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Abstract

The way in which jurors perceive reports of forensic evidence is of critical importance,

especially in cases of forensic identi�cation evidence that require examiners to compare items

and assess whether they originate from a common source. The current study discusses meth-

ods for studying group di�erences among mock jurors and illustrates them using a reanalysis

of data regarding lay perceptions of forensic science evidence. Conventional approaches that

consider subpopulations de�ned a priori are compared with mixture models that infer group

structure from the data, allowing detection of subgroups that cohere in unexpected ways.

Mixture models allow researchers to determine whether a population comprises subpopula-

tions that respond to evidence di�erently and then to consider how those subpopulations

might be characterized. The reanalysis reported here shows that mixture models can enhance

understanding of lay perceptions of an important type of forensic science evidence (DNA and

�ngerprint comparisons), providing insight into how the perceived strength of that evidence

varies as a function of the language forensic experts use to describe their �ndings. This novel

application of mixture models illustrates how such models can be used, more generally, to

explore the importance of juror characteristics in jury decision making.

Keywords: forensic science, testimony, reporting, identi�cation, probability, evidence

1 Introduction

The use of lay jurors as triers-of-fact has been a central element of the Anglo-American system

of justice and is becoming more common in Europe as well (Bradley, 1996). Lay jurors are said

to bring the �conscience of the community� to fact-�ndings, thus assuring that the outcome of

trials re�ects the coalescence of a diverse range of values and opinions. Concerns have been raised,

however, about the ability of lay jurors to understand the evidence, particularly in trials that
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turn on scienti�c testimony, such as criminal trials where forensic science is used to identify the

defendant as the perpetrator (Thompson, 2018). Three major areas of research in this context focus

respectively on the role of juror characteristics, expert witness characteristics and the language

used to describe the evidence in understanding jury perception of forensic testimony. In this

introduction, we brie�y review �ndings in these areas and describe how they motivate the present

study which focuses on identifying group di�erences among jurors that may a�ect their evaluations

of the language used by forensic examiners. The research described here is especially timely given

ongoing discussions in the forensic science community (e.g., in the Organization of Scienti�c Area

Committees for Forensic Science1) about appropriate language for conclusions.

Considerable work has been done on the relationship between jury characteristics and jury

decision making. MacCoun (1989), in his survey of experimental research on jury decision-making,

looked at the in�uence of jurors' observable pre-trial characteristics on their verdicts, and concluded

that the e�ect was negligible. A more comprehensive survey by Devine et al. (2001) of 206

studies on factors associated with verdicts carried out between 1955 and 1999, focused on four

primary categories of factors: (a) procedural characteristics, (b) participant characteristics, (c)

case characteristics, and (d) deliberation characteristics. The participant characteristics considered

included personality traits (such as authoritarian tendencies), demographic features (gender, socio-

economic status, race, education, age), social attitudes, self-perception and self-assurance. Again

it was found that few if any juror characteristics were useful predictors of juror verdict preferences.

Similarly, studies that look speci�cally on lay reactions to the language used by forensic scientists

(our focus in this article) have found little evidence of group di�erences. The few variables that

1See the Standard for Friction Ridge Examination Conclusions

https://www.nist.gov/topics/organization-scientific-area-committees-forensic-science/

friction-ridge-subcommittee)
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predict outcomes in some studies (e.g., subjective numeracy, Scurich, 2015; gender and con�dence

in math skills, Thompson, Kaasa and Peterson, 2013), have not consistently been predictive in

other studies (e.g., Thompson and Newman, 2015; Martire et al. 2013; 2014).

But all previous studies of juror characteristics have been �hypothesis-driven.� In other words,

they tested hypotheses generated in advance by the researchers about what characteristics might

be important or what group di�erences might exist. This traditional research strategy may miss

sub-group structure in the data that researchers fail to anticipate because the groups cohere in

unexpected ways. The study reported here shows how this limitation can be addressed with a

�data-driven� approach to exploring group di�erences. Using statistical methods that are novel in

this context, our approach infers the existence of groups from the data itself, allowing detection

of coherent subgroups that might otherwise not have been detected. To our knowledge, this is the

�rst article to use this approach in the study of jury decision making. Our approach uses mixture

models, a class of statistical models that test whether the data are more consistent with a model

assuming subpopulations than a model that assumes homogeneity (no subpopulations) using a

Monte Carlo approach (Lindsay and Lesperance, 1995; Morduch and Stern, 1997). To illustrate

this approach, we reanalyze data from a recent study of lay evaluations of the language used by

forensic scientists to characterize the strength of their �ndings (Thompson et al. 2018a), showing

how our novel application of statistical methods can be used to provide fresh insights.

