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Abstract—We introduce our solution for the diffraction of
a pulsed ray field, with spherical wavefront, by the vertex
(tip) of a pyramid. Within the Uniform Geometrical Theory of
Diffraction (UTD) we improve the time domain (TD) solutions
available in the literature by introducing the field diffracted by
a perfectly conducting faceted structure made by interconnected
flat plates, for source and observation points at finite distance
from the tip. The proposed closed form expression for an exciting
impulsive source has been calculated by employing the one-sided
inverse Fourier transform of the frequency domain solution. The
solution obtained is able to compensate for the discontinuities
of the field predicted by standard TD-UTD, i.e., time domain
geometrical optics (TD-GO) combined with the TD-UTD wedge
singly diffracted rays.

Index Terms—Asymptotic diffraction theory, electromagnetic
diffraction, electromagnetic transient scattering, geometrical the-
ory of diffraction, time domain (TD) uniform theory of diffrac-
tion, transient propagation, transient scattering, vertex diffrac-
tion.

I. INTRODUCTION

Transient wave phenomena have been extensively studied in
recent years primarily due to the increasing interest in ultra-
wide band (UWB) technologies.

In the framework of the UTD [1], a first time domain
(TD) solution for a straight perfectly conducting (PEC) wedge
was obtained in [2], via the application of inverse Laplace
transform theory to the corresponding frequency domain UTD
wedge diffraction coefficient. This result was extended in [3]
to a curved edge formed by the truncation of curved surfaces,
including the case of astigmatic time impulsive wavefront. In
the last decade new TD-UTD solutions were developed to
describe single wedge slope diffraction [4], double diffraction
by a pair of coplanar skew edges [5], the scattering from
perfectly conducting smooth convex surfaces [6], the radiation
of a pulsed antenna placed on PEC smooth convex surfaces
[7]. A preliminary expression for TD-UTD vertex diffraction
was introduced in [8] for real time, whereas the formulation
with complex time has been outlined in [9].

In this paper we introduce the new contribution to the TD-
UTD solutions present in the literature, by introducing the TD-
UTD solution for the EM scattering by the tip of a pyramid,
formed by PEC interconnected flat plates and illuminated by
a source with spherical wavefront. Such result is obtained

by calculating the analytic time transform of the frequency
domain (FD) UTD solution recently developed in [10]. As a
consequence, the transient fields propagate along the ray paths
of the UTD. In particular, we derived the TD-UTD vertex
diffraction coefficient for a tip illuminated by an impulsive
field. The diffraction coefficient presented here guarantees the
compensation of the discontinuities at GO and UTD wedge
diffracted field [3] planar and conical shadow boundaries
(SBs), that are typical in vertex diffraction phenomena [10],
and, thus, to uniformly describe the total field. Since the
UTD is a high-frequency asymptotic theory, its results in
the frequency domain remain accurate for moderate to high
frequencies; the corresponding TD ray solution, therefore, is
valid only for “early to intermediate times”. As a consequence,
each TD-UTD ray contribution will be the most accurate in
the neighborhood of the ray arrival time, i.e., the time required
to traverse its geometric ray path length from the source
to the observer. However, in the analysis of high frequency
high pass communication systems, when the exciting signal
is dominated by high frequencies and has negligible low
frequency components, the range of validity of the resulting
impulse response is extended to later observation times behind
the wavefront.

The impulse response dyadic TD-UTD vertex diffraction
coefficient is described in Section II.

II. FORMULATION

Let us consider an infinite PEC pyramid, as depicted in
Fig. 1, having M edges and M faces. Edges are counted
counterclockwise observing the pyramid from the tip V ; the
face Sm tagged by m is delimited by the edges tagged by
m and m + 1, with m = 1, ...,M , and M + 1 intended
“modulo M” (i. e., M + 1 ≡ 1). The pyramid results from
the superposition of M wedges (the mth edge belonging to
the mth wedge) sharing a common face, all intersecting at the
vertex V . The pyramid is illuminated by an impulsive source,
located at P ′, which radiates a field with a spherical wavefront.

The analytic time transform (ATT) [11]–[13] of the incident
GO ray electric field

+
ei (t) generated at P ′ and evaluated at
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Fig. 1. Pyramid geometry and reference systems centered at the vertex (tip).

the tip V has the following expression

+
ei (t) = Ei0Ai

+

δ (t− τi) (1)

where Ei0 is a constant vector; Ai = 1/r′, with r′ = |V − P ′|,
is the spherical wavefront spreading factor; τi = r′/c is the
incident GO ray arrival time at V , where c is the speed of

light in the medium surrounding the pyramid; and
+

δ (t) is the
analytic delta function defined as in [3].

The TD vertex diffracted field
+
ev (t) introduced in this

paper is in the framework of a general UTD description, hence,
the total TD field at a generic point P is represented as

+
etot (t) =

+
ei (t)+

+
er (t)+

+
ed (t)+

+
ev (t). (2)

Here
+
ei (t) is the incident analytic TD field evaluated at

P ;
+
er (t) is the analytic TD reflected field by the pyramid

faces according to GO;
+
ed (t) is the analytic TD-UTD field

accounting of edge diffraction at the edges of the pyramid. In
(2)

+
ev (t) is the analytic TD field contribution arising from

diffraction at the tip V and evaluated at P .
The TD-UTD analytic impulse response for the vertex

diffracted field at the observation point P is given by

+
ev (t) =

+

d v (τv) ·Ei0AiAv, (3)

where τv is a propagation delay, Av = 1/r, with r = |P −V |,
is the vertex diffraction spreading factor. The term

+

d v is the
dyadic TD-UTD analytic impulse response vertex diffraction
coefficient. It can be conveniently calculated by using the ray-
fixed reference system defined in [10], and it is expressed as

+

d v (t) =

M∑
m=1

+

d v,m (t). (4)

Notably, each term in (4) contains the analytical TD-UTD
canonical transition function for vertex diffraction, which has

the form

+

T GFI

(
b̂, â, t

)
= c

√
b̂

â

(
â+ b̂

)
π
(
â+ b̂+ t

)
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√
â

√
j

√
j
(
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) log


√
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√
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)


+2j arctan
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)}
(5)

and guarantees the uniform description of the total field at the
planar and conical shadow boundaries of GO and UTD wedge
singly diffracted rays. This analytic TD transition functions is
the one-side inverse Fourier transform of the frequency domain
vertex transition function in [10]. During the conference, a
detailed analysis of the dyadic diffraction coefficient will be
provided along with various representative numerical results,
which show the validity and the effectiveness of the proposed
solution.
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