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Joint Image and Depth Estimation
with Mask-Based Lensless Cameras

Yucheng Zheng and M. Salman Asif

Abstract—Mask-based lensless cameras replace the lens of
a conventional camera with a custom mask. These cameras
can potentially be very thin and even flexible. Recently, it has
been demonstrated that such mask-based cameras can recover
light intensity and depth information of a scene. Existing depth
recovery algorithms either assume that the scene consists of a
small number of depth planes or solve a sparse recovery problem
over a large 3D volume. Both these approaches fail to recover
the scenes with large depth variations. In this paper, we propose
a new approach for depth estimation based on an alternating
gradient descent algorithm that jointly estimates a continuous
depth map and light distribution of the unknown scene from its
lensless measurements. We present simulation results on image
and depth reconstruction for a variety of 3D test scenes. A
comparison between the proposed algorithm and other method
shows that our algorithm is more robust for natural scenes with
a large range of depths. We built a prototype lensless camera
and present experimental results for reconstruction of intensity
and depth maps of different real objects.

Index Terms—Lensless imaging, flatcam, depth estimation,
non-convex optimization, alternating minimization.

I. INTRODUCTION

Depth estimation is an important and challenging problem
that arises in a variety of applications including computer
vision, robotics, and autonomous systems. Existing depth es-
timation systems use stereo pairs of conventional (lens-based)
cameras or time-of-flight sensors [2]–[4]. These cameras can
be heavy, bulky, and require large space for their installation.
Therefore, their adoption in portable and lightweight devices
with strict physical constraints is still limited.

In this paper, we propose a joint image and depth estimation
framework for a computational lensless camera that consists of
a fixed, binary mask placed on top of a bare sensor. Such mask-
based cameras offer an alternative design for building cameras
without lenses. A recent example of a mask-based lensless
camera is known as FlatCam [5]. In contrast with a lens-based
camera that is designed to map every point in the scene to a
single pixel on the sensor, every sensor pixel in a FlatCam
records light from many points in the scene. A single point
source in the scene casts a shadow of the mask on the sensor,
which shifts if the point moves parallel to the sensor plane and
expands/shrinks if the point source moves toward/away from
the sensor plane. The measurements recorded on the sensor
thus represent a superposition of shifted and scaled versions

Y. Zheng and M. Asif are with the Department of Electrical and Computer
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of the mask shadows corresponding to light sources in different
directions and depths. Image and depth information about the
scene is thus encoded in the measurements, and we can solve
an inverse problem to estimate both of them.

To jointly estimate the depth and light distribution, we
propose a two-step approach that consists of an initialization
step and an alternating gradient descent step to minimize our
objective. To preserve sharp edges in the image intensity and
depth map, we include an adaptive regularization penalty in
our objective function.

An overview of the reconstruction framework is illustrated
in Figure 1. In this paper, we use the same sampling framework
proposed in [6]. We initialize the estimate of the depth map
by selecting a single plane or solving the greedy algorithm
proposed in [6]. The greedy method assumes that the scene
consists of a small number of depth planes and fails to recover
scene with continuous depth variations. The method proposed
in this paper can estimate continuous depth by minimizing an
objective function with respect to image intensity and depth via
alternating gradient descent. We present extensive simulation
and real experimental results with different objects.

The main contributions of this paper are as follows.
• We propose a new computational framework for joint es-

timation of light intensity and depth maps from a single
image of a mask-based lensless camera. In contrast to
other methods, our method estimates the depth map on
a continuous domain. Our algorithm consists of a careful
initialization step based on greedy pursuit and an alternating
minimization step based on gradient descent.

• The problem of joint image and depth recovery is highly
nonconvex. To tackle this issue, we present different regu-
larization schemes that offer robust recovery on a diverse
dataset.

• We present simulation results on standard 3D datasets
and demonstrated a significant improvement over existing
methods for 3D imaging using coded mask-based lensless
cameras.

• We built a hardware prototype to capture measurements of
real objects. We present image and depth reconstruction
results of these real objects using our proposed algorithm
and a comparison with existing methods.

II. RELATED WORK

A pinhole camera, also known as camera obscura, is the
simplest example of a mask-based lensless camera. Even
though a pinhole can easily provide an image of the scene onto
a sensor plane, the image quality is often severely affected
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(a) 1D imaging model for a pla-
nar sensor with a coded mask
placed at distance d. Light rays
from a light source at loca-
tion (θ, z) are received by all
the sensor pixels. A light ray
that hits sensor pixel s passes
through mask at location m.

(b) An overview of the proposed intensity and depth estimation framework. Consider a natural scene as a 3D
point cloud, where each point represents a light source located at a different depth. The camera consists of a
fixed, coded mask placed on top of an image sensor. Every point in the scene casts a shadow of the mask on
the sensor plane. Each sensor pixels records a linear combination of the scene modulated by the mask pattern.
The recovery algorithm consists of two steps. (1) Initialization using a greedy depth selection method. (2) An
alternating gradient descent-based refinement algorithm that jointly estimates the light distribution and depth
map on a continuous domain.