Numerous studies have examined how the language used by an expert witness may impact

on the jury. O'Barr (1982) found that witnesses who employed �powerful speech� and thus ex-

uded con�dence were seen by mock jurors as more convincing, truthful, competent, intelligent

and trustworthy compared to witnesses who used �powerless speech� and projected low con�dence.

Furthermore, mock jurors rated expert witnesses who used a formal speech style (which included

usage of lay terminology and people's names) as more convincing, competent, quali�ed, and in-
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telligent compared to a hypercorrect style which refereed to people in impersonal ways (i.e., �the

client�), used technical terminology, and preferred a pedantic word choice. Bank and Poythress Jr

(1982) concluded that in the �eld of mental health, the impact of the expert witness may depend

to a large degree on elements of persuasion, for example the ability to weave expert observations

into a scenario which incorporates important evidence, a free-�owing, narrative style, and compo-

nents of "powerful" versus "powerless" speech. Champagne, Shuman and Whitaker (1990) found

that jurors were favorably impressed by experts who had strong communications skills, appear-

ance of knowledge, and impressive educational credentials. Ivkovi¢ and Hans (2003) found that

jurors preferred clear, well-paced, and concise testimony, given enthusiastically and supported by

technical aids. Regarding the content of the testimony, jurors were in�uenced by its completeness,

consistency, and complexity, the understanding of which required a clear explanation. The Wit-

ness Credibility Scale (WCS), developed and validated by Brodsky, Gri�n and Cramer (2010),

linked witness credibility to four primary factors: �knowledge,� �likeability,� �trustworthiness,� and

�con�dence.� In their study of expert testimony during homicide cases, McCarthy-Wilcox and Nic-

Daeid (2018) found that juror perceptions of the experts' credibility were based upon the latter's

academic quali�cations, con�dence shown when answering questions, demeanor and status as gov-

ernment employees. Jurors described a deeper understanding as a result of narrative testimony

and this was reported to be a key factor in the jurors' acceptance that the witness was credible.

Overall, it appears that clear, concise, credible, and con�dant testimony by expert witnesses has

the greatest e�ect on jurors, but questions remain as to the impact of di�erent types of statement

language and that is the issue addressed here.

Until recently, scienti�c forensic evidence was generally perceived as authoritative, clear cut

and immune to bias. However, the picture regarding comprehension of forensic evidence is more

complex. Motivated by a desire to increase the accuracy and logical cohesiveness of scienti�c
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testimony, and to ensure its presentation in a form that can be understood by jurors, researchers

have been drawn to the way in which the evidence is delivered in a court of law. A considerable body

of research has examined the question of how potential jurors understand conclusions presented in

many di�erent quantitative and qualitative formats. Eldridge (2019) reviewed a large portion of

the available literature on juror comprehension of forensic science testimony and concluded that

jurors �often undervalue evidence, particularly if it is in a discipline that they may have previously

considered to be less discriminating. They do not understand numerical testimony well, although

they may prefer to hear it, and they vary widely in their interpretation of verbal expressions. . . �.

Concerns about the impact of conclusion language on the interpretation of evidence have played

a key role in recent debates among forensic scientists about the best ways to present their �ndings

in reports and testimony in criminal trials. Categorical statements such as �the defendant's right

index �nger has been identi�ed as the source of the �ngerprint found on this knife� might be easy to

understand but may also fail to acknowledge the uncertainty associated with the conclusion or the

possibility of error, thus over-stating the conclusion (National Academy of Sciences, 2009; PCAST,

2016). In response to these criticisms, forensic scientists have, in recent years, been considering

various alternative methods of presentation that allow more nuanced statements regarding strength

of evidence, including numerical statements such as likelihood ratios and match probabilities, as

well as qualitative statements about the strength of evidence (Thompson, 2018; Thompson et

al. 2018b). Such statements are easier to justify scienti�cally, but may be more di�cult for

laypeople to understand, raising the possibility that injustice might arise due to misunderstanding

or misinterpretation.

