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ABSTRACT OF THE DISSERTATION

Computational Structure-Based Methods to Anticipate HIV Drug Resistance

Evolution and Accelerate Inhibitor Discovery

by

Max W. Chang

Doctor of Philoshopy in Bioinformatics

University of California San Diego, 2008

Professor Richard K. Belew, Chair

The evolution of drug resistance in HIV has been a major obstacle in combatting the

AIDS epidemic, and development of the next generation of antiviral drugs will depend on im-

provements in the methodology addressing resistance. This work examines HIV evolution from

a structural perspective, focusing on the development of methods to anticipate drug resistance

and improve drug discovery efforts.

To understand the evolution of HIV in the presence of inhibitors requires knowledge

of viral replication capacity as well as drug resistance. Replication capacity can be predicted

with a phylogenetic approach, which estimates impairment in HIV protease activity. Pairing

these estimates with a structural model based on molecular docking allows the detection of most

major clinically observed protease mutations. Combining structural modeling and analysis of

existing protease mutations generates predictions of drug resistance mutations for an experimen-

tal protease inhibitor. Mutagenesis experiments validate these predictions, while also revealing

epistatic interactions and cross-resistance with existing inhibitors.

A fitness model based on predicted replication capacity and drug resistance is able

to rank in vitro HIV mutant infectivity with significant accuracy. This fitness model is incor-

porated into a simulation of viral evolution, which correlates with clinically observed mutation

prevalence. Simulations also affirm the high level of cross-resistance among protease inhibitors,

highlighting the importance of alternative drug targets.

Current drug discovery projects often use computer-based models of protein-ligand

interaction for docking and virtual screening. A novel analysis of binding energy results from

large-scale virtual screening identifies representative wild-type and mutant protease structures,

xiv



focusing future efforts. Complementary efforts in the study of APS reductase reveal correlations

between the distribution docking results and the underlying energy surface. Cluster analysis is

shown to be an empirical measure of docking entropy which can improve the accuracy of binding

energy predictions.

Applying these insights in a virtual screen for new inhibitors of HIV protease, a li-

brary of 1,585 compounds is narrowed to 36 candidates. Five of these compounds prove to be

inhibitors. Modeling indicates that two of them bind outside the protease active site, suggesting

potential leads for a new class of protease inhibitor.
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Chapter 1

Introduction

The HIV/AIDS epidemic has claimed millions of lives worldwide, while millions more

are currently infected. The availability of antiviral drug therapy has been successful in control-

ling infections and prolonging lives, often suppressing viral replication to undetectable levels.

However, current therapies are unable to completely eliminate infection. Over time, even low

levels of viral replication, coupled with the selective pressure of therapy, can drive the evolu-

tion of drug-resistant virus. The continued development of drug resistance limits the efficacy of

antiviral therapy, eventually leading to death.

To combat HIV drug resistance, several major strategies have been laid out. With

large-scale drug development efforts, it may be possible to continue developing new inhibitors

indefinitely. However, this results in an evolutionary “arms race” where the HIV’s high mutation

rate confers an advantage – new resistant strains arise quickly. Furthermore, many antiviral drugs

work using a similar mechanism, e.g. HIV protease inhibitors, and certain mutations can confer

resistance against multiple drugs of the same class. As a consequence, newer and more potent

inhibitors are often limited by pre-existing resistance mutations.

Alternative strategies have been proposed which attempt to address the development

of resistance more directly. With a detailed understanding of the HIV’s fitness landscape, it may

be possible to guide the virus into an evolutionary dead-end, where its replication capacity is

extremely limited. Another strategy involves applying multiple treatment strategies to “ping-

pong” the virus between different resistant states. In either case, these approaches require a

detailed understanding of viral evolution, including the anticipation of prospective mutations. In

addition, targeting inhibitors against specific mutants will benefit from enhancements in the drug

development process.

1



2

The current work seeks to address both the modeling of drug resistance evolution and

improved methods for drug development. In addressing viral evolution, there is a wealth of

information that spans multiple scientific disciplines. A major challenge lies in building coher-

ent models of viral evolution with data from multiple sources, including clinical, biochemical,

and structural studies. Integrating these data sources into a comprehensive fitness model is im-

portant in understanding the underlying basis for the evolution of drug resistance. With this

detailed fitness model, computational simulations incorporating different drug therapies would

yield meaningful estimates of viral evolution. These simulations would also be useful in testing

new treatment strategies or predicting likely mutations against novel inhibitors.

To combat resistant forms of HIV, it is also clear that accelerating the development of

new inhibitors is vital. One major technique used in modern drug discovery is virtual screening,

which makes use of molecular docking to predict interactions between a ligand and macro-

molecule. Using large-scale computing resources can accelerate the process of screening large

libraries of compounds and panels of mutant proteins, but requires new techniques for analysis.

In finding new inhibitors, the current level of accuracy in virtual screening is generally suffi-

cient to narrow the pool of inhibitor candidates for further experimental testing. However, often

virtual screening suffers from too many false positives for the results to be used without comple-

mentary experiments. Improvements in the underlying docking process would boost accuracy in

screening, allowing new inhibitors to be found more quickly.

Chapter 3 details different methods for estimating viral replication capacity. Statis-

tical and machine learning approaches for predicting replication capacity from an amino acid

sequence are described. Estimates based on sequence homology are also tested. Lastly, the

basis for protease specificity is investigated using the physicochemical properties of substrate

sequences and decision trees.

In Chapter 4, methods for predicting drug resistance are presented. This section begins

by noting the high levels of cross-resistance in existing protease inhibitors. A structure-based

method involving docking is presented, which is able to account for most of the major mutations

in protease resistance. This model is employed in resistance mutations for a novel protease

inhibitor, AB2, with encouraging results.

Combining the work in predicting replication capacity and drug resistance to explore

mutation pathways and evolution is documented in Chapter 5. Covariation analysis of resistant

sequences is shown to be useful in reconstructing mutation pathways. A model of viral fitness

that accounts for both drug resistance, replication capacity, and epistasis is used to simulate drug
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resistance evolution.

Chapter 6 describes work related to protein-ligand docking and drug discovery. It

begins with an analysis of a large set of docking experiments between wild-type and mutant

HIV proteases and a diverse ligand library. The following section addresses the role of entropy in

protein-ligand docking and the use of entropy estimates in predicting interactions between APS

reductase and several ligands. These results are incorporated into a virtual screen of potential

protease inhibitors, leading to the discovery of a set of novel inhibitors.

This work continues in Chapter 2 with a review of concepts relevant to HIV drug

resistance and computational methods in drug discovery. Discussion of research related to this

dissertation is also included.

The massive increase in biological data in recent years has also affected scientific

publishing. In Chapter 7, a specialized program for searching scientific literature, HIVLink,

is presented. By focusing on HIV-related literature, this program is able to provide several

advantages over traditional methods.

Finally, in Chapter 8, the findings are summarized, along with a discussion of future

research directions.



Chapter 2

Background

This dissertation has been influenced by work spanning a number of fields, from the

evolution of HIV to molecular docking. The following material provides a brief introduction to

the main concepts applied in later chapters. An overview of the HIV replication cycle is first

discussed, describing the key steps targeted by current anti-HIV drugs. One such target is HIV

protease, which is a main topic of this work. Following a description of HIV protease structure,

features of drug resistance are considered, with emphasis on the prediction of the consequences

of mutations in viral proteins. Drug resistance is a major factor in viral fitness and evolution,

and such predictions can be used to anticipate viral evolution in computer simulations. Previous

simulation efforts have addressed a variety of HIV behaviors and are described below. Finally, as

the discovery of new inhibitors is of major importance in addressing drug resistance, the use of

molecular docking in drug discovery is discussed, with an emphasis on the AutoDock program.

2.1 The HIV Replication Cycle

HIV is a retrovirus with a genome consisting of 9.7 kb of RNA. Two species of HIV

are known to infect humans, HIV-1 and HIV-2. HIV-1, which is thought to have originally been

transmitted from chimpanzees to humans, is the dominant form of the virus, and responsible for

the majority of HIV infections.1 Since HIV-1 is also more virulent than its counterpart,2 it is the

focus of this work, and all references to HIV indicate the HIV-1 species.

The genome of HIV contains 9 genes and encodes 15 proteins,3 as shown in Figure

2.1. Of most relevance to current drug therapies are the protease, reverse transcriptase (RT), and

integrase enzymes, which catalyze crucial steps in viral replication. The envelope glycoproteins

4
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Figure 2.1: Overview of the HIV genome. Reproduced from the HIV Sequence Compendium.4

gp41 and gp120 are also of note as targets for both vaccine- and inhibitor-based therapies.

An overview of the HIV replication cycle is shown in Figure 2.2. Viral entry begins

when an HIV virion binds to the CD4 receptor of a cell. Entry is mediated by a co-receptor,

either CCR5 or CXCR4, and the contents of the virion are transferred into the cell as the mem-

brane and envelope fuse. Following entry, the RT enzyme reverse transcribes the viral RNA

genome to DNA. A key feature of the reverse transcription process is its high error rate, which

causes HIV to mutate rapidly. Another interesting aspect of HIV replication arises from the two

copies of the viral genome present in each virion, which may be heterozygous. During reverse

transcription, the RT enzyme alternates between the two RNA strands, and is capable of produc-

ing a recombinant genome. Viral DNA is incorporated into the host genome by integrase. The

integrated DNA is transcribed in large quantities for use as genomic RNA and mRNA. The viral

genes are expressed as large polyproteins, which assemble with viral RNA to bud from the cell

to form immature virions. As the multiple sites in the polyproteins are cleaved by HIV protease,

the virion matures and becomes infectious, continuing the cycle. Substantial efforts have gone

toward disrupting the function of viral proteins, with the greatest successes against protease and

RT. Since structure-based techniques have been so useful in the design of protease inhibitors,5

the protease enzyme is a focus of this work.

2.2 HIV Protease

The HIV protease enzyme is responsible for cleaving multiple sites in the polyproteins

within an immature virion. If this process is blocked, the virions are non-infectious. The pivotal

role of this enzyme has made it a major target for drug therapy, and especially for structure-based

drug design.5 From a structural standpoint, it is one of the most well-studied proteins in history,

with hundreds of structures available in the Protein Data Bank (PDB).

The enzyme itself is a homodimeric aspartic protease, with each subunit consisting of
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Figure 2.2: Overview of the HIV replication cycle. Reproduced from the NIAID fact sheet on
HIV/AIDS.6

Figure 2.3: HIV protease with a bound polypeptide substrate. PDB structure 1F7A.
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P4'P3 P1 P2'

P3'P4 P2 P1'

HIV protease
S3'S1'S4 S2

S3 S1 S2' S4'

Figure 2.4: Interaction between HIV protease and a polypeptide substrate. The substrate is
represented as an octapeptide, with residues P1-P4 and P1’-P4’, which interact with subsites in
the protease active site. Recognition of the substrate leads to cleavage of the scissile peptide
bond, indicated with a lightning bolt.

99 amino acids. As shown in Figure 2.3, the HIV protease active site consists of a large cavity

which can accommodate certain polypeptide substrates. Frequently, the protease active site is

represented by a lock-and-key model,7 where the active site is broken into 8 subsites, S1-S4

and S1’-S4’, with corresponding substrate residues P1-P4 and P1’-P4’, depicted in Figure 2.4.

The cleavage event is catalyzed by the aspartic acid residues at position 25, which hydrolyze the

peptide bond in the substrate between P1 and P1’. The twelve cleavage sites in HIV polyproteins

comprise a diverse group of sequences,8 and determining the specificity of protease with respect

to cleaved sequences is addressed in Section 3.3.

The specificity of HIV protease in recognizing particular amino acid sequences has

been exploited in rational drug design. Most current FDA-approved HIV protease inhibitors are

peptidomimetic – they function by occupying the active site as a substrate would, but are not

susceptible to cleavage. A similar mechanism is exhibited by non-peptidomimetic inhibitors,

such as tipranavir and DMP 450. The structures of several inhibitors are shown in Figures 2.5

and 2.6. To inhibit effectively block protease function, the inhibitors must bind with greater

affinity than the natural substrates, and so their Ki must fall in the low nanomolar range. In

comparison, the Km for the highest affinity protease substrate is roughly 30 µM.
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Some recent work has sought to identify alternative inhibitor binding sites outside of

the enzyme’s active site. Located above the active site (as shown in Figure 2.3) are mobile

pairs of anti-parallel β-sheets, commonly known as “flaps.9” The movement of these flaps is

thought to be critical in the function of protease, and a possible means of allosteric inhibition.10

Molecular dynamics experiments have shown that restricting the motion of specific residues

distant from the active site can affect flap motion,11 indicating that a small molecule may function

as an inhibitor in an area distant from the protease active site. Efforts to discover such an inhibitor

are described in Section 6.3.

2.3 HIV Drug Resistance and Replication Capacity

During antiviral therapy, frequently specific mutations arise that render HIV less sus-

ceptible to the drugs used. Patterns of mutations vary across different drugs, but inhibitors of the

same class are often thwarted by similar mutations. Mutations involved in resistance have been

studied in detail for protease and RT inhibitors, which are the most widely used antiviral drugs.

The most common drug resistance mutations for protease and RT are shown in Figures 2.7 and

2.8. Note that among drugs of the same class, multiple drugs may be affected by particular

mutations, a phenomenon known as cross-resistance.

The resistance mutations shown in Figure 2.7 are divided into major and minor mu-

tations. Major mutations, also referred to as primary mutations, typically arise with the onset

of antiviral therapy in a drug-naive patient, and lead to reduced inhibitor binding and frequently

impaired protease function as well. Minor, mutations are compensatory in nature, typically arise

after primary mutations and restore some protease function. They also generally have a lesser

effect on inhibitor binding or are in some cases dependent on the presence of a primary mutation.

In contrast, mutations in RT are usually classified based on their tendency to associate

with certain other mutations. For example, the thymidine analogue-associated mutation (TAM)

pathways shown in Figure 2.9 confer resistance against multiple nucleoside (or nucleotide) RT

inhibitors (NRTI). The TAM1 and TAM2 pathways represent ordered accumulations of muta-

tions that are often mutually exclusive. Another class of RT drug, non-nucleoside RT inhibitors

(NNRTI), cause allosteric inhibition. As the mechanisms for NRTIs and NNRTIs are different,

they are not affected by the same mutations.

The degree of drug resistance conferred by one or more mutations is often summarized

with an IC50 value, which denotes the concentration of inhibitor needed to reduce the activity

of an enzyme by 50%. Figure 2.10 illustrates the use of dose-response curves in calculating
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Figure 2.7: Drug resistance mutations in protease. Major mutations are shown in bold. Riton-
avir is generally combined with protease inhibitors in order to boost their bioavailability, not for
antiviral effect. Reprinted with permission from the International AIDS Society–USA. Johnson
VA, Brun-Vézinet F, Clotet B, et al. Update of the drug resistance mutations in HIV-1: Spring
2008. Topics in HIV Medicine. 2008;16(1):62-68. ©2008, IAS-USA. Updated information and
thorough explanatory notes are available at www.iasusa.org.
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Figure 2.8: Drug resistance mutations in reverse transcriptase. Reprinted with permission from
the International AIDS Society–USA. Johnson VA, Brun-Vézinet F, Clotet B, et al. Update of
the drug resistance mutations in HIV-1: Spring 2008. Topics in HIV Medicine. 2008;16(1):62-
68. ©2008, IAS-USA. Updated information and thorough explanatory notes are available at
www.iasusa.org.
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TAM1
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215F/Y 41L 210W

70R 219E/Q 67N 69D/N

wild-type

Figure 2.9: Thymidine analogue-associated mutations for drug resistance in reverse transcrip-
tase.12

IC50 values. The information needed for these calculations can be obtained through a variety of

cell-based or biochemical assays, but one of the dominant methods is a luciferase-based system

developed by ViroLogic Inc. (now Monogram Biosciences).13 The ViroLogic method involves

the amplification of protease and RT genes from a viral isolate, and inserting these genes into

a replication-deficient vector. The test vector contains the luciferase gene and is only able to

produce infectious virus when supplied with envelope proteins from another source. In this way,

replication can be reduced to a single cycle, following which luciferase activity can be measured

to assess drug resistance. Since the ViroLogic assay is relatively high-throughput and consistent,

it has been useful for clinicians in performing phenotypic resistance testing on their patients.

The ratio of IC50 values between a mutant and wild-type enzyme is referred to as the

fold-change, i.e.

f old change =
mutant IC50

wild− typeIC50

The fold-change is also often referred to as the resistance factor (RF). In Figure 2.10, the there is

a 30-fold change in IC50 between wild-type and mutant protease activity in the presence of the

inhibitor.

Mutations that confer resistance often have consequences for viral replication capacity

(RC). Often ignored in experiments concerning drug resistance, RC represents the ability of the

virus to replicate in the absence of inhibitors. In some cases, HIV mutants may exhibit high

levels of resistance with low RC, and are able to replicate faster than wild-type HIV in the
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Figure 2.10: Dose-response curve demonstrating TL-3 resistance in a mutant protease. The
resistant protease contains six mutations and displays more than a 10-fold increase in IC50 over
the wild-type protease. Data courtesy of Dr. Michael Giffin (private communication).

presence of drug, but more slowly without it.14–16 When describing the overall phenotype of

the virus, some have noted that both RF and RC should be taken into account, along with the

particular environment.15 Efforts to combine RF and RC in predicting viral fitness are reported

in Chapters 4 and 5.

2.3.1 Phenotype prediction

Large sets of phenotypic data have been studied in order to determine genotype-

phenotype relationships. Resistance data has been researched more extensively, often focus-

ing on a large set of resistance data with corresponding viral sequences available through the

Stanford HIV Drug Resistance Database (HIVDB).17 Various statistical and machine learning

approaches have been used, including linear regression, decision trees, and support vector ma-

chines.18–20 In these studies, the viral genotype is used to predict the logarithm of the corre-

sponding RF values. Interestingly, for most inhibitors, linear regression is able to achieve high

accuracy, comparable with more sophisticated nonlinear approaches, like support vector ma-

chines.

Alternatively, structure-based approaches have also been use to determine resistance

to HIV protease inhibitors. These methods rely on molecular dynamics simulations, protein-

ligand docking programs, and known protein-inhibitor structures. Beginning with a wild-type

structure, specific amino acid substitutions are modeled, followed by energy minimization via
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molecular dynamics simulation, allowing large-scale structural shifts to accommodate the pro-

tease mutations. The free energy of binding is then evaluated by docking, which may attempt

further optimization of the ligand in relation to the protease. The predictions correlate signif-

icantly with experimentally-derived free energies of protease-inhibitor complexes,21 as well as

RF values from single-cycle infection assays.22, 23

Though far different approaches, structure- and sequence-based methods share under-

lying principles. The sequence-based methods seek to predict a fold-change in IC50, which is

related to the inhibition constant, Ki, by the Cheng-Prusoff equation:24

IC50 = Ki(1+
[S]
Km

)

Further, the Ki is related to the free energy, ∆G:25

∆G = RT ln(Ki)

which can be estimated through structure-based methods. So despite radically different method-

ology, the results of these approaches are essentially interchangeable. This means that structure-

based predictions of changes in inhibitor binding, such as the work described above and in

Section 4.2, are proportional to changes in IC50.

A contrast becomes more apparent when considering cases with novel inhibitors or

mutations. Sequence-based methods rely on finding patterns in existing data. For a new in-

hibitor, resistance data may not exist and are difficult to obtain in large quantities. Similarly,

analyses based on in vivo or in vitro experience with approved inhibitors are obviously not able

to predict the effects of mutations which have not been previously observed and measured. How-

ever, in cases where resistance information is unavailable for inhibitors or mutations, structure-

based methods remain applicable. Prior structure-based studies have focused on validation of

their models against existing data,21–23 rather than attempt to predict resistance against novel

inhibitors or the effects of previously unseen mutants. Chapter 4 describes the use of structural

information to predict resistance mutations, culminating in validation against the novel HIV

protease inhibitor AB2.

2.4 Simulations

A large class of HIV-related simulations center on the use of differential equations.26–29

One of the seminal works in this field was published by Perelson et al.,27 who used a system of
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three equations to model HIV infection in vivo following ritonavir therapy. Although concep-

tually simple, the model was able to predict viral load in patients for several days after therapy.

More recent extensions to the differential equation models have incorporated more complex be-

haviors, such as effects of multiple inhibitor classes.30 As a whole, differential equations models

are attractive in their simplicity, and generally require few parameters. However, these models

represent homogeneous populations, making it difficult to represent the mutant strains which

would be expected to arise during drug therapy.

A different approach was employed in a coevolutionary study between peptidomimetic

inhibitors and HIV protease.31 This work did not explicitly model a viral population, but used a

minimax approach to find inhibitors effective against a broad range of mutant proteases. A key

feature of this model was its sophisticated notion of fitness, based on Michaelis-Menten kinetics.

Fitness of a mutant protease was evaluated by predicting enzyme velocity:

v(m, i) = Vmax
[S]

[S]+Km(m)+ [I]Km(m)
KI(m,i)

(2.1)

where Vmax, [S], and [I] were constant. The remaining values, Km(m) and Ki(m, i), were calcu-

lated using a volume-based estimate of binding energy. Km(m) related to the affinity between

the protease and nine substrate cleavage sites, while Ki(m, i) described protease-inhibitor affin-

ity. However, a major simplification in this simulation was in limiting the inhibitor molecules

to octapeptides. Also, many of the resistance mutations in the study are not found in clinically-

observed resistance patterns. Variants of Equation 2.1 are discussed in Section 5.2, with param-

eters based on analyses in Chapter 3 and 4, permitting simulations involving clinically-approved

inhibitors that select for known resistance mutations.

Increases in computing power have allowed more fine-grained simulations that model

the life cycle of individual virions and allow for a large number of mutations.32, 33 One group

investigated the effect of multiplicity of infection on sequence diversity and the evolution of drug

resistance.32 Though the simulation modeled a each individual in a viral population, the viral

genomes were represented as bit strings and the fitness values were arbitrary, unrelated to known

resistance patterns. A highly sophisticated fitness function was used in another study, which

sought to predict the development of resistance against a hypothetical therapy based on RNA

interference.33
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2.5 Docking in Drug Discovery

In modern drug discovery, one of the main methods for finding new inhibitors is

the screening of large compound libraries against a target of interest. Since the number of

compounds that will inhibit a target is generally very low compared to the number of com-

pounds tested, huge libraries must be screened in order to find a reasonable number of poten-

tial inhibitors, or hits. For example, a screen of 400,000 compounds against protein tyrosine

phosphatase-1B found 85 inhibitors with IC50 less than 100 µM, a hit rate of 0.021%.34 Only 6

compounds, or 0.0015%, were able to meet a more stringent cutoff of 10 µM. A smaller-scale

screen of compounds against HIV protease used a library of 2,000 compounds.35 The authors

claimed a single hit from this screen, a molecule known as sanguinarine, which is highly toxic

to humans. From these studies, two major difficulties are evident: the low probability of finding

a hit and finding hits without undesirable properties (e.g. toxicity).

As a complementary approach, computation is often employed in a process known as

virtual screening.36–38 In virtual screening, the binding affinity estimates are calculated between

large compound libraries and a target of interest. One of the primary methods for perform-

ing such calculations is the use of protein-ligand docking programs, such as AutoDock.39, 40

AutoDock functions by optimizing a flexible ligand molecule in relation to a rigid macro-

molecule, typically a protein. The docking process can be viewed as consisting of two main

parts: (1) evaluating the binding energy of a given conformation and (2) searching possible con-

formations. The binding energy calculation is based on the AMBER force field41 and takes into

account 5 terms:

1. van der Waals forces

2. electrostatic interaction

3. hydrogen-bond formation

4. desolvation

5. a torsional free energy penalty

Evaluating the binding energy of all ligand conformations is difficult, since the number of con-

formations grow exponentially with the number of rotatable bonds in the ligand. Performing an

exhaustive search of all possible ligand conformations is generally computationally intractable,

so AutoDock employs a genetic algorithm, which samples many conformations, but biases its
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search toward regions near more favorable solutions. There is no guarantee of finding the lowest

energy conformation, so many independent docking runs are generally used. Consistent docking

results, as determined through cluster analysis, have been correlated with more favorable binding

energies.42

Ideally, the predicted ligand conformation with lowest binding energy should be the

preferred binding mode, and the predicted binding energy should match experimental results. In

practice, this is often not the case. Under cross-validation, AutoDock 4 has a standard error of

roughly 2.5 kcal/mol on a set of various protein-ligand complexes.40 Potential improvements to

the energy calculation have focused on the role of entropy. The torsional free energy penalty is

a rudimentary estimate of the configurational entropy of the ligand, and is simply proportional

to the number of rotatable bonds in the ligand. This term does not take into account the ligand

conformation or any constraints imposed by the proximity of the protein.