Fig. 1: A coded mask-based imaging model and an overview of the proposed continuous depth estimation framework.

by noise because the amount of light collected is limited
by the pinhole aperture [7]. Coded aperture-based lensless
cameras avoid this problem by increasing the number of
pinholes and allowing more light to reach the sensor [5],
[8]–[12]. In contrast to a pinhole camera where only one
inverted image of the scene is obtained through a single
pinhole, the measurements captured through a coded-mask are
a linear combination of all the pinhole images under every
mask element. To recover an image of the scene, we need to
solve a computational image recovery problem [5], [8], [12].

Recent work on mask-based lensless imaging broadly falls
into two categories. FlatCam [6] uses a separable mask aligned
with the sensor such that the sensor measurements correspond-
ing to a plane at a fixed depth from the sensor can be written
as a separable system. DiffuserCam [12] assumes that the
mask size and angular span of the object are small enough
so that the sensor measurements of a plane can be modeled
as a convolution of the mask pattern with image intensity at
that plane. The convolutional model can be computationally
efficient if the object falls within a small angular range because
we can use fast Fourier transform to compute convolutions.
The separable model does not require a small angular range
assumption. A number of methods based on deep learning
have also been developed recently for both separable and
convolutional imaging models to recover images at a fixed
depth plane [13]–[15].

A coded aperture system offers another advantage by en-
coding light from different directions and depths differently.
The depth-dependent imaging capability in coded aperture
systems is known since the pioneering work in this domain [8],
[16]. However, the classical methods usually assume that the
scene consists of a single plane at known depth. In this paper,
we assume that the depth map is arbitrarily distributed on a
continuous domain and the true depth map is unknown at the
time of reconstruction.

The 3D lensless imaging problem has also recently been

studied in [6], [11], [12], [17], [18]. These methods can
broadly be divided into two categories. In the first category, the
3D scene is divided into a finite number of voxels. To recover
the 3D light distribution, these methods solve an `1 norm-
based recovery problem under the assumption that the scene
is very sparse [12], [17]. In the second category, the 3D scene
is divided into an intensity map and multiple depth planes
such that each pixel is assigned one intensity and depth. To
solve the intensity and depth recovery problem, these methods
either sweep through the depth planes [11], [18] or assign
depth to each pixel using a greedy method [6]. Our proposed
method belongs to the second category in which we model the
image intensity and depth separately and assume that the depth
values of the scene are distributed on a continuous domain. To
recover the 3D scene, we jointly estimate the image intensity
and depth map from the available sensor measurements.

Joint estimation of image intensity and depth map can be
viewed as a nonlinear inverse problem in which the sam-
pling function is dependent on scene depth. Similar inverse
problem also arises in many other fields such as direction-
of-arrival estimation in radar [19], super-resolution [20] and
compressed sensing [21]–[23]. Similar to the joint estimation
of image intensity and depth, the solution approaches to these
problems consists of two main steps: identification of signal
bases and the estimation of signal intensities based on the
identified bases. The problem of identifying the signal bases
from continuously varying candidates is often called off-the-
grid signal recovery. The methods for solving the off-the-
grid signal recovery problems can be divided into two main
types. The first approach formulates the problem as a convex
program on a continuous domain and solves it using an atomic
norm minimization approach [24], [25]. The second approach
linearizes the problem for the optimization parameter using
a first-order approximation at every iteration [20], [26]. Our
proposed algorithm is inspired by the second approach.

Mask-based lensless cameras have traditionally been used
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for imaging light at wavelengths beyond the visible spectrum
[9], [10]. Other examples related to mask-based cameras
include controllable aperture and employing coded-mask for
compressed sensing and computational imaging [27], [28],
distributed lensless camera [29], single pixel camera [30] and
external mask setting [31].

Coded masks have also recently been used with conven-
tional lens-based cameras to estimate depth and lightfield
[32]–[35]. Recently, a number of data-driven methods have
been proposed to design custom phase masks and optical
elements to estimate depth from a single image [36], [37].
An all-optical diffractive deep neural network is proposed in
[38], [39], which can perform pattern recognition tasks such
as handwritten digits classification using optical mask layers.
Such networks can literally process images at a lightning-fast
pace with near-zero energy cost.

III. METHODS

A. Imaging Model

We divide the 3D scene under observation into N × N
uniformly spaced directions. We use θi and θj to denote the
angular directions of a light source with respect to the center
of the sensor. The intensity and depth of the light source are
denoted using li,j and zi,j respectively. Figure 1(a) depicts the
geometry of such an imaging model. A planar coded-mask
is placed on top of a planar sensor array at distance d. The
M ×M sensor array captures lights coming from the scene
modulated by the coded-mask.