Social scientists have begun to explore this issue, although the research is in its infancy (Martire

et al. 2013; Martire et al. 2014; Thompson and Newman, 2015; Mitchell and Garrett, 2019). The

studies published thus far share a common limitation�they treat jurors as a single, homogeneous
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population, not allowing for the possibility that di�erent subgroups in the diverse population of

potential jurors may respond to scienti�c evidence in di�erent ways. At best the studies have

examined the e�ects of a few demographic and background variables, �nding little of note. This

article uses a statistical method that is novel in this context in an e�ort to generate fresh insights

about heterogeneity in the population when it comes to juror interpretation of forensic conclusions.

Section 2 reviews the setting in which juror interpretations of forensic evidence testimony is

investigated here. Section 3 presents approaches for modeling subpopulations. In Section 3.1

an exploratory analysis of subpopulations de�ned by speci�c characteristics is conducted. An

alternative approach using mixture models, new to this area of research, which does not require

pre-de�ned subpopulations is presented in Section 3.2. Section 4 discusses the �ndings and possible

implications for practice. A concluding summary is provided in Section 5.

2 Studies of juror perception of forensic evidence

To explore juror perception, we utilize the data from three studies used in Thompson et al. (2018a)

in which jury-eligible adults recruited from Amazon's Mechanical Turk (mTurk) evaluated the

relative strength of statements used to report a forensic scientist's conclusion following a �ngerprint

comparison (Study 1 and 2) or DNA comparison (Study 3).

2.1 Types of forensic evidence statements

One area in which juror comprehension of forensic evidence has been studied deals with statements

which compare two pieces of evidence, one from a known source and the other of unknown or

questioned origin, in order to determine whether the two share a common source. The questioned

and the known items vary from one area of forensic evidence to another. For example, in �ngerprint
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comparison, it is common that the crime scene print is the element with questioned source and

the suspect's print is of known source, while in the case of glass comparison, the crime scene glass

fragments often have a known source while the glass fragments from the suspect are of questioned

origin. The logic of forensic examination involves the identi�cation of similarities and di�erences

between the evidence from a crime scene and the evidence associated with a suspect. In order to

reach a conclusion, the examiner has to consider the likelihood of �nding the observed similarities

and di�erences under two hypotheses regarding the source of the items; (1) that the items have the

same source; and (2) that the items have a di�erent source. In doing this the examiner takes into

account the quantity and quality of characteristics that agree as well as how unusual the matching

characteristics are. Forensic scientists report the strength of their source conclusions to the court

in various ways. Here we summarize one classi�cation of statements based on the Thompson et

al. (2018a) study that serves as a starting point for our investigation. Thompson et al. (2018a)

consider statements in several categories:

1. Statements regarding the relative probability of the observed results if the items have the

same source or di�erent source, which can be:

(a) Likelihood Ratios (LRs)

(b) Verbal Strength of Support Statements (SOS)

2. Statements regarding the probability of the observed results if the items have a di�erent

source, which can be:

(a) Random match probabilities (RMP)

(b) Verbal statements about the Likelihood of Observed Similarity (LOS)
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3. Qualitative Source Probability Statements (QSP), sometimes known as statements of poste-

rior probability.

4. Categorical Conclusions (CC).

LRs represent the relative probability of the observed similarities and discrepancies in the evidence

under two alternative hypotheses about the source of the items (same-source or di�erent-source).

One example of a statement of this type is �The genetic features observed in the evidentiary

sample are 100,000 times more likely if the sample contains DNA from defendant than if the

sample contains DNA from a random unknown Caucasian.� SOS statements are non-numerical

statements about the degree to which the results of a forensic comparison support the proposition

that the items have the same source (or a di�erent source). An example of such statement is

�there is moderately strong support for the theory that the suspect is the source." RMPs are

sometimes used when a comparison reveals matching features in two items. The examiner estimates

and reports the frequency of the matching features in a reference population. For example, �the

probability that a random Caucasian-American would match this DNA pro�le is 0.0000001 or 1 in

10 million.� QSPs are used by forensic examiners to express opinions on the probability that two

items have a common source in a qualitative manner. For example, the forensic scientist might

say it is �moderately probable� or �highly probable� or �practically certain� that two items have a

common source. CC statements are used by forensic scientists in some disciplines to simply state

the conclusion about whether two items have a common source. An example for such statement

is �the crime scene �ngerprint matches the suspect's� or �I identi�ed the suspect as the source of

the print.� For a more detailed explanation of the di�erent types of statements see Thompson et

al. (2018a).
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2.2 Study design and analysis

The analysis is based on 3 studies. In each, jury-eligible adults evaluated pairs of statements,

indicating which of the two was perceived as being stronger evidence that the items originate from

the same source. Figure 1, repeated from Thompson et al. (2018a) provides an example of a pair

of statements given to participants to compare as part of Study 2.

