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Temperature-dependent behaviors of parasitic helminths

Astra S. Bryanta and Elissa A. Hallema,*

aDepartment of Microbiology, Immunology, and Molecular Genetics, University of California, Los 
Angeles, Los Angeles, CA 90095, USA

Abstract

Parasitic helminth infections are the most common source of neglected tropical disease among 

impoverished global communities. Many helminths infect their hosts via an active, sensory-driven 

process in which environmentally motile infective larvae position themselves near potential hosts. 

For these helminths, host seeking and host invasion can be divided into several discrete behaviors 

that are regulated by both host-emitted and environmental sensory cues, including heat. 

Thermosensation is a critical sensory modality for helminths that infect warm-blooded hosts, 

driving multiple behaviors necessary for host seeking and host invasion. Furthermore, 

thermosensory cues influence the host-seeking behaviors of both helminths that parasitize 

endothermic hosts and helminths that parasitize insect hosts. Here, we discuss the role of 

thermosensation in guiding the host-seeking and host-infection behaviors of a diverse group of 

helminths, including mammalian-parasitic nematodes, entomopathogenic nematodes, and 

schistosomes. We also discuss the neural circuitry and molecular pathways that underlie 

thermosensory responses in these species.
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1. Introduction

Approximately 1 billion people are infected with harmful parasitic helminths, primarily 

within resource-limited communities located in tropical and subtropical climates [1–8]. 

Harmful parasitic helminths are classified into two phyla: Nematoda, which includes 

gastrointestinal nematodes; and Platyhelminthes, which includes schistosomes, other 

trematodes, and cestodes [9]. Chronic helminth infections in humans can lead to clinical 

symptoms such as gastrointestinal distress, cognitive impairment and stunted growth in 

children, anemia in the case of hookworms, cancer in the case of some trematode species, 

increased HIV infection rates in the case of some schistosome species, and even death in the 

case of the gastrointestinal nematode Strongyloides stercoralis and schistosomes [1–6,8–14]. 

Furthermore, helminth infections of livestock are common in both resource-rich and 

resource-limited countries, and are a major source of economic disruption due to reductions 

in livestock productivity [15–18]. In contrast to the harmful parasitic helminths, 

entomopathogenic nematodes (EPNs) in the genera Heterorhabditis and Steinernema are 

considered beneficial parasitic nematodes. EPNs infect and kill a wide variety of insect 

larvae, and are commonly used as biological control agents for insect pests [19–23].

Current treatment strategies for helminth infections in both humans and livestock are based 

on reducing the worm burden of ongoing infections via anthelminthic drugs. This strategy 

fails to prevent reinfection, and repeated drug treatments have driven the emergence of drug-

resistant strains of livestock parasites; a similar phenomenon is expected to develop among 

human-parasitic helminths in the near future [15–17,24–26]. New treatment options or 

preventative strategies capable of eliminating or reducing the incidence of helminth infection 

in humans and livestock are needed. For many parasitic helminth species, one promising yet 

largely unexplored target for intervention is the infective larval stage, which lives outside of 

the host animal in soil or water. Species with an environmental infective stage include the 

soil-transmitted hookworm and Strongyloides species, and the water-transmitted 

schistosomes [27]. For many of these species, larvae located in the environment respond to 

host-emitted and environmental sensory cues, including heat and odors [19,28]. How these 

sensory signals maximize the chances that harmful infective larvae will find hosts is poorly 

understood. A better understanding of this process may enable the development of new 

prevention strategies that target infective larvae, such as traps or repellents. Furthermore, by 

understanding the effect of environmental temperatures on the behaviors of parasitic 

helminths, we may better predict the impact of global climate change on the transmission of 

soil-transmitted helminths [29,30]. In the case of EPNs, which also have an environmental 

infective larval stage, an improved understanding of the environmental conditions that 

regulate host seeking and infectivity could be useful in expanding their efficacy for pest 

management [23].

Many soil-transmitted mammalian-parasitic nematodes are infective as developmentally 

arrested third-stage larvae (iL3s). Some iL3s actively invade hosts via skin penetration, 

whereas others infect passively when they are swallowed (Fig. 1A-C). Skin-penetrating 

species include Strongyloides stercoralis and other species in the genus Strongyloides, as 

well as hookworms in the genera Ancylostoma and Necator. Passively ingested species 

include human-infective nodular worms in the genus Oesophagostomum, the rodent-
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parasitic nematode Heligmosomoides polygyrus, and the ruminant-parasitic nematode 

Haemonchus contortus [31–35]. In addition, some skin-penetrating Ancylostoma species are 

known to be capable of infecting via passive ingestion [36–39]. Following host invasion, 

iL3s resume development, a process called “activation” [40–46]. The nematodes then 

migrate through the body, continuing to develop until they ultimately take up residence in 

the small intestine as reproductive adults [2]. The eggs and larvae of parasitic adults re-enter 

the environment with feces. For most soil-transmitted parasitic nematodes, the progeny of 

parasitic adults develop directly into iL3s. However, some Strongyloides species can develop 

through a limited number of free-living generations before developmentally arresting as iL3s 

[27].

The insect-parasitic EPNs also infect hosts as environmentally motile third-stage infective 

larvae, called infective juveniles (IJs). The IJ stage of EPNs is developmentally similar to the 

iL3 stage of soil-transmitted nematodes that parasitize vertebrate hosts (Fig. 1D) [23]. Like 

iL3s, IJs located in the soil or on plants activity seek out hosts in response to environmental 

and host-emitted sensory cues [19,47–49]. IJs invade and then rapidly kill their insect hosts; 

the cadaver can then serve as a food source for multiple parasitic generations [50,51]. 

Eventually, resource depletion within the insect cadaver triggers the formation of IJs that 

disperse into the environment [50].