Every light source in the scene casts a shadow of the mask
on the sensor array, which we denote using basis functions ψ.
We use su and sv to index a pixel on the rectangular sensor
array. The shadow cast by a light source with unit intensity at
(θi, θj , zi,j) can be represented as the following basis or point
spread function:

ψi,j(su, sv) = mask [αi,jsu + d tan(θi), αi,jsv + d tan(θj)],
(1)

where mask[u, v] denotes the transmittance of the mask pattern
at location (u, v) on the mask plane and αi,j is a variable that
is related to the physical depth zi,j with the following inverse
relation:

αi,j = 1− d

zi,j
, (2)

If the 3D scene consists of only a single point source at (θi, θj)
with light intensity li,j , the measurement captured at sensor
pixel (su, sv) would be

y(su, sv) = ψi,j(su, sv)li,j . (3)

The measurement recorded on any sensor pixel is the
summation of contributions from each of the point sources
in the 3D scene. The imaging model for a single sensor pixel
can be represented by

y(su, sv) =

N∑
i=1

N∑
j=1

ψi,j(su, sv)li,j . (4)

We can write the imaging model for the entire sensor in a
compact form as

y = Ψ(α)l + e, (5)

where y ∈ RM2

is a vectorized form of an M ×M matrix
that denotes sensor measurements, l ∈ RN2

is a vectorized
form of an N ×N matrix that denotes light intensity from all
the locations (θi, θj , αi,j), and Ψ is a matrix with all the basis
functions corresponding to θi, θj , αi,j . The basis functions in
(5) are parameterized by the unknown α ∈ RN2

and e denotes
noise and other nonidealities in the system.

We can jointly estimate light distribution (l) and inverse
depth map (α)1 using the following optimization problem:

minimize
α,l

1

2
‖y −Ψ(α)l‖22. (6)

Note that if we know the true values of α (or we fix it to
something), then the problem in (6) reduces to a linear least-
squares problem that can be efficiently solved via standard
solvers. On the other hand, if we fix the value of l, the problem
remains nonlinear with respect to α. In the next few sections
we discuss our approach for solving the problem in (6) via
alternating minimization.

B. Initialization

Since the minimization problem in (6) is not convex, a
proper initialization is often needed to ensure convergence to a
local minimum close to the optimal point. A naı̈ve approach is
to initialize all the point sources in the scene at the same depth
plane. To select an initial depth plane, we sweep through a set
of candidate depth planes and perform image reconstruction
on one depth plane at a time by solving the following linear
least squares problem:

minimize
l

1

2
‖y −Ψ(α)l‖22. (7)

We evaluate the loss value for all the candidate depth planes
and picked the one with the smallest loss as our initialized
depth. The mask basis function in (1) changes as we change α,
which has an inverse relation with the scene depth. We select
candidate depth corresponding to uniformly sampled values of
α, which yields non-uniform sampling of the physical scene
depth. The single-depth initialization approach is computation-
ally simple and provides a reasonable initialization of light
distribution to start with, especially when the scene is far from
the sensor.

Our second approach for initialization is the greedy method
proposed in [6]. Greedy algorithms are widely used for sparse
signal recovery [21]–[23]. Based on these algorithms, [6]
proposed a greedy depth pursuit algorithm for depth estimation
from FlatCam [5]. The algorithm works by iteratively updating
the depth surface that matches the observed measurements the
best.

The depth pursuit method assumes that the scene consists
of a small number of predefined depth planes. We start the
program by initializing all the pixels at a single depth plane

1α has an inverse relation with the depth map (2); therefore we refer to it
as inverse depth map throughout the paper.
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and the estimation of light intensities l based on the initialized
depth map. The first step is to select new candidate values for
α. The new candidates are selected using the basis vectors that
are mostly correlated with the current residual of the estimate.
In the second step, new candidates for α are appended to the
current estimate. We solve a least squares problem using the
appended α. In the third step, we prune the α by selecting
αi,j as the value corresponding to the largest magnitude of
li,j . Although this method may not estimate the off-grid point
sources well, it produces a good preliminary estimate of the
scene.

C. Refinement via Alternating Gradient Descent

To solve the minimization problem in (6), we start with the
preliminary image and depth estimates from the initialization
step and alternately update depth and light distribution via
gradient descent. The main computational task in gradient
descent method is computing the gradient of the loss function
w.r.t. α. To compute that gradient, we expand the loss function
in (6) as

L =
1

2

M∑
u,v=1

(y(su, sv)−
N∑

i,j=1

ψi,j(su, sv)li,j)
2 (8)

We define Ru,v = y(su, sv) −
∑N
i,j=1 ψi,j(su, sv)li,j as

the residual approximation error at location (su, sv). The
derivatives of the loss function with respect to the αi,j is given
as

∂L

∂αi,j
=

M∑
u,v=1

Ru,v
∂Ru,v
∂αi,j

= −li,j
M∑

u,v=1

Ru,v
∂ψi,j(su, sv)

∂αi,j
.

(9)

We compute the derivatives of sensor value with respect to
the αi,j using the total derivative 2 as follows.

∂ψi,j(su, sv)

∂αi,j
=
∂ψi,j(su, sv)

∂ui,j

∂ui,j
∂αi,j

+
∂ψi,j(su, sv)

∂vi,j

∂vi,j
∂αi,j

=
∂ψi,j(su, sv)

∂ui,j
su +

∂ψi,j(su, sv)

∂vi,j
sv. (10)

ui,j = αi,jsu + d tan(θi) and vi,j = αi,jsv + d tan(θj)
denote two dummy variables that also correspond to the
specific location on the mask where a light ray from a
point source at angle (θi, θj) and depth αi,j and sensor
pixel at (su, sv) intersects with the mask plane. The terms
in ∂ψi,j(su,sv)

∂ui,j
,
∂ψi,j(su,sv)

∂vi,j
can be viewed as the derivatives

of mask pattern along the respective spatial coordinates and
evaluated at ui,j , vi,j . We compute these derivatives using
finite-difference of ψi,j(su, sv) over a fine grid and linear
interpolation.