Figure 1: Example of how pairs of statements were presented to participants (Thompson et al.

2018a).

A paired comparison study design was used for assessing the perceived strengths of the state-

ments because pilot studies indicated that people can provide more meaningful responses when

asked to evaluate the relative strength of two statements than when asked to evaluate a large num-

ber simultaneously. The data from the studies were analyzed using a paired comparison model.

The model assigns a strength parameter to each statement, λi, i = 1, . . . , N , where N is the num-

ber of statements. The probability, πij, that statement i is found stronger than statement j in

terms of these parameters, is assumed to be πij = F (λi − λj), where F is a cumulative distribu-

tion function (CDF). When F is the Normal CDF, the paired comparison model is known as the

unstructured Thurstone-Mosteller model (Thurstone, 1927) and when F is Logistic, the model is

known as the unstructured Bradley-Terry model (Bradley and Terry, 1952). Let Ykij = 1 indicate

that statement i is preferred to j by subject k and 0 otherwise. In the case of the Bradley-Terry
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model the likelihood of the observed data is

L(λ
¯
|y
¯
) =

∏
k∈K

∏
ij∈Ik

(
eλi−λj

1 + eλi−λj

)ykij
·
(

1

1 + eλi−λj

)1−ykij

whereK is the number of subjects and Ik are the statements subject k compared. The λ parameters

are estimated using maximum likelihood and the resulting estimates provide an indication of the

relative strength of the statements in the studied population.

Note that the probabilities remain the same under an additive constant change of the param-

eters (the parameters are not identi�able) and thus one of the parameters should be set to a

constant. The statement RMP3 ("one person in 100, 000") was used as the reference category

since it was present in all studies. The estimated strength parameter for RMP3 is reported as zero

in each case. The estimate presented for each other statement indicates the strength of that item

relative to RMP3, with positive numbers indicating the statement is perceived as stronger than

RMP3, and negative numbers indicating it is perceived to be weaker.

In each study nine statements were paired randomly, creating a pool of 36 possible comparisons.

The number of pairs evaluated by each participant was limited to a selection of 16. Some statements

were used in all three studies; some in just one or two of the studies. Table 1, reproduced from

Thompson et al. (2018a), presents a complete list of statements used throughout the studies. Study

1 includes various numerical statements that allow us to focus on di�erences in the population with

respect to quasi-quantitative and quantitative reports while studies 2 and 3 make it possible to

compare qualitative categorical statements to newer quantitative approaches. In addition to the

variation in the statements that were included, the studies used di�erent forensic evidence types.

Studies 1 and 2 were based on �ngerprint comparisons and Study 3 on DNA comparison. Study

1,2 and 3 included 120, 121 and 138 participants respectively.2

2These sample sizes di�er slightly from those reported in Thompson et al. (2018a) because unusual covariate
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Study Statement

Match frequency (RMP)

2,3 RMP4: "one person in 10 million"

1, 2, 3 RMP3: "one person in 100, 000"

1, 2 RMP2: "one person in 1, 000"

1 RMP1: "one person in 10"

Likelihood ratios (LR)

3 LR4: "10, 000, 000 times more likely" if suspect rather than random person is source

3 LR3: "100, 000 times more likely" if suspect rather than random person is source

Categorical conclusions (CC)

3 CC5: "suspect was the source" person is source

2 CC4: "individualized . . . as coming from the �nger of the suspect"

2 CC3: "identi�ed . . . to the �nger of the suspect"

2 CC2: "matches the �ngerprint of the suspect"

3 CC1: "suspect could have been the source"

Likelihood of observed similarity (LOS)

2 LOS1: "likelihood of observing this amount of corresponding ridge

detail when two �ngerprints are made by di�erent people is considered extremely low"

Source probability statements (SP)

1 SP3: "a practical certainty that suspect was the source"

1, 2, 3 SP2: "highly probable"

1 SP1: "moderately probable"

Strength of support (SOS)

1, 2, 3 SOS4: "extremely strong support"

3 SOS3: "very strong support"

1 SOS2: "moderate support"

1 SOS1: "weak support"

Table 1: The statements used in the studies Thompson et al. (2018a)

Five characteristics of each participant were measured in all three studies.