Unlike soil-transmitted nematodes, the water-transmitted trematode life cycle requires both 

an intermediate and a definitive host (Fig. 1E) [27]. For Schistosoma species, free-

swimming infective larvae called miracidia hatch from eggs and seek out and infect aquatic 

snails [52,53]. Inside the intermediate snail host, asexual reproduction produces new 

infective larvae called cercariae [27]. Once cercariae emerge from the snail into the aquatic 

environment, they find and penetrate the skin of their definitive host. Some schistosome 

species use host-emitted sensory cues to increase the likelihood of encountering both 

intermediate and definitive hosts; others appear to rely on spontaneous encounters with hosts 

[28]. Upon skin penetration, cercariae lose their tails and transform into schistosomula, 

which develop and migrate through the host circulatory system [27]. The final destination of 

parasitic adults varies between species but is generally in the veins draining blood from the 

intestines, bladder, or liver. Similarly, the pathway by which eggs exit the body varies 

between species. For species such as Schistosoma mansoni and Schistosoma japonicum, 

eggs laid by the adult females are transported to the gut and then excreted in feces; for 

species such as Schistosoma haematobium, eggs are instead deposited in the urinary tract 

and then excreted in urine [27]. Not all eggs are excreted, however; those that remain within 

the host elicit an immunopathological response responsible for most of the disease 

pathology [54–56].

For both soil-transmitted nematodes and water-transmitted trematodes, infective larvae must 

survive in the environment and locate suitable hosts for infection. Their ability to do so is 

likely dependent on their detection of an array of environmental and host-emitted sensory 

cues, including species-specific chemicals and temperature [19,28]. Our understanding of 

how different sensory modalities contribute to the behaviors of parasitic helminths remains 

incomplete. However, for many parasitic helminth species, it is becoming increasingly clear 

that thermosensation is a key regulator of behavior. Depending on the species, 
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thermosensation can drive infective larvae to navigate to favorable environments, migrate 

rapidly toward warm-blooded hosts, invade a host body, and transition into parasitic 

adulthood.

2. Thermosensory behaviors of skin-penetrating nematodes

2.1 Mammalian body heat stimulates host seeking and host invasion in skin-penetrating 
iL3s

For skin-penetrating mammalian-parasitic iL3s, thermal stimuli can elicit multiple robust 

behaviors related to finding and infecting host animals. Exposure to host body temperature 

stimulates iL3 movement and increases crawling speed in several Ancylostoma and 

Strongyloides species [36,57–59]. Host body temperature also promotes behaviors 

associated with host invasion, such as nictation – a behavior where the worm stands on its 

tail and waves its head to facilitate host attachment – and skin penetration [36,59,60]. 

Furthermore, thermal gradients drive multiple skin-penetrating species to engage in long-

range positive thermotaxis, such that they migrate up thermal gradients toward temperatures 

above mammalian skin temperature (31–34°C) (Fig. 2A-B) [36,57,59,61–69]. For several 

species, thermal preferences are set above host body temperature [64,69]. Thus, even 

temperatures near host body temperature can generate strong thermal drive, likely ensuring 

that the ability of iL3s to navigate toward host-emitted heat will not attenuate as a function 

of increasing host proximity [69]. Taken together, these findings suggest that temperature is 

a major driver of both host-seeking and host-invasion behaviors in skin-penetrating 

nematodes.

Would thermal stimuli generated by host animals be sufficient to trigger the temperature-

driven behaviors of skin-penetrating iL3s? The thermal microclimate that radiates from the 

lower half of the human body is approximately 8 cm thick [70,71]; thus, when skin-

penetrating iL3s experience host-emitted heat they will be at most ~8 cm away from the host 

animal. However, in some experiments S. stercoralis iL3s displayed the ability to migrate 

toward mammalian skin temperature when located over 15 cm away in an artificial linear 

thermal gradient [69]. This ability suggests that skin-penetrating iL3s are likely to be 

capable of responding when they encounter thermal cues produced by the human body.

2.2 Below-ambient temperatures drive negative thermotaxis

Many skin-penetrating iL3s also display robust negative thermotaxis, migrating down 

thermal gradients to temperatures below ambient (Fig. 2B) [68,69]. The switch point 

between positive and negative thermotaxis is regulated by recently experienced 

environmental temperature (see Subsection 2.3), such that in general, iL3s exposed to 

temperatures above the switch point migrate toward host body temperature and iL3s exposed 

to temperatures below the switch point engage in negative thermotaxis toward cooler 

temperatures [68,69]. For S. stercoralis iL3s, environmental temperature differences of as 

little as 1°C are sufficient to dramatically alter the percentage of the population engaging in 

positive versus negative thermotaxis [69].
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Why do iL3s engage in negative thermotaxis? Temperatures at or below the recently 

experienced environmental temperature are presumably more likely to be environmental 

than host-generated, and may therefore trigger environmental navigation rather than host 

seeking. Navigation toward cooler temperatures may enable iL3s to avoid environmental 

heat sources such as sun-heated soil. Temperatures of up to 40°C are permissive for the 

hatching and development of some skin-penetrating nematode eggs and larvae [72–75]. 

However, even when land surface temperatures exceed permissive temperatures for the 

survival of eggs and larvae, hookworm infections can still remain highly prevalent; this 

discrepancy has been attributed to the ability of hookworm larvae to migrate toward cooler 

soil microenvironments [76]. In addition, dispersal toward cooler soil microenvironments 

likely promotes better subsequent detection of host-related heat sources.

2.3 Environmental temperature regulates the temperature-driven behaviors of iL3s

The thermal environment experienced by iL3s modulates several aspects of sensory-driven 

navigation toward hosts, as well as subsequent host invasion. Most strikingly, a change in the 

environmental temperature regulates the likelihood that iL3s will engage in temperature-

driven host seeking by controlling the thermal switch point between positive and negative 

thermotaxis [68,69]. The change in the thermal switch point can occur rapidly, over the 

course of hours. For example, S. stercoralis iL3s that are cultivated at 15°C for 2 hours will 

engage in positive thermotaxis at cooler temperatures than iL3s cultivated at 23°C (Fig. 2B) 

[69]. Similar shifts are observed in other soil-transmitted iL3s, although the time course of 

these shifts has not been investigated in detail [68,69]. The thermal environment can also 

influence host-invasion behaviors; prolonged cultivation at cool temperatures (7°C) was 

found to reduce the temperature that triggers skin penetration by the dog hookworm 

Ancylostoma caninum [59]. The ability of cooler ambient temperatures to enhance heat-

seeking and host-invasion behaviors suggests that iL3s may be more likely to engage in 

temperature-driven host seeking and host infection in the early morning or late evening, 

when soil temperatures are low [77,78] but hosts are active. However, iL3s cultivated near 

mammalian body temperature (37°C) still engage in both positive thermotaxis and skin 

penetration [59,69], suggesting that thermal plasticity is reduced when environmental 

conditions closely mimic host body temperatures. Thus, iL3s are able to seek out 

mammalian hosts even when environmental temperatures are high.