D. Algorithm Analysis

To solve the non-linear least squares problem in (6) in our
algorithms, we compute the gradient derived in (10) and use

2Recall that the total derivative of a multivariate function f(x, y) is
∂f(x,y)

∂x
dx+

∂f(x,y)
∂y

dy.

it as input of a optimization solver. Suppose ψi and ψj denote
the basis function vectors evaluated on a 1D mask as

ψi(su) = mask [αi,jsu + d tan(θi)]

ψj(sv) = mask [αi,jsv + d tan(θj)]. (11)

If we use a separable mask pattern, then the 2D mask function
ψi,j in (1) can be computed as the outer product of two vectors
given as ψi,j = ψiψ

T
j . Similarly, we define 1D sub-gradient

function g as

gi(su) =
∂ψi,j(su, sv)

∂ui,j

gj(sv) =
∂ψi,j(su, sv)

∂vi,j
, (12)

Similar to (10), the functions ∂ψi,j(su,sv)
∂ui,j

and ∂ψi,j(su,sv)
∂vi,j

are
the sub-gradient functions along the 1D mask. It takes non-
negative values at locations where mask pattern value changes
and takes zero value at the other places. Using the derivation
in (10), the matrix contains ∂ψi,j(su,sv)

∂αi,j
at all (su, sv) can

be computed using the following sum of two vector outer
products.

∂ψi,j
∂αi,j

= giψ
T
j + ψig

T
j (13)

Using the derivations in (9), the derivative of loss function with
respect to depth value can be computed using the following
matrix multiplications, where R refers to the matrix of residual
Ru,v at all (su, sv)

∂L

∂αi,j
= gTi Rψj + ψTi Rgj (14)

Suppose we have M ×M pixels on sensor array. The compu-
tation in (14) takes 2M2 +2M multiplications. We then feed
our gradients to minfunc solver [40] with L-BFGS algorithm
[41] to solve the non-linear optimization problem in (6).

E. Regularization Approaches
`2 regularization on spatial gradients. The optimization
problem in (6) is highly non-convex and contains several local
minima; therefore, the estimate often gets stuck in some local
minima and the estimated intensity and depth maps are coarse.
To improve the performance of our algorithm for solving
the non-convex problem in (6), we seek to exploit additional
structures in the scene. A standard assumption is that the
depth of neighboring pixels is usually close, which implies
that the spatial differences of (inverse) depth map are small. To
incorporate this assumption in our model, we add a quadratic
regularization term on the spatial gradients of the inverse depth
map to our loss function. The quadratic regularization term is
defined on an N ×N inverse depth map matrix α and can be
written as

R(α) =

N∑
i,j=1

(αi,j − αi+1,j)
2 + (αi,j − αi,j+1)

2

= ‖∇rα‖2F + ‖∇cα‖2F , (15)

where the operators ∇r,∇c compute spatial differences along
rows and columns, respectively. We call this regularization an
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(a) Without smooth regulariza-
tion, the loss curve is highly non-
convex and contains several local
minima.

(b) With the smooth regulariza-
tion, the loss curve is smooth and
several local minima are removed.

(c) Similar to 1D case, loss sur-
face contains many local minima
without smooth regularization.

(d) With smooth regularization,
many local minima are removed
from loss surface.

Fig. 2: A comparison between objective loss functions without
and with smooth regularization. The inverse depth axis refers
to the value of α.

`2 norm-based total variation (TV-`2) in this paper. Figure 2
illustrates the effect of the depth regularization. From Figure 2,
we observe that smoothness regularization improves the loss
function by removing several local minima. We also observed
this effect in our simulations for a high-dimensional depth
recovery problem, which is not very sensitive to initialization
with depth regularization.
Weighted `2 regularization on spatial gradients. Even
though smoothness regularization on the inverse depth map
removes some local minima and helps with converge, it does
not respect the sharp edges in the depth map. To preserve
sharp discontinuities in the (inverse) depth map, we used the
following adaptive weighted regularization inspired from [42]:

RW (α) =

N∑
i,j=1

W c
i,j(αi,j − αi+1,j)

2 +W r
i,j(αi,j − αi,j+1)

2,

(16)
where W r,α

i,j and W c,α
i,j denote weights for row and column

differences, respectively. We aim to select these weights to
promote depth similarity for neighboring pixels, but avoid
smoothing the sharp edges. To promote this, we selected
weights with exponential decay in our experiments that we
compute as

W r
i,j = exp

(
− (αi,j − αi+1,j)

2

σ

)
W c
i,j = exp

(
− (αi,j − αi,j+1)

2

σ

)
. (17)

Such a weighted regularization forces pixels that have depth
within a small range of one another to be smooth and does
not penalize the points that have larger gap in depth (which
indicates the presence of an edge). This helps preserve sharp

edges in the reconstructed depth estimates. This weighting
approach is analogous to bilateral filtering approach for image
denoising [43], [44].