Recent work has theorized a correspondence between configurational entropy and

AutoDock clustering.43–45 The authors reasoned that clusters of similar conformations repre-

sented a mixture of states that could be used to estimate configurational entropy. As suggested

by Figure 2.11, isolated conformations may exhibit highly favorable binding energies without

being close to the observed conformation. Essentially, groupings of similar conformations indi-

cate entropic favorability, which can be used to augment the AutoDock binding energy predic-

tion. Applying this rescoring to a test set of protein-ligand structures significantly improved the

chances of finding the experimentally observed conformation.43 Use of the configurational en-

tropy improving the correlation between predicted and observed binding energies, however, was

not investigated. Extending AutoDock clustering to provide an empirical estimate of entropy for

use in binding energy calculations is described in Section 6.2. Ultimately, a major goal of these

entropy estimates is the improvement of accuracy in virtual screening, supporting the discovery

of new HIV drugs. This is documented in Chapter 6, with discovery of several HIV protease

inhibitors.
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Figure 2.11: An example of a protein-ligand energy landscape. Circles correspond to AutoDock
results and the star represents the experimentally observed conformation. AutoDock will often
find isolated low-energy minima (red) that inhabit a “narrow” energy well. Seemingly less fa-
vorable conformations (green) may actually be more representative when entropic contributions
are taken into account.



Chapter 3

Determinants of Viral Replication

Capacity

The ability of HIV to replicate quickly within a host is an important factor during in-

fection and therapy. Mutations arising during treatment are often noted for their effects against

inhibitors, but the presence of these mutations can also affect replication capacity. The most

straightforward approach takes advantage of data obtained via in vitro single-cycle infection as-

says13 and applying various statistical or machine learning methods.46, 47 However, as shown in

Section 3.1, this type of approach is imprecise. Another weakness stems from the limited di-

versity of the viral protein sequences used. Relying on sequences derived from clinical sources

biases the observed viral sequences towards solutions which contribute to drug resistance for cur-

rent inhibitors. A purely sequence-based statistical method would be unable to make predictions

for any mutations which had not been previously observed, limiting its usefulness.

Ideally, a predictor for viral replication capacity would be able to predict the effect

of any possible mutation. Generalizing a protein sequence-based analysis to incorporate more

general structural properties of residues allows for a greater range of predictions. The Multivari-

ate Analysis of Protein Polymorphism (MAPP) program was designed to perform this task.48

Its authors previously analyzed both HIV protease and reverse transcriptase, finding that MAPP

was able to qualitatively discriminate between neutral and deleterious mutations. This work is

extended here with additional sequence data. A correlation between MAPP scores and protease

catalytic efficiency is demonstrated in Section 3.2. The predicted variability in various regions

of protease is also examined, with implications for drug design.

Mutations not directly involved in enzyme function can also affect viral replication,

20
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as is the case with HIV protease cleavage sites.49–54 Through alterations in the amino acid

sequence of these cleavage sites, the rate of substrate processing can be modified, allowing the

virus to replicate effectively despite the presence of inhibitors. Understanding the substrate

specificity of HIV protease and the range of allowable substitutions in the cleavage sites will aid

in anticipating the emergence of these mutations during drug therapy. An interpretable model of

protease cleavage based on the physicochemical properties of the residues at each cleavage site

generated using machine learning software is presented in Section 3.3.

3.1 Sequence-based regression

Viral replication capacity (RC) measures the ability of a virus to replicate in the ab-

sence of inhibitors. The use of drugs to treat HIV infection leads to the evolution of resis-

tance mutations, which often have consequences for replication capacity. Given viral protein

sequences and the corresponding RC values, it is possible to apply machine learning methods to

predict RC from a protein sequence.46, 47 A dataset from ViroLogic Inc. contains RC measure-

ments for 317 HIV isolates obtained via single-cycle infection assays.46 Amino acid sequences

are available for positions 4-99 for protease and 40-233 for reverse transcriptase. RC values

range from 0.26 to 151, with a value of 100 indicating wild-type.

As the replication capacity of the virus depends on both the protease and reverse tran-

scriptase enzymes, the dimensionality of this dataset is large. When considering the mutations

at all positions available, there are 807 attributes. In protease, variability was observed at 90

positions, with an average of 2.7 mutations per position. 183 positions showed variability in

reverse transcriptase, and there were an average of 3.1 mutations at each position. The high di-

mensionality suggests the use of a support vector machine (SVM), which is a machine learning

technique suitable for high dimensional data.55 However, since the number of attributes still

exceeds the 317 instances available, choosing a subset of the features is necessary to obtain ac-

curate predictions. To narrow the mutations considered, a set of treatment-selected mutations

(TSM) were considered, which were previously used in predictions of drug resistance.20 These

mutations, which occur significantly more frequently in treated than untreated populations, re-

duce the number of attributes to 61. This smaller dataset contained 30 protease positions with an

average of 1.3 mutations at each position and 23 reverse transcriptase positions with an average

of 1.3 mutations per position.
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3.1.1 Machine learning details

The Weka machine learning library was used to carry out the predictions.56 The

SMOreg (Sequential Minimal Optimization Regression) module was used to perform SVM re-

gression with a radial basis function (RBF) kernel. In addition, two other methods were included

for comparison, linear regression and ZeroR. The linear regression implementation used a ridge

regression parameter of 10−8. ZeroR is a naive method which predicts the mean RC value in

each case, completely ignoring the mutations present, providing a baseline level of error.

Each clinical isolate in the dataset was represented as a series of binary values in-

dicating the presence or absence of specific mutations, and linked to the associated RC value.

Experiments were also carried out using the natural log of the RC, as some studies have used

this transformation to reduce the effect of outliers.47 In all cases, results were obtained using 10

rounds of 10-fold cross-validation.

3.1.2 Results and discussion

The most naive type of regression predictor, ZeroR, uses the mean of the training

data RC values, ignoring the mutations present. This strategy obtained root mean square error

(RMSE) of 25.2, with an insignificant correlation coefficient. When the RC values were log-

transformed, the RMSE obtained was 0.953. These errors indicate a baseline value that the other

learning methods should surpass. The performance of linear regression and SVM regression

shown in Tables 3.1 and 3.2. In the case of linear regression, use of the full set of mutations

resulted in extremely poor accuracy. When restricting features only to the TSMs, accuracy im-

proved, but was still comparable to the naive learner when the natural logarithm was not applied.

The SVM results showed improvement over linear regression, though the error remained high.

When using the full set of mutations, the standard deviation was larger than with the TSM subset,

possibly indicating over-fitting during cross-validation.

Table 3.1: Replication capacity prediction using linear regression.
Data set Correlation coefficient Root mean square error

RC 0.093±0.045 121±10.5
log(RC) 0.110±0.030 4.91±0.336

RC-TSM 0.367±0.015 24.2±0.363
log(RC)-TSM 0.529±0.010 0.834±0.009

The performance of the SVM was similar to that reported in previous studies. The

best RMSE value obtained by Segal et al. with a random forest approach was 24.0, using un-

transformed RC values.46 Birkner et al. used log-transformed RC values and a data-adaptive
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Table 3.2: Replication capacity prediction using a support vector machine.
Data set Correlation coefficient Root mean square error

RC 0.547±0.167 20.8±2.83
log(RC) 0.699±0.107 0.679±0.095

RC-TSM 0.431±0.041 22.9±0.433
log(RC)-TSM 0.582±0.045 0.789±0.030

regression, obtaining RMSE 0.688.47 In absolute terms, however, the accuracy of all methods

on un-transformed RC values was dubious, with RMSE values only slightly better than guessing

the mean RC.

3.2 Predicting impairment in HIV protease

As an alternative to directly estimating viral replication capacity the activity of indi-

vidual genes can be investigated. In general, substitutions from the wild-type protein sequence

will not have a positive effect, so the goal lies in predicting the level of impairment caused by

particular mutations. A simple approach to this problem would apply a amino acid substitution

scoring matrix, such as BLOSUM62, to classify changes in a given sequence.57 However, ap-

plying a general scoring matrix ignores any characteristics specific to the protein or position of

interest.

More sophisticated techniques generally rely on a multiple sequence alignment of re-

lated sequences and are able to make more detailed predictions. The SIFT program, written by

Ng and Henikoff, used a set of orthologous sequences to generate probabilities for all possible

substitutions at each position in a sequence.58 Improvements over more general scoring schemes,

such as the BLOSUM62 matrix, were demonstrated on three different systems, including HIV

protease. More recent work by Stone and Sidow extended this approach with the Multivariate

Analysis of Protein Polymorphism (MAPP) program, which was shown to have even higher ac-

curacy than SIFT.48 High MAPP scores indicate that the physicochemical properties of a putative

mutation are markedly different than expected based on an alignment of orthologous sequences.

An examination of the MAPP scores for known drug resistant mutants revealed that several ma-

jor mutations with high scores were present at low frequency in untreated patients, but much

higher frequency in treated patients, indicating that MAPP scores capture some aspects of pro-

tease fitness. Both programs are able to realize gains over the generalized BLOSUM62 matrix

due to system- and position-specific scoring.

The following three sections first describe an effort to augment the original MAPP
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Table 3.3: Comparison of MAPP prediction accuracy based on experimental data. Sensitivity
and specificity, respectively, are shown in brackets.

Positive vs. Deleterious Intermediate vs. Negative
original MAPP paper (n=39) 80.4% [64.8% 87.7%] 76.7% [61.7% 89.5%]

PSI-BLAST set (n=74) 74.1% [79.8% 71.4%] 78.3% [85.3% 70.4%]

analysis of HIV protease by including a larger set of related sequences, which shows improve-

ment in discriminating among clinically-relevant protease mutations. Next, the predictions are

also shown to correlate with experimentally-observed measures of protease catalytic efficiency.

Finally, following the work of Wang and Kollman,59 along with predicting functional impair-

ment, the degree of variability at each position are used to provide insights into drug design.

3.2.1 Sequence variability

A diverse set of protease homologs was obtained by querying the Swissprot database

using PSI-BLAST with the HXB2 HIV protease sequence, yielding 103 sequences∗. After gen-

erating a multiple alignment using ClustalW, 29 of these sequences were eliminated due to poor

alignment, leaving 74 sequences. This refined set of sequences was used to generate a phylo-

genetic tree using the Semphy program60†. The sequences and tree were input to the MAPP

program to generate estimates of all possible substitutions on protein function.

In comparison, the original research by Stone and Sidow used only 39 sequences re-

lated to HIV protease. To validate their predictions, the authors attempted to classify 330 se-

quences with experimentally determined phenotypes.48, 61 Since the experimental data used

a tripartite classification scheme differentiating between wild-type, intermediate, and negative

phenotypes, Stone and Sidow performed two binary classification experiments. They reported

80.4% accuracy in differentiating between positive and deleterious mutations (i.e. wild-type vs.

intermediate or negative phenotypes) in HIV protease, and 76.7% for discrimination between in-

termediate and negative mutations (wild-type or intermediate vs. negative phenotypes). In both

cases, MAPP score thresholds at values of 5 and 7 were used to indicate positive, intermediate,

and negative predictions, respectively.

With the 74 protease sequences harvested from PSI-BLAST and a phylogenetic tree

built using SEMPHY, accuracy for differentiating positive and deleterious mutations was 74.1%

(Table 3.3), using the same thresholds. This accuracy is significantly lower than what was ob-

tained using the smaller set of sequences, however, classification between intermediate and neg-

∗Default PSI-BLAST parameters were used. Search was terminated after 2 iterations and used an E-value cutoff
of 1e-8.

†Homogeneous ASRV, “classic” joining, and JTT model were specified.
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Figure 3.1: MAPP score distributions for clinically-observed mutations associated with pro-
tease inhibitor drug resistance. Higher MAPP scores predict deleterious mutations. The gray
histogram shows the distribution of scores for the sequences from the original MAPP paper, and
the black histogram reflects sequences gathered using PSI-BLAST.

ative mutations improved slightly, to 78.3%. Some of this discrepancy can be accounted for

by considering trade-offs between specificity and sensitivity. By examining a larger set of se-

quences, the model tolerates greater variability, manifested as lower MAPP scores. The average

score from Stone and Sidow’s model was 13.7, while the PSI-BLAST set’s average was 9.48.

The median score dropped from 10.8 to 5.23 as well. Since the same thresholds were used, a

larger number of tolerated mutations were likely to be predicted, leading to an increase in false

positives and decrease in false negatives. This was supported by the improved sensitivity and

reduced specificity of the new set of MAPP scores relative to the originals.

Differences between the models become more obvious when clinical data is consid-

ered using a set of treatment-selected mutations (TSM), which are mutations likely to arise dur-

ing drug therapy.20, 62 As the TSMs were discovered through analysis of clinical samples, it

follows that their protease function is not severely impaired, and that the MAPP scores should

be relatively low. The score distributions for TSMs associated with protease inhibitors are shown

in Figure 3.1. The distribution of original MAPP scores contained a larger number of high val-

ues, predicting functional impairment when the TSMs indicated otherwise. In this regard, our

larger set of protease sequences was noticeably superior.
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3.2.2 Processing rates

Moving beyond qualitative comparisons, the most potentially useful aspect of MAPP

is its ability to make quantitative predictions on the level of protein function. Stone and Sidow

did find a significant negative correlation between MAPP score and enzymatic activity in HIV re-

verse transcriptase (r =−0.56), but lacked the data for a similar analysis of protease activity. For

protease, activity can be defined in terms of substrate cleavage rates, which can be determined

from enzymatic kcat and Km values. Km relates to the affinity of an enzyme for substrate, while

kcat indicates the number of substrate molecules processed per unit time. Relative processing

capability is considered as the kcat/Km ratio of a particular mutant against wild-type protease.

Previous work has demonstrated that protease is able to tolerate a large degree of impairment

while still allowing viral replication, however.63 Even when the kcat of protease is decreased to

one-fourth of normal, as with a T26S mutant, only slight decreases in infectivity are observed,

although decreasing activity 50-fold is sufficient to halt viral replication, as demonstrated with

the A28S mutation.

Using data from several biochemical analyses of protease activity,63–67 the correspon-

dence between MAPP scores and relative processing rates are shown in Figure 3.2. As expected,

there is a negative correlation, with r = −0.54 (P = 0.019), indicating that MAPP scores are

useful for making quantitative predictions of protease function. Using Stone and Sidow’s MAPP

predictions, a weaker, statistically-insignificant results is obtained, with r =−0.15.

3.2.3 Implications for drug design

Related work performed by Wang and Kollman examined the molecular basis of drug

resistance in HIV protease by studying both sequence variability and the results of molecular

dynamics simulations with substrates and inhibitors.59 In this model, sequence variability, deter-

mined via multiple sequence alignment of HIV protease orthologs, was used to estimate changes

that could affect replication capacity. Low sequence variability implied that the residue was

important for catalytic ability or structural stability.

The distribution of MAPP scores has implications for drug design, since inhibitor

interaction with more conserved residues may hinder the development of resistance. The per-

position distribution of Wang and Kollman’s “variability” measure and MAPP scores can be seen

in Figure 3.3. In general, positions in the substrate cleft are highly conserved, as evidenced by

the magnitude of their average scores. The catalytic triad and neighboring residues represent a

cluster of especially important residues. However, in some cases, the average MAPP score can
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Figure 3.2: Relationship between MAPP scores and experimentally-derived protease process-
ing rates. The gray line indicates the linear least-squares fit (r =−0.54).

be misleading, for instance at position 90. Though the average score indicated a highly conserved

residue, the L90M mutation is a very common drug resistance mutations that affects nearly all

inhibitors. Further, with a score of 4.8, the specific mutation to methionine was predicted to

have little or no effect on protease function. Instead, looking at the most favorable MAPP score

of each mutation is a more stringent standard for determining per-position variability which can

avoid this problem.

Based solely on this sequence analysis, it appears that positions 9, 23, 25-29, 49,

52, 86-87, and 97 would be the best positions to focus the binding of new protease inhibitors.

However, only a subset of these positions are accessible so as to be able to interact directly with

ligands. Further insights can be found in structure-based approaches that involve protein-ligand

binding predictions.

3.3 Protease cleavage prediction

Current HIV protease inhibitors are designed to occupy the enzyme’s active site, pre-

venting its natural substrates from being processed. If protease does not cleave at several specific

points in HIV polyproteins, non-infectious particles are produced.7 Due to its vital function, HIV

protease has become an important drug target, and to further understanding of the protease ac-

tive site, experimental and computational studies have been undertaken to find “lock and key”
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relationships between a sequence of amino acids as they fit into the active site of the protease. It

is hoped that identifying important features of cleaved sequences will aid drug design.

As shown in Figure 2.4, the protease cleavage mechanism is typically represented by

an 8-residue substrate (P4, P3, P2, P1, P1’, P2’, P3’, and P4’) that interacts with 8 sites in

HIV protease (S4, S3, ... S4’). A wide range of machine learning studies have attempted to

find patterns in protease cleavage data.68–74 In all cases, the data instances are based on the

8-residue substrates, encoded as either a sequence of letters or a 160-dimensional vector (20

possible amino acid residues at 8 positions).

In all prior work, training data is taken from the set published by Cai et al. (1998),

which contains 114 cleaved octapeptide instances and 248 non-cleaved instances. Experiments

reported here also incorporate data available from experimental studies,75, 76 which encompass

an additional 82 cleaved and 16 non-cleaved instances, for a total of 460 instances.

Previous learning methods used to find patterns in these data include support vector

machines (SVM), artificial neural networks (ANN), and decision trees (DT). SVMs and ANNs

are able to classify approximately 90% of instances correctly, but interpreting support vectors

and multi-layer neural networks is difficult. The DT-based rules produced by Narayanan et al.

are easily interpreted, but only about 85% accurate.70 More recently, Rognvaldsson and You

applied linear classifiers to generate models as accurate as the more sophisticated non-linear

classifiers,73 achieving greater than 90% accuracy under 10-fold cross-validation.

However, a common thread between all previous studies was their limited feature set,

which only encoded sequence information. In seeking insights for drug design, it is important

to take into account the physical properties of the peptide sequences. This work focuses on

improving the accuracy and interpretability of predictions by incorporating additional features

based on the physical properties of the substrate sequences.

3.3.1 Methods

Representing Physical Properties

When classifier required numerical input (as with the SVM and perceptron), sequences

were encoded as 160-dimensional vectors. This process and its consequences have been de-

scribed in detail previously.73 DT generation allows discrete values, so sequences were rep-

resented as 8 separate amino acids. In these experiments, the octapeptide sequence informa-

tion associated with each cleaved/uncleaved instance was augmented with two types of physical

properties: amino acid residue properties and whole-peptide properties. The amino acid residue
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properties were:

• the residue mass (Daltons),

• volume (Å3),

• surface area (Å2),

• polarity (polar or nonpolar),

• charge (+, -, or neutral),

• aromaticity (aromatic or non-aromatic),

• aliphaticity (aliphatic or non-aliphatic),

• length (defined as the longest chain of heavy atoms), and

• length divided by mass

The whole-peptide features are determined by constructing a SMILES representation of the pep-

tide chain and processing via JOELib‡. The 32 whole-peptide descriptors include such values

as inventories of particular molecules, number of hydrogen bond donors and acceptors, and total

mass. Some geometry-based JOELib features were unreliable, as the SMILES representation is

only 2-dimensional.

Classifiers

Because previous work showed that simple linear classifiers could perform compet-

itively over sequence features,73 the MATLAB Neural Network Toolbox implementation of a

perceptron network was included in this study. As gradient learning methods like the perceptron

are known to be subject to convergence to local minima, a type of iterated hill-climbing was

used so that the network did not remain trapped in local minima. 10 “iterated restarts” at random

locations were used to provide a more robust estimate of classifier accuracy. This resampling

occurred during each of 10 folds of cross-validation, keeping only the most favorable result. The

cross-validation accuracy was then averaged over 10 rounds.

The SVM implementation was supplied via LIBSVM,77 which includes facilities for

scaling data, cross-validation, and parameter selection. To determine which features were most

‡http://www-ra.informatik.uni-tuebingen.de/software/joelib/index.html
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Table 3.4: Protease cleavage prediction accuracy.
Learning Method Feature Set Mean Accuracy (%)
SVM sequence 92.9±0.82

sequence + physical 90.2±0.53
sequence + whole 92.6±0.75
sequence + physical + whole 89.7±0.84
physical 88.2±0.75
physical+ whole 88.6±0.80
whole 86.6±0.74

DT sequence 87.1±1.1
physical 87.5±1.4

Perceptron sequence 94.8±0.70
physical 88.5±0.89

informative for an SVM, the accuracy of various feature sets was compared using cross-validation.

Each feature set was scaled using the LIBSVM’s svm-scale program. For each set of features,

results were calculated using a linear kernel and 10 rounds of 10-fold cross-validation.

C4.5 was used for decision tree generation.78 For sequence-based trees, discrete value

subsets were enabled, as the large number of discrete values can quickly fragment the data,

greatly limiting branching. Otherwise, default parameters were used for tree construction in

our experiments. However, for the sample trees shown, branch pruning was increased to allow

a more compact display. The bundled xval script was used to perform 10 separate rounds of

10-fold cross-validation.

3.3.2 Results

Support Vector Machine

Table 3.4 summarizes the results of SVM training using various feature subsets. “Se-

quence” implies only the eight amino acid features were used, “physical” refers to site-specific

physical features of individual amino acids, and “whole” refers to physical features of the full

peptide. Surprisingly, with SVMs using sequence features alone gives the highest mean accu-

racy; physical features do not provide the SVM any additional benefit. Experiments with other

kernels showed similar results (data not shown).

Decision trees

One key advantage of SVMs is their robustness in the face of “the curse of dimen-

sionality”: because the search for separating hyperplanes occurs in a dual space, they can find

regularities among training instances even when these are represented in the primal space using
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large numbers of features. However, for inductive methods such as DTs which search through

primal space directly, the inclusion of increasing numbers of features without exponentially more

training data makes their search much more difficult. For this reason, to maintain approximately

constant feature spaces, in DT experiments whole-peptide features were dropped, and compari-

son was made between sequence-only and site-specific physical features only.

As shown in Table 3.4, trees based on physical features had comparable cross-validation

accuracy to sequence-based representations discovered by our experiments. These experiments

are also consistent with the DT-based accuracies reported previously.70 As shown in Figures

3.4 and 3.5, however, the type of DT formed over the two feature sets is much different. The

tree based on physical features makes use of only P2, P1, P1’, and P2’, ignoring the residues

farther from the cleavage site. Rognvaldsson and You found similar behavior with their percep-

tron model, noting that some residues distant from the cleavage site could be ignored with no

penalty.73 Both trees contain similar branching at the root, depending on P1.

Perceptron

The previous perceptron classifier experiments showed that this system reliably con-

verged to a zero-error solution, demonstrating (via the Perceptron Convergence theorem) that

this data was linearly separable.73 The present study included the additional instances culled

from experimental studies,75, 76 but the perceptron classifier over sequence features again con-

verged to a zero-error solution, indicating that the data set remains linearly separable with this

new data. Cross-validation accuracy of the perceptron using sequence features is similar to that

of the SVM, with an average of 94.8% correct.

Using physical features, the training error did not converge to 0, even when given

additional training time, suggesting that the data set is not linearly separable when site features

alone are used. Mean accuracy using the perceptron classifier was 88.5%, comparable to the

decision tree. The slightly higher accuracy is likely due to the iterated restart procedure used,

which effectively allows more trials to be performed.