2.4 Thermosensory stimuli regulate responses to chemosensory stimuli

In addition to responding to thermal stimuli, skin-penetrating iL3s respond to a wide range 

of host-emitted chemical cues [36,58–60,64,79–84]. Skin-penetrating nematodes and many 

other mammalian-parasitic nematodes have relatively narrow host ranges [85–89], and 

chemosensory preferences are likely to be critical for distinguishing potential hosts from 

other non-host mammals. How do the robust thermosensory responses of parasitic iL3s 

interact with their chemosensory responses? First, the environmental temperatures 

experienced by iL3s can influence their odor-driven behaviors. For example, prolonged 

cultivation of Strongyloides ratti iL3s at different temperatures alters their olfactory 

preferences (Fig. 2C-D) [80]. Together with the observation that environmental temperatures 

regulate the thermal preferences of iL3s, these results suggest that skin-penetrating iL3s use 

a host-seeking strategy that flexibly adjusts in response to changing environmental 
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conditions in order to ensure successful detection of host-emitted chemosensory and 

thermosensory cues.

In addition, experiments that paired thermal cues with host-emitted chemosensory cues 

observed a profound influence of heat on the responses of iL3s to chemosensory stimuli. For 

Ancylostoma duodenale and Necator americanus iL3s, CO2 stimuli only elicit movement 

when combined with warmth or moisture, an effect that may result in responses to exhaled 

breath [36]. Thermosensory signals can also overcome iL3 attraction to host odorants during 

directed navigation [69]. For example, in thermal gradients below host body temperature, S. 
stercoralis iL3s will bypass a highly attractive host odorant in favor of engaging in positive 

thermotaxis [69]. However, in gradients near host body temperature, iL3s are less likely to 

bypass the odorant and instead accumulate in the thermal gradient near the odorant’s 

temperature [69]. The ability of thermal drive to suppress the olfactory responses of iL3s 

suggests a sensory hierarchy wherein heat acts as a primary driver of long-range navigation 

toward hosts, and odorants act at closer range to enable host identification.

2.5 Strong thermal drive transforms iL3 migration patterns

As iL3s near host body temperature, they transition from relatively straight long-distance 

navigation to highly curved local search [28,58,69]. Unstimulated iL3 movements are also 

highly curved [57,69], suggesting that strong thermal drive suppresses local-search behavior 

in favor of directed navigation toward thermal cues. Once iL3s reach host body 

temperatures, they re-engage local-search behavior and other temperature-driven host-

invasion behaviors [36,58–60,69]. Interestingly, iL3s engaged in migration toward attractive 

odorants also display highly curved tracks [69]; olfactory responses may therefore be 

generated by biased movement within the local-search paradigm. This behavior contrasts 

with the relatively straight movements elicited by strong thermal drive [69]. Thus, 

temperature-driven responses and odorant-driven responses are likely produced using 

different sensorimotor strategies.

2.6 Exposure to host body temperature triggers the transition to parasitic adulthood

Following host invasion iL3s activate, resuming feeding and development in a process that is 

mechanistically similar to exit from the Caenorhabditis elegans dauer state [46,90–93]. 

Activation is triggered by both endogenous signals such as dafachronic acid [93] and host-

related sensory cues, including host body temperature [40–46]. For example, A. caninum 
iL3s are most likely to activate in vitro following prolonged incubation in sensory conditions 

that mimic host entry: temperatures above 32°C with 5% CO2 in tissue culture medium 

supplemented with dog serum and reduced glutathione [40,43]. Similar conditions can also 

induce activation in the human-parasitic nematodes S. stercoralis, A. duodenale and 

Ancylostoma ceylanicum [40,44– 46]. Thus, elevated temperatures are necessary but not 

sufficient to trigger activation in these species.

3. Thermosensory behaviors of passively ingested parasitic nematodes

For passively ingested nematodes, some species display temperature-driven behaviors 

similar to those of the skin-penetrating nematodes. For example, iL3s of the passively 

Bryant and Hallem Page 6

Neurosci Lett. Author manuscript; available in PMC 2019 November 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



ingested murine parasite H. polygyrus exhibit positive thermotaxis toward host body 

temperature and negative thermotaxis toward temperatures below ambient [69]. Moreover, 

the thermal switch point between positive and negative thermotaxis is regulated by the 

recently experienced cultivation temperature, as in skin-penetrating nematodes [69]. Heat-

seeking behaviors may enable H. polygyrus iL3s to position themselves close to a host, thus 

maximizing the likelihood of subsequent ingestion. Consistent with this strategy, H. 
polygyrus iL3s are attracted to several host-emitted odorants [81,94]. However, not all 

passively ingested nematodes use heat to position themselves near hosts; iL3s of the 

passively ingested ruminant parasite H. contortus do not migrate toward host body 

temperatures but instead display an experience-dependent preference for their previous 

cultivation temperature [95]. Whether temperature-driven host seeking is exhibited by other 

passively ingested nematodes has not been tested.

4. Thermosensory behaviors of free-living nematodes

The free-living nematode C. elegans also engages in positive and negative thermotaxis, and 

provides a useful comparative model for the parasitic nematodes. Within a physiological 

range (15–25°C), C. elegans adults migrate in relation to a “remembered” cultivation 

temperature (TC), performing negative thermotaxis at temperatures above TC and positive 

thermotaxis at temperatures below TC [96–104]. In a narrow temperature range near TC, C. 
elegans adults transition from directed navigation to movement aligned isothermally to TC 

[96,97,103]. This behavior, called isothermal tracking, is characterized by relatively straight 

runs aligned perpendicular to the thermal gradient [96,97,103]. In contrast, skin-penetrating 

parasitic iL3s do not appear to engage in isothermal tracking [69]. C. elegans adults that are 

exposed to temperatures in a noxious temperature range (>26°C) display avoidance and 

escape behaviors [103,105–110]. C. elegans dauer larvae, which are developmentally similar 

to parasitic iL3s, are less well-studied. However, C. elegans dauers appear relatively 

indifferent to thermal stimuli that are in the noxious temperature range for C. elegans adults 

[69,105]. Thus, the behaviors of both C. elegans adults and dauers in response to warm 

temperatures contrast strikingly with the heat-seeking behaviors of most mammalian-

parasitic iL3s.