1. Gender: male, female

values were identi�ed and eliminated.
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2. Age

3. SNS: subjective numeracy on a scale from 1-6, averaged across 8 questions. This is a self-

report measure of perceived ability to perform various mathematical tasks and preferences

for the use of numerical versus prose information (Fagerlin et al. 2007).

4. Education level, going from 1 (some high school) to 9 (received a doctoral degree)

5. Forensic knowledge: self-rated knowledge of forensic science. This is a single 7-point ques-

tion that asked "How knowledgeable are you about forensic science?" going from 1 (Not

Knowledgeable) to 7 (Extremely Knowledgeable).

3 Models for subpopulations

In order to assess the validity of the assumption made by Thompson et al. (2018a) that all

people are governed by the same preferences, this paper explores two approaches to identifying

subpopulations. The �rst approach is an exploratory analysis, which considers subpopulations

de�ned a priori by speci�c characteristics (e.g, age). A second approach which does not require

us to a priori identify which characteristics might be relevant uses a mixture model to identify

subpopulations. We �rst use a mixture model that assumes that subpopulations are not described

by the covariates and then try to explore whether any of the covariates help to explain the observed

subpopulations.

3.1 An exploratory analysis of de�ned subpopulations

As an initial step, the data collected by Thompson et al. (2018a) was used to investigate the

ranking patterns of di�erent subpopulations identi�ed by characteristics of the participant (age,
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SNS, gender, level of education and forensic knowledge). A series of analyses are carried out, each

considering two subpopulations de�ned by a single characteristic. The original study sample was

split into two groups according to each characteristic as de�ned here:

1. Gender (Male, Female)

2. Age (greater than or equal to 32, lower than 32)

3. SNS total (greater than or equal to 5, lower than 5)

4. Level of Education (greater than or equal to 6, lower than 6)

5. Forensic knowledge (greater than or equal to 4, lower than 4)

The cut-points for de�ning the groups based on quantitative characteristics are the median values.

For each subpopulation (e.g people of age greater than or equal to 32) an unstructured paired

comparison Bradley-Terry model (Bradley and Terry, 1952) was �tted and the log likelihood of

the model was calculated. The log likelihood of the complementary subpopulation (e.g age lower

than 32) was then calculated. The sum of these two log likelihoods is the log likelihood of a two

subpopulation Bradley-Terry model.
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Model Log Likelihoods

Study 1 Study 2 Study 3

1 BT for the complete data -912.43 -951.5 -1137.14

2 BT for high and low levels of forensic knowledge -909.75 -943.77 -1128.78

3 BT for female and male -909.15 -946.4 -1130.64

4 BT for old and young age -908.20 -940.17 * -1117.81

5 BT for high and low levels of education *-895.12 -945.66 -1130.75

6 BT for high and low SNS levels *-875.96 *-935.5 *-1121.56

7 A mixture of two subpopulation models *-735.90 *-813.18 *-1044.721

Table 2: A comparison of the di�erent unstructured Bradley-Terry (BT) log likelihoods of the

three studies. Models found to be a signi�cant improvement over the BT model, assuming a single

set of preferences for the entire population are marked with an asterisk.

Table 2 presents the value of the maximized log likelihood for a set of models. The �rst row

reports the values for the data analyzed by Thompson et al. (2018a). The Bradley-Terry model

was used here instead of the Thurstone-Mosteller model applied there. Rows 2-6 are the values

for the models that de�ne subpopulation via median split on the speci�ed variable. The �nal row

presents results for a mixture model approach described in Section 3.2. The models in row 2-6

can be compared to the model in row 1 (separately for each column) via a traditional signi�cance

test. It should be noted that the Bonferroni correction (Wasserman, 2004, p. 165-166) was used

to account for multiple signi�cant tests, meaning that only models with a p-value less than
α

m

(where m = 18 is the cumulative number of suggested models in all 3 studies and α = 0.05 is the

signi�cance level), were found to be an improvement over the Bradley-Terry model �tted to the
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entire population.