The matrix-capsid site

In order to produce active virions, protease must first cleave itself out of the Gag-Pol

polyprotein and then successfully accomplish cleavage to produce the matrix, capsid, nucleo-

capsid, reverse transcriptase, and integrase proteins. Each of these natural substrates presents

slightly different constraints on a protease capable of effectively cleaving them all, and yet pro-
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Figure 3.4: Sequence-based substrate cleavage decision tree.

(+) and (-) inside round nodes represent cleaved and uncleaved instances, respectively. The

numbers in parentheses indicate the total number of instances classified by a node. Branches

and nodes shown in bold show the path which classifies most of the cleaved instances.
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Figure 3.5: Substrate cleavage decision tree based on physical features. Units are as follows,
volume: Å3 , surface area: Å2, and mass: Daltons.
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tease does not cleave indiscriminately.75 For these reasons, this study investigates the potential

structure among various subsets of the cleaved/uncleaved training data, as perhaps indicating

features especially relevant to cleavage at individual sites.

On closer inspection, it was found that the matrix-capsid cleavage site – SQNYPIVQ –

and sequences very similar to it, were particularly well-represented within the existing training

data. Table 3.5 enumerates the 27 cleaved and 9 uncleaved sequences with significant “over-

lap” with the natural substrate; i.e., simply the number of shared amino acids with the naturally

occurring substrate.§ Interestingly, there were nine uncleaved sequences which differed from

the natural (cleaved) substrate by only a single base. It was hypothesized that attempting to

build classifiers discriminating cleaved from non-cleaved instances based on sequence informa-

tion alone would be particularly difficult, and that providing physical feature information might

provide especially insightful distinctions for the matrix-capsid cleavage site.

The results for various features are shown in Table 3.6. Here, only a SVM was used

since it was previously shown to perform well with various feature sets. Using only sequence

information, the SVM built a classifier that was 66.7% accurate. Using physical information

instead, the accuracy increased slightly. Both types of features in concert appeared to perform

significantly better than sequence information alone. However, given that the data set consists of

75% cleaved instances, even a naive classifier that never predicts uncleaved instances would do

roughly as well as a SVM with the full feature set. Additionally, the number of support vectors

differs widely depending on the feature set used. Sets including sequence information require

nearly all of the training instances be used as support vectors. When only physical features

are used, the model contains fewer support vectors. This behavior indicates that the decision

boundary is especially difficult to find in terms of sequence features.

3.3.3 Discussion

The classification performance of the most simple, linear classifiers described by Rogn-

valdsson and You73 continues to provide a competitive standard of performance for much more

sophisticated learning technologies, at least over sequence information alone. This study pro-

vides the first results extending to classification over richer sets of physical features of the cleaved

and uncleaved instances.

A SVM exploiting these additional physical features did not perform substantially bet-

§More elaborate notions of sequence similarity, involving edit distance, PAM-style amino acid similarities, etc.
might also be possible, but even this simple measure successfully separates training instances near the natural subsite
from others and so other variants were not explored.
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Table 3.5: Training instances similar to the matrix-capsid cleavage site. The matrix-capsid
cleavage site is shown in bold.

Cleaved Uncleaved
Sequence Sequence
SQNYPIVQ RQNYPIVQ
LQNYPIVQ SQKYPIVQ
MQNYPIVQ SQNPPIVQ
SKNYPIVQ SQNSPIVQ
SNNYPIVQ SQNYAIVQ
SQAYPIVQ SQNYDIVQ
SQCYPIVQ SQNYKIVQ
SQIYPIVQ SQNYPKVQ
SQLYPIVQ SQQYPIVQ
SQNFPIVQ
SQNMPIVQ
SQNYLIVQ
SQNYPAVQ
SQNYPIEQ
SQNYPIFQ
SQNYPIIQ
SQNYPILQ
SQNYPIVE
SQNYPIVL
SQNYPIVP
SQNYPLVQ
SQNYPNVQ
SQNYPVVQ
SQNYTIVQ
SQTYPIVQ
SQVYPIVQ
TQNYPIVQ

Table 3.6: Protease cleavage prediction for sequences similar to the matrix-capsid cleavage
site.

Feature Set Mean Accuracy Standard Deviation
sequence 66.7% 2.62%
physical 71.4% 1.34%

sequence+physical 76.1% 2.68%
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ter, probably due to several factors. Features based on site-specific physical properties, such as

volume, are possibly redundant when sequence information is given. These features correspond

exactly to amino acid residues, indicating that an SVM may already be able to generate an inter-

nal representation where the relationships between different residues are exploited, so additional

physical information is unnecessary. The whole-peptide features used are likely too coarse to be

of any additional benefit. While the sequence representation is extremely sparse, it appears to

provide sufficient information. Representations based on physical features are more dense, but

by compacting and transforming the representation, some information is lost.

However, the trees based on physical features are more readily interpretable in terms

that can be used more directly for drug design. The groupings of amino acids found in the

sequence-based decision tree lack any obvious commonality. Given physical features instead,

the trees become much more comprehensible from a human point of view, even though trees

from either perspective heavily favor classification based on the same amino acid positions.

When focused on a single cleavage site where differences in cleaved and uncleaved instances are

small in terms of sequence, the physical features provide increased classification ability.

In summary, the results suggest that the relatively small set of training instances cur-

rently available has been exhausted, certainly with respect to sequence-only features. Also,

physical features of individual residues can be useful in providing more refined, biologically

relevant characterizations of protease specificity. More experimental data, investigating other

cleaved and uncleaved sequences, particularly sampling “near” other cleavage sites (analogous

to the set near SQNYPIVQ), will be necessary before we can discover how protease is able to

efficiently cleave across all these sites while retaining such high specificity.
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Chapter 4

Structural Analysis of Drug Resistance

Sequencing of resistant HIV strains, combined with genotypic and phenotypic anal-

yses of related samples, have produced large volumes of data that have proven useful in moni-

toring disease progression in clinical settings.79 For all FDA-approved reverse transcriptase and

protease inhibitors, these analyses have yielded detailed lists of drug resistance mutations and

their effects.17, 80 Related machine learning experiments involving the prediction of resistant

HIV sequences have also proven useful.19, 20, 81 These post hoc approaches have shortcomings,

though, in that the results are based on historical data – drawn from extended clinical experience

with approved inhibitors – and cannot be used when sufficient data is unavailable, as with newly

approved or experimental drugs. A deeper understanding of the basis for drug resistance may

allow for predictions of drug resistance mutations before clinical data is available.

For example, the recently synthesized protease inhibitor AB282 is a potent compound

which can inhibit HIV replication in the low nanomolar range in vitro. However, it is far from

approval for use in a clinical setting, nor has it been subjected to in vitro selection experiments,

as has been done with other experimental inhibitors, such as TL-3.16 For a drug candidate to

progress to clinical trials takes years, leaving in vitro selection experiments via serial passage

as the more tractable method for determining resistance pathways for a new inhibitor. Unfortu-

nately, these experiments are demanding in terms of resources and time, and can take months to

years to complete. A quick in silico method to “preview” drug resistance mutations would be

useful to complement these more time-consuming techniques.

In examining drug resistance, it is important to note differences in the effects of drug

resistance mutations. For HIV protease, mutations are generally divided into primary and com-

pensatory mutations.80 Primary mutations arise with the onset of antiviral therapy in a drug-

38
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naive patient, and lead to reduced inhibitor binding and frequently impaired protease function as

well. Compensatory mutations typically arise after primary mutations and restore some protease

function. They also generally have a lesser effect on inhibitor binding or are in some cases de-

pendent on the presence of a primary mutation. Mutations are also classified as major or minor,

depending on the degree of resistance conferred.

These observations regarding differences in drug resistance mutations provide a glimpse

into more general notions of viral fitness with respect to protease. To replicate effectively, the

viral protease must cleave specific targets with some minimal level of efficiency.63 The pres-

ence of competitive inhibitors reduces enzymatic activity below the threshold required for viral

propagation. Even when not fully inhibited, protease activity may become a bottleneck for viral

replication capacity. However, some mutants are less susceptible to particular inhibitors, and

will remain viable, despite lower catalytic efficiency (and overall replication capacity) than the

more vulnerable wild-type HIV.83 Therefore, in understanding the basis of drug resistance and

viral fitness, it is important to examine the interplay between replication capacity and resistance

to inhibition.

Previous research performed by Wang and Kollman examined the molecular basis of

drug resistance in HIV protease by studying both sequence variability and the results of molec-

ular dynamics simulations with substrates and inhibitors.59 This work involved studying the

sequence variability among protease orthologs, with low sequence variability implying that a

position was important for catalytic ability or structural stability. Protein-ligand interactions

captured by the molecular dynamics simulations revealed differences in the binding modes of

inhibitors relative to a substrate molecule. Combining the sequence information with structural

insights led to success in predicting some major drug resistance mutation sites. However, while

protease positions were implicated as likely mutation sites, particular amino acid substitutions

were not identified.

In this chapter, Section 4.1 first focuses on predicting drug resistance mutations for

clinically-approved drugs. It demonstrates that highly accurate results can be obtained with pre-

dictions based directly on clinically-observed mutations found in inhibitors of the same class.

However, this approach lacks generality, as it relies directly on the use of existing mutation

patterns. Section 4.2 presents a more broadly applicable strategy extending the framework es-

tablished by Wang and Kollman, using sequence homology and protease-ligand interactions.

When tested on protease inhibitors in clinical use, the predictions were less accurate than the

predictions made on the basis of observed mutations, but over half of the major protease re-
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Table 4.1: Drug resistance predictions based on cross-resistance. An asterisk (*) indicates
a 0.01 significance level. Each additional asterisk represents an additional 10−1 decrease in
significance level, to a minimum level of 10−5.

inhibitor accuracy precision recall p-value
APV 0.98 34/77 34/34 ****
ATV 0.98 47/64 47/60 ****
DRV 0.98 29/75 29/31 ****
IDV 0.99 48/77 48/48 ****
LPV 0.98 42/75 42/44 ****
NFV 0.98 45/75 45/47 ****
SQV 0.98 43/77 43/43 ****
TPV 0.98 29/70 29/36 ****

average 0.98 0.54 0.93 –

sistance mutations were identified. Finally, in Section 4.3 a combination of clinically-observed

mutations and predicted binding interactions was used to predict resistance mutations against the

novel inhibitor AB2. Biochemical testing of the protease mutants, involving the 47V, 53L, and

84V mutations, confirmed increased resistance to AB2, but also revealed unanticipated nonlinear

effects.

4.1 Cross-resistance in HIV protease

When examining existing patterns of drug resistance, it is evident that there are many

mutations which confer resistance against multiple inhibitors (see Figures 2.7 and 2.8). These

commonalities among resistance patterns can be exploited to generate drug resistance predic-

tions. With a leave-one-out cross-validation scheme, the drug resistance mutations of one drug

were predicted using the union of drug resistance mutations for all other protease inhibitors. For

example, predictions for amprenavir resistance were made by examining the resistance profiles

for all other drugs, and assuming that any mutation mentioned would confer amprenavir resis-

tance. As shown in Table 4.1, this method had high accuracy and recall, and was able to capture

the majority of resistance mutations. The high level of recall likely relates to the shared mode

of action of all approved protease inhibitors.5 On the other hand, this approach would not be

applicable for a novel target.

Drug resistance mutation data Comprehensive information on drug resistance mutations is

available from two major sources: the Stanford HIV Database (HIVDB) and the International

AIDS Society–USA (IAS-USA).79, 80 To reconcile these two sources, HIVDB score thresholds

were matched to IAS-USA classifications. Any mutation with HIVDB score >= 20 or mutation
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designated as major by IAS-USA was identified as a “major” drug resistance mutation for our

experiments. Remaining mutations with an HIVDB score >= 5 or listed by IAS-USA were used

to form a broader set of all drug resistance mutations we will refer to as “minor” mutations. For

this work, the IAS-USA data from Fall 200584 was used when possible, as ritonavir-boosting

of protease inhibitors has become standard more recently, which could have some effect on

mutation profiles.

In evaluating the accuracy of resistance predictions, accuracy alone may be mislead-

ing, as resistance mutations make up only a small fraction of possible mutations. There are, for

example, 34 resistance mutations for amprenavir, out of a possible 1,881 mutations (19 substitu-

tions at each of 99 positions). A trivial predictor could achieve average classification accuracy of

99.5% on major mutations and 97.7% on all mutations by simply assuming that no substitutions

confer drug resistance. Therefore, examining the precision and recall of the predictors provides

additional information to determine the utility of the results. Precision was determined as the

proportion of predicted drug resistance mutations that were correct (i.e., part of either the major

or minor mutation sets defined above). Recall (or sensitivity) was calculated as the number of

drug resistance mutations correctly predicted, compared against the total number of known drug

resistance mutations.

The level of statistical significance was assessed by comparing results to a hypergeo-

metric distribution, p(Y = k) = (r
k)(N−r

n−k)
(N

n)
where N is the total number of possible mutations, r the

number of drug resistance mutations, n the number of predictions made, and Y the number of

correct predictions. The significance values reported correspond to the probability of correctly

identifying at least Y resistance mutations.

4.2 Structure-based prediction of resistance

A combination of structural and sequence factors was used to predict resistance mu-

tations in HIV protease, excluding any prior knowledge directly related to resistance. Clinical

data was used only for validation, in contrast to the previous section. All possible mutations

were subjected to filtering based on changes in protease-inhibitor and protease-substrate binding

energies, in addition to a sequence-based threshold via MAPP.
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Table 4.2: Protease-substrate complex structures.
PDB ID Substrate peptide sequence Cleavage site
1F7A KARVL/AEAMS CA/P2
1KJ4 VSQNY/PIVQN MA/CA
1KJ7 PATIM/MQRGN p2/NC
1KJF RPGNF/LQSRP p1/p6
1KJG GAETF/YVDGA RT/RTp66
1KJH IRKIL/FLDGI RTp66/INT
2FNS RQANF/LGKIN NC/p1

Table 4.3: Protease-inhibitor complex structures.
PDB ID Inhibitor
1HPV amprenavir (APV)
2O4K atazanavir (ATV)
1T3R darunavir (DRV)
1SDT indinavir (IDV)
2O4S lopinavir (LPV)
1OHR nelfinavir (NFV)
2NMW saquinavir (SQV)
2O4P tipranavir (TPV)

4.2.1 Protease-ligand binding energy prediction

Protease crystal structures in complex with several polypeptide substrate segments are

available at the Protein Data Bank (PDB),85 as shown in the Table 4.2. Structures for several pro-

tease inhibitors (including all FDA-approved drugs) were also obtained from protease-inhibitor

complexes in the PDB (Table 4.3). In all cases, proteases with the fewest mutations relative

to the “wild-type” HXB2 sequence and with high resolution (almost always < 2 Å) were se-

lected. Protein-ligand binding energies were estimated using a Python implementation of the

AutoDock4 forcefield.40 This program is able to report per-residue contributions to binding

energy. Energies from each of the protease chains were merged, such that a position’s energy

represented the sum of the residues on both chains.

Implications for drug design

Evaluating the intermolecular binding between each protease-substrate pair revealed

consistent interactions across nearly all of the positions in protease (Figure 4.1a). A majority

of the total binding energy was contributed by roughly a dozen positions in close proximity to

the substrate. Similar consistency in per-position binding energies was observed across protease

inhibitors (Figure 4.1b). Overall, the inhibitor binding energies appeared weaker than the sub-

strates near the catalytic triad, especially at position 27. Stronger binding at positions 50, 82,
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Figure 4.1: Per-position binding energies for 7 protease-substrate complexes (top) and 10
protease-inhibitor complexes (bottom). The mean energy is shown with a point. Error bars
indicate the minimum and maximum across all complexes.

and 84 corresponded to the location of some of the most prevalent drug resistance mutations.

4.2.2 Predicting mutations with position-specific binding energy

These binding energies can be applied to predict positions where drug resistance is

likely to occur, based on differences between substrate and inhibitor binding interactions. Here,

∆∆G is defined as the difference between the mean substrate and inhibitor binding energy at

a specific position. Resistance predictions are made where ∆∆G is less than -0.05 kcal/mol

and any non-wild-type residue has a MAPP score less than 12, which was chosen based on the

analysis in Chapter 3. Positions not meeting these criteria were assumed not to harbor drug

resistance mutations. Known resistance positions are specified from the IAS-USA and HIVDB

data detailed above, and included positions where any major or minor mutation was present.

Prediction accuracy, with precision and recall, is shown in Table 4.4. Predictions were best for

amprenavir and nelfinavir, where key mutations lie near the active site and protease-inhibitor

interaction is strong. For saquinavir, on the other hand, resistance mutations are prevalent at

sites more distant from the active site, and therefore, more difficult to predict through evaluation
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Table 4.4: Position-only mutation predictions based on sequence variation and position-specific
binding energy.

major resistance positions all resistance positions
inhibitor accuracy precision recall p-value accuracy precision recall p-value

APV 0.96 3/5 3/5 ** 0.88 3/5 3/13 -
ATV 0.93 3/8 3/5 * 0.78 4/8 4/22 -
DRV 0.94 2/6 2/4 - 0.87 3/6 3/13 -
IDV 0.86 2/14 2/4 - 0.75 3/14 3/17 -
LPV 0.93 3/9 3/4 * 0.81 4/9 4/18 -
NFV 0.91 3/8 3/7 - 0.86 6/8 6/18 **
SQV 0.92 1/7 1/3 - 0.84 2/7 2/13 -
TPV 0.94 2/7 2/3 - 0.79 2/7 2/18 -

average 0.92 0.32 0.55 – 0.82 0.45 0.21 –

Table 4.5: Substitution predictions based on sequence variation and position-specific binding
energy.

major mutations all mutations
inhibitor accuracy precision recall p-value accuracy precision recall p-value

APV 0.99 5/22 5/8 **** 0.98 5/22 5/34 ***
ATV 0.98 7/46 7/9 **** 0.96 12/46 12/60 ****
DRV 0.97 2/53 2/5 * 0.96 5/53 5/31 *
IDV 0.92 6/147 6/9 *** 0.91 11/147 11/48 **
LPV 0.97 6/56 6/8 **** 0.96 12/56 12/44 ****
NFV 0.97 8/56 8/18 **** 0.96 13/56 13/47 ****
SQV 0.97 3/48 3/9 * 0.96 10/48 10/43 ****
TPV 0.98 5/46 5/6 **** 0.97 10/46 10/36 ****

average 0.97 0.11 0.60 – 0.96 0.19 0.22 –

of position-specific binding energy. Indinavir predictions have the opposite problem, with too

many contacts causing spurious predictions of drug resistance.

Turning to the prediction of specific substitutions, similar criteria were used to make

predictions. Any mutation with MAPP score less than 12 and located at a position with ∆∆G

less than -0.05 kcal/mol was predicted to be a resistance mutation. Due to the large number of

mutations considered, accuracy increased greatly (Table 4.5). However, precision decreased dra-

matically, with a huge increase in the number of falsely predicted mutations. Given the coarse-

grained structural information, this result is unsurprising, the ∆∆G provides no information that

could be useful in distinguishing between possible mutations at a single locus. Despite poor

precision, recall for the major mutations averaged approximately 60%, indicating that MAPP

and ∆∆G were sufficient to capture the majority of the most severe drug resistance mutations.

Further, when considering only major mutations, a number of the false positives were actually

minor drug resistance mutations. In general, the statistical significance of these results was quite

high, indicating success far beyond random choices.
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Table 4.6: Substitution prediction for known drug resistance mutations from IAS-USA and
HIVDB.

major mutations all mutations
inhibitor accuracy precision recall p-value accuracy precision recall p-value

APV 0.99 5/22 5/8 **** 0.98 7/22 7/34 ****
ATV 0.98 6/39 6/9 **** 0.96 11/39 11/60 ****
DRV 0.99 2/24 2/5 * 0.98 7/24 7/31 ****
IDV 0.97 5/55 5/9 **** 0.96 12/55 12/48 ****
LPV 0.99 6/31 6/8 **** 0.97 10/31 10/44 ****
NFV 0.98 7/43 7/18 **** 0.96 11/43 11/47 ****
SQV 0.98 3/27 3/9 ** 0.97 8/27 8/43 ****
TPV 0.98 3/40 3/6 ** 0.97 6/40 6/36 ***

average 0.98 0.14 0.53 – 0.97 0.27 0.21 –

4.2.3 Estimating mutation-induced changes in protease-ligand affinity

A more detailed structural model was considered, using a set of protease structures

with modified side chains. The protease structures included the complexes described above, with

all possible single-mutants at 29 positions chosen due to close contact with at least one substrate

or inhibitor in a crystal structure complex. No conformational search or energy minimization was

performed. Mutant protease structures were generated using SCWRL3,86 with ligands specified

to avoid steric clashes.

For every ligand, the effect of each single mutation was determined relative to the

original structure, yielding a ∆∆G measure that represents the change in protein-ligand binding

between a wild-type protease and a particular mutation. Predicted drug resistance mutations

satisfied two criteria related to predicted binding energies: (1) the largest change in substrate

binding was less than +3.0 kcal/mol and (2) the change in inhibitor binding exceeded +0.25

kcal/mol. An increase of 3.0 kcal/mol represents a roughly 100-fold decrease in binding affinity,

which is assumed to negatively affect protease function. Since the observed changes in predicted

inhibitor binding energy were less dramatic, rarely exceeding +1.0 kcal/mol, a lower threshold

of +0.25 kcal/mol was used.

The results shown in Table 4.6 indicate accuracy comparable to the leave-one-out

scheme, but with lower precision and recall. On average, the recall rate for major mutations

still exceeded 50%, indicating that this method was able to account for over half of the major

mutations in HIV protease. The results also remained statistically significant, with most p-values

far below 0.01. However, when considering all mutations, the average recall was approximately

25%, revealing a high false positive rate.

Despite lower performance than the leave-one-out approach, the combination of pre-
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Table 4.7: All possible mutations at position 84 in relation to amprenavir resistance. Red cells
indicate rules violations (MAPP score > 12, max. substrate ∆∆G > 3.0, Amprenavir ∆∆G < 0.25
). Green rows indicate mutations that satisfy all rules.

Mutation MAPP score Max. substrate ∆∆G Amprenavir ∆∆G
84A 11.47 1.77 0.93
84C 8.97 1.48 0.62
84D 37.2 1.07 0.64
84E 32.09 3.39 0.63
84F 7.34 374.21 62.55
84G 15.96 1.89 1.05
84H 17.52 45.32 17.97
84K 27.75 86.2 16.19
84L 4.5 0.76 -0.15
84M 11.03 1.3 -0.44
84N 16.5 1.43 0.57
84P 21.61 1.62 0.77
84Q 14.81 4.28 0.46
84R 33.3 5545.27 4590.03
84S 14.69 1.83 1.02
84T 15.48 1.36 0.8
84V 5.25 1.1 0.51
84W 15.68 7701.87 1302.7
84Y 13.85 1856.03 272.24

dicted binding energies and MAPP scores offers a deeper look into the basis of drug resistance.

For example, this approach worked well for determining amprenavir resistance at position 84,

which is located near the active site. Clinically, the wild-type isoleucine at position 84 is found

to mutate to valine, alanine, and cysteine, with the 84V mutation being the most prevalent by

far.17 Looking at all possible mutations at position 84, only the alanine, cysteine, phenylalanine,

methionine, and valine residues had MAPP scores less than 12 (see Table 4.7). The pheny-

lalanine residue was predicted to have a major decrease in substrate binding, so it was rejected.

Leucine and methionine residues did not not decrease inhibitor binding, leaving residues alanine,

cysteine, and valine as candidates. Interestingly, the valine mutation, which is most commonly

found, had the lowest MAPP score, indicating that a relatively high level of catalytic efficiency

may explain its prevalence over the alanine and cysteine mutations.

4.3 Predicting resistance to a novel protease inhibitor

For a novel protease inhibitor, both existing resistance profiles and structure-based pre-

dictions have potential utility in anticipating drug resistance mutations. Assuming the inhibitor

binds in the protease active site, existing resistance patterns should remain useful. These previ-
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Table 4.8: Predicted AB2 drug resistance mutations.
Mutation IAS-USA frequency Predicted AB2 ∆∆G (kcal/mol) Predicted APV ∆∆G

47V 4/8 [4/9] 0.34 0.17
53L 2/8 [1/9] 0.21 0.00
84V 8/8 [9/9] 0.53 0.52

ously observed mutations indicate viable changes that should be tolerated by the enzyme, and

can be used in place of the MAPP scores and predicted protease-substrate binding energy. The

protease-inhibitor interaction remains relevant, though, because the clinical and sequence data

does not provide any information specific to a particular inhibitor.