The regularized estimation problem for image and depth can
be written in the following form:

minimize
α,l

1

2
‖y −Ψ(α)l‖22 + λRW (α). (18)

We call this regularization approach weighted TV-`2 and solve
it by alternately updating the inverse depth map α and light
intensity l. A pseudocode of the algorithm is presented at
Algorithm 1.

Algorithm 1 Weighted TV-`2 regularized optimization

Input: Sensor measurements: y
Output: Light distribution and inverse depth map: l,α

Initialization via greedy algorithm:
Compute α and l with depth pursuit algorithm in [6].
Refinement via alternating gradient descent:
for k = 1 : kmax do

α̂k = argmin
α

1
2‖y −Ψ(α)lk−1‖22 + λRW (α)

l̂k = argmin
l

1
2‖y −Ψ(αk)l‖22

end for
return l̂ and α̂

`1 regularization on spatial gradients. It is well-known that
the `1 norm regularization enforces the solution to be sparse.
We add an `1-based total variation norm [45] of the depth to
our optimization problem. By enforcing the sparsity of spatial
gradients, the edges of (inverse) depth map can be preserved.
The `1 norm-based TV regularization term is given as

RTV (α) =

N∑
i,j=1

|αi,j − αi+1,j |+ |αi,j − αi,j+1|

= ‖∇rα‖1 + ‖∇cα‖1. (19)

To solve the nonlinear optimization problem with `1 norm
regularization, we write the optimization problem as

minimize
α,l

1

2
‖y −Ψ(α)l‖22 + λ(‖dr‖1 + ‖dc‖1)

s.t. dr = ∇rα, dc = ∇cα. (20)

We solve this problem (20) using a split-Bregman method [46].

F. Computational complexity

The main computational and storage cost of the proposed
method arises from the forward and adjoint of the imaging
operators. Since the depth of any pixel can have an arbitrary
value in a continuous domain, we cannot precompute the
imaging operators. At every iteration, we first interpolate the
separable mask patterns according to the current estimate of
α. The time complexity of forward imaging operator as given
in (5) will be O(M2N2) because we have to add up depth-
dependent response corresponding to every angle.
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IV. SIMULATION RESULTS

In this section, we present simulation results to evaluate the
performance of our methods under different noise levels and
sensor sizes. We also present a comparison of our proposed
method with two existing methods for 3D imaging with
lensless cameras. Additional experiments on the reconstruction
of a single depth plane and the effect of numbers of sensor
pixels on the reconstruction are included in the Supplementary
material.

A. Simulation Setup

To validate the performance of the proposed algorithm, we
simulate a lensless imaging system using a binary planar mask
with a separable maximum length sequence (MLS) pattern
[47] that is placed 4mm away from a planar sensor array. We
used an MLS sequence of length 1024 and converted all the
−1s to 0s to create a separable binary pattern. We used square
mask features, each of which is 30µm wide. Since we optimize
the objective function in (6) with respect to α and need to
compute the gradient in (9), we require the mask function
to be smooth and differentiable with respect to α. Therefore,
we convolved the binary pattern with a Gaussian blur kernel
of length 15µm and standard deviation 5. In our simulations,
we do not explicitly model the diffraction blur. However, the
Gaussian blur kernel that we apply to the mask function can be
viewed as an approximation of the diffraction blur. The sensor
contains 512×512 square pixels, each of which is 50µm wide.
The chief ray angle of each sensor pixel is ±18◦. We assume
that there is no noise added to the sensor measurements. In our
experiments for continuous depth estimation, we fixed all the
parameters to these default values and analyze the performance
with respect to a single parameter.

Original

Image PSNR:

Depth RMSE:

Greedy [6]

16.57dB

87.48mm

Ours

31.65dB

17.90mm

Fig. 3: Left to right: original image and depth of the Cones
scene; image and depth initialized via greedy algorithm [6];
depth estimation using weighted `2-based regularization. The
depth in this scene varies from around 0.99m to 1.7m.

B. Reconstruction of Scenes with Continuous Depth

Depth datasets: We performed all our experiments on 3D
images created using light intensities and depth information
from Middlebury [48], Make3D [49], [50] and NYU Depth
[51], the test scenes and their depth ranges are listed in Table I.

Test datasets Min depth (m) Max depth (m)
Sword 0.65 0.95

Playtable 1.47 3.75
Cones 0.99 1.70
Corner 3.93 10.60

Whiteboard 1.08 2.90
Playroom 1.62 2.93
Moebius 0.74 1.23
Books 0.73 1.27

TABLE I: Analysis experiments are performed on multiple
scenes picked from Middlebury [48], Make3D [49], [50] and
NYU Depth [51]. Results of the two scenes above line are
presented within the main text, while the rest of them are
reported in the supplementary material.

Initialization via greedy method: Let us further discuss
our simulation setup using the Cones scene, for which the
results are presented in Figure 3. We simulated the 3D scene
using depth data from Middlebury dataset [48]. We sample
the scene at uniform angles to create a 128× 128 image and
its (inverse) depth map with the same size. We can compute
the physical depth from α using (2). In our simulation, the
depth of this scene ranges from around 0.99m to 1.7m. We
used depth pursuit greedy algorithm in [6] as our initialization
method. We selected 15 candidate depths by uniformly sam-
pling the inverse depth values α from 0.996 to 0.9976, which
gives an effective depth in the same range as the original depth.
Since we are trying to gauge the performance for off-the-grid
estimate of depth, the candidate values of α are not exactly
the same as the true values of α in our simulations. The output
of the initialization algorithm is then fed into the alternating
gradient descent method.