The primary �nding after adjusting for multiple comparisons is that there appear to be dif-

ferences based on subjective numeracy levels (SNS). The Bradley-Terry model �tted separately

to the two SNS groups was found to be a signi�cant improvement over the Bradley-Terry model

�tted to the entire population in all three studies. In addition, it produced the highest or second

highest likelihood for each study (among rows 2-6).

Study 1 Study 2 Study 3

low high low high low high

SP3 0.41 SP3 0.79 CC2 0.99 RMP4 1.10 LR4 0.96 LR4 1.31

SOS4 0.05 SOS4 0.47 RMP4 0.93 CC2 1.02 RMP4 0.93 RMP4 1.07

RMP3 0.00 RMP3 0.00 CC3 0.30 CC3 0.25 SOS4 0.30 CC5 0.42

SP2 -0.27 SP2 -0.43 CC4 0.08 RMP3 0.00 CC5 0.27 LR3 0.38

RMP2 -0.76 RMP2 -1.57 RMP3 0.00 CC4 -0.27 LR3 0.21 RMP3 0.00

SP1 -1.09 SOS2 -2.29 SOS4 -0.40 SOS4 -1.07 RMP3 0.00 SOS4 -0.23

SOS2 -1.20 SP1 -2.46 LOS1 -0.70 LOS1 -1.60 SOS3 -0.20 SOS3 -1.07

RMP1 -1.81 RMP1 -3.77 SP2 -0.81 RMP2 -1.60 SP2 -1.02 SP2 -1.35

SOS1 -2.14 SOS1 -4.65 RMP2 -1.41 SP2 -2.29 CC1 -2.25 CC1 -3.46

Table 3: SNS Analysis. In each study, the estimated strength parameters of the low and high SNS

groups are presented.

Table 3 presents the estimated strength parameters of the low and high SNS groups for each

of the 3 studies. The standard errors are approximately 0.2. It is generally true that the ordering

of the statements is the same in the high and the low SNS groups. Occasionally there is a reversal

in the order. For example, in Study 1 the position of SOS2 and SP1 di�ers.

When splitting the data based on SNS, statements within categories maintained their order.
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For example, in Study 1 among SOS statements, "extremely strong support" (SOS4) was viewed as

stronger than "moderate support" (SOS2), which was in turn seen as stronger than "weak support"

(SOS1). In addition, in almost no category of statements were all statements perceived as stronger

or weaker than the statements in any other category except for the high SNS group of Study 3

in which SOS statements were perceived as weaker than RMP and LR statements. Furthermore,

the relative ranking of statements across studies was generally consistent. For example, RMP3 ("1

in 100,000") was consistently ranked higher than SP2 ("highly probable"), and SOS4 ("extremely

strong support") was also ranked consistently as stronger than SP2 although the di�erence between

these statements was not always signi�cant.

An interesting �nding is that the scale used by subjects in the high SNS group is more spread-

out than that used by the low SNS group, suggesting that the high SNS subjects are more able to

distinguish between the statements. This is especially true for the high SNS group of Study 1. In

this group, the estimated strength parameters range from -4.65 to 0.79 which means that according

to the Bradley-Terry model, the estimated probability that the strongest statement is preferred to

the weakest statement is 0.996. In the low SNS group, the estimated strength parameters range

from -2.14 to 0.41 which means that the estimated probability that the strongest statement is

preferred to the weakest in 0.928.

It should be noted that the values of the estimated strength parameters in the di�erent studies

should not be compared since the values of these estimators are calculated from comparison with

the speci�c statements included in the study. The relative order of the estimators may be compared

across studies. The values of the estimated strength parameters for di�erent subpopulations within

each study may be compared as well.

To conclude, the exploratory approach suggests that low and high SNS subjects react di�er-

ently but that the di�erences in the perceived strength are relatively small. The ordering of the
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statements is similar in both groups but high SNS subjects tend to distinguish more between

stronger and weaker statements. A limitation of this approach is that it focuses only on a single

characteristic of the individual at a time. A more general approach which allows the data to more

�exibly de�ne subpopulations that most di�er in terms of their ranking is considered in the next

section.