Similar to the thermal preferences of mammalian-parasitic nematodes, the thermal 

preferences of C. elegans are regulated by recently experienced cultivation temperatures 

[97]. Cultivation at a new temperature for several hours resets TC, altering thermotaxis 

navigation [96–98,111–113]. In some assays, the threshold for triggering noxious heat 

responses can also be modulated by changes to the cultivation temperature [110]. 

Ethologically, thermotaxis and noxious heat avoidance are thought to enable C. elegans to 

maintain exposure to favorable thermal environments [96,99,114].

5. Thermosensory behaviors of entomopathogenic nematodes

Entomopathogenic nematodes (EPNs) are found in a wide range of climates, and in some 

cases, the thermal niche of an individual species is very broad [115]. EPN IJs are long-lived, 

in some cases surviving in the soil for a year or more [116–119]. Prolonged cultivation at 

different temperatures can alter the lifespan and infectivity of some EPN species [120–126]. 

Bryant and Hallem Page 7

Neurosci Lett. Author manuscript; available in PMC 2019 November 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Nevertheless, the IJs of many EPN species are capable of surviving large differences in 

ambient temperatures associated with both differential geography and seasonal cycles 

[115,126,127].

5.1 EPNs engage in thermotaxis behavior

EPNs infect insects, which are primarily poikilotherms: their body temperature varies with 

that of the environment. Thus, EPN host seeking is not thought to rely on thermosensory 

cues. Instead, the thermosensory responses of EPNs likely drive environmental navigation 

toward favorable temperatures. For example, like C. elegans adults and H. contortus iL3s, S. 
carpocapsae IJs migrate toward their cultivation temperature [128]. Moreover, the thermal 

preferences of S. carpocapsae IJs are modulated by the recently experienced environmental 

temperature [128]. S. carpocapsae IJs also actively avoid noxious temperatures [69]. 

However, at least one set of experiments observed that S. carpocapsae IJs were attracted to 

temperatures slightly above ambient (< +1°C), a temperature differential associated with 

insect metabolism [129]. The host-seeking strategy of S. carpocapsae IJs is also regulated by 

cultivation temperature: IJs cultivated at 25°C are more likely to remain stationary and 

ambush passing hosts, while IJs cultivated at 15°C are more likely to actively cruise toward 

hosts [80].

5.2 Temperature regulates the chemosensory behaviors of EPNs

Host-emitted chemosensory cues play a dominant role in driving EPN host-seeking 

behaviors [19,48,49,130]. IJs are attracted to a diverse array of insect-emitted odorants and 

carbon dioxide [49,131–137]. IJs are also attracted to plant odorants, including some that are 

released in response to insect predation [138–144]. In combination, these olfactory 

preferences suggest that IJs both seek out insect hosts directly, and use environmental cues 

to migrate to locations where they are likely to encounter insect hosts.

The responses of some EPN species to host-derived odorants are strongly modulated by 

cultivation temperature [80]. For example, when S. carpocapsae IJs are cultivated at 15°C, 

their olfactory preferences are dramatically altered in comparison to IJs cultivated at 25°C. 

In some cases, odorants that are repulsive to IJs previously cultivated at 25°C are attractive 

to IJs previously cultivated at 15°C, and vice versa (Fig. 2E). Moreover, these temperature-

induced changes in olfactory preferences are reversible over the course of weeks. 

Temperature-dependent modulation of olfactory behavior was observed across multiple 

phylogenetically distant EPN species, although some EPN species showed greater 

behavioral plasticity than others [80]. Furthermore, temperature-dependent modulation of 

olfactory behavior appears to be more extreme for EPNs than for mammalian-parasitic 

nematodes [80]. The temperature-dependent olfactory plasticity of EPNs may reflect the 

need for EPNs to adjust their host preferences in response to seasonal variation in the 

availability of different host species [145–147].

6. Thermosensory behaviors of mammalian-parasitic schistosomes

The life cycle of mammalian-parasitic schistosomes features two free-living infective larval 

stages: the miracidia, which infect marine snails; and the cercariae, which infect mammalian 
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hosts [27,28]. Environmental conditions can affect the behavior of both miracidia and 

cercariae. Higher environmental temperatures stimulate increased emergence of cercariae 

from snails, as well as increased swimming rates in both miracidia and cercariae [148– 151]. 

Temperature also has life-stage-specific effects on cercariae and miracidia. The miracidia of 

many species are thought to rely on snail-specific chemosensory cues rather than thermal 

cues for host seeking, a preference consistent with their need to infect ectothermic hosts 

[28]. In contrast, some cercariae rely on both thermal and chemosensory cues for infecting 

mammalian hosts [28].

The process by which cercariae recognize and invade mammalian hosts consists of multiple 

behaviors, including attachment to host skin, maintenance of contact with host skin, 

creeping along the skin, and skin penetration [28]. The cercariae of some species may also 

actively navigate toward or orient to host skin at close-range [152]. Thermal cues can 

influence each of these behaviors, although responses to thermal cues vary across species 

[28]. For example, directed migration of cercariae in response to thermal gradients has been 

observed in a number of mammalian-parasitic schistosome species, including the human-

parasitic species S. mansoni and S. haematobium [153–157]. However, the relative 

importance of thermal versus chemical cues varies across the two species, with S. mansoni 
showing greater sensitivity to chemical cues and S. haematobium showing greater sensitivity 

to thermal cues [155]. Similarly, higher environmental temperatures stimulate host 

attachment, enduring contact, and skin penetration by the cercariae of some species but not 

others [153–156]. Thus, temperature appears to be an important regulator of host seeking 

and host invasion for some but not all schistosome species.