To validate the use of structure-based predictions combined with existing resistance

profiles, mutant proteases were synthesized and tested biochemically against the novel protease

inhibitor AB2, which targets the protease active site.82 Three point mutations were selected, and

to avoid having the synthesized mutants be dominated by the most common previously observed

mutations, mutations were selected based on having different frequencies in the IAS-USA data

set, as well as reduced binding affinity to AB2 (Table 4.8). The 84V mutation is common to all

clinically-approved inhibitors, while 47V is noted in roughly half, and 53L only for the lopinavir

/ ritonavir combination. This range of frequencies was chosen to avoid selecting mutations

where major resistance would be observed for any inhibitor. Additionally, these mutations were

all predicted to cause an unfavorable change in binding with AB2. As a control, the effects of

these same mutations were tested with amprenavir, where the overall effect was predicted to be

much smaller.

Following the synthesis of the protease mutants, the degree of drug resistance for each

mutation and every combination of mutations was determined through IC50 measurements. As

shown in Table 4.9 and Figure 4.2, there was an increase in AB2 IC50 for each of the single

mutants, going up to a 2.5-fold increase for the I84V mutation over wild-type protease. This

trend continued for the double mutants, where all proteases demonstrated greater than 3-fold

increases in IC50. The F53L-I84V mutant showed an especially large increase of roughly 8.5-

fold beyond wild-type protease. Finally, the triple mutant had an IC50 increase of over 15-fold

relatively to wild-type. Overall, these changes showed a clear trend of large IC50 increases as

the number of mutations grew.

In contrast, the predictions for amprenavir indicated that there should be more modest

IC50 increases. For the single mutants, the amprenavir results resembled those for AB2, each

of the mutants showed an IC50 increase over wild-type, but a smaller increase on average than

shown for AB2 (Table 4.9 and Figure 4.2). Interestingly, the double mutants 47V-53L and 47V-
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Table 4.9: IC50 and fold changes in protease inhibition for AB2 and amprenavir.
Mutation AB2 IC50 (nM) IC50 fold change APV IC50 IC50 fold change
wild-type 14.1 - 6.90 -

47V 30.2 2.1 9.37 1.4
53L 22.7 1.6 11.6 1.7
84V 35.0 2.5 10.9 1.6

47V-53L 50.2 3.6 10.4 1.5
47V-84V 48.4 3.4 10.4 1.5
53L-84V 121 8.6 21.5 3.1

47V-53L-84V 226 16 24.0 3.5

wt
--

I47V
2.1

F53L
1.6

I84V
2.5

I47V-F53L
3.6

I47V-I84V
3.4

F53L-I84V
8.6

I47V-F53L-I84V
16

(a) AB2

wt
--

I47V
1.4

F53L
1.7

I84V
1.6

I47V-F53L
1.5

I47V-I84V
1.5

F53L-I84V
3.1

I47V-F53L-I84V
3.5

(b) Amprenavir

Figure 4.2: Landscapes for mutations conferring resistance in AB2 and amprenavir. Labels
indicate the fold-change in IC50 relative to wild-type HIV protease.

84V showed no increase in IC50 when compared to single mutants, in contrast to what was seen

with AB2. The highest fold increase seen with amprenavir was on par with some of the AB2

double-mutant results, and far short of a 15-fold increase.

Effects of the mutations on protease extended beyond IC50, however. All of these

changes had some impact on substrate processing, as shown in Table 4.10. With the accumula-

tion of mutations that impede inhibitor binding, substrate affinity decreased as well. Even the

single mutations 53L and 84V were sufficient to boost Km more than 5-fold. Two of the dou-

ble mutants had Km that increased even further, while the 53L-84V and 47V-53L-84V mutants

had Km far beyond the detectable range. According to changes in IC50, these same mutants had
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Table 4.10: Effect of AB2 resistance mutations on Km. * indicates a Km estimate that exceeds
the maximum substrate concentration used. ** denotes Km estimates that do not converge, i.e.
far outside the substrate range.

Mutation Km (µM)
wild-type 34.4

47V 31.5
53L 207
84V 219

47V-53L 307*
47V-84V 424*
53L-84V **

47V-53L-84V **

major effects on the binding of AB2, though not amprenavir, indicating that the mutations that

caused changes in substrate affinity affect some inhibitors, but not all of them. The large, non-

linear increases in Km also indicated that there were significant epistatic effects not evident when

examining isolated mutations.

4.3.1 Protease expression and activity assays

Site-directed mutagenesis was carried out using the QuickChange protocol. After plas-

mid purification, the mutations were verified by DNA sequencing. Protein purification was car-

ried out as described by Heaslet et al.,87 following the wild-type protocol. The concentration of

each protease was determined through active site titration with amprenavir.

HIV protease activity was measured with a fluorogenic hexapeptide substrate (Abz-

Thr-Ile-Nle-p-nitro-Phe-Gln-Arg-NH2) using an FLX-800 Microplate Fluorescence Reader (Bio-

Tek Instruments, Inc., Winooski, VT). Changes in fluorescence were measured over 15 minutes

at 37°C with 340/30 nm excitation and 420/50 nm emission filters. Initial reaction rates were de-

termined by linear regression of the initial 2 minutes of the reaction using KC4 (Bio-Tek). IC50

values were determined by non-linear regression using the initial reaction rates versus inhibitor

concentration with Prism 4.0c for Macintosh (Graphpad Software, San Diego, CA).

All reactions were run in 100 µl total volume in 96-well microtiter plates, with buffer

containing 50 mM MES (pH = 5.5), 200 mM NaCl, 1 mM DTT, 0.0002% Triton X-100, and

5% glycerol. For IC50 determination, protease concentration was 25 nM with initial substrate

concentration at 30 µM. To determine Km, conditions remained the same, except that substrate

concentrations varied from 0 to 200 µM.
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Chapter 5

Viral Fitness and Evolution

The previous chapters have shown that viral replication capacity and drug resistance

can be predicted with various computational methods. These quantities represent major fac-

tors in determining viral fitness under drug selection. However, as the work in Chapter 4 has

shown, the effects of mutations can combine nonlinearly, and in modeling viral fitness, relation-

ships between mutations should be taken into account. These relationships can be studied by

examining patterns of covariation among mutations arising during drug therapy. Linking these

covarying mutations can elucidate drug resistance pathways, which is demonstrated below by

reconstructing the TAM pathways for NRTI resistance.

These covariation patterns are also of use in more directly calculating viral fitness,

where estimates based on the RC and RF contributions of individual mutations are modified

based on the degree of covariance between mutations. In this way, a model of viral fitness is able

to account for nonlinear effects, and is shown to make accurate predictions of relative fitness

among mutants selected under drug therapy. Adapting this notion of fitness to a simulation

of drug resistance evolution provides the means to test novel treatment strategies and inhibitors.

This simulation was applied to test the effects of combination therapy based on multiple protease

inhibitors, focusing on a comparison of clinically-approved inhibitors against a putative allosteric

inhibitor. Combinations of a clinically-approved inhibitor and allosteric inhibitor were found

to be highly effective, even under assumptions that the allosteric inhibitor is weak and highly

vulnerable to drug resistance.

51
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5.1 Mapping resistance pathways

During drug therapy, the emergence of resistance mutations follows certain patterns,

which have been widely studied in a clinical context.17, 80 The effects of some of these mutations

are often conditional upon the presence of other mutations, such as the dependency of the 88D

protease mutation on 30N during nelfinavir treatment.88, 89 A study performed by Rhee et al.

reported a large number of significantly covarying pairs in HIV protease and reverse transcriptase

from clinical records.90 Notably, the study found that conditional probabilities between pairs had

some ability to predict the order in which mutations developed.

Several other statistical analyses have focused on discovering covariation patterns in

protease and reverse transcriptase sequences from clinical isolates. The mutagenic tree models

described by Beerenwinkel et al. have been useful in visualizing mutation pathways, including

the concept of a genetic barrier.91 Similar pathway representations have been explored by multi-

ple groups using Bayesian networks,89, 92, 93 which are a sophisticated method for analyzing the

topology of resistance pathways.

For the broader goal of simulating the evolution of drug resistance, techniques to re-

create mutational pathways play an important role. The analyses of replication capacity and drug

resistance in Chapters 3 and 4 focused on the effects of individual mutations, without taking

into account their interactions. Estimates of viral fitness based solely on individual mutations

ignore the higher order information that a covariation analysis can provide. Below, the utility of

covariation analysis in determining mutational pathways is demonstrated by reconstructing the

well-characterized TAM pathways associated with NRTI resistance. Graphical representations

of the covariation patterns can also serve as a useful global view of drug resistance evolution in

specific contexts.

5.1.1 Single-drug covariation analysis

The previous covariation study performed by Rhee et al. examined viral sequences

from patients treated with any type of protease or RT inhibitor.90 This allowed a large number

of sequences to be examined, which exposed the relationships between many mutations at a

high level of statistical significance. However, combining various treatments in a single analysis

obfuscates the effects of individual inhibitors. For example, certain favored dependencies, such

as the previously mentioned 30N and 88D combination, will have higher probabilities when

considering only nelfinavir-treated patients rather than patients receiving any protease inhibitor.

To carry out a covariation analysis based on the effects of individual inhibitors, amino
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acid sequences from patients treated with single drugs were retrieved from the Stanford HIV

Drug Resistance Database.17 For each patient, only the latest isolate was included. The protocol

described by Rhee et al. was used62 for covariation analysis. Multiple hypothesis testing was

not performed, and a z-score threshold of ±2 applied for all covariation pairs. For analysis of

reverse transcriptase results, only the first 240 amino acids in the protein were considered.

The results shown in the following sections focus on drugs for which a large number

of records were available. For drugs with a small number of records, the number of covariation

pairs was too small to reveal higher order structures beyond pairwise interactions. Because

the significance of interactions found in the covariation analysis depends on the distribution of

mutations specific to each set of records, a rough empirical threshold was used rather than a

statistically-based cutoff. Focusing on the largest treatment sets for which at least 250 sequences

were available, there were 676 indinavir-, 753 nelfinavir-, and 337 AZT-treated records.

5.1.2 Thymidine-analog mutation pathways

Resistance to AZT (aka zidovudine) often follows well-characterized paths, known as

thymidine-analog mutation (TAM) pathways.94 A previous analysis using mutagenic trees was

able to reconstruct the TAM1 and TAM2 pathways using clinical data (Figure 2.9).91 Our anal-

ysis of the AZT covariation analysis to TAM-associated mutations revealed a similar pattern,

shown in Figure 5.1. The 215Y and 70R mutations appear to initiate their respective pathways.

Also, the TAM1 and TAM2 pathways are shown as distinct, with several negative associations

between mutations in either group. In contrast to the mutagenic tree model, the covariation path-

ways associate the 215F mutation with the TAM2 pathway, which is supported by a mutagenesis

study.95 The covariation pathways also exhibit a more branched structure, while the mutagenic

trees depict a strictly ordered progression.

5.1.3 Nelfinavir and indinavir mutation pathways

In protease drug resistance, there are no canonical pathways that are equivalent to the

reverse transcriptase TAMs. The general model is that primary mutations confer drug resistance,

with negative effects on enzyme function, and are followed by compensatory mutations which

restore function.14, 15 In the indinavir and nelfinavir pathways shown in Figures 5.2 and 5.3, one

can imagine initial resistance mutations favoring the diamond nodes, then spreading out along

the edges. Also important are the negatively correlated interactions. In the evolution of resis-

tance, certain combinations of mutations are likely to be ill-matched, such as the combination of
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TAM1 TAM2

215Y

41L

210W

70R

69N 219Q

67N

215F

Figure 5.1: TAM pathways revealed by covariation analysis. Diamond mutation nodes indicate
a significant drug resistance, bolded nodes have an even larger effect. Directed edges indicate
conditional probabilities greater than 0.5. Dashed edges indicate negative covariance.
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53L and 84V in protease.

5.2 Viral fitness model

In the development of resistance, one of the main mechanisms is reduced affinity be-

tween the viral targets and their inhibitors, caused by specific mutations. Generally, these mu-

tations reduce inhibitor binding while not crippling the viral protein’s function, such as HIV

protease’s cleavage of specific amino acid sequences. In attempting to model drug resistance

evolution using a computer simulation, the interplay between the function of viral enzymes and

their resistance to inhibitors must play a central role. Models for predicting RF and RC indepen-

dently were described in Chapters 3 and 4. Combining these quantities to predict overall viral

fitness is addressed in this section.

5.2.1 Fitness function

A kinetic model of protease function, which accounted for protease activity and drug

resistance was presented by Tang and Hartsuck.96 The processing activity aMI was described

with the function:

aMI = σ
kcat/Km

1+ [I]
Ki

(5.1)

where σ is a scaling value dependent on initial substrate and protease concentrations. Km is the

Michaelis-Menten constant and kcat measures the number of reactions catalyzed by the enzyme.

The ratio of kcat/Km is an indicator of overall enzyme efficiency. Impairments in protease func-

tion reduce the number of infectious particles produced,63 i.e. RC. [I] and Ki represent inhibitor

concentration and the inhibition constant, respectively. [I]/Ki determines the level of inhibi-

tion. For simplicity, and because mutation-induced changes in inhibitor binding are generally

described by IC50 fold changes, the IC50 is substituted for Ki:

[I]
Ki

→ [I]
IC50

Further, the [I] and IC50 terms can be described relative to wild-type, rather than as absolute

values. So [I] becomes the inhibitor concentration relative to the wild-type IC50, while the

IC50 term in the denominator becomes the change in IC50 relative to wild-type, or RF. Also, in

systems where protease alone is being examined, viral fitness depends on processing activity, so
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aMI = f itnessprotease. Adapting Equation 5.1 to use RF and RC, ignoring the σ scaling value,

yields:

f itnessprotease =
RC

1+ [I]
RF

In some clinically-relevant situations, multiple protease inhibitors may be of use.97 As

all current protease inhibitors are competitive inhibitors targeting a common site, their effects are

mutually exclusive.98 So for situations where multiple protease inhibitors are used, the function

becomes:

f itnessprotease = RC/

(
1+

n

∑
i=1

[Ii]
RFi

)
The determination of RF and RC values were based upon analyses conducted in Chap-

ter 3 and other works. The RF values were taken from a linear regression experiment performed

by Rhee et al.20 Based on a set of fold-change data, the authors applied regression to weight

the contribution of individual mutations in resistance toward several protease and RT inhibitors.

The RF value for a particular mutant is simply the sum of the individual RF contributions per

mutation.

RC values were based on the MAPP results discussed in Chapter 3. The MAPP scores

were correlated to the level of enzyme activity for several protease mutants, so the effect of a

single mutation on protease was assumed to follow a sigmoidal relationship with the MAPP

score:

RC = 1/
(
1+ ea(MAPPi−b))

for a single mutation i. A sigmoidal response was chosen to allow a range of low MAPP scores

to have small effects on RC. For the constants a = 0.25 and b = 0.8, based on work in Chapter

3. Previously, a MAPP score of 12 was used to represent the threshold where the effects of

mutations became significantly deleterious. As virus containing a protease with 25% normal

activity was found to retain near-normal infectivity,63 the constants were chosen so that a MAPP

score of 12 would yield an RC value near 0.25. In the absence of epistasis, the effect of multiple

mutations on RC is assumed to be multiplicative,99, 100 such that:

RC =
n

∏
i=1

1/
(
1+ ea(MAPPi−b))
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The material in Section 5.1 demonstrated that covariance measures could be used in

visualizing the interaction between mutations in drug resistance. Incorporating these covariance

measures into the fitness function is a way of accounting for the nonlinear, or epistatic, interac-

tions that arise during the evolution of drug resistance.

For a simple model of epistasis, it is assumed that positively covarying mutation pairs

will increase the fitness above what is expected from the RC and RF components, which are

each based on contributions of individual mutations. Similarly, negatively covarying pairs will

decrease fitness below this expected value. The covariation analysis yields Jaccard similarity

coefficients and conditional probabilities that may be relevant in determining the strength of as-

sociation between each pair. However, these values are not immediately applicable in calculating

fitness. The Jaccard coefficient alone is biased by the number of occurrences of mutations. The

conditional probabilities, on the other hand, represent a more complex and asymmetrical rela-

tionship. These are difficult to incorporate into the current model, as they indicate more complex

dependencies between mutations that would require re-weighting on the individual RC and RF

values. In the current study, the RC and RF values are modified proportionally to the number of

positively and negatively covarying mutation pairs, represented by the variables c and d. These

values have associated weights α and β, such that the presence of positively covarying pairs

will increase fitness, and negatively covarying pairs will decrease it. The fitness with respect to

protease becomes:

f itnessprotease =
RC +αc+βd

1+∑
n
i=1

[Ii]
RFi

(5.2)

Applications of this fitness function on selected mutant proteases over a range of nel-

finavir concentrations are shown in Figure 5.4. The graph shows that the fitness of wild-type

protease is higher than the mutants at low drug concentrations, but declines quickly. 30N, a

common nelfinavir resistance mutation, is shown to retain fitness near wild-type and to main-

tain a high level of function as the drug concentration increases. The combination 30N and

90M mutations is predicted to greatly impair viral fitness, which coincides with an experimental

result.101 84A is rarely seen in clinical isolates,17 but substantial resistance to nelfinavir and a

decrease in replication capacity have been reported as a consequence of this mutation.102 Both of

these properties are also evident in the predicted fitness curve for 84A. These examples illustrate

the basic usage of this type of fitness function, further validation is discussed in the following

sections.
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Figure 5.4: Predicted fitness for nelfinavir-resistant protease mutants. Nelfinavir concentrations
are given relative to wild-type IC50.

Although Equation 5.1 was developed for the activity of protease inhibitors, the gen-

erality of this form makes it appealing for other enzymes as well, such as reverse transcriptase.

The MAPP scores, regression coefficients, and covariation measures are all available for reverse

transcriptase, so the same approach can be used.

One key difference is in the calculation of RF when considering multiple reverse tran-

scriptase inhibitors. In protease, inhibitors all target a single site and are assumed to be mutually

exclusive. Since reverse transcriptase inhibitors fall into two major classes with different modes

of action, this assumption does not hold. Complex pharmacokinetics are not modeled, so only

one NRTI and one NNRTI are currently taken into account in the function. Also, for simplicity,

the inhibitors are both assumed to be competitive in nature.

f itnessRT =
RC +αc+βd

1+ [INRT I ]
RFNRT I

+ [INNRT I ]
RFNNRT I

+ [INRT I ][INNRT I ]
RFNRT IRFNNRT I

(5.3)

When considering a system where both protease- and reverse transcriptase-based fit-

ness are applicable, the lower fitness level is used, approximating a rate-limiting step, i.e.:

f itnesstotal = min( f itnessprotease, f itnessRT ) (5.4)
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Table 5.1: Rank correlation between prediction and actual fitness. One-tailed p-values shown.
The full model (Equation 5.2) includes RF, RC, and epistatic components.

Drug τ (RF-only model) p-value τ (RC+RF model) p-value τ (full model) p-value
IDV 0.17 0.23 -0.16 - 0.29 0.11
NFV 0.29 0.11 0.35 0.070 0.71 0.0012
RTV 0.52 0.014 0.078 0.37 0.51 0.015
SQV 0.40 0.036 0.31 0.078 0.52 0.0091

5.2.2 Validation

Ranking resistant protease mutants

To validate the utility of the fitness function with respect to protease (Equation 5.2),

predictions were compared against experimental results involving nelfinavir-, ritonavir-, and

saquinavir-resistant mutants.15, 103 These studies reported the viral replication capacity of sev-

eral mutants as a function of protease inhibitor concentration. Comparing the reported replica-

tion capacity values, which are measured at a high drug concentration, provides a ranking of the

mutants. Calculating the fitnesses of each mutant based on Equation 5.2 yields another ranking,

which is compared to the experimental results using the Kendall τ rank correlation. In all cases,

the fitnesses are evaluated assuming that the drug concentration is 10× the wild-type IC50.

The results in Table 5.1 show that predictions for nelfinavir, ritonavir, and saquinavir

are significantly better than random. The indinavir predictions are the worst, and not significant

at a 0.05 significance level. However, the indinavir results are a unique case because the mutants

tested were selected for ritonavir resistance and showed low replication capacity when treated

with indinavir,15 thus presenting a more difficult ranking problem. Fitness calculations which

incorporated RF, RC, and epistasis performed better overall than calculations based on RF alone.

The best correlation was obtained for the nelfinavir mutants, which are shown in Table 5.2. The

epistasis values may play an even larger role with data sets not dominated by single and double

mutants.

Ranking resistant reverse transcriptase mutants

A smaller set of mutants was available from a set of growth competition experiments

involving AZT resistance in reverse transcriptase.95 The experiments were carried out in with

AZT present and absent, reporting the relative fitness between five pairs of mutants. Applying the

reverse transcriptase fitness model (Equation 5.3), predicted fitnesses were evaluated based on

their correspondence to the relative ordering of mutants in each of the five pairs. In the absence

of drug, the epistasis term was ignored, as it is meant to capture nonlinear effects in both RC and
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Table 5.2: Ranking nelfinavir mutants. In vitro fitness rankings are based on replication capacity
in the presence of nelfinavir.103

Mutant in vitro fitness predicted fitness (RF-only) predicted fitness (complete)
30N, 71V 1 5.5 3
30N, 88D 2 4 1

30N, 71V, 90M 3 2 4
10I, 90M 4 7.5 5

30N, 63P, 90M 5 2 6
30N 6 5.5 2
90M 7 7.5 7
71V 8 10.5 10

wild-type 9 10.5 9
88D 10 9 8

30N, 90M 11 2 11

RF. When applicable, the concentration of AZT was assumed to be 10× the wild-type IC50.

For the five pairs of mutants tested in the absence of AZT, the predicted fitnesses

matched the reported ordering in all five cases. In the presence of AZT, four out of five predic-

tions matched the previous study. The single failure involved the comparison between 215F and

215Y mutants. The 215Y mutant was able to out-compete the 215F mutant in vitro, regardless

of the presence or absence of AZT. In the fitness predictions, however, the 215F mutant had

greater AZT resistance than the 215Y mutation, resulting in a higher fitness value, though 215Y

did retain a slight advantage in terms of RC (Figure 5.5). Accordingly, the error stems from the

RF component of the fitness function, which is based on linear regression analysis.

This exposes a weakness of basing RF on regression coefficients, as the coefficients are

set using an assumption of independence. As the 215F mutant rarely occurs alone, the isolates

that were the basis of the linear regression analysis do not include even a single instance of

215F occurring without several associated mutations. Consequently, the regression coefficient

that characterizes the 215F mutation’s contribution to RF is also accounting for interactions with

associated mutations, exaggerating its effects when found in isolation. To remedy this flaw would

require the evaluation of resistance on additional mutants, or a more sophisticated analysis of the

dependencies between mutations used in the regression data set.

Consistency with mutations arising during treatment

Clinical records from patients undergoing drug therapy provide another set of data for

validation. These records consist of patient treatment histories (the inhibitors used) and viral

sequences. In contrast to in vitro studies, fitness information is not directly available for these

clinical records. Instead, the use of therapy is assumed to cause mutations to arise. For instance,
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Figure 5.5: Predicted fitness for AZT-resistant RT mutants. AZT concentrations are given rela-
tive to wild-type IC50.

consider a patient with mutant virus m0 before treatment t1, who is later determined to have

mutant virus m1 following treatment t1. Under treatment t1, the fitness of m1 should be greater

than the fitness of m0. Any successive mi, where i > 0, should also have greater fitness than m0

with treatment ti. For convenience, a treatment regimen with associated mutations is defined as

a genetic selection episode (GSE).

The records of 701 patients treated with protease inhibitors were obtained from the

HIVDB,17 containing a total of 1,095 GSEs. For patients treated with RT inhibitors, 642 records

were obtained, with a total of 930 GSEs. For each GSE, viral fitness was predicted for mutants

m0 and mi in the presence of treatment ti. Instances where the fitness of mi exceeded that of

m0 were considered correct, while predictions where the fitness of mi is less than that of m0 are

considered incorrect. Equal fitnesses were treated as a separate category. Overall accuracy was

determined as the number of correctly assigned GSEs divided by the sum of correct and incorrect

predictions. Results are shown in Table 5.3. Interestingly, the accuracy for the protease-treated

samples is much higher than for the RT-treated samples. The error level was found to be high

with lamivudine (3TC), and removing GSEs containing lamivudine from consideration increased

accuracy.

