
∂f

∂x
(x) v

)

where t 7→ X(x, t) is the solution to (1). If there exist

coordinates in R
n denoted x and a function ϕ : Rn →

R
p such that the expression of P is

P (x) =
∂ϕ

∂x
(x)⊤P

∂ϕ

∂x
(x)

where P is a symmetric matrix, then we have

LfP (x) =
∂Lfϕ

∂x
(x)⊤P

∂ϕ

∂x
(x) +

∂ϕ

∂x
(x)⊤P

∂Lfϕ

∂x
(x) ,

(51)

where Lfϕ is the image by ϕ of the vector field f (in

R
n). Indeed, we have

v⊤LfP (x) v = 2 v⊤
∂ϕ

∂x
(x)⊤P

∂Lfϕ

∂x
(x)v .

We would like the reader to distinguish the notation

LfP for the Lie derivative of a symmetric covariant 2-

tensor from Lfϕ, which is used for the more usual Lie

derivative of a function ϕ, or equivalently, the vector

field induced by a function.
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