7. Possible effects of climate change on parasitic helminth infectivity

The influence of environmental temperature on host-seeking behavior raises the question of 

whether parasitic helminth infection rates will be altered by global climate change. The 

effects of climate change on parasitic helminth survival and infectivity are predicted to vary 

greatly across species. For example, increased environmental temperatures may restrict 

schistosome transmission in some regions by negatively impacting freshwater snail 

populations [29]. In the case of parasitic nematodes with an environmentally motile iL3 

stage, the iL3s are capable of engaging in positive thermotaxis after experiencing a wide 

range of environmental temperatures [59,68,69], suggesting that the nematodes will be able 

to host seek despite changing climate conditions. However, differences in optimal growth 

conditions across species may alter the geographical ranges of some parasitic nematodes 

[29,30]. The relative prevalence of different species may also change in certain regions as 

some species gain growth advantages over others [29]. In addition, global climate change 

may affect the utility of some EPNs as biocontrol agents [158].

8. The neural basis of thermosensation in parasitic helminths

8.1 The neural basis of thermosensation in free-living and parasitic nematodes

The neural basis of thermosensation in parasitic nematodes has not been extensively studied. 

In contrast, the neural mechanisms underlying C. elegans thermosensation are relatively well 

understood. Nematode sensory neuroanatomy is broadly similar across many species, 
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including free-living and parasitic species [95,159–166]. Thus, knowledge of the C. elegans 
thermosensory circuit may provide insight into the circuitry underlying temperature-driven 

behaviors in parasitic nematodes.

In C. elegans, the bilateral amphid sensilla are the primary sensory organs; each amphid 

consists of 12 ciliated sensory neurons located in the head [167,168]. The amphid neuron 

pair AFD is the primary thermosensory neuron pair (Fig. 3A) [96,100,167,169–174]. C. 
elegans AFD neurons are characterized by a highly complex “finger-like” dendritic structure 

(Fig. 3B) [174,175]. AFD is required for thermotaxis navigation and isothermal tracking 

within C. elegans’ physiological temperature range [100,169,171,173]. AFD also plays a 

role in noxious heat detection [176,177]. A different amphidial neuron pair, AWC (Fig. 3A), 

has elaborate “wing-like” dendritic endings (Fig. 3B) and also responds to thermal stimuli, 

including noxious heat [96,176,178,179]. Several nonamphidial sensory neurons are also 

associated with thermal nociception, including the FLP neuron pair [108,177,180].

Morphological studies have found that parasitic nematode amphids are similar to those of C. 
elegans, although in some species the amphids are innervated by 13 neurons rather than 12 

neurons [161–165]. The morphology of amphidial sensory endings can vary dramatically 

between species and life stages, and the precise arrangement of neuron cell bodies within the 

amphid also varies slightly [161–165]. These differences can complicate comparisons 

between parasitic amphid neurons and C. elegans amphid neurons. For example, S. 
stercoralis lacks amphidial neurons with “finger-like” and “wing-like” dendritic processes; 

instead a “lamellar” cell called ALD is thought to be the homolog of either AFD or AWC 

(Fig. 3C-D) [161–163]. Many other parasitic nematode species lack neurons with “wing-

like” dendritic structures, but have amphid neurons with cell body positions similar to those 

of the C. elegans AWC neurons (Fig. 3E-F) [95,163–166]. The paths taken by the dendrites 

of these neurons through the amphidial channel are also similar to those taken by the C. 
elegans AWC neuron dendrites [163–165]. However, unlike S. stercoralis, these species all 

have amphid neurons with elaborate “finger-like” sensory endings that are clear homologs of 

C. elegans AFD (Fig. 3E-F) [95,163–166].

Until recently, techniques for genetic manipulation were severely limited in parasitic 

nematodes. Thus, functional assessments of the contributions of different sensory neurons to 

parasite thermosensation have been restricted to laser ablation combined with behavioral 

assays. Using this approach, AFD was shown to be required for positive thermotaxis in both 

A. caninum and the passively ingested ruminant-parasitic nematode H. contortus [95,181]. 

In H. contortus, the AWC homolog is not required for positive thermotaxis [95], although it 

is possible that these neurons nevertheless contribute to thermosensation in a manner similar 

to C. elegans AWC. In S. stercoralis, the ALD neurons are required for positive thermotaxis 

by iL3s [65,163]. In addition, the ALD neurons contribute to chemosensory behaviors [163]. 

Thus, whether the S. stercoralis ALD neuron is functionally more similar to the C. elegans 
AFD neuron or the C. elegans AWC neuron remains unclear. Resolving this issue will likely 

require using genetic markers to identify putative homologs of AFD and AWC in S. 
stercoralis [44], in combination with both morphological analysis and functional analyses of 

thermosensory and chemosensory behaviors. Interestingly, ALD does not appear to 

contribute to the temperature-dependent activation of S. stercoralis iL3s, suggesting that the 
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diverse temperature-driven behaviors of iL3s could rely on distinct thermosensory 

mechanisms [46].

Parasite-specific behavioral responses to temperature cues may reflect adaptations of 

conserved neural circuits, as well as thermosensory mechanisms unique to parasitic 

nematodes. In C. elegans, the elaborate sensory endings of amphidial neurons are often 

critical for proper neuronal function [167,168,182–186], and the complexity of the “finger-

like” processes of AFD is thought to enhance neuronal sensitivity to thermal stimuli by 

increasing the dendritic surface-to-volume ratio [174]. Thus, variations in the sensory 

endings of parasitic neurons, such as the unique dendritic structure of S. stercoralis ALD, 

may reflect functional specializations necessary for host-seeking behaviors. In addition, 

neural imaging studies have revealed that C. elegans thermosensory coding is regulated by 

mechanisms such as sensory adaptation in AFD and synaptic plasticity between AFD and 

the downstream interneuron AIY [170,187–190]. Experimental manipulation of these 

neurons or their connectivity can elicit dramatic changes in thermotaxis behaviors. For 

example, modulating the strength of the AFD-AIY synapse can alter the valence of 

thermosensory drive in C. elegans [170]. Future experiments are needed to determine 

whether parasite-specific thermotaxis behaviors are generated by unique thermosensory 

properties of the parasite thermosensory neurons, differences in their synaptic connections, 

or a combination of both. Similarly, whether conserved mechanisms generate experience-

dependent thermal plasticity in parasitic and free-living nematodes has not yet been 

investigated. Decoding the functional properties of the parasitic nematode thermosensory 

circuit will undoubtedly require monitoring the neural activity of thermosensory neurons and 

interneurons using genetically encoded calcium indicators, and these experiments are 

currently most feasible in S. stercoralis and other closely related species that are readily 

amenable to genetic transformation [191–199].