In practice, many of the viral sequences obtained following treatment do not exhibit



64

Table 5.3: Fitness predictions for clinical isolates.
Protease

Correct Equal Incorrect Accuracy
601 293 191 76%

Reverse transcriptase Reverse transcriptase without 3TC
Correct Equal Incorrect Accuracy Correct Equal Incorrect Accuracy

386 193 351 52% 185 76 78 70%

Table 5.4: Fitness predictions for clinical isolates, using a 2-fold change threshold.
Protease

Correct Equal Incorrect Accuracy
488 537 60 89%

Reverse transcriptase Reverse transcriptase without 3TC
Correct Equal Incorrect Accuracy Correct Equal Incorrect Accuracy

289 375 266 52% 141 147 51 73%

drug resistance mutations, and have roughly the same fitness as the pre-treatment mutant m0. An

alternative scheme was used that designated fitness difference of less than 2-fold when compar-

ing m0 and mi to be insignificant, and considered as ties. As shown in Table 5.4, this increased

the accuracy of predictions in protease, but had little effect on the reverse transcriptase set.

Overall, these results indicate that the predicted fitnesses are more accurate in protease

than in RT. Regimens involving lamivudine seemed especially problematic, and this appeared to

result from difficulty in assessing the 184V mutation, which is a common lamivudine resistance

mutation. The MAPP score for this mutation was high, causing a drop in predicted replication

capacity that is unlikely to reflect the actual effect on replication capacity, given the prevalence

of 184V. In future studies, alternative methods for replication capacity estimation or refinements

in the MAPP analysis could remedy this problem.

It should also be noted that the fitness model developed in this work was designed

for a more general purpose than identifying resistant viral sequences. For instance, the model’s

components are able to detect antagonistic relationships between mutations or identify highly

deleterious mutations. However, since clinical isolates are the products of an evolutionary pro-

cess that selects against these cases, the generality of the fitness model is less applicable. In

contrast, when simulating this evolutionary process, a fitness measure must be able to account

for individual mutations and combinations that are not clinically observed.
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5.3 Simulation of HIV drug resistance evolution

5.3.1 Model

The fitness function presented in the previous section represents one of the key com-

ponents in HIV evolution. Incorporating this function into a model of the HIV replication cycle

allows detailed simulations of HIV drug resistance evolution, emphasizing clinically-relevant

mutations more than previous simulations of viral evolution.

The general framework of the simulation mimics a serial passage experiment, where

the virus is introduced to a population of uninfected cells, allowed to replicate, and the progeny

used to infect a new population of cells (cf.16, 104). Each round of passage corresponds to a single

generation for the virus. The viral population is made up of individual virions, each with its

own genotype and phenotype. Consistent with the diploid nature of HIV, the genotype consists

of two copies of the viral genome, which may be heterogeneous. However, only the protease

and reverse transcriptase genes are modeled, as comprehensive drug resistance information is

not yet available for other genes. Each virion’s phenotype corresponds to protease and reverse

transcriptase as well. However, the genotype is represented as an RNA sequence, while the

phenotype is a translated amino acid sequence.

In the simulated replication cycle (Figure 5.6), an experiment begins with infection

from a population of wild-type virus. In contrast to previous experiments,105 the infection pro-

cess assumes that there is no structure to the cell population, akin to a solution rather than tissue,

and the virions infect cells completely at random. Multiple infections per cell are possible, so the

distribution of virions infecting a cell follows a Poisson distribution. Following infection, each

virion performs reverse transcription, which allows for recombination between the two copies

of the viral genome, as well as mutation. This recombination process allows for an average of

nine recombination events per replication cycle, which has been reported for HIV infection in

T-cells.106 The mutation rate corresponds to one mutation per full-length HIV genome, a com-

promise between previously published values, which range from roughly 0.3 to 1.1 mutations

per genome.107, 108 Specific nucleotide substitution rates are also taken from a previous study.109

Both mutation and recombination rate are uniform across the entire genome. At the end of the

reverse transcription process, a single nucleotide sequence is produced, and remains associated

with the viral phenotype.

The fitness evaluation models degree to which this process is successful and results in

integration and expression of new viral genotype, based on a the viral phenotype and presence of
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Figure 5.6: Overview of the HIV evolutionary simulation.
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Table 5.5: Key simulation parameters.
Parameter Value Comment
Viral population size 1,000 – 2,000 effective population sizes reported in literature
Number of cells 100 – 200
Maximum burst size 10 production of infectious particles is low
Genome length 1017 bp size of full-length protease and partial reverse transcriptase
Mutation rate (per base) 1.01E-4 average of 1 mutation per cycle
Crossover rate (per base) 9.08E-4 average of 9 recombination events per cycle

inhibitors in the current environment. The environment is a shared feature among all cells, which

specifies the presence of inhibitors and their concentrations. Fitness values are calculated using

the function in Section 5.2, and the contents of new virions are apportioned using stochastic

universal selection,110 a method similar to roulette wheel selection. With this selection process,

a new virion’s genotype and phenotype are based proportionally on the fitness of virions that

have infected the cell. For each cell, this produces up to 10 virions. A portion of the “wheel”

corresponds to the production of no virion, so that infection with low-fitness virus will be likely

to yield fewer progeny. As each new virion’s genotype must contain two nucleotide sequences,

the selection process is performed twice for each of the progeny virions. It is assumed that the

phenotype corresponds directly to one of these sequences, assuming partial localization during

viral packaging.

Producing a maximum of 10 virions per cell may appear low, but studies have shown

that the vast majority of virions produced during infection are noninfectious.111 Finally, a bot-

tleneck is applied at the end of each round via random selection, which limits the total number

of virions that go on to infect a new population of cells. Given that the average lifespan of an

infected cell is 2.2 days,27 a simulation run for 200 generations should correspond to roughly 1.2

years.

5.3.2 Related work

The simulation described above falls into the category of “agent-based” simulations,

where a key feature is the modeling of individual virions. Generally, these simulations incorpo-

rate large populations of virions and stochastic processes, such as mutation and recombination.

Individual simulation runs may display distinct behaviors due to this randomness, so the ex-

periments are often repeated many times. Because a large number of replicates combined with

a sizable viral population requires a significant amount of computing power, agent-based HIV

simulations have become widely used only in recent years.

Previous agent-based HIV simulations have investigated the effect of viral population



68

size and mutation rate on the development of drug resistance,112 the role of multiplicity of in-

fection and recombination in driving viral diversity,32 and the use of RNAi to disrupt viral repli-

cation.33 All of these studies incorporated a viral replication cycle similar to the process shown

in Figure 5.6. Major distinctions between these studies stem from differences in the representa-

tion of viral genotypes and fitness evaluation. Althaus et al. examined a two-locus, two-allele

model, with mutations conferring increased fitness and including a variety of assumptions re-

garding epistatic interactions.112 The simulation held constant both the number of virions and

cells, and limited the multiplicity of infection to two infections per cell. The production of new

virions was based deterministically on the average fitness of virions infecting a cell. One of the

main variables in the simulation was the population size, which varied from 1,000 to 100,000,

far exceeding the population examined in the current work.

A related study by Bocharov et al. incorporated a larger viral genome and focused on

smaller populations.32 Their simulation’s viral genotype consisted of a bit string of length 100,

which corresponds to two alleles at 100 loci. However, only mutations at 3 of these positions

were allowed to positively impact viral fitness, and the relative fitness levels were chosen arbi-

trarily. In addition, the fitness contribution of each beneficial mutation combined linearly. The

populations were fixed at 1,000 virions and 200 cells, roughly comparable to the current work.

Production of new virions was either limited by the cell or proportional to the multiplicity of in-

fection. Mutation was limited to a single mutation per genome per replication cycle. Similarly,

a single recombination event was allowed, implemented as a two-point crossover.

A much more detailed viral genotype and fitness model was employed by Leonard and

Schaffer.33 Their experiments focused on the use of RNAi to disrupt the TAR region of the HIV

genome, and required the use of a nucleotide representation of the viral genome corresponding

to the TAR region. In addition, mutations in this region had fitness consequences based on their

ability to boost transcription and avoid RNAi. Fitness was also affected by a randomly selected

host integration site. Unlike the two studies mentioned above, the work of Leonard and Schaffer

allowed variations in the viral population, and the simulated RNAi therapy was able to drive the

viral population to extinction. In terms of viral production, a specific burst size was not specified,

but the authors did state that the population size would increase by roughly a factor of 3 in the

absence of therapy. The level of detail in the viral genotype and fitness model in the Leonard

and Schaffer study most closely coincides with the model presented in this work.

On the other hand, ordinary differential equation (ODE) models do not focus on the

properties of individual virions, unlike agent-based simulations. Instead, ODE models describe
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one or more homogeneous viral populations. The most basic of these models include only three

equations, corresponding to the number of free virions, infected cells, and uninfected cells.29

By extending these equations to incorporate drug therapy, accurate predictions of viral load

under ritonavir treatment were previously obtained.27 Further extensions with multiple com-

partments and inhibitor classes have also been explored.30 Two distinct viral populations were

studied by Suryavanshi and Dixit, examining recombination using ODEs.113 Capturing diverse

viral populations using ODEs is difficult, however, because the equations describe homogeneous

populations. This limitation is not a problem for agent-based simulations, but there is a trade-off

in complexity and computational effort. While agent-based simulations can currently include

hundreds of thousands of virions, ODEs are not hampered by large population sizes, and so are

capable of modeling the billions to trillions of virions present during infection in vivo.

Other viral evolution models do not belong to either the agent-based simulation or

ODE categories. The genetic barrier concept of Beerenwinkel et al.91 and the fitness landscapes

derived by DeForche et al.,114 for example, focus on the use of probabilistic graphical models

to capture the evolution of drug resistance. The work of Beerenwinkel et al. was based on the

use of mutagenic trees, which specified pathways of resistance mutations, and the expected time

to develop each mutation.91 DeForche et al. combined a Bayesian network analysis with an

evolutionary simulation, producing a large evolutionary graph for nelfinavir resistance.114 Both

of these approaches were able to capture important aspects of HIV fitness and evolution, but rely

completely on a large volume of clinical data.

5.3.3 Evolution absent drug selection

In the absence of drugs, a retroviral quasispecies like HIV ensures that significant mu-

tations will occur during replication, with generally negative effects on viral fitness. On average,

however, the effect of these mutations is small, and some mutations may become more preva-

lent due to genetic drift. Also, the high mutation rate of HIV, averaging roughly one mutation

per replication cycle, indicates that HIV populations should act as quasispecies.115 This mean

that an initial wild-type population will not remain homogeneous for long, and should quickly

develop into a “cloud” of mutants.

Using the simulation, a viral population of 1,000 virions was repeatedly passaged over

200 generations into a population of 100 cells. The progeny virions from each generation were

used to infect new cells in the subsequent generation. A summary of results from 1,000 in-

dependent simulation runs is shown in Figure 5.7. During the early stages of the simulation,
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Figure 5.7: Simulated evolution absent drug selection.

the fraction of mutant virus climbed dramatically, causing a drop in average viral fitness. Af-

ter roughly 20 generations, these quantities plateaued, indicating that an equilibrium had been

reached, where mutations from wild-type and the negative impact of these changes were in bal-

ance. In later stages, mutant virus made up more than 20% of the viral population, and this mu-

tant population appeared highly heterogeneous, as the most prevalent mutations in both protease

and RT were present in less than 1% of the population. The behavior of the viral populations in

this simulation demonstrated that diversity arises quickly.

The prevalence of mutations in the simulated population showed a small correlation

with viral mutations observed in untreated patients (Figure 5.8), which were obtained from the

HIVDB.17 Though the level of correlation was low, p-values were less than 0.01 even at the

10th generation. By the 200th generation, the end of the simulation, the Kendall τ values had

increased to 0.13 and 0.15 for protease and RT, respectively, with p-values less than 10−6. In

the absence of drug selection, the frequency of mutations in the simulation is driven by the

replication capacity component of the fitness function, which is based on MAPP scores. The

statistically significant correlation provides further evidence that these scores are able to predict

impairment in viral proteins.
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5.3.4 Drug selection and mutation prevalence

The relative prevalence of mutations arising during drug therapy is due to a variety of

factors. Presumably, mutations that confer resistance against particular inhibitors will be more

prevalent than those that do not, but considerations of replication capacity as well as the context

of other mutations also come into play. Analysis of the individual contributions of mutations to

drug resistance have been reported through linear regression.19, 20 In that study, each mutation

was represented by a regression coefficient that indicated the level of resistance conferred by the

presence of the mutation.

The contribution of each mutation to resistance should be a major factor in the evo-

lution of the virus in response to drug therapy, reflected in the prevalence of the mutations in

clinical isolates. The fitness function used by the evolutionary simulation incorporates the re-

gression coefficients as measures of drug resistance, but further includes estimates of replication

capacity and epistasis. In addition, the simulation carries out an evolutionary process, allowing

complex dynamics to arise in the development of resistance. It is expected that the mutations

found at the end of simulations should show better correspondence to clinical prevalence than

the regression coefficients alone.

Information on clinical prevalence was retrieved from the Stanford HIV Drug Resis-
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Table 5.6: Correlation between clinical prevalence and either drug resistance regression coeffi-
cients or evolutionary simulation results.

Inhibitor Regression coefficients (τ) p Simulation outcome (τ) p
AZT 0.19 0.068 0.14 0.20
IDV 0.25 0.004 0.44 5.2e-7
NFV 0.14 0.12 0.37 3.6e-5

tance Database.17 As in Section 5.1.1, to avoid confusing the effects of multiple inhibitors, only

records resulting from AZT, indinavir, or nelfinavir treatment were used. The regression coeffi-

cients were obtained from the Rhee et al. study,20 and are the same ones used in the simulation’s

fitness function for RF calculation (cf. Section 5.2). To eliminate polymorphic mutations from

consideration, only treatment-selected mutations20 were used when performing comparisons.

For the evolutionary simulation, an initial viral population of 1,000 virions was passaged in 100

cells for 10 generations in the absence of inhibitors. After the 10th generation, the concentration

of inhibitor was increased by one unit per generation until the end of the simulation at gener-

ation 200. The viral population at the end of 1,000 such simulations was used to calculate the

prevalence of mutations.

The degree of correlation between clinical prevalence and the drug resistance regres-

sion coefficients and evolutionary simulation results was calculated using Kendall’s τ rank cor-

relation. For the regression coefficients, correlation was weak and generally insignificant, as

shown in Table 5.6. However, the evolutionary simulation showed significant correlation with

indinavir- and nelfinavir-treated records. This confirms that the simulation shows better corre-

spondence to clinical prevalence than the regression coefficients, at least for protease. Results

were poor for either method when considering mutation prevalence arising during AZT treat-

ment. A similar outcome was noted when considering GSEs in Section 5.2, where predictions

for protease were more accurate than for RT. The problems noted in the earlier work, especially

difficulties in estimating replication capacity in RT, would also cause problems during the evo-

lutionary simulations. Overall, these results show that the evolutionary simulation is able to

reproduce clinically-observed prevalence for protease inhibitors with significant accuracy, while

highlighting shortcomings in the modeling of reverse transcriptase.

5.3.5 Protease inhibitor combination therapy

The current guidelines for the clinical treatment of HIV do not recommend the use

of multiple protease inhibitors116 (excepting the addition of ritonavir as a boosting agent). Due

to the high degree of cross-resistance between existing protease inhibitors, this appears to be a
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Figure 5.9: Nonlinear maps of drug resistance for protease inhibitors (left) and NRTIs (right).
Distances are based on the inhibitors’ resistance profiles with respect to specific mutations, and
Sammon’s nonlinear mapping is used to orient the drugs in two dimensional space.117

sensible strategy. However, particular combinations of protease inhibitors may exhibit less cross-

resistance. Based on a comparison of drug resistance regression coefficients, the level of cross-

resistance between various inhibitors may be depicted graphically, as in Figure 5.9. This figure

indicates, for example, that a combination of atazanavir and saquinavir may be more effective

than a combination of atazanavir and lopinavir. In comparing the ability of different treatment

regimens in suppressing viral replication, it is expected that combinations of protease inhibitors

that minimize cross-resistance will be more effective than high levels of single inhibitors.

To test this hypothesis, the ability of different treatments to suppress viral replication

was examined through simulation. These treatments included the use of the individual pro-

tease inhibitors currently recommended for clinical use: lopinavir, atazanavir, amprenavir, and

saquinavir. Three combinations of two protease inhibitors were also used, lopinavir + atazanavir,

lopinavir + amprenavir, and atazanavir + saquinavir. Based on the lower level of cross-resistance

shown in Figure 5.9, the atazanavir + saquinavir combination seemed likely to be the most ef-

fective.

The effects of different protease inhibitor-based regimens were simulated using an ini-

tial population of 2,000 wild-type virions, passaged in a population of 200 cells. Ten generations

of replication were allowed before the onset of drug therapy, in order to allow mutations to de-

velop. After the start of therapy, the viral population was monitored for extinction, i.e. a viral

population of 0. In a clinical setting, antiviral therapy cannot eliminate HIV completely from a
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Figure 5.10: Extinction rates with simulated protease inhibitor therapy.

patient, but extinction in the simulation may be considered analogous to strong suppression of

the virus. Each treatment was tested in 1,000 independent simulation runs. To better balance

the treatment results, single inhibitor therapies were used at a concentration of 20 units, while

combinations used 10 units of each inhibitor.

The rates of extinction given the various protease inhibitor therapies are shown in Fig-

ure 5.10. Combinations performed better than the average single inhibitor, though amprenavir

alone was competitive with the combinations. Among the single inhibitor treatments, effec-

tiveness varied widely, with saquinavir causing extinction less than half as often as amprenavir.

While saquinavir and atazanavir were the weakest inhibitors individually, combining them re-

sulted in extinction rates comparable to the other pairs. Overall, combining existing protease

inhibitors did appear to increase extinction rates, but not far beyond the most effective single

inhibitor.

5.3.6 Allosteric protease inhibition

While cross-resistance may limit the efficacy of combinations of clinically-approved

protease inhibitors, novel inhibitors targeting alternative binding sites should exhibit minimal

cross-resistance with current protease inhibitors. Chapter 2.2 mentions an alternative binding
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site in HIV protease that is thought to affect protease mobility. Directly targeting this “exo-

site” using a virtual screen is described in Chapter 6.3. This work resulted in the discovery of

two protease inhibitors which displayed behavior consistent with allosteric inhibition. Further

confirmation of the binding modes will require further experiments, but the significance of an

allosteric protease inhibitor can be studied in silico.

First, in anticipating drug resistance, since an allosteric inhibitor would target a region

of the enzyme away from the active site, the resistance profiles of existing inhibitors would not

identify relevant drug resistance mutations. However, structural analysis provides the oppor-

tunity to move beyond these prior experiences. Further, joining structure-based predictions of

drug resistance with the evolutionary simulation provides an opportunity to gauge the utility of

a putative inhibitor, both individually and in combination with existing inhibitors.

Prediction of drug resistance mutations

A major component of the evolutionary simulation is the prediction of RF, which in

prior experiments has been based on the properties of known inhibitors in vitro. Because there

are currently no known protease inhibitors that target the exo-site region of the enzyme, drug

resistance predictions cannot be made based on existing experimental data. Structural analysis

is a useful alternative, and was previously applied to the protease inhibitor AB2 in Chapter 4.3.

The analysis calculates changes in binding energy, which are proportional to the logarithm of

RF. The values are, in turn, equivalent to the regression results used in calculating resistance for

existing inhibitors.

To perform a structure-based probe of resistance in the exo-site, one of the compounds

found using a virtual screen was used as a prototype allosteric inhibitor. This compound, NSC

45621, was predicted to bind the outer surface of protease (Figure 6.9), forming favorable

interactions with a large number of residues. The 10 positions contributing most heavily to

the binding energy were identified using the AutoDock4 force field40 and are shown in Table

5.7. For each of these positions, all possible substitutions were performed independently using

SCWRL3,86 generating single-mutant protease structures. The use of all possible substitutions

is likely to exaggerate the number of mutations which contribute to drug resistance, but provides

a pessimistic bound on the development of resistance to an inhibitor of this type. As with the

AB2 predictions in Chapter 4.3, the difference in binding energy caused by each these mutations

was evaluated using the AutoDock4 force field.

The binding energy differences were used to fill the role of the drug resistance re-
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Table 5.7: Positions in protease with largest contributions to protein-ligand binding energy with
NSC 45621.

Position ∆G
70 -1.76
63 -1.51
14 -1.30
62 -1.08
61 -0.91
41 -0.81
60 -0.65
39 -0.39
43 -0.34
16 -0.27

gression coefficients in RF determination. Restricting the changes in binding energy to be ≥ -1

kcal/mol removed a small number of extremely unfavorable values, and also resulted in values

with a similar distribution to the existing regression coefficients. Across all protease inhibitors,

the regression coefficients averaged 0.31, with a standard deviation of 0.50. The changes in

binding energy averaged 0.36, with standard deviation 0.48. The rough similarity between dis-

tributions indicates that the level of resistance is not being grossly underestimated against the

predicted allosteric inhibitor.

Effects of an allosteric inhibitor

As with Chapter 5.3.5, the rate of extinction resulting from different therapies was

measured via simulation, this time with an allosteric inhibitor. Alone, this “EXO” inhibitor was

far worse than any of the existing drugs, and was able to drive a viral population to extinction

only 2% of the time. Resistance mutations against the allosteric inhibitor were able to develop

with relative ease because sequence variability tends to be high outside of protease’s active site

(see Figure 3.3), allowing mutations to occur with little consequence for enzyme function.

However, when combined with existing drugs, the allosteric protease inhibitor was

much more effective (Figure 5.11). These combinations resulted in extinctions in nearly all

cases. In contrast, combinations of existing inhibitors were not significantly more effective than

single-inhibitor treatments, and resulted in extinctions in less than 30% of cases. In combina-

tion with the allosteric inhibitor, the strength of the individual active site inhibitors appeared to

have little effect, as saquinavir was found to be weaker than amprenavir, but combinations in-

volving either drug and the allosteric inhibitor were both highly effective. Even when used at a

lower concentration, the allosteric inhibitor was still effective when in combination with another

inhibitor, as shown in Figure 5.12.
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Figure 5.11: Extinction rates with simulated protease inhibitor therapy, including an allosteric
inhibitor (EXO).

Aside from the inhibitor concentration, a major factor in the use of inhibitors with dif-

ferent binding modes is their degree of independence in binding. Clinically-approved protease

inhibitors all target the enzyme’s active site, so the presence of amprenavir, for instance, will

exclude saquinavir. An inhibitor targeting a distinct binding site may not exhibit mutually ex-

clusive binding with one of the active site inhibitors, which would improve the overall level of

inhibition when used in combination. The above results were based on the assumption that an

allosteric inhibitor would be mutually exclusive with amprenavir or saquinavir. If the binding

events are instead assumed to be independent (i.e. the presence of one inhibitor has no effect on

the other), the combination therapy appears even more effective (Figure 5.12). Any synergism

in the binding of these inhibitors would increase the extinction rates even further. On the other

hand, antagonism is bounded by the assumption that the allosteric inhibitor is mutually exclu-

sive with an active site inhibitor. In any case, the allosteric inhibitor remained effective at lower

concentrations than the inhibitors that it was paired with.