Performance metrics: We evaluate the performance of
recovered image intensity and depth independent of each
other. We report the peak signal to noise ratio (PSNR) of the
estimated intensity distribution and root mean squared error
(RMSE) of the estimated depth maps for all our experiments.
The estimates for image intensity and depth maps for the
initialization and our proposed weighted TV-`2 method are
shown in Figure 3, along with the PSNR and RMSE. We can
observe that both image and depth estimation from greedy
method [6] contain several spikes because of the model
mismatch with the predefined depth grid. In contrast, many of
these spikes are removed in the estimations from the proposed
algorithm with weighted TV-`2 while the edges are preserved.

Comparison of regularization methods: Here we present
a comparison between three different regularization ap-
proaches. We reconstruct image intensity and (inverse) depth
map using the same measurements with TV-`2, weighted TV-
`2, and TV-`1 regularization. The results are shown in Figure 4.
Compared to the TV-`2 method, we observe that both weighted
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Original Scene

(a) Image and depth of the original
scene. The selected Cones scene
is taken from Middlebury dataset
[48]. The range of depth is from
0.99 to 1.7 meters.

TV-`2

(b) Image and depth reconstruction
from isotripic total variation. PSNR
of image is 29.69dB and depth
RMSE is 25.21mm.

Weighted TV-`2

(c) Image and depth reconstruction
from weighted `2 total variation.
The PSNR of image is 31.65dB and
the RMSE of depth is 17.90mm.
The edges of depth are preserved
better.

TV-`1

(d) Image and depth reconstruction
from TV-`1. The PSNR of image
is 30.82dB and the depth RMSE is
19.56mm. The edges of depth are
preserved better.

Fig. 4: Comparison between reconstructions using three different regularization approaches from the same measurements.

TV-`2 and TV-`1 preserve the sharp edges in image and
depth estimates. Overall, in our experiments, weighted TV-
`2 provided the best results. Therefore, we used that as our
default method for the rest of the paper.

C. Effects of Noise

Sensor noise exists widely in any observation process.
The amplitude of noise depends on the intensities of sensor
measurements and can adversely affect the reconstruction
results. To investigate the effect of noise on our algorithm,
we present simulation results for the reconstruction of scenes
from the same sensor measurements under different levels of
additive white Gaussian noise. The experiments are performed
on multiple 3D scenes listed in Table I. Some examples of
reconstruction with different levels of noise are shown in
Figure 5.

The plots recording PSNR of image intensities and RMSE
of depth maps over a range of measurement SNR values are
presented in Figure 6. As we can observe from the curves
that the quality of both estimated image and depth improve
when the measurements have small noise (high SNR) and the
quality degrades as we add more noise in the measurements
(low SNR). Another observation we can make is that the
scenes that are farther away have higher RMSE. This aspect is
understandable because as the scenes move farther, α of the
scene pixels all get very close to 1 and we cannot resolve fine
depth variations in the scene.

D. Size of Sensor

In conventional disparity-based depth estimation method
[2], the quality of reconstructed depth depends on the disparity
between frames captured from multiple camera views. Larger
distance between camera viewing positions results in better
depth estimation accuracy. In a lensless imaging system, we
can think of each pinhole on the mask and the sensor area
behind the mask as a tiny pinhole camera. The analogy only

goes this far, because we do not record images from these tiny
pinhole cameras separately; instead, we record a multiplexed
version of all the views. The disparity between different points
on the sensors, however, does affect our ability to resolve the
depth of the scene, which is determined by the size of sensor.

To analyze the effect of disparity in our system, we per-
formed experiments with three different sizes of sensor pixels
from 25µm, 50µm, and 100µm. For comparison, the number
of sensor pixels and other parameters are set to the default
settings as described earlier. No noise is included in this
experiment. Results in terms of reconstructed image and depth
maps are presented in Figure 7, where we observe that the
quality of depth reconstruction improves as we increase the
size of sensor pixels. The results in Figure 7 demonstrate that
increasing the disparity of viewing points increases the depth
reconstruction quality.

E. Comparison with Existing Methods

Finally, we present a comparison of our proposed algorithm
and two other methods for 3D recovery with lensless cameras.
In our method, we estimate light intensity and a depth map
over continuous domain. The greedy method in [6] also
estimates intensity and depth separately, but the depth map
for any angle is restricted to one of the predetermined planes.
Three-dimensional recovery using lensless cameras for 3D
fluorescence microscopy was presented in [12] and [17], which
estimate the entire 3D volume of the scene sampled over
a predetermined 3D grid. Since the unknown volume scene
in microscopy is often very sparse, the 3D scene recovery
problem is solved as a sparse recovery problem for the
light intensity over all the grid voxels. The result is a light
distribution over the entire 3D space. We call this method
3D Grid and use the code provided in [12] to solve the 3D
recovery problem using the forward model and measurements
from our simulation setup.