8.2 The schistosome sensory nervous system

The ultrastructure of the schistosome nervous system is distinct from that of nematodes. 

Relatively little is known about schistosome sensory neuroanatomy, both because trematodes 

have much larger and more complex nervous systems than nematodes [200] and because the 

field lacks a well-studied, genetically tractable model system with similar neuroanatomy that 

can serve as a basis for comparison, like C. elegans for parasitic nematodes. In S. mansoni 
cercariae, the ciliated endings of sensory neurons are organized in sensory papillae 

[201,202]. Approximately 38 pairs of bilaterally symmetrical sensory papillae, with 6 

structural types, are located bilaterally and symmetrically at the anterior organ and along the 

length of the cercarial body [201–203]. The functional properties of these sensory organs are 

unknown, although one structural group has been identified as putative photoreceptors based 

on morphology [204]. Thermosensory neurons have not been identified in schistosomes.

9. Molecular mechanisms of thermosensation in parasitic helminths

9.1 Molecular mechanisms of thermosensation in parasitic nematodes

Until recently, a lack of tools for genetic manipulation in parasitic nematodes has hindered 

efforts to elucidate the molecular mechanisms underlying their thermosensory behaviors. 
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However, high-quality reference genomes for many parasitic nematode species are now 

available [205], as is life-stage-specific RNA-Seq data [91,205,206]. In addition, an ever-

expanding molecular toolkit for parasitic nematodes now includes CRISPR/Cas9-mediated 

targeted mutagenesis, heritable transgenesis, chemical mutagenesis, and RNA interference in 

some species [191–193,195–199,207]. These methods are now enabling the identification of 

molecular mechanisms that underlie the diverse array of temperature-driven behaviors in 

parasitic nematodes.

Critically, genetic similarity between nematode species is enabling a comparative genomics 

approach that provides an invaluable starting point for investigations of the molecular and 

genetic basis of parasitic behaviors [206,208]. The genetic similarities between different 

nematode species belie the evolutionary timeline over which these lineages have evolved. 

Although assessing the phylogenetic relationships within Nematoda is a complex problem 

[209–211], some analyses estimate that Chromadorea, a class of Nematoda that includes C. 
elegans, hookworms, and Strongyloides species, split from other nematode lineages over 

400 million years ago [212,213]. Current estimates suggest that Chromadorea subsequently 

diversified into distinct clades within the last 200300 million years [212,213]. The time at 

which Clade IV (Strongyloides species) diverged from Clade V (C. elegans and hookworms) 

is not clear [209–211], although some estimates suggest the split occurred approximately 

190–217 million years ago [212,213]. Nevertheless, species such as C. elegans and S. 
stercoralis retain sufficient genetic similarity that homologs of genes required for 

thermosensation in C. elegans can be identified and then tested for a role in mediating 

thermosensation in parasitic nematodes [69]. Specifically, targeted mutagenesis is now 

feasible in S. stercoralis and S. ratti due to the recent adaptation of the CRISPR/Cas9 system 

for use in these species, thus enabling the first loss-of-function studies of candidate 

thermosensory genes [191,207].

Using this approach, the role of the S. stercoralis tax-4 gene in mediating heat seeking by S. 
stercoralis iL3s was recently investigated [69]. In C. elegans, the tax-4 gene encodes a cyclic 

nucleotide-gated channel subunit that is expressed in several head sensory neurons and is 

required for multiple sensory modalities, including thermosensation [100–102,167,179,214–

217]. Ce-tax-4 is required for temperature-driven activation of AFD and plays a role in 

isothermal tracking, thermotaxis navigation, and noxious heat detection [100– 

102,172,173,177,179,214]. In S. stercoralis, CRISPR/Cas9-mediated homozygous 

disruption of Ss-tax-4 [69,207] was found to severely disrupt several temperature-driven 

behaviors in S. stercoralis iL3s, including positive thermotaxis toward host body 

temperatures [69]. These results demonstrate that despite notable differences in their 

temperature-driven behaviors, the molecular mechanisms underlying thermosensation are at 

least partially conserved across free-living and parasitic nematode species.

Our understanding of the molecular pathways involved in various aspects of C. elegans 
thermosensation provides several additional gene targets that may contribute to the 

temperature-driven behaviors of parasitic nematodes. For example, the sensitivity of C. 
elegans AFD to thermal stimuli is dependent on three receptortype guanylate cyclases − 

GCY-8, GCY-18, and GCY-23 − which act upstream of TAX-4/TAX-2 (collectively referred 

to here as the AFD-rGCs) [172–174,177,179,218–220]. The AFD-rGCs act to set the 

Bryant and Hallem Page 12

Neurosci Lett. Author manuscript; available in PMC 2019 November 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



operating range of the AFD thermosensory neurons, and altering the sequences of the AFD-

rGCs can shift the AFD thermosensory response threshold [218]. The AFD-rGCs regulate 

multiple thermosensory behaviors, including positive and negative thermotaxis, isothermal 

tracking, and thermal avoidance [172–174,177,179,218–220]. Species-specific 

specializations in the functional properties of the parasite homologs of the C. elegans 
AFDrGCs could contribute to the thermal preferences of parasitic nematodes.