Overall, combinations including the allosteric inhibitor showed substantial advantages

over combinations of existing inhibitors, even the pair predicted to exhibit the least cross-

resistance. The characteristics of this putative inhibitor reflect a pessimistic outlook – the region

that it targets is assumed to be highly variable, allowing many mutations that decrease inhibitor
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Figure 5.12: Extinction rates with varying concentrations of allosteric inhibitor, assuming either
independence or mutual exclusion with amprenavir binding. Each point represents the allosteric
inhibitor in combination with 10 units of amprenavir. The red horizontal bar indicates the range
of extinction rates observed in previous experiments with combinations of clinically-approved
protease inhibitors.
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binding with a minimal penalty to enzyme function. When used singly, the weaknesses of this

inhibitor were evident in the low rate of extinction in comparison to the clinically approved

drugs. However, when used in combination with the clinically approved drugs, the allosteric

inhibitor greatly increased extinction rates. As the combination remains effective with relatively

low concentrations of the putative inhibitor, even a compound which binds an alternative site

with relatively low affinity may still be useful. The current prototype for an allosteric inhibitor

is effective against HIV protease at roughly 100 times the concentration of existing inhibitors,

but optimizations could boost the affinity further. Even an increase of 10-20 fold would provide

allow protease inhibitor combination therapy far more effective than current treatments.



Chapter 6

Docking and Drug Discovery

In recent years, virtual screening has become a useful tool in drug discovery, widely

used to replace or support high-throughput screening (HTS) efforts.37, 38, 118–120 A key proce-

dure in virtual screening is protein-ligand docking, which models interactions between a small

molecule and protein, seeking to find the level of binding affinity and optimal binding mode.

AutoDock39, 40 is a widely-used docking program that has been used with many drug targets,

including HIV protease.21, 23, 121 Recently, AutoDock has been deployed as part of a distributed

computing project for HIV drug discovery called FightAIDS@Home. While traditional virtual

screening efforts may focus on screening large libraries of ligand compounds against a single

protein structure, or a single ligand against multiple related (e.g., mutant) structures, the com-

puting resources provided by FightAIDS@Home allow considerations of large number of struc-

tures. This capacity was used to dock a chemical library against multiple HIV protease mutant

structures. Section 6.1 provides an analysis of these results, including insights into the distri-

bution of binding energies expected from a random library screen and the relationship between

protease structures based on their interaction with these compounds.

For virtual screening, accurate determinations of binding energy are key in select-

ing the most likely inhibitors. Generally, binding energy estimates in protein-ligand docking

programs have not included detailed calculations of entropic forces, such as configurational en-

tropy. In Section 6.2, several methods for approximating configurational entropy in docking are

evaluated using experimental information from APS reductase and its binding affinity with a set

of ligands.

In the last section of this chapter, insights from the FightAIDS@Home analysis and

study of entropy are applied toward protease inhibitor screening, culminating in an experimental

80
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screen of the best candidates. Generally, experimental screens use very large chemical libraries,

as perhaps less than 1 in 1000 of the compounds tested will show significant inhibition of the

target.34 To address this problem, the HIV protease screen focuses on the use of a library which

has proven useful in a cell-based anti-HIV assay. In addition, to reduce the high false positive

rate common in virtual screening,119 a novel approach comparing ligand binding at multiple

HIV protease sites was used. This comparison was also helpful in targeting a possible allosteric

inhibition site in protease. Biochemical assays of 38 selected compounds showed that five were

able to inhibit HIV protease at low micromolar concentrations, including two compounds that

are predicted to bind in the putative allosteric site.

6.1 Analysis of HIV wild-type and mutant structures via docking

The FightAIDS@Home∗ project (FAAH) utilizes the World Community Grid dis-

tributed computing network to conduct virtual screens for new inhibitors against HIV protease.

The project is built around AutoDock,39 which uses a Lamarckian genetic algorithm (a hybrid

of evolutionary algorithm sampling with local search methods) to search for the optimal confor-

mation of a given ligand in relation to a target receptor structure. Currently, FAAH is installed

on approximately 450,000 clients and is capable of screening almost 10,000 ligands per day. As

part of a larger screening process seeking new protease inhibitors effective against both wild-type

HIV and emerging drug resistant mutants, FAAH completed an initial screen of approximately

1,800 ligands against 268 HIV protease structures, totaling almost 500,000 different dockings

and more than 1015 separate energy evaluations.

Though the scale of these in silico experiments are huge, growing databases of proteins

and chemical structures have the potential to surpass these resources. As FAAH moves forward,

techniques to judiciously choose informative structures and ligands remains important. The

set of protease structures considered in FAAH includes a large number of modeled structures.

This analysis focuses on structures taken from the Protein Data Bank (PDB),85 consisting of 71

wild-type and mutant proteases. More specifically, these structures include 26 wild-type HIV-

1, 33 mutant HIV-1, and 12 HIV-2. The ligand library used in the current FAAH experiment

consists of 11 known protease inhibitors and compounds from the National Cancer Institute

(NCI) Diversity Set †. The NCI Diversity Set is chosen specifically to represent a broad sampling

of pharmacophores, providing a characterization of protease docking modes “outside the box,”

∗http://fightaidsathome.scripps.edu/
†http://dtp.nci.nih.gov/branches/dscb/diversity_explanation.html
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Table 6.1: Overview of FAAH ligands and protease structures.
Proteases wild-type mutant HIV-2

number of structures 26 33 12
unique (by sequence) ~1 10 2

Ligands known inhibitors NCI Diversity Set
number of compounds 11 1,760

beyond those represented by currently approved protease inhibitors. An overview of the current

FAAH dataset is shown in Table 6.1.

One of the long-term goals of this research is to discover compounds that can inhibit a

broad range of mutant proteases, so a variety of HIV protease mutant structures are considered.

A similar method has previously proven successful in developing an inhibitor effective against

FIV, SIV, and HIV.122 Due to the rapid evolution of drug resistance, such approaches are vital in

the design of new inhibitors. Cross-resistance involving current FDA-approved drugs is also a

continuing problem.123

Other research has addressed docking against an ensemble of protein structures.124, 125

However, these studies focus on molecular dynamics-based “snapshots” of the protein in motion.

A more recent paper by Fernandes et al. addresses the problem of docking to multiple structures

in an effort to develop inhibitors effective against a set of targets.126 Their work includes the

comparison of docking results from several HIV protease structures, showing that ligands adopt

similar binding modes across various proteases.

Our work incorporates a much larger number of ligands and proteases. Hayashi et al.

use such methods to generate ligand profiles by docking small molecules against a panel of vari-

ous proteins.127 A key feature of their work is the use of vectors of binding energies as a way of

describing particular ligands. Complementary methods that focus on proteins rather than ligands

are discussed in this study, with applications toward finding consensus and representative pro-

teases. The consensus protease structure that best captures the central tendency of the larger set

of structures would prove useful in more focused virtual screening experiments. Such a structure

was constructed by Vinkers et al., using averaged 3D coordinates from a set of crystallographic

data.128 We describe an approach based on binding energy profiles below.
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6.1.1 Methods

Dataset

The ligand library used in FAAH consists of 11 known protease inhibitors and 1,990

compounds from the NCI Diversity Set. Known inhibitors include 8 FDA-approved compounds:

amprenavir, atazanavir, indinavir, lopinavir, nelfinavir, ritonavir, saquinavir, and tipranavir. The

remaining 3 known inhibitors are TL-3, KNI-272, and JE-2147. Structures for all of the known

inhibitors can be found in the PDB. Of the compounds from NCI, 153 could not be processed

correctly for AutoDock, due to the presence of metal atoms or multiple fragments, and so were

not included in this study. An additional 77 were removed due to extremely poor binding, leaving

a total of 1,760.

Characterizing “wild-type” for a quasi-species like HIV is a notoriously difficult prob-

lem. Two common characterizations of subtype B of the HIV-1 virus are the “consensus B” se-

quence and “HXB2”.4 Since protease for these two differ only at positions 3 and 37, sequences

matching either are considered wild-type HIV-1 structures. The protease structures analyzed

include 26 wild-type HIV-1, 33 mutant HIV-1, and 12 HIV-2.

Docking Protocol

Atomic coordinates for the HIV proteases were obtained from the PDB. The ligand and

crystallographic waters were removed with the exception of the water bridging the flaps. When

absent from the crystal structure, a water molecule was placed with hydrogen atoms oriented to

facilitate the hydrogen bonding pattern commonly observed in HIV protease.129 Polar hydrogens

were added and Kollman charges were assigned to all atoms. Affinity grids centered on and

encompassing the active site were calculated with 0.375 Angstrom spacing using AutoGrid 4.

The NCI Diversity Set was processed for input to AutoDock 4. Gasteiger charges were

assigned to all atoms and rotatable bonds were assigned using AutoDockTools.

AutoDock 4 was used to evaluate ligand binding energies over the conformational

search space using the Lamarckian genetic algorithm. Default docking parameters were used

with the following exceptions: ga_pop_size, 200; ga_num_evals, 10000000; ga_run, 100. For

this study, only the minimum energy found is considered.
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6.1.2 Results

Discrimination between specific and non-specific interactions

AutoDock seeks the best interaction energy between a flexible ligand and the protein

surface. Computed energies are typically favorable since the docking procedure searches widely.

Since FAAH is ultimately focused on lead discovery, accurate discrimination between weak and

strong binding is of vital importance. Toward this end, the differences in binding energy between

NCI diversity compounds and known inhibitors can be used to determine a threshold at which

interactions become significant.

Nearly all of the diversity compounds exhibit weak or moderate binding energies when

compared to the known inhibitors. In order to determine the threshold at which specific binding

is expected, the distribution of binding energies for the NCI Diversity Set is compared against

the energies from the known inhibitors. At least with respect to HIV protease, derivation of a

specific-interaction threshold represents an especially appropriate system due to the availability

of a large number of positive controls (known inhibitors). The distribution of binding energies

for both known inhibitors and the NCI Diversity Set is shown in Figure 6.1a.

The Receiver Operating Characteristic (ROC) curve in Figure 6.1b demonstrates the

effect of several threshold values that attempt to separate the known inhibitors and diversity com-

pounds. For the purposes of the plot, the positive class contains only known protease inhibitors

and the negative class contains all ligands from the NCI Diversity Set. A -7.0 kcal/mol threshold

was selected as the significance cutoff in future experiments. At this level, only a small fraction

(5.3%) of all dockings are considered "specific" interactions, which includes 97.7% of known

inhibitor dockings and 4.7% of NCI Diversity Set dockings.

Figure 6.2 shows the degree to which predicted ligand-protease interaction energies

exceed the -7.0 kcal/mol threshold. These are organized as portrayed in Table 6.1, with known

inhibitors along the top and wild-type protease to the left. In addition, ligands have been sorted

by average interaction energy, with most favorable (i.e., most negative energies) near the top.

As shown in the figure, there are wide variations in binding energy for single ligands docked

against multiple proteases. Note that there are noticeable differences even among relatively

homogeneous sets, such as the wild-type structures (columns 1-31). This variation underscores

the importance of judicious protein structure selection in order to obtain the best binding energy

estimates.
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Figure 6.1: (a) Comparison of the distribution of binding energies for known inhibitors and NCI
Diversity Set compounds. (b) ROC curve showing a sensitivity/specificity trade-off for threshold
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Determining a consensus HIV protease structure

The large number of both ligands and protease structures tested in FAAH Stage 1A

represents an opportunity to analyze the similarity of ligand/protein interactions across both

dimensions of variability. In general, if a ligand binds poorly with one protease structure, it is

not expected to bind strongly to others. If a single protease structure is found to capture the

central tendency of the entire set, this single probe can be used as an initial probe against large

libraries of ligands.

Representing protease structures as vectors of binding energies allows a direct mathe-

matical characterization of a consensus protease structure as their centroid. That is, each of the

proteases corresponds to a point in a high-dimensional space. The centroid is found by taking an

average across all 1,760-element vectors of binding energy values.‡ Using a Euclidean distance

measure, 2BPW is the closest structure to the centroid. This remains true, whether the average

is taken across only wild-type protease, or across all proteases.

Representative protease structures

While the centroid provides a convenient characterization of the central tendency

across all proteases, identification of a larger set of “spanning” protease structures is also useful,

to allow efficient screening of large libraries that capture the full breadth of observed results. To

generate such a set of representative protease structures, principal component analysis (PCA)

was used on the matrix of protease-ligand binding energies. By convention, columns of the

matrix correspond to proteases and rows represent ligands.§

In brief, PCA identifies a small set of principal components (orthogonal basis vectors)

that capture most of the variance within high dimensional data sets. Because the principal com-

ponents are linear combinations of the observed data, they cannot be interpreted directly. Since

we seek a small set of spanning, nearly orthogonal protease structures, we therefore consider

those proteases which load most heavily along each principal component.

We consider a 10-dimensional PCA. The first principal component serves as a scaling

factor, accounting for approximately 90% of the variance in the data set, with all protease load-

ing coefficients very close in value. The sum of the second through tenth eigenvalues account for

approximately 70% of the remaining variance. Any protease’s loading coefficient on a principal

‡The specific interaction threshold deduced earlier could be used to eliminate less favorable docking results from
this analysis. However, since the analysis gains information from the full set of both specific and non-specific binding
energies, instances of weak and non-specific binding are retained.

§As above and for the same reasons, weak and non-specific interaction energies are included in this analysis.



88

Table 6.2: Representative protease structures. The coefficient for each structure is at least 2
standard deviations from the mean for at least one principal component. An * indicates pro-
teases that are maximally loaded across at least one principal component.

PDB ID description
1HII* HIV-2
1GNM HIV-1 with V82D mutation
1BDL* HIV-1 with heavily mutated 30-loop
2BPZ* HIV-1 wild-type
7UPJ HIV-1 wild-type
1AJX HIV-1 wild-type
5UPJ HIV-2
1HVI HIV-1 wild-type
1HVJ HIV-1 wild-type
1HVK HIV-1 wild-type
1HSI* HIV-2 apo (no ligand bound in crystal structure)
1AID* HIV-1 with minor drug resistance mutations
3AID HIV-1 with minor drug resistance mutations

1BDQ* HIV-1 with heavily mutated 30-loop and drug resistance mutations
1MEU* HIV-1 with major drug resistance mutations

component greater than two standard deviations from the mean is deemed significant, and the

corresponding protease added to the set of spanning protease. The resulting set of 16 represen-

tative structures are shown in Table 6.2, also shown are those structures that maximally load on

a principal component .

These results align closely with expectations that major structural changes should af-

fect binding energy. From the proteases studied, the main delineations are the presence of a

heavily mutated loop region, the absence of a ligand in the crystal structure, and HIV-1 versus

HIV-2. Drug resistance mutations also seem to play an important role.

The first two principal components can be visualized in a 2-dimensional space; cf. Fig-

ure 6.3a. The set of representative structures roughly bounds the periphery, while the consensus

structure is centrally located. A multidimensional scaling plot of the same data using Sammon’s

nonlinear mapping (NLM)117, 130 in Figure 6.3b demonstrates this behavior even more clearly.

In contrast to PCA, NLM reduces dimensionality via explicit local gradient minimiza-

tion of a “stress” (error) function:

E =

n−1

∑
µ=1

n

∑
ν=µ+1

[d∗(µ,ν)−d(µ,ν)]2

d∗(µ,ν)
n−1

∑
µ=1

n

∑
ν=µ+1

d∗(µ,ν)

(6.1)

reflecting cumulative error d∗(µ,ν)−d(µ,ν) in measuring the distance between n pairs of points
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Figure 6.3: Representative protease structures plotted using (a) first two principal components
and (b) multidimensional scaling with Sammon mapping. Maximally loaded structures are la-
beled using circles, other highly loaded structures are labeled using squares. The consensus
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µ,ν in the original d∗ data space vs. the reduced-dimensional space d. Given the stress function,

minimization can be accomplished by a number of algorithms. Local search methods consider

gradient change in stress within local neighborhoods, as potential placements in the reduced

dimensional space are considered. In general, as with all local minimization procedures, there

is no guarantee that the reduced dimensional solution is unique or globally optimum. In the

current application, however, the Sammon mapping helps to confirm the basic pattern of the PCA

solution, and provides additional indications that the particular mutants identified do indeed span

the larger set.

Binding energy/sequence relationship

In ideal cases, relationships between protein sequence and function are obvious. For

example, when dealing with protein crystal structures, factors other than sequence can have

major effects. To determine the degree to which sequence and binding energy are coupled in this

data set, a comparison between a sequence similarity matrix and a binding energy correlation

matrix was performed. The sequence similarity matrix corresponds to the fraction of identical

positions between sequence pairs. For binding energies, the matrix containing pairwise Pearson

linear correlation coefficients is calculated. While the correlation between the two matrices is

low, r = 0.232, the Mantel test demonstrates a statistically significant relationship between them.

Using 100,000 random permutations, the empirically derived p-value is 0.015.

6.1.3 Discussion

The huge computational resources provided by the FAAH project have provided a

wealth of docking information. In addition to the primary purpose of identifying novel inhibitors,

this data can be used to calibrate and focus future experiments. Several novel analyses were car-

ried out using the large body of docking results. Considering protease structures in the context

of in silico dockings against diverse libraries of ligands provides a perspective on how similar-

ities and dissimilarities among them that could not be anticipated, for example on the basis of

sequence identity alone.

In a comparison of binding energies between compounds specifically designed to act as

protease inhibitors and approximately random compounds drawn from the NCI Diversity Set, a

threshold of -7.0 kcal/mol works well to discriminate between putative specific and non-specific

binding with HIV protease. Applying this threshold to datasets may be useful in filtering out

noise in weakly binding compounds. While this cutoff is specific to AutoDock and the protease
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system, the general approach is broadly applicable to other users of AutoDock (a widely used

tool) and other docking systems.

The consensus protease structure, along with the other representatives, constitute a

limited set which captures the breadth of the entire set of protease structures. Rather than di-

rectly capturing specific structural elements, these structures are characterized by their affinity

with a diverse set of ligands. The PCA-based approach for choosing representatives is able to

capture protease structures that lie on the periphery of the data set (Figure 6.3). Further applica-

tions of this technique may be useful in broader structural comparison and classification. In the

more immediate future, the set of representatives will allow FAAH to continue screening larger

libraries while maintaining breadth in its range of targets.

The enormous search capacity provided by the FAAH computing platform allows in

silico experimentation on an unprecedented scale. It is not a coincidence, however, that the

primary techniques we describe in this paper are all designed to restrict our experiments to es-

pecially informative cases; selection of the “centroid” wild-type structure and “spanning” viral

structures provide two examples. Despite strong growth in computing power we can antici-

pate for the foreseeable future, high-throughput experimental methods and growing libraries

of potential ligands generate a range of potential experiments that dwarf even these resources.

Techniques supporting the judicious selection of informative structures and ligands will need to

grow apace.

6.2 Empirical docking entropy

6.2.1 Introduction

The AutoDock3 and AutoDock4 empirical free energy force fields have been cali-

brated against a set of several hundred ligand-protein complexes of known structure and binding

constants.39, 40 In our experience, this force field has been effective for the prediction of binding

constants with tight-binding complexes, but we have noticed two significant problems.

First, we often find an incorrect conformation with slightly more favorable energy than

the experimentally-observed conformation. However, these incorrect conformations are found

with very low frequency when multiple docking experiments are performed: incorrect, low en-

ergy conformations will be found in ~1% of docking experiments, and the correct conformation

will be found in 25-100% of the experiments. Thus, in these cases, a simple procedure that

chooses the conformation of best energy from a set of multiple docking experiments will yield
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an incorrect conformation.

Second, the current force field poorly predicts the free energy of binding of weakly-

interacting molecules. An example from APS reductase (adenosine 5’-phosphosulfate reduc-

tase), the subject of this report, highlights the problem. Experimentally, 5’-AMP binds tightly

but 3’-AMP, which has a similar number of atoms and functional groups, binds weakly. How-

ever, in AutoDock both are predicted to bind tightly with similar binding constants. However, by

looking at the frequency that a given conformation is found in reiterated docking experiments,

a difference may be seen, as shown in Figure 6.4. When these compounds are docked multi-

ple times, AutoDock finds a consistent conformation for 5’-AMP in many docking experiments,

whereas 3’-AMP adopts many different conformations and the low energy conformations of

3’-AMP are only found in a small fraction of docking experiments.

We have observed this many times in other systems: if a given molecule shows a con-

sistent conformation in many docking simulations, we have far more confidence in the result.

Our current hypothesis is that the frequency of finding a given conformation is providing infor-

mation on the energy landscape of binding, and that a high frequency is a measure of favorable

entropy in the binding process. Recent work has shown that the energetic contribution of this

configurational entropy will be high. A study by Chang, Chen, and Gilson131 has estimated

that the configurational entropy of binding of amprenavir to HIV-1 protease is 26.4 kcal/mol, of

which 1.8 kcal/mol is due to the loss of conformational entropy when the molecule moves from

freely flexible in solution to its constrained position in the active site, and the bulk of the penalty

is due to loss of vibrational entropy in the restrictive binding site.

Ideally, we would like to quantify the binding energy of the entire range of conforma-

tions available to the ligand and protein, and use this explicitly to evaluate the conformational

entropy. However, these types of calculations, such as the Mining Minima calculation employed

by Chang, Chen and Gilson, are too computationally expensive for typical docking studies. In-

stead, several laboratories are exploring methods for using information from the docking simula-

tion or from inexpensive approximations of the range of conformations to evaluate this entropic

component.42–44, 132 Many of these methods perform multiple docking experiments, cluster the

resulting conformations by similarity, and then use a measure of the cluster size to estimate the

conformational entropy. The assumption is that the docking protocol is providing information

on the characteristics of the local energy landscape, and that large clusters of conformations are

indicative of favorable entropic characteristics of this landscape.

In this report, we evaluate several methods for their ability to predict correctly the ex-
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Figure 6.4: Clusters analysis of docking for 5’-AMP and 3’-AMP. The graphs on the left use
Sammon mapping to preserve the approximate separation in conformational space between
clusters. Each circle represents a cluster of conformations within 2 Å RMSD of each other, and
the size of the circle is proportional to the number of conformations in the cluster. The expected
bound conformation is shown with a diamond. The images on the right show all of the docked
conformations. 5’-AMP binds tightly, and many of the docked conformations cluster into one
large group at the expected conformation. 3’-AMP, however, binds weakly and shows a wide
scattering of small clusters.



94

pected bound conformations of nucleotide analogues in APS reductase (Caroll, K.S. Manuscript

in preparation).133, 134 All of these methods seek to characterize the local energy landscape and

use this information to estimate an entropic contribution to the binding free energy. The methods

perform a sparse sampling of the landscape by reiterated docking or random sampling, making

the implicit assumption that the sampled points will represent the features of the entire local

landscape. We have found that APS reductase is an excellent test for these methods because ex-

perimental binding constants are available for a series of compounds of similar size and chemical

composition, but with a wide range of binding constants. This provides a more critical test set

than the typical databases used in most studies, which typically include a diverse collection of

ligand-protein complexes, but all are specific, tight-binding complexes.

6.2.2 Methods

Motivation

In the most general case, we seek to evaluate the entropic contribution of binding (∆S)

through use of a conformational integral:43

∆G = T ln
(σlσp

σpl

c0Na

8π2(2π)ntor VB
)

(6.2)

where the conformational integral VB is:

VB =
Z

Γ

exp
[
− (Upl(r,Ω)−Epl)/RT

]
dr dΩ

In these equations, the σ terms account for any symmetry in the molecules, with values

of 1 for asymmetric molecules, c0 = 1 mol/L Na is Avogadro’s constant, ntor is the number of

torsional degrees of freedom in the ligand, Upl(r,Ω) is the energy of each complex conformation,

Γ is the region of integration (typically a small space that includes conformations with similar

binding modes), and Epl is the ground energy of the complex in solution. The vectors r and Ω

define the 3 translational and the 3+ntor rotational motions of each complex.

We test several simple approximations to this integral, based on conformations ob-

tained in reiterated AutoDock docking experiments and by directly sampling the local energy

landscape. Our goal is to provide an efficient empirical method for estimating this entropic

contribution. We seek to improve the estimation of binding constants by rescoring trial docked
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conformations, combining this estimated conformational entropy, which is derived from reiter-

ated docking experiments, with predicted enthalpic and desolvation contributions used during

the docking simulation of each conformation.

In all of these methods, we begin with a set of conformations obtained from docking

simulation or from random sampling, and we assume that these sparse samples may be used to

characterize the entire local energy landscape. It is important to keep in mind that the evolution-

ary search method used in AutoDock, which combines a genetic algorithm with a local search,39

is not designed to be a uniform (Monte Carlo) sampling process, but instead to be successful

at finding extreme (minimum) values of the energy function. Thus, it is not directly giving the

information needed to estimate the conformational integral, but may be used to infer properties

of the energy landscape and conformational entropies. Note also that: (1) the method is heuristic

and stochastic, and thus does not guarantee convergence, so the search must be repeated mul-

tiple, statistically independent times, and (2) it generates a history of the search process as a

by-product. Both of these properties provide opportunities and limitations for use in estimation

of entropic contributions, and help to motivate our random sampling experiments, below.