The imaging experiments in [12] and [17] are aimed at
fluorescence imaging in which objects are mostly transparent
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Original

PSNR:

RMSE:

20dB

1.15dB

66.98mm

30dB

11.33dB

38.84mm

40dB

19.16dB

34.29mm

Original

PSNR:

RMSE:

20dB

5.12dB

360.95mm

30dB

15.50dB

163.26mm

40dB

24.88dB

151.46mm

Fig. 5: Effects of noise: Reconstruction from the measurements with signal-to-noise ratio (SNR) at 20dB, 30dB and 40dB,
along with the PSNR of reconstructed image and RMSE of reconstructed depth map. As expected, the quality of reconstructed
image and depth improves as the noise level is reduced. The sequence in left is for Sword, right is Playtable.

(a) Image PSNR for different noise
levels

(b) Depth RMSE for different noise
levels

Fig. 6: Reconstruction from measurements with different
levels of Gaussian noise on multiple scenes. Both of the
image Peak Signal-Noise Ratio and depth Root mean squared
error are improved as the noise is reduced. The reconstruction
quality degrades if the scene is placed farther from the camera.

and all the points in the 3D volume can contribute to the sensor
measurements without occluding one another. In contrast,
we consider natural photographic scenes, where objects are
usually opaque and block light from objects behind them along
the same angular direction. We can model such scenes as
having only one voxel along any angle to be nonzero; however,
that will be a nonconvex constraint and to enforce that we will
have to resort to some heuristic similar to the one in [6]. For
the sake of comparison, we solve the `1 norm-based sparse
recovery problem as described in [12], but then we pick the
points with the maximum light intensity at each angle to form
the reconstructed image and (inverse) depth map.

A comparison of different recovery methods with the same
imaging setup is shown in Figure 8. For the same scene, we
reconstruct the same measurements using the three methods.
As we can observe that our proposed algorithm offers a
significant improvement compared to existing methods in all
the test scenes.

The time and storage complexity of our proposed method

and the other two methods depend on different factors; such
as whether the imaging model is separable or convolutional
and the sampling density along the depth. Since the main
computational complexity of all the methods arises from the
applications of the forward and adjoint operators, we will
just discuss the complexity of those operators for different
methods. The imaging operator in the greedy algorithm uses
a separable mask and assumes that the scene consists of D
depth planes. The computational complexity of the operator is
O(DMN2) when we have M×M sensor pixels to reconstruct
N×N image at D predefined depth planes. The convolutional
model can be implemented using a fast Fourier transform
and its complexity for a 3D volume with D depth planes
is O(DN2 log(N). The time complexity of forward imaging
operator in the proposed method is O(M2N2) because we
assign independent depth values to each of the angles.

V. EXPERIMENTAL RESULTS

To demonstrate the performance of our proposed method in
the real world, we built a FlatCam prototype to capture images
of different objects with different depth profiles. Below we dis-
cuss the details of our experiments and present reconstructed
intensity and depth maps for some real objects.

A. Prototype Setup

Image sensor. We used a Sony IMX249 CMOS color sensor
that came inside a point grey camera (model BFLY-U3-23S6C-
C). The sensor has 1920 × 1200 pixels and the size of
each pixel is 5.86µm. The physical size of the sensor is
approximately 11.2mm×7mm.
Mask pattern. We printed a binary mask pattern on a plastic
sheet. The mask pattern was created by computing an outer
product of two 255-length MLS vectors and setting all the
-1 entries to 0. The physical size of each mask feature is
60µm. The physical size of the generated mask pattern is
approximately 15.3mm×15.3mm.
Sensor and mask placement. We placed the mask and the
bare sensor on two optical posts such that the mask-to-sensor
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Original

Image PSNR:

Depth RMSE:

25µm

24.31dB

45.61mm

50µm

22.27dB

34.39mm

100µm

21.92dB

24.42mm

Original

Image PSNR:

Depth RMSE:

25µm

32.38dB

198.50mm

50µm

31.50dB

147.68mm

100µm

28.09dB

134.15mm

Fig. 7: Reconstructions from measurements with different sizes of sensor pixels. The number of sensor pixels is fixed as
512× 512. The quality of depth reconstruction improves as we increase the size of sensor pixels.

Original

Image PSNR:

Depth RMSE:

3D Grid [12]

9.10dB

87.55mm

Greedy [6]

14.04dB

47.59mm

Ours

22.27dB

34.39mm

Original

Image PSNR:

Depth RMSE:

3D Grid [12]

7.14dB

479.78mm

Greedy [6]

16.71dB

400.99mm

Ours

31.50dB

147.68mm

Fig. 8: Comparison of existing 3D recovery methods for lensless imaging, 3D grid method in [12], [17] and greedy method
in [6], with our proposed method. 3D grid method provides a 3D volume with multiple depth planes; therefore, we pick the
depth with the largest light intensity along any angle for comparison.

Fig. 9: Camera prototype. The side view of the sensor and
mask assembly. The sensor and mask are placed at a large
distance for this image, but their distance (d) is approximately
4mm in our experiments. The mask pattern is binary and
separable, and the physical size of each feature is 60µm.

distance (d) is approximately 4mm; we attached kinematic
platforms on top of the optical posts so that we can align the
sensor and mask. Pictures of our sensor and mask setup are
shown in Figure 9.