Other potential targets include genes that encode members of the transient receptor potential 

(TRP) superfamily. For example, the C. elegans ocr-2 and osm-9 genes encode TRPV 

channels and contribute to multiple sensory responses, including noxious heat avoidance 

[106,108,177]. These channels are notable given the involvement of TRPV channels with 

thermosensation in many species, including vertebrates [221]. In addition, TRPA1 channels 

are involved in thermosensory responses in a wide range of species, from planarians to C. 
elegans to mammals [103,221,222]. The molecular mechanisms by which TRPA1 mediates 

temperature-driven behaviors likely vary among evolutionarily distant species. In some 

cases, TRPA1 is thought to respond to temperature changes directly; in other cases, TRPA1 

is thought to indirectly mediate temperature responses by sensing the reactive oxygen 

species generated by heat-damaged tissue [221,223,224]. Species-specific adaptations in the 

functional properties of TRP channels can alter heat tolerance and cold sensitivity in 

mammals [225,226]. In parasitic nematodes, it is possible that similar TRP channel 

adaptations could contribute to the dramatic preference of mammalian-parasitic nematodes 

for host body temperature.

9.2 Molecular mechanisms of thermosensation in schistosomes

The molecular mechanisms underlying sensory transmission in Schistosoma species have 

not been studied extensively. One recent study tested the effect of changes in ambient 

temperature on kinase signaling in S. mansoni cercariae. Switching the cultivation 

temperature from 24°C to 37°C resulted in increased activation of protein kinase C (PKC), 

extracellular signal-regulated kinase (ERK), and p38 mitogen-activated protein kinase (p38 

MAPK) [227]. Activated kinases were localized to several neural structures [227]. The 

functional role of these kinases in temperature-driven host seeking, if any, is not known. 

However, protein kinase signaling triggered by host-emitted heat is thought to regulate 

transcriptional changes required for cercarial development within the host [227]. In addition, 

the heat-shock protein Hsp70 was found to regulate host invasion by schistosome cercariae, 

providing insight into the mechanism by which elevated temperatures trigger host-invasion 

behaviors [228].

The genomes of Schistosoma species contain several TRP channel genes [229]. 

Interestingly, the S. mansoni genome appears to lack genes coding for TRPV channels 

[229]; however, the genome does encode a TRPA1like channel that may have 

pharmacological sensitivities similar to those of both mammalian TRPA1 and TRPV 

channels [230]. The functional role of these channels in schistosome thermosensation has 

not been assessed. However, RNAi has been established in Schistosoma at some life stages 

[231,232], and the first instance of CRISPR/Cas9-mediated genome editing was recently 
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reported [233]. Future studies could therefore assess the functional contributions of TRP 

channels to the temperature responses of these life stages.

10. Conclusions

Thermal stimuli drive a diverse array of behaviors in both free-living and parasitic animals. 

There is growing evidence that the specialized thermosensory responses of many parasitic 

helminths play critical roles in driving the diverse range of behaviors that enables the 

environmentally motile infective larvae to find and infect their hosts. In mammalian-

parasitic nematodes, thermosensation contributes to multiple aspects of host seeking and 

infectivity, including generalized arousal, long- and short-range navigation toward hosts, 

skin penetration, and activation (Fig. 4). In both parasitic and free-living nematodes, 

thermosensation also contributes to environmental navigation (Fig. 4). In addition, 

temperature regulates host seeking and environmental navigation indirectly by modulating 

behavioral responses to olfactory cues. In schistosome cercariae, thermosensation also 

contributes to multiple behaviors, including orientation toward host skin and subsequent skin 

invasion. Recent additions to the molecular toolkit for parasitic helminths are supporting 

efforts to elucidate the cellular, molecular, and circuit adaptations that mediate parasite-

specific thermosensory responses. These efforts have so far demonstrated that the different 

temperature-driven behaviors of free-living and parasitic nematodes are likely generated by 

genetic and neural mechanisms that are at least partially conserved across species. Future 

studies will be necessary to identify the parasite-specific thermosensory adaptations that 

underlie host-seeking and hostinvasion behaviors. By gaining insight into how parasitic 

helminths use thermosensation to guide host seeking, future research may enable the 

development of new strategies for helminth control. Furthermore, a better understanding of 

how temperature regulates sensory behaviors in EPNs could increase their utility as 

biocontrol agents.
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Highlights

• Thermosensation is a critical sensory modality for many parasitic helminth 

species.

• Thermal cues drive multiple behaviors necessary for host seeking and host 

invasion.

• The neural and molecular basis of parasite thermosensation is understudied.

• Parasite thermosensation requires sensory cascades found in free-living 

nematodes.
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Fig. 1. The life cycles of parasitic helminths.
A-C. Life cycles of mammalian-parasitic nematodes. Soil-dwelling developmentally 

arrested infective larvae (iL3s) seek out hosts using host-emitted sensory cues, including 

heat [19]. Across species, infection routes include skin penetration (A) and oral ingestion 

(C), or both in the case of certain hookworm species (B) [2,27,36–39,89]. Following host 

infection, the nematodes resume development and migrate to the small intestine, where they 

take up residence as reproductively capable parasitic adults [2]. Larvae or eggs then exit 

hosts in feces. For Strongyloides stercoralis, larvae may develop into iL3s or free-living 

adults; the progeny of free-living adults exclusively become iL3s (A). For hookworms and 

passively ingested nematodes, the progeny of parasitic adults develop into iL3s (B-C).

D. The life cycle of entomopathogenic nematodes (EPNs). Soil-dwelling infective juveniles 

(IJs), which are developmentally similar to the iL3s of mammalian-parasitic nematodes, 

invade and then rapidly kill insect hosts [50,51]. EPNs can develop and reproduce inside the 

host cadaver for multiple generations, until depleted resources within the cadaver trigger the 

formation of IJs that are released into the environment [50].

E. The life cycle of schistosomes. Unlike parasitic nematodes, the schistosome life cycle 

involves an intermediate and a definitive host animal [27,28]. Some schistosome species 

seek out both intermediate and/or definitive hosts using host-emitted sensory cues. Free-

swimming miracidia infect aquatic snails (intermediate hosts). Following snail penetration 

the schistosomes develop into mother sporocysts and produce daughter sporocysts whose 

larval progeny become cercariae [27]. Water-transmitted cercariae emerge from snails and 

infect the definitive hosts. Inside the definitive host, cercariae transform into schistosomula, 

which develop and migrate through the host circulatory system. Depending on the 

schistosome species, parasitic adults will ultimately reside in the veins draining blood from 

the intestines, liver, or bladder. The eggs of parasitic adults are excreted in feces or urine, 

and subsequently develop into miracidia [27].