Cluster Size Method

We have tested two methods of using the cluster size as an estimate of the configura-

tional integral. In these methods, we hypothesize that the probability of finding a conformation

in a given cluster is capturing information on the local energy landscape. As mentioned earlier,

this hypothesis relies on the properties of Lamarkian genetic algorithm used in AutoDock for

searching of conformations, which is a stochastic and heuristic method designed to find extreme

minimum values of the complex energy landscape. Our hypothesis is that the docking method is

more successful for wide energetic wells, and thus the success of finding a given conformation

is proportional to the vibrational entropy.

The first is a probability based on a simple conformation-centered RMSD, which we

will refer to as the "RMSD" method. For each conformation i, RMSD values di, j are calcu-

lated over all conformations j not equal to i, and the fraction less than a given threshold dmax is

evaluated. In this work, we used a threshold of dmax = 2Å RMSD.

PRMSD
i =

Nd j 6=i≤dmax

N

where the numerator is the number of conformations with RMSD less than the threshold and N
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is the total number of conformations. The second is a probability based on a distance-weighted

RMSD, which we will refer to as the "wRMSD" method:

PwRMSD
i =

∑ j 6=i exp(−d2
i, j/2σ2)

N

where the constant σ = 2Å. If we assume that the favorable region of conformational space is

proportional to these probabilities, then the conformational entropy may be estimated as:

∆Gi = −W RMSDRT ln(PRMSD
i )

where W RMSD is an empirically-determined weight.

Random Sampling Method

We also estimated a value of the conformational integral based on a random sampling

of the local energy landscape around each docked conformation. As noted by one reviewer, this

method has much in common with the MINTA135 and Mining Minima136 methods. 100,000

conformations were generated with small random displacements from the docked conformation.

Translational displacements were chosen from a random distribution with bounds -0.5 to 0.5Å,

rotational displacements were generated by picking a random axis and rotating by a random

angular displacement with bounds -0.5 to 0.5 rad, and torsional displacements were generated

with a random angular displacement with bounds of -0.5 to 0.5 rad.

The conformational integral was calculated as:

ṼB(ri,Ωi) =
∑ j exp

(
(∆E(r j,Ω j)−∆E(ri,Ωi))/RT

)
N

where the ∆E values are predicted energies from AutoDock and the summation is

performed over the N=100,000 samples j around the conformation of minimum energy i. The

vibrational contribution to the free energy is then calculated as in eq. 6.2.

Binding Constants for Ligands with APS Reductase Binding constants are available for 22

ligands bound to APS reductase (Table 6.3). Values of Ki were determined under single turnover

conditions from the dependence of the observed rate constant (kobs) at a given inhibitor concen-

tration under conditions of subsaturating APS, such that Ki is equal to the Kd .133, 137 Kinetic
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Table 6.3: Results of docking. ∆Gobs, the experimental free energy of binding; N, the number
of docked conformations in the cluster of best energy; ∆GAD4, the predicted free energy
of binding from AutoDock; RMSD, the root mean square difference in coordinates between
docked conformation and analogous atoms in the crystallographic structure; ntor, the number
of torsional degrees of freedom in the molecule; and N, ∆GAD4, and RMSD are provided for the
cluster of best energy and the largest cluster.

Best energy Largest cluster
∆Gobs N ∆GAD4 RMSD N ∆GAD4 RMSD ntor

5’AMP -8.07 2 -8.73 4.04 61 -7.96 0.81 6
7deazaAMP -7.51 1 -8.36 3.46 77 -8.14 0.81 6

5’ADP -7.29 3 -10.07 3.03 41 -9.98 0.78 8
3’deoxyAMP -7.21 3 -8.29 3.13 81 -8.29 0.81 5

5’PMP -6.30 1 -8.37 3.33 60 -7.73 0.90 6
NmethylAMP -5.97 45 -8.24 0.82 same 6
8aminoAMP -4.95 50 -8.29 1.63 same 6
2aminoAMP -4.76 2 -9.28 3.99 20 -8.19 0.96 6

3’phosphoAMP -4.76 4 -9.07 3.21 same 7
2methoxyAMP -4.57 2 -8.51 3.56 17 -8.13 1.31 6

bmethAPS -4.22 57 -9.34 0.81 same 8
2’deoxyAMP -4.13 1 -8.75 4.10 31 -7.24 1.10 5

adenosine -3.93 5 -5.58 3.64 27 -4.44 0.69 5
dimethylAMP -3.90 13 -8.15 3.03 same 6

5’IMP -3.44 2 -8.60 3.12 23 -7.26 1.48 7
3’deoxyadenosine -3.17 1 -5.48 4.74 99 -5.27 0.61 4
5’phosphoribose -2.73 2 -6.93 3.62 7 -6.06 1.93 5

3’AMP -2.27 8 -9.25 3.87 same 6
2’deoxyadenosine -2.00 4 -5.90 4.78 13 -4.90 3.17 4

ribose -1.77 2 -3.65 9.99 56 -4.29 1.73 4
adenine -1.76 21 -4.13 2.81 23 -3.81 1.49 0
5’IDP -1.54 1 -9.9 3.90 13 -9.00 0.90 9

data were nonlinear-least squares fit to a model of competitive inhibition. Each Kd reflects the

average of at least two independent experiments, and the standard deviation was less than 10%

of the value of the mean. The synthesis, characterization and biochemical analysis of the ana-

logues used in this computational study will be reported elsewhere (Caroll, K.S. Manuscript in

preparation).

Docking with AutoDock4 Docked conformations and predicted free energies of association

were obtained for 22 nucleotide analogues using AutoDock4 (http://autodock.scripps.

edu). Coordinates for APS reductase were obtained from C. David Stout prior to release–they are

identical with subunit B in entry 2goy at the Protein Data Bank.134 Coordinates for the enzyme

were processed in AutoDockTools by adding all hydrogens, assigning charges with the Gasteiger

method,40, 138 and merging non-polar hydrogen atoms. Coordinates for the nucleotides were
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constructed in InsightII starting with the conformation of the APS nucleotide bound at subunit B

in the crystallographic structure. Charges were assigned in ADT and non-polar hydrogen atoms

merged. Docking experiments were then performed in AutoDock4 using the default docking

parameters, with 2,500,000 energy evaluations for each docking experiment and finding 100

separate docked conformations for each nucleotide.

A test of the role of sugar conformation in the nucleotide was performed using 5’-ADP

conformations from entries 1e19, 1m7g, 1o0h and 1rdq from the Protein Data Bank (http:

//www.pdb.org), which were judged to have different sugar conformations based on the dis-

tance between C5’ and N9, and the torsion angle through atoms C5’-C4’-C1’-N9. These ADP

coordinates were prepared and docked similarly to the other nucleotides.

Since crystallographic results are only available for the ligand APS, RMSD values

were calculated based on the distance between the nucleotide atoms and the modeled nucleotide,

which was created to overlap the analogous atoms in the crystallographic conformation of APS.

Thus, the RMSD values in this paper refer to the similarity of the binding modes to the observed

mode of APS.

Calibration of Empirical Terms Linear regressions and statistical analysis were performed

using the free software R, forcing the regression to include the origin in all cases.

6.2.3 Results

Docking of Nucleotides to APS Reductase

For each of the 22 nucleotides, we performed 100 docking experiments, and clustered

the resulting conformations using a 2Å threshold. The results, shown in Table 6.3, are typical

of results of AutoDock docking experiments. In 3/22 compounds, the conformation with best

energy was in the proper position, but in the remaining 19, they were greater than 2Å RMSD

different than the crystallographic position. If, however, we look at the best conformation in the

largest cluster, 18/22 conformations are within 2Å of the expected location.

These types of results, which are commonly obtained for AutoDock experiments, are

the motivation for the current work. Tight binding ligands, such as 5’-AMP (Figure 6.4a), show

excellent clustering and weakly binding ligands, such as 3’-AMP (Figure 6.4b), show poor clus-

tering, although both show similar predicted binding energies. The docking protocol, as revealed

in the clustering, is capturing some aspect of the binding energetics that is missing from the cur-

rent empirical free energy force field.
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Table 6.4: Results of regression
Coeff (t value)

Std. error Multiple R2 ∆GAD4 term Cluster term
∆GAD4 1.81 0.86 0.577(11.6) n/a

∆GAD4+RMSD 1.74 0.88 0.658(9.6) 1.148(1.6)
∆GAD4+wRMSD 1.71 0.88 0.658(10.2) 1.098(1.9)

∆GAD4+Vb 1.69 0.89 1.381(3.4) 1.030(2.0)

Conformational Entropies From Cluster Size

Table 6.4 includes results from regression analysis. Observed binding energies were

fit with models that included the predicted AutoDock4 energy and one of the two clustering

models: the 2Å threshold model RMSD or the distance weighted model wRMSD. In both cases,

modest improvement was seen. The standard error of the predicted binding energy was reduced

slightly, and the multiple R-squared increased.

Table 6.5 shows the effectiveness of the cluster size models in rescoring. The first

column shows the poor predictive ability of the basic AutoDock4 method: when looking at

only the conformation of best energy, only 3/22 identify the proper conformation (these results

are also shown in Table 6.3). The second and third columns show the results when the cluster

size measure is included. Both methods show excellent predictive ability, ranking the expected

conformation as the best in 15/22 or 16/22 cases.

The significance of this result may be estimated by comparison with a statistical method

based on Bernoulli trials. We calculated the fraction of dockings with RMSD less than 2Å for

each compound, which ranges from 0.00 for 3’-phospho-5’-AMP to 0.99 for 3’-deoxyadenosine.

Using these fractions, we can estimate the expected number of correct conformations we would

obtain by randomly choosing a conformation for each compound. This analysis estimates that

random choice would give a correct answer in 12.35 cases, with a standard deviation of 1.72, out

of the 22 compounds.

Conformational Entropies from the Local Conformational Integral

Ideally, we could like to be able to start with a single docked conformation and, by

analyzing the local energy landscape, evaluate this entropic contribution to the binding strength.

As a first step towards this goal, we have randomly sampled the conformational space around

each docked conformation and calculated a conformational integral based on the energy land-

scape. This is partially effective for improving the prediction of free energies and in reranking.

The regression showed a small improvement in the standard error, and the method was able to
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Table 6.5: Results of rescoring. RMSD values are given for the docked conformation of best
energy as determined by each method, with values > 2.00Å in bold. The final line gives the
number of conformations in each column with RMSD < 2.00Å.

AD4 wRMSD RMSD Fit Vb Lowest RMSD
5’AMP 4.04 0.83 0.81 0.95 0.78

7deazaAMP 3.46 0.80 0.81 0.85 0.77
5’ADP 3.03 0.78 0.78 2.72 0.69

3’deoxyAMP 3.13 0.90 0.90 0.81 0.77
5’PMP 3.33 0.89 0.89 0.93 0.81

NmethylAMP 0.82 0.84 0.82 2.42 0.78
8aminoAMP 1.63 1.63 1.63 0.80 1.52
2aminoAMP 3.99 0.96 0.97 3.87 0.81

3’phosphoAMP 3.21 3.21 3.20 3.08 2.76
2methoxyAMP 3.56 1.31 1.31 3.89 0.81

bmethAPS 0.81 0.81 0.81 2.61 0.63
2’deoxyAMP 4.10 1.10 1.39 2.72 0.94

adenosine 3.64 0.68 0.69 4.81 0.59
dimethylAMP 3.03 2.69 3.22 2.71 1.35

5’IMP 3.12 2.83 1.48 0.88 0.99
3’deoxyadenosine 4.74 0.59 0.61 5.16 0.56
5’phosphoribose 3.62 3.78 3.78 0.93 1.75

3’AMP 3.87 3.82 3.87 3.96 3.02
2’deoxyadenosine 4.78 4.78 4.78 1.79 1.12

ribose 10.62 1.72 1.73 1.55 1.55
adenine 2.81 2.81 2.81 1.58 1.48
5’IDP 3.90 0.98 0.98 2.56 0.81

3 15 16 10 20/22
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rank 10/22 compounds.

Comparing two of the compounds from this study, we can see how these conforma-

tional integrals capture the underlying landscape. 5’-AMP and 3’-AMP have the same number

and type of atoms and the same number of torsional degrees of freedom, but widely different

experimental binding constants. In docking, 5’-AMP gives a tight cluster of 61/100 docked

conformations in the expected location, whereas weaker-binding 3’-AMP shows a scatter of

different, small cluster conformations.

Looking at the energy landscape around the docked conformation, as shown in Figures

6.5 and 6.6, we find that 5’-AMP has a broader energy well than 3’-AMP. Thus, small motions

of 3’-AMP will run up against large steric contacts, whereas small motions of 5’-AMP do not

encounter bad contacts.

Unfortunately, these types of correlations were difficult to extract for other compounds,

where the structural similarity was not as great. Looking at the entire set, the greatest trend

was a strong correlation between the value of the conformational integral and the number of

torsional degrees of freedom in the molecule. This is not a surprise, since this merely reflects the

magnitude of the entropy involved in freezing these torsional degrees of freedom into a confined

space of the active site. The more subtle effect of the local shape of that active site, as seen in

the 5’-AMP vs. 3’-AMP landscapes, is overshadowed by this larger effect.

6.2.4 Discussion

The ultimate goal of this work is to find a computationally tractable method to evaluate

the conformational entropy of binding, and thus improve our predicted binding energies. This

is essential for the future success of docking in computer-aided drug design, where the common

presence of false positives and false negatives during virtual screening is a major problem in

current studies.

The results presented here suggest that the cluster size is an effective and cheap method

for evaluating these entropies, and may be used to improve both the ranking of different com-

plexes, and for the identification of proper binding modes within a single complex. These cluster

size methods, however, are not satisfying from a conceptual level, since they are relying on some

unknown combination of the overall energy landscape and the details of the docking protocol.

Ideally, we would like to develop a method that analyses the energy landscape, both locally and

globally, and uses that information to identify the major binding modes and affinities.

Our attempt to characterize the local energy landscape through random sampling has
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Figure 6.5: Analysis of the local energy landscape. Each point represents a small random
change in conformation away from the most favorable bound conformation. RMSD values are
calculated between the perturbed conformation and the starting conformation. 5’-AMP shows
a wide basin, with very few unfavorable conformations until they are a distance of about 0.5 Å
RMSD from the bound conformation. 3’-AMP shows a narrower basin, with many unfavorable
conformations as distances less than 0.25 Å RMSD.



103

Figure 6.6: Analysis of the local translational energy landscape for 5’-AMP (left) and 3’-
AMP(right). Conformations were sampled in the range of -1Å to +1Å in the x and y directions
around the most favorable bound conformation. The energy of the sampled conformations is
shown here, with the outer contour at -1.5 kcal/mol and additional contours at -1.5 kcal/mol
increments.
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provided some provocative, but not definitive, results. The results presented in Figure 6.5 show

that there are significant differences in the local energy landscape for two forms of AMP, dif-

ferences that correlate strongly with the large difference in binding constants between these two

compounds. However, this principle did not generalize over the entire set. Our current hypoth-

esis is that the docking analysis, and thus the clustering, is capturing information over a larger

area of conformational space that we sampled in this work, and that sampling of this larger space

will be necessary to develop an effective method for directly evaluating the conformational en-

tropy contribution to binding. However, use of the cluster size in multiple docking experiments

is a fast and easy way to estimate this contribution, and is a viable method for improving current

docking results.

6.3 HIV protease inhibitor screening

Decades of AIDS research have resulted in the development of a number of anti-

HIV drugs effective against several viral proteins. HIV protease has historically been one of

the main pharmaceutical targets, and there are currently 10 FDA-approved protease inhibitors.

Structure-based drug design has played an important role in the development of protease in-

hibitors,5 and this knowledge has been applied in high-throughput screening (HTS) and virtual

screening projects involving HIV protease.35, 139

However, HTS experiments are often very costly, and reagents alone can cost tens of

thousands of dollars.140 Further, hit rates from HTS are generally low. For example, the HTS

screen described by by Doman et al. reported a hit rate of 0.021% for inhibitors of protein ty-

rosine phosphatase-1B.34 Furthermore, apparent hits in HTS experiments are often found to be

promiscuous inhibitors.141 Virtual screening, though normally less expensive than HTS, suffers

from high false positive rates.37, 119 The individual weaknesses of each approach have driven

some groups to successfully combine high-throughput and virtual screening for drug discov-

ery.34, 118, 142

To improve screening for anti-HIV compounds, we established a three-step strategy.

Identified anti-HIV compounds from the National Cancer Institute’s (NCI) cell-based AIDS An-

tiviral Screen¶ of small molecules were virtually screened for protease binding, thereby allowing

selected compounds to be further evaluated using protease inhibitor assays. The NCI cell-based

screen measured the ability of over 40,000 compounds to protect human cells against HIV in-

fection via a chromogenic assay.143 HIV protease is only one of the many possible targets for

¶http://dtp.nci.nih.gov/docs/aids/aids_screen.html
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the roughly 1,500 compounds found to protect cells from viral-induced death. In a cell-based

screen the compounds could be affecting viral proteins or host factors involved in HIV infec-

tion. However, the identified compounds are also likely to contain a higher proportion of HIV

protease inhibitors than found in a library of random compounds. As an additional benefit, any

verified protease inhibitors would ostensibly have low cytotoxicity and be absorbed into human

cells, allowing faster compound optimization.

By applying virtual screening to the subset of the anti-viral compounds obtained from

cell-based screening putative protease inhibitors can be identified and then directly tested for pro-

tease inhibition. For virtual screening, we used the protein-ligand docking program AutoDock39

to estimate binding energies with respect to particular locations on protease. Current FDA-

approved HIV protease inhibitors all target the enzyme’s active site. Although novel active site

inhibitors will continue to provide useful leads, other sites can be considered as well.10 The

current virtual screening study therefore considers the active site and also an alternative protease

binding site, termed the “exo-site.”

Both the active site and exo-site, as shown in Figure 6.7, act as potential drug inter-

action sites for all of the compounds obtained from the NCI. Molecular dynamics simulations

have shown that restricting protein flexibility in the exo-site region can affect enzyme function,

suggesting this site may serve as a drug target.11 In evaluating candidate compounds for testing,

both sites are considered and criteria beyond predicted binding energy are used. Choosing com-

pounds based on binding energy alone can be problematic, as grid-based energy calculations are

often biased by ligand size.144 Therefore, all tested compounds satisfy criteria based on: (1)

predicted binding energy, (2) conformational clustering, and (3) differences between active site

and exo-site binding.

Use of these criteria eliminates more than 90% of the initial pool of docked com-

pounds. By narrowing the field, the final compounds can be ordered and tested against HIV

protease in biochemical assays, which represents the final phase of our process. Given the typ-

ical hit rates from HTS of a random compound library, even a single inhibitor would represent

a modest success, but our final results indicate multiple hits for each binding site. This finding

demonstrates that a virtual screen for inhibitors of specific viral activity, such as protease, from

compounds obtained from a cell-based screening for non-specific anti-viral activity, can narrow

the pool of inhibitor candidates to the point where only a handful of compounds must be tested

against a specific anti-viral target. For HIV researchers investigating novel drug targets, this

strategy should be directly applicable to the discovery of lead compounds.
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6.3.1 Methods

Anti-HIV inhibitor library

The NCI AIDS Antiviral Screen contains information for 43,850 compounds. Of

these, 617 were determined to be highly active against HIV and 1,195 were determined to be

moderately active. 2D chemical structures for 1,585 total active compounds were successfully

retrieved from the NCI. Using Marvin 4.1.6 (ChemAxon, http://www.chemaxon.com), hydro-

gen atoms and 3D coordinates were assigned. After eliminating 109 molecules with exotic atom

types‖, 1,476 compounds remained for computational molecular docking. Gasteiger charges

were assigned to all atoms and rotatable bonds were assigned using AutoDockTools.

Docking protocol

The 2BPW protein structure from the Protein Data Bank85 was used for all dockings

in this study, as it was previously found to be representative of wild-type HIV proteases.139 All

water molecules were removed from the structure. Polar hydrogens were added and Kollman

charges were assigned to all atoms. Affinity grids encompassing the two docking sites were

calculated with 0.375 Angstrom spacing using AutoGrid 4.00. Grids coordinates and sizes are

set as shown in Figure 6.7.

AutoDock 4.0039 was used to evaluate ligand binding energies over the conformational

search space using the Lamarckian genetic algorithm. Default docking parameters were used

with the following exceptions: sw_rho, 0.5; sw_lb_rho, 0.005; ga_num_evals, 1500000; ga_run,

100; rmstol, 1.0.

Determination of inhibitory concentration values

All reactions were run in 100 µl total volume in 96-well microtiter plates, with buffer

containing 50 mM MES (pH = 5.5), 200 mM NaCl, 1 mM DTT, 0.0002% Triton X-100, and 5%

glycerol. Wild-type protease concentration was 25 nM with initial substrate concentration at 30

µM, which approximates the Km under these conditions.

HIV protease activity was measured with a fluorogenic hexapeptide substrate (Abz-

Thr-Ile-Nle-p-nitro-Phe-Gln-Arg-NH2) using an FLX-800 Microplate Fluorescence Reader (Bio-

Tek Instruments, Inc., Winooski, VT). Changes in fluorescence were measured over 15 minutes

at 37°C, with 340/30 nm excitation and 420/50 nm emission filters. Initial reaction rates were de-

‖Only the following atoms types were allowed: H, C, N, O, F, P, S, Cl, Zn, Br, and I.
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Figure 6.7: Location of docking grids on HIV protease structure. The right box encompasses
the enzyme’s active site, while the left box corresponds to the exo-site (alternate binding site).
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termined by linear regression of the initial 2 minutes of the reaction using KC4 (Bio-Tek). IC50

values were determined by non-linear regression using the initial reaction rates versus inhibitor

concentration with Prism 4.0c for Macintosh (Graphpad Software, San Diego, CA).

Promiscuous inhibition assays

The α-chymotrypsin, β-galactosidase, and horseradish peroxidase enzymes were used

to test for promiscuous inhibition. All reactions were run in 100 µl total volume in 96-well

microtiter plates. For the α-chymotrypsin and -galactosidase assays, reactions were performed

as previously reported by McGovern et al.,145 with the exception of enzyme concentration. In-

stead, the enzymes were diluted based on activity units: 0.5 units/ml for α-chymotrypsin and 10

units/ml for β-galactosidase. The chromogenic α-chymotrypsin substrate, succinyl-ala-ala-pro-

phe-p-nitro-anilide, was used at 200 µM, while ONPG, the β-galactosidase substrate, was used

at 1 mM.

For horseradish peroxidase, reactions were run in a buffer containing 50 mM citrate

and 100 mM sodium phosphate at pH 5.0. A chromogenic substrate, o-phenylenediamine dihy-

drochloride, was used at an initial concentration of 1.125 mM. Each reaction contained 5 nM

horseradish peroxidase and 0.03% hydrogen peroxide. A uQuant Microplate Spectrophotometer

(Bio-Tek) was used to measure horseradish peroxidase activity, as a function of OD450. Changes

in color were measured for 5 minutes at room temperature.

6.3.2 Results

Docking

Molecular docking via AutoDock 4 was applied to narrow the pool to less than 100

candidates. A straightforward approach could simply rank the compounds according to predicted

binding energy. However, we elaborate this basic ordering in three ways:

1. Previous virtual screening work involving HIV protease has shown that an energy thresh-

old of -7.0 kcal/mol is sufficient to separate known protease inhibitors from many ran-

domly selected compounds.139

2. Analysis of the entropic properties of protein-ligand docking have shown links between

conformational clustering and binding energy.43, 146 When particular solutions are found

repeatedly, the underlying energy landscape may be guiding the search, indicating greater

entropic favorability, and thus binding energy. Protein-ligand docking programs typically
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Table 6.6: Virtual screen selection criteria and summary of experimental results.
Active site Exo-site

Met ∆G threshold 996 707
Met clustering threshold 196 135
Met ∆G difference threshold 75 48
Compounds tested 27 9
Number of hits 3 2

generate an ensemble of results, which can be clustered to determine the degree of con-

vergence in a solution. In this case, each docking incorporates conformations from 100

independent runs with an RMSD tolerance of 1 Å. In the experiments reported here, a

candidate compound must have a cluster containing at least 10% of the runs.