Data acquisition and processing. In our experiments, we
calibrated the system by capturing sensor measurements while
moving an LED flashlight at different locations in front of
the camera. We performed all our experiments by uniformly
illuminating the object with a table lamp. We reconstructed
depth map and colored images at 128 × 128 pixel resolution
from 512 × 512 sensor measurements. The sensor provides
1920 × 1200 pixels; we first resize the sensor measurement
into 960×600 pixels by binning 2×2 pairs, and then we crop
a 512× 512 area in the center.

B. Calibration of the Prototype Camera

We use a separable mask pattern and align the mask and
sensor assembly such that the response of any point source
on the sensor is a rank-one image after mean subtraction [5].
To calibrate system matrix at one given depth, we can capture
a sequence of rank-1 Hadamard patterns as described in [5]
or capture the response of one LED flashlight as described
in [12]. Instead of calibrating the separable system matrices
for different depth planes, we calibrated the mask pattern
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Fig. 10: Experiments on real objects. (a) A slanted card; the depth range is 18–28cm (b) Two slanted cards; the depth range
of left card is 18–28cm and the right card is 26–29cm. (c) Hand sculpture; depth range is 15–30cm. (d) A mug with card
texture; depth range is 24–27cm. We divide each group of real scenes into four columns, the first column is front view and
side view of the scene, the second column is the result from greedy algorithm in [6], the third column is the output of sparse
3D grid recovery algorithm proposed in [12] and [17], and the last column is the image intensity and depth map estimated
using our proposed algorithm.

function at one depth and evaluated the point spread function
at arbitrary depth and angle according to (1). Because our
mask pattern is bigger than the sensor, we captured sensor
measurements for LED flashlight at 9 different angles at the
same depth and merged them to estimate the mask function at
that depth.

In our experiments, we captured the sensor measurements
by placing an LED at z = 42cm away from the sensor, which
corresponds to the mask function in (1) evaluated at α =
1 − d/z = 0.9905 for d = 4mm, z = 42cm. We first resized
the calibrated mask function to compute the mask function
corresponding to α = 1.

C. Reconstruction of Real Objects

We present results for four objects in Figure 10, (a) slanted
card has depth range from 18cm to 28cm, (b) two slanted cards
have depth ranges from 18cm to 28cm and 26cm to 29cm,
(c) hands sculpture has depth range from 15cm to 30cm, and
(d) mug with card texture depth is from 24cm to 27cm. The
figure is divided into four boxes. In each box, we present
a front- and side-view of the object along with estimated
scene intensity and depth maps for three methods. the greedy
algorithm in [6], the sparse 3D volume recovery method from
[12], [17], and our proposed method. For the greedy and
3D grid method, we generated 15 candidate depth planes by
uniformly sampling the inverse depth values α between 0.96

and 0.9905 (corresponding to the depth of 10cm and 42cm,
respectively).

All the objects in our experiments are placed in front of
the black background and the depth values for dark pixels are
not meaningful. We can observe that in all these experiments,
our proposed method provides a continuous depth map that
is consistent with the real depth of the object in the scene.
In comparison, both the greedy algorithm [6] and the sparse
3D volume recovery algorithm [12], [17] produce coarse and
discretized depth maps. The intensity map recovered by our
method is also visually better compared to other methods.

Even though our proposed algorithm produces better in-
tensity and depth maps compared to the greedy and 3D grid
methods, we observed that the estimated depth has some errors
in the darker parts of the objects. For instance, the left part
of the mug is darker than the right part because the object
was illuminated from a lamp on the right side. The left part
appears to have errors in the depth estimate as several pixels
are assigned small depth values, but that part is in fact farther
from the sensor. We also observe a similar effect in other
experiments, where depth estimates for darker parts of the
scene appear to have larger errors.

VI. CONCLUSION

We presented a new algorithm to jointly estimate the image
and depth of a scene using a single snapshot of a mask-based
lensless camera. Existing methods for 3D lensless imaging
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either estimate scene over a predefined 3D grid (which is
computationally expensive) or a small number of candidate
depth planes (which provides a coarse depth map). We divide
the scene into an intensity map at uniform angles and a depth
map on a continuous domain, which allows us to estimate a
variety of scenes with different depth ranges using the same
formulation. We jointly estimate the image intensity and depth
map by solving a nonconvex problem. We initialize our esti-
mates using a greedy method and add weighted regularization
to enforce smoothness in the depth estimate while preserving
the sharp edges. We demonstrated with extensive simulations
and experiments with real data that our proposed method can
recover image and depth with high accuracy for a variety of
scenes. We evaluated the performance of our methods under
different noise levels, sensor sizes, and numbers of sensor
pixels and found the method to be robust. We presented a
comparison with existing methods for lensless 3D imaging and
demonstrated both in simulation and real experiments that our
method provides significantly better results. We believe this
work provides a step toward capturing complex scenes with
lensless cameras, where depth estimation is a feature as well as
a compulsion because if the depth information is unavailable
or inaccurate, that will cause artifacts in the recovered images.
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