Diagrams are not drawn to scale.
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Fig. 2. Temperature-dependent navigation behaviors of parasitic nematodes
A. Schematic of a thermotaxis assay. A linear thermal gradient is established across a 22 × 

22 cm agar surface, using a custom thermal stage [69]. iL3s are placed at a selected starting 

temperature (Tstart) and allowed to disperse. Two cameras record worm movements, each 

camera monitoring approximately half of the thermal gradient. The final position of worms 

in the thermal gradient is calculated post hoc: images corresponding to the desired 

experimental time point are divided into 1°C temperature bins, and the number of worms in 

each bin is tallied [69]. Positive thermotaxis is defined as movement into a temperature bin 
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warmer than Tstart; negative thermotaxis is defined as movement into a temperature bin 

cooler than Tstart. Worms are not drawn to scale.

B. S. stercoralis iL3s engage in long-range positive and negative thermotaxis, and the switch 

point between these behaviors is set by the recently experienced cultivation temperature 

(TC). Left: S. stercoralis iL3s cultivated at 23°C and then placed at 25°C in a ~22°C-34°C 

gradient engage in long-range positive thermotaxis toward mammalian body temperatures. 

Center: S. stercoralis iL3s cultivated at 23°C and then placed at 23°C in ~22°C33°C gradient 

display both positive and negative thermotaxis. Right: S. stercoralis iL3s that have been 

cultivated at 15°C for 7 days exhibit only positive thermotaxis when placed at 23°C in a 

~22°C-33°C gradient. Assay duration: 15 minutes, n = 15 trials with >50 iL3s per trial. Gray 

shading indicates the starting temperature of the iL3s (Tstart). All graphs show medians and 

interquartile ranges; in some cases, error bars are too small to be visible. Data are 

reproduced with permission from Bryant et al., 2018 [69].

C. Schematic of a chemotaxis assay. iL3s are placed in the center of a 10 cm agar plate 

containing a point source of an odorant on one side and a point source of a control (often 

paraffin oil) on the other side. The distribution of iL3s in the odorant gradient is then 

quantified after 3 hours by calculating a chemotaxis index using the formula shown. The 

chemotaxis index ranges from −1 to +1, with −1 indicating maximum repulsion and +1 

indicating maximum attraction. Worms are not drawn to scale. Figure is adapted from Lee et 
al., 2016 [80].

D. Temperature-dependent changes in the chemosensory responses of the skin-penetrating 

nematode Strongyloides ratti. Left: S. ratti iL3s cultivated at 15°C for 7 days are repelled by 

the host-emitted odorant 3meythl-1-butanol, whereas S. ratti iL3s cultivated at 30°C for 7 

days show significantly reduced repulsion. Right: S. ratti iL3s cultivate at 15°C for 7 days 

are neutral to isovaleric acid, whereas S. ratti iL3s cultivated at 30°C for 7 days are attracted 

to isovaleric acid. *, p<0.05; **, p<0.01; two-way ANOVA with Tukey’s post-test. n = 6–8 

trials with >100 iL3s per trial. Lines and boxes show medians and interquartile ranges. 

Figure is adapted from Lee et al., 2016 [80].

E. Time course of temperature-dependent changes in chemosensory responses of the EPN 

Steinernema carpocapsae. Temperature-swapping IJs from 25°C to 15°C altered 

chemosensory responses over the course of days. Prior to the temperature swap, IJs 

cultivated at 25°C were strongly repelled by the insect-emitted odorant 2-propanone; over 

time at 15°C, the response gradually shifted to strong attraction. When IJs were swapped 

back to 25°C, their response to 2-propanone reverted to repulsion over the course of days. n 

= 6–22 trials for each time point. Graph depicts means and standard errors of the mean. Data 

are from Lee et al., 2016 [80].
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Fig. 3. Neuroanatomy of C. elegans, S. stercoralis and H. contortus thermosensory amphid 
neurons.
A-B. The cell body positions (A) and dendritic structures (B) of the thermosensory amphid 

neurons in a C. elegans L1 larva. The C. elegans AFD neurons are the primary 

thermosensory neurons in the amphids; they are characterized by highly elaborate “finger-

like” endings [174]. The C. elegans AWC olfactory neurons also respond to thermosensory 

cues; their dendritic endings are characterized by large “wing-like” structures. A number of 

other amphid sensory neurons are also labeled. A is modified from Ashton et al., 1995 with 

permission [161]; B is reproduced from Altun and Hall, 2010 [234].

C-D. The cell body position (C) and dendritic ending (D) of the ALD thermosensory neuron 

pair in an S. stercoralis iL3. S. stercoralis lacks cells with “finger-like” or “wing-like” 

dendritic endings; the ALD neuron has a “lamellar” structure, has thermosensory function, 
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and is the homolog of either C. elegans AFD or AWC [65,161–163]. A number of other 

amphid sensory neurons are also labeled. C-D are modified from Ashton et al., 1995 and 

Lopez et al., 2000 with permission [65,161].

E-F. The cell body positions (E) and dendritic ending (F) of the AFD and AWC neurons in 

an H. contortus L1 larva. The H. contortus AFD neurons are required for thermotaxis, 

whereas the H. contortus AWC neurons are not known to be required [95]. A number of 

other amphid sensory neurons are also labeled. E-F are adapted from Li et al., 2000a and Li 

at al., 2000b with permission [95,166].

For panels showing cell body positions (A, C, E), anterior is to the left. For panels showing 

dendritic endings (B, D, F), anterior is to the top.
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Fig. 4. Temperature-driven behaviors of skin-penetrating nematodes.
Thermal cues elicit a diverse set of behaviors in the soil-dwelling iL3s of skin-penetrating 

nematodes. These behaviors include: (A) arousal, characterized by non-directional 

movement in the presence of heat; (B) environmental navigation, characterized by positive 

and negative thermotaxis; (C) long-range host seeking, characterized by positive 

thermotaxis; (D) skin penetration; and (E) activation, in which the developmentally arrested 

iL3s resume development inside the host. Diagrams are not drawn to scale.
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