3. Finally, it is common to see compounds displaying non-specific activity across a range

of compounds, even in virtual screens.36 To address this problem, the use of two distinct

docking sites can be exploited. Since a specific inhibitor is unlikely to bind strongly to

two disparate sites, compounds with similar predicted binding affinity at both sites can

be eliminated from consideration. Due to differences in the properties of the active and

exo-sites, predicted binding energy tends to be more favorable in the active site, leading

to different thresholds for putative active site and exo-site binders. All putative active site

binders considered for biochemical testing had ∆Gactive−∆Gexo < -2.5 kcal/mol, while all

putative exo-site binders had ∆Gactive−∆Gexo > 1.5 kcal/mol.

Together, these thresholds eliminated the majority of the 1,476 compounds from consideration

(see Table 6.6).

75 putative active site binders remained, as well as 34 putative exo-site binders. Since

the exo-site has not been validated as a drug target in vitro, the choice was made to focus pri-

marily on compounds affecting the active site. After further eliminating several macrocyclic and

high molecular weight compounds, 71 putative active site binders and 9 putative exo-site binders

were ordered from the NCI. However, only 36 of the 80 compounds ordered were available and

directly evaluated for their ability to disrupt protease activity in protease-substrate activity as-

says.

Inhibition of HIV protease

All 36 compounds received from the NCI were evaluated against HIV protease at con-

centrations of 1, 5, and 25 µM to estimate protease inhibition as discussed in the Methods. For
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Table 6.7: Verified hits from HIV protease inhibitor screen. NSC 45621 and 79594 are predicted
to bind in the exo-site, while the others are predicted to bind in the active site. 95% confidence
intervals resulting from non-linear regression of triplicate experiments are shown in parentheses.

NCI ID Chemical structure IC50

NSC 45621

OH

N
N

N
H

O

H2N

N
N

S
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O OH

S
O

O

OH

733 nM (684 - 785 nM)

NSC 79594

N
N

N
N

S
O

O

OH

N
N

N
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O

H2N

NH

O
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O

OHO

695 nM (633 - 763 nM)

NSC 661073 Cl SH

S
O

O H
N

N NH
NH

N

1.47 µM (1.32 - 1.65 µM)

NSC 666714
Cl SH

S
O

O H
N N

NHN
NH

2.14 µM (1.87 - 2.45 µM)

NSC 666717 Cl SH

S
O

O H
N N

NHN
NH

O

962 nM (0.821- 1.13 µM)

the purposes of this study, compounds with an IC50 less than 25 µM are considered potential

protease inhibitors. Though FDA-approved protease inhibitors are effective at low nanomolar

concentrations, a low micromolar goal is more realistic for unoptimized compounds. Five com-

pounds showed significant inhibition in this range, and their structures are shown in Table 6.7.

Further tests with a wider concentration range were used to determine IC50 values, as

shown in Figure 6.8. The three putative active site inhibitors are nearly identical in structure,

differing only by functional groups in a phenyl ring. These differences appear to have minor

effects on protease inhibition, as the IC50 values for these three compounds vary significantly,

though all are in the low micromolar range. Structures of the two putative exo-site inhibitors are

quite similar to each other as well.

Current HTS experiments often discover promiscuous inhibitors, which inhibit through

concentration-based aggregation, rather than more desirable specific inhibitors.141 To assess

promiscuous inhibition, the five compounds found to be effective against HIV protease were

tested with increased levels of detergent (0.01% Triton X-100) and with protease concentration

increased to 50 nM. In both cases, no significant changes in inhibition were detected (data not
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Figure 6.8: Dose-response curves for compounds exhibiting low micromolar or sub-micromolar
inhibition of HIV protease. Curves for the putative exo-site binders are shown at the top, the
bottom three curves correspond to putative active site binders.

shown). Also, as shown in Figure 6.8, the dose-response curves were not especially steep. All

of these observations are consistent with non-promiscuous inhibition.

Additionally, these five compounds were tested against horseradish peroxidase, α-

chymotrypsin, and β-galactosidase in chromogenic assays. With compound concentrations of

up to 500 µM, no inhibition of horseradish peroxidase or β-galactosidase was detected for any of

the five protease inhibitors. Some inhibition of α-chymotrypsin was noted for all 5 compounds,

with apparent IC50 values between 50 and 500 µM.

Potential allosteric inhibition

The predicted binding mode of NSC 45621 is shown in Figure 6.9. In this conforma-

tion, the compound fits into a long groove along the side of the protease, and is likely to interfere

with the protein’s mobility. The predicted binding mode of NSC 79594 (not shown) is similar.

If the exo-site acts as an allosteric inhibition site, then compounds binding in this

area should cause non-competitive inhibition. As shown in Figure 6.10, both putative exo-site

binders display decreasing Vmax as inhibitor concentration increases, consistent non-competitive

inhibition. In addition, the dose-response curves of both NSC 45621 and NSC 79594 show

Hill coefficients between 2 and 3. Since HIV protease is symmetric, each dimer contains two

exo-sites, allowing two separate binding events. With some level of cooperativity in binding,

a Hill coefficient greater than 2 would be expected. However, it must also be noted that non-



112

Figure 6.9: Predicted binding mode for NSC 45621. The colored regions of the protease corre-
spond to Gly40 and Gln61, which were constrained in a previous study.11
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competitive inhibition and high Hill coefficients are associated with promiscuous inhibition.141

6.3.3 Discussion

From an existing cell-based screen of anti-HIV compounds, computational molecular

docking was used to discover novel inhibitors of HIV protease. By combining high-throughput

cell-based and virtual screening, a small number of potential protease inhibitors were identified

from the original compound library, allowing direct testing against HIV protease in vitro. Of 36

compounds tested, 5 were found to inhibit protease with IC50 values all less than 2.5 µM, and as

low as 700 nM. While typical HTS experiments yield verified hit rates of less than 0.1%, the hit

rate for this approach was 13.9%. While direct comparisons are problematic, this represents an

increase of several logs over the HTS screen conducted by Doman et al., which had a hit rate of

0.021%.34

Our virtual screening strategy allows specific regions of the protease enzyme to be

interrogated for possible drug binding. While FDA-approved protease inhibitors all target the

enzyme’s active site, the entire chemical library was docked against a putative alternate binding

site as well as the active site. This facilitated the use of a novel analysis technique which com-

pared predicted binding energies in each of the sites in order to filter out compounds predicted

to bind indiscriminately. The five verified inhibitors are divided between each target, which pro-

vides a rich opportunity for further study. Although the mechanism of inhibition has not yet been

experimentally verified for all compounds, the docking results suggest the possibility that two of

the compounds may be allosteric inhibitors.

Since these compounds inhibited HIV protease in the high nanomolar/low micromo-

lar range, it was possible that promiscuous inhibition played a role. Assays with horseradish

peroxidase and β-galactosidase showed no inhibition from any of these compounds, even at con-

centrations far greater than the IC50 values for HIV protease. At high concentrations, the five

compounds did inhibit α-chymotrypsin. However, as a serine protease, there may be enough

structural similarity between α-chymotrypsin and HIV protease to account for the weak in-

hibitory effects of the compounds found. Taken together with the horseradish peroxidase and

β-galactosidase experiments, though, promiscuous inhibition seems unlikely since inhibition

was not seen in all cases, even at concentrations of 500 µM. Moreover, these compounds are

meant for use as scaffolds or probes for further rounds of the drug development cycle, and so

may be seen as a stepping stone toward higher affinity inhibitors with greater specificity.
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Figure 6.10: Saturation curves for putative exo-site binders and amprenavir (control), using
Michaelis-Menten curve fits with increasing inhbitor concentrations.
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Optimization of these compounds should benefit due to the source of the chemical li-

brary. Because these compounds have already been screened in human cell-based assay, there

is reason to believe that they are absorbed into cells and may have low cytotoxicity. With these

properties, the lead optimization of identified compounds should be streamlined. Since a modest

virtual screen followed by small-scale biochemical verification of activity has led to the dis-

covery of five low micromolar and sub-micromolar protease inhibitors, future drug discovery

efforts focused on additional HIV targets could benefit from this strategy. Given similar high-

throughput cell-based experimental findings for bacterial and other viral pathogens, our approach

may be applicable for identification of starting compounds that target various pathways in these

pathogens.
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Chapter 7

HIVLink

7.1 Introduction

Since the mid-1990s, there has been tremendous growth in the amount of biological

data available in online databases. GenBank, the NIH sequence database has grown from roughly

1 million sequences in 1995 to over 80 million in 2008.147 During this time, there has also been

major growth in scientific publishing related to the life sciences. The number of articles indexed

at PubMed, the premier biomedical literature database, exceeds 17 million, encompassing more

than 5,000 journals. This enormous corpus spans many fields and has benefited from the use of

traditional text search methods. However, specific groups of users with common interests may

benefit from specialized techniques.

The HIVLink program was designed to serve an audience interested in HIV drug re-

sistance. Although there are nearly 200,000 HIV-related articles in PubMed, researchers may be

interested in a particular area, such as clinical practice or drug development. By first restricting

the corpus to a specific subset of literature, it becomes possible to incorporate features that are

especially useful for this focused body of work. For example, important synonyms can be taken

into account while performing a search. Additionally, following retrieval of a large set of arti-

cles, useful aggregate statistics can be displayed, such as the frequency distribution of relevant

drugs and mutations.

HIVLink also exploits several techniques of interest to a general audience: the inclu-

sion of citation indexing and spreading activation search,148–152 which is a unique approach to

finding related articles. The spreading activation search treats a set of documents as a network,

with connections formed by textual similarity and citations. This type of search allows a more

116
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expansive notion of similarity in literature, allowing the discovery of related work that would

not be found by a traditional search engine. A spreading activation search is also easily used

to search by example. In other words, a specified set of known relevant articles can be used

to perform a search, where the results are based on citation and overall text similarity to the

given articles. HIVLink’s graphical user interface also provides a quick display of temporal and

citation information.

7.2 Interface

The HIVLink application window is shown in Figure 7.1. The main window displays

the result of a query, where each article is represented by a rectangular node. Each node is

labeled based on the first author’s surname and the year of publication (see Figure 7.2a). Darker

nodes indicate that the query was matched exactly, while the lighter nodes represent articles that

were determined to be relevant by the spreading activation search (see section 7.5 for details).

The articles are arranged vertically based on their score, more relevant articles are found toward

the top. Horizontal arrangement is based on the year in which the article was published, with

newer articles toward the right. Black edges between nodes indicate a citation relation, i.e. the

newer article cites the older one.

A number of subpanels display information related to the selected article or the entire

set of documents retrieved. The currently selected article’s title, authors, and abstract are shown

on the right. Pushing a button with the article’s PubMed ID will open the selected article’s

PubMed record. Two bar graphs at the top of the window display aggregate information from all

articles shown in the main window. The rightmost graph (Figure 7.2b) shows the prevalence of

mutations at specific positions mentioned in the abstracts of the retrieved articles. Clicking on

part of the graph will select articles that refer to the appropriate mutations, which can be added

to a clipboard or used for further searches. The other graph (Figure 7.2c) shows the number of

articles which mention specific protease inhibitors. Similar to the graph of mutation frequencies,

clicking on a drug will select the corresponding articles.

7.3 Corpus

The NCBI’s PubMed service provides titles, abstracts, and keywords for the articles

that it indexes. PubMed contains roughly 185,000 articles related to HIV, as of May, 2008. The

current version of HIVLink indexes only PubMed records related to HIV protease, which total
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Table 7.1: HIV drug names and synonyms.
Brand names Generic name Abbreviation Experimental codes

Agenerase amprenavir APV 141W94, VX-478
Crixivan indinavir IDV MK-639

Fortovase, Invirase saquinavir SQV Ro-31-8959
Kaletra, Aluvia lopinavir LPV ABT-378

Norvir ritonavir RTV ABT-538
Reyataz atazanavir ATZ BMS-232632
Viracept nelfinavir NFV AG-1343

13,719, using the following query:

(protease AND (HIV-1 OR HIV OR (human[Text Word] AND

immunodeficiency[Text Word]))) OR HIV protease OR HIV protease inhibitors

Across a wide range of search, citations are a highly desirable means of finding re-

lated articles,153 Google’s PageRank technique shows how much a keyword search engine can

benefit from this type of information.154 However, citation information is not currently used

by PubMed’s related article facility. For a limited set of PubMed articles, full text is available

from PubMedCentral, which includes citation information. Of the PubMed articles related to

HIV protease, approximately 1,000 are present in PubMedCentral and have associated citation

information.

7.4 Synonymy

Synonymous relationships among words can make broad searches difficult. HIV drugs

can be referred to by brand name, generic name, an abbreviation, or even an experimental code

(see Table 7.1). In searching for “amprenavir,” for instance, a researcher is also presumably

interested in articles where “VX-478” or “APV” is mentioned. In making this assumption, a

focused corpus is important, as the context of “APV” is clear when discussing HIV protease and

its inhibitors, but not across all biomedical literature. For example, “APV” may also refer to

avian polyomavirus.

Similarly, mutations in HIV proteins are often referenced using a shorthand notation.

A mutation in HIV protease at position 84 from the wild-type isoleucine to valine is signified as

“I84V.” However, the wild-type residue is sometimes omitted, and the mutation shown as “84V.”

As these references are interchangeable, a search engine should treat them as equivalent. These

examples are relatively simple, but show that some kinds of synonymy can be addressed with

simple tables. The spreading activation search technique, described in the following section,
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may also be of use, but the general problem remains deep and connected to full natural language

processing.

7.5 Spreading activation search

Traditional search engines find documents whose contents match a user’s query, based

on the presence of keywords. However, a keyword-based may be inadequate for some users’

purposes. Other problems, such as changing vocabulary, may also make searches more difficult.

For example, in the early 1990s, some articles referred to HIV “proteinase” rather than “pro-

tease,” which has become the dominant term. Since the context of these articles is similar, the

overall level of textual similarity between documents can be used to improve retrieval.

HIVLink uses search engine results from a user’s query to “activate” matching articles,

taking synonyms into account. These articles propagate activity to other articles with similar text

or a citation relationship. This propagation continues for several iterations, in a process known

as “spreading activation” (see Figure 7.3). At the end of this process, the results are ordered by

activity rather than the keyword-based search. This allows the integration of different sources of

evidence that may match the user’s interests. Although an article may not match a user’s request

explicitly, a closely related article can often be relevant.

In some situations, a user may have a set of articles, and wish to find additional related

articles. A traditional search would likely involve a combination of keyword-based search and a

review of cited works. With HIVLink, a search can be “seeded” using a list of PubMed IDs. The

use of spreading activation search involves both text similarity and available citation information,

using both as a factor in finding related articles. Furthermore, relationships between multiple

articles are taken into account. For instance, when two “seed” articles are linked to another

work, activity propagates along both edges, and indicates greater relevance.

7.6 Implementation details

HIVLink is a cross-platform application written in Java. It has been tested successfully

on Windows, Linux, Solaris, and OS X platforms. The program is split into server and client

applications, which communicate through Java’s RMI facility. The GUI is Swing-based, and

there is a command line interface as well. Traditional keyword searching is handled by Lucene,

a high-performance text search engine.155
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7.7 Conclusion

HIVLink is a prototype system designed to explore a new methodology for retrieval

system design. It developed out of a close collaboration with biologists actively engaged in the

investigation of structural features that emerge with drug resistance. The techniques described

here can be extended to support investigation of other major drug classes that are typically part

of AIDS therapy. Effort will be devoted to incorporating additional forms of evidence, such

as authorship, to augment the spreading activation search. Future versions will benefit from

relevance feedback studies derived from observations of user behavior.
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Chapter 8

Conclusions

This dissertation has focused on two areas related to HIV drug resistance: anticipat-

ing evolution of the virus in response to drug therapy and the development of new inhibitors.

In modeling the evolution of the virus, a general model of fitness was developed, which was

factored into replication capacity and drug resistance components for individual proteins. The

protease and reverse transcriptase enzymes remain the main HIV drug targets, and were the main

focus of this work. Special emphasis was placed on protease, which has been a major target for

structure-based drug design.

In predicting the replication capacity component of viral fitness, several sequence-

based machine learning methods were shown to be imprecise with currently available data. As an

alternative, a phylogenetic approach examining sequence diversity for HIV protease homologs

was able to predict impairments in enzyme function that correlated with experimentally observed

catalytic efficiency.

To complement the study of replication capacity, the contribution of individual mu-

tations to drug resistance was measured by structural modeling of protease-ligand interactions.

A combination of the structure-based models and estimates of replication capacity were able

to predict over half of the major resistance mutations for clinically-approved HIV protease in-

hibitors. This approach was extended to identify resistance mutations for a novel protease in-

hibitor, AB2. Protease mutants containing the 47V, 53L, and 84V mutations were constructed

using site-directed mutagenesis, then tested for resistance in vitro. Each of the mutations con-

ferred resistance against AB2 individually and showed further increases when combined, up to

16-fold increase in IC50 for the triple mutant. The same mutations were predicted to have a lesser

effect of amprenavir resistance, which was also experimentally verified in vitro.
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Moving beyond the prediction of specific resistance mutations, the evolution of HIV

in response to drug therapy was studied by simulating a viral population. The core of this simu-

lation incorporated a viral fitness function based on predictions of replication capacity and drug

resistance. In addition, the epistatic interactions between mutations were modeled using the re-

sults of a covariation analysis on viral isolates. The fitness function showed significant accuracy

in ranking the relative fitness of various drug resistant protease mutants. Incorporating this func-

tion into the simulation framework allowed the evolution of a viral population in the presence

of inhibitors. The prevalence of mutations in a simulated population correlated with the clin-

ically observed frequencies for protease inhibitor treatments, showing that the simulation was

capturing substantial aspects of viral fitness. Next, the simulation was used to predict the ef-

fects of protease inhibitor combination therapy, finding that combinations of clinically-approved

inhibitors were no more effective than single inhibitor treatments.

These existing protease inhibitors all share a common target, the enzyme’s active site,

and exhibit substantial cross-resistance. Use of the simulation allows experiments involving hy-

pothetical inhibitors, such as an allosteric protease inhibitor. Resistance mutations were assumed

to arise easily against this putative inhibitor when used individually, limiting its effectiveness as

a single inhibitor treatment. However, when combined with clinically-approved protease in-

hibitors, treatment was highly effective, in contrast to combinations of inhibitors that targeted

the active site. Even relatively weak inhibitors that target novel binding sites should serve as

excellent complements to existing inhibitors.

In seeking out new inhibitors, models of protein-ligand binding can play an important

role. Early studies focused on finding representative protease structures and estimating entropic

contributions based on conformational clustering. These findings were applied in a subsequent

virtual screen for inhibitors of HIV protease. A key feature of this screen was the use of pre-

screened compounds with anti-HIV activity, rather than a random library. In vitro testing of

the best candidates from the virtual screen found five inhibitors with IC50 near 1 micromolar.

Importantly, two of these inhibitors were predicted to bind outside of the protease active site and

displayed properties consistent with allosteric inhibition. Additional tests of this binding mode

will be performed in future studies, but the use of a virtual screen was key in targeting this novel

site and minimizing the number of compounds tested in vitro.
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8.1 Future directions

8.1.1 Simulation of HIV infection and drug resistance evolution

The simulation of HIV evolution showed better correlation with protease-based data

sets than reverse transcriptase. Further research will address this deficiency, focusing on the

prediction of replication capacity. This area would benefit from additional information for data

mining, which would be useful in improving regression results. A more general approach in-

volving structural modeling would be helpful, but remains difficult for several reasons. Even for

protease, which is well-characterized structurally, the large degree of flexibility in its substrates

makes docking studies intractable. Beyond calculating the affinity between protease and the

substrates, modeling kcat remains a challenge.

Extending the simulation to incorporate multiple compartments would be a useful step

in modeling infection. Currently, infection is represented by a single population that can be

eradicated with sufficiently high levels of inhibitor. This does not occur in vivo, partially due to

viral reservoirs in different parts of the body. Each of these locations exhibits different properties,

such as drug accessibility and structural organization, which could greatly impact the outcome

of different drug treatments.

Another factor not yet explored was the role of time in the simulation. Future work

will attempt to connect the rate of evolution in silico to the results observed during serial passage

experiments. Genetic selection episodes from clinical records also provide temporal information,

as well as viral load and CD4 counts. These values could be used as the first steps in extending

this simulation to model in vitro drug resistance evolution and interaction with the immune

system.

8.1.2 Docking and entropy

The entropy-related studies in Chapter 6 represent the first steps in finding a fast

method for determining the contribution of vibrational entropy. Using cluster size as an ap-

proximation of an entropic contribution was found to improve binding energy predictions and

the ranking of docked conformations. The clustering of independent docking runs depends on

the docking search process that, in turn, depends on the underlying energy landscape. Initial ef-

forts to perform local sampling of the energy landscape were not able to improve docking results

as much as cluster-based methods, but this will continue to be an active avenue of exploration.

In the short term, exploring larger conformational spaces may be sufficient to improve the local
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sampling method and will be useful in further characterizing energy landscapes in low-energy

regions.

Beyond utility in improving binding energy estimates, better understanding of protein-

ligand energy landscapes has the potential to improve the underlying search mechanics in AutoDock.

The current search algorithm incorporates a Solis-Wets local search, which attempts to descend

energy gradients using randomly generated steps. Key parameters in this process control the

average size of these steps and, indirectly, the size of space explored. In the current version

of AutoDock, these parameters are based on global search performance on a small set of test

systems.40 However, enumeration of the energy landscape through an extension of the local

sampling procedure provides the opportunity to more directly set the parameters that guide local

search. The step size, for instance, should be guided by the average size of local minima. Im-

provements in the local search process would lead to greater efficiency for the overall docking

process.

Entropic considerations may be incorporated more directly into the overall docking

process. Currently, AutoDock runs are performed sequentially and independently, with cluster-

ing calculated after all searches are complete. With little additional effort, the runs could be

executed in parallel, rather than sequentially, and with clustering performed after each gener-

ation. A significant level of convergence in clustering would signal early completion, sparing

computational effort. Further improvements involving entropy are possible in the search al-

gorithm. While the genetic algorithm component of the AutoDock search procedure is driven

through recombination and selection of the most favorable conformations, much information is

lost. AutoDock may evaluate the binding energy of millions of conformations, while only re-

porting on a handful. More detailed tracking of these conformations over the duration of the

search process could reveal more global aspects of the energy landscape and further improve

estimates of binding energy.

8.1.3 Finding novel HIV inhibitors

The virtual screening process described in Chapter 6.3 was successful in discovering

new inhibitors for HIV protease. A key feature of this work was the use of a pre-screened chem-

ical library effective against HIV. As the work in FightAIDS@Home continues to focus on HIV

protease, this set of compounds may prove useful in targeting specific mutants. More generally,

virtual screens with this library should be useful against other HIV proteins which have known

structures. For example, crystal structures are available for portions of the integrase and Nef pro-
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teins, making them viable targets for virtual screening. Although inhibitors of various potency

are available for both of these proteins, further study may yield novel scaffolds or alternative

binding sites.

The putative allosteric protease inhibitors shown in Chapter 6.3 remain subjects of

active interest. Attempts are underway to validate the binding modes of these inhibitors through

x-ray crystallography and molecular dynamics simulations. Apart from experiments involving

these particular inhibitors, more direct studies of the exo-site region are also important in order

to verify that impeding structural flexibility of the protein at this site is effective in disrupting

protease function. This could be tested by engineering a disulfide bond in the exo-site region

through site-directed mutagenesis. Alternatively, a tethered-ligand strategy could be useful in

directly targeting this site.156

Throughout this process, it will be important to keep in mind the development of drug

resistance. In targeting regions of HIV protease outside of the active site, resistance is likely to

arise easily because mutations will have lesser effects on viral replication capacity. Allosteric

inhibitors of HIV protease will be most useful in augmenting existing protease inhibitor-based

treatments.
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