3.2 A mixture model approach for identifying subpopulations

The mixture (or mixture of experts) model provides an alternative approach that does not re-

quire pre-de�ned subpopulations. Formally, the mixture model associates an unobserved or latent

variable with each individual that indicates the subpopulation to which the subject belongs. The

subpopulations are characterized by di�erent values of the strength parameters (as in the previous

section).

A second component of the mixture model relates the latent variables to covariates. The

covariates determine the probability of belonging to a certain subpopulation. For example, when

there are only two subpopulations, the latent variable has two options and therefore one might

assume a logistic model (Morduch and Stern, 1997).

The description here allows for U subpopulations. Let xk be the covariate vector of subject k,

and uk indicate the group or subpopulation membership of subject k, uk = 1, . . . , U where uk is

not observable. A logistic model for subpopulation membership is speci�ed by

Pr(Uk = uk) =
eβukxk∑U
u=1 e

βuxk
,

where βU = 0. Combining this model with a separate Bradley-Terry model (as in Section 2.2) for

each subpopulation yields the following likelihood, L(λ, β | x, y) as

∏
k∈K

U∑
uk=1

∏
ij∈Ik

(
eλ

(uk)

i −λ(uk)j

1 + eλ
(uk)

i −λ(uk)j

)ykij

·

(
1

1 + eλ
(uk)

i −λ(uk)j

)1−ykij

·

(
eβukxk∑U
u=1 e

βuxk

)
. (3.1)
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The maximum likelihood estimators for the parameters can be calculated by directly maxi-

mizing the likelihood or by using the expectation-maximization (EM) algorithm (Dempster, Laird

and Rubin, 1977). The EM algorithm is an iterative method that can be used to �nd maximum

likelihood estimates of parameters where a model depends on unobserved latent variables as is the

case here. The EM iterates between computing expected values of the su�cient statistics for the

latent variables (in this case the probabilities for each value of Uk) and maximizing the complete

data likelihood (including the latent variables) given the expected su�cient statistic. More details

are provided in Appendix A. The EM used here was given a relatively good staring point using

a procedure developed by the authors to improve the EM convergence, this is also described in

Appendix B.

The bottom row of Table 2 presents the maximized log likelihood of the two component (U = 2)

mixture model with no covariates (xk = ∅) in the three studies. The two component mixture model

achieves the highest log likelihood in all of the three studies (as seen in this table).
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Study 1

Group 1 (75%) Group 2 (25%)

Estimate SE Estimate SE

SP3 1.06 0.27 SP1 0.09 0.27

SOS4 0.22 0.25 SOS4 0.01 0.28

RMP3 0 - RMP3 0 -

SP2 -0.55 0.25 RMP2 -0.1 0.23

RMP2 -2.11 0.25 SOS1 -0.14 0.26

SOS2 -3.28 0.32 SP2 -0.23 0.26

SP1 -3.42 0.32 SP3 -0.24 0.28

RMP1 -5.29 0.4 SOS2 -0.29 0.26

SOS1 -7.57 0.62 RMP1 -0.35 0.23

Table 4: The statement ranking results of Study 1 using a mixture model
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Study 2

Group 1 (59%) Group 2 (41%)

Estimate SE Estimate SE

CC2 3.7 0.41 RMP4 1.24 0.28

CC3 2.71 0.33 RMP3 0 -

CC4 1.94 0.31 CC2 -1.28 0.29

RMP4 1.45 0.22 LOS1 -1.66 0.28

RMP3 0 - RMP2 -1.8 0.25

SOS4 -0.03 0.24 SOS4 -1.82 0.28

SP2 -1.02 0.26 CC3 -2.29 0.32

LOS1 -1.08 0.27 SP2 -2.29 0.29

RMP2 -1.54 0.21 CC4 -2.35 0.3

Table 5: The statement ranking results of Study 2 using a mixture model
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Study 3

Group 1 (56%) Group 2 (44%)

Estimate SE Estimate SE

CC5 2.06 0.29 RMP4 1.36 0.32

LR4 1.22 0.21 LR4 1.28 0.36

RMP4 0.97 0.19 RMP3 0 0

SOS4 0.88 0.21 LR3 -0.02 0.3

LR3 0.51 0.2 SOS4 -1.19 0.3

SOS3 0.18 0.21 SOS3 -1.8 0.32

RMP3 0 0 CC5 -2.37 0.48

SP2 -0.31 0.23 SP2 -2.99 0.35

CC1 -1.97 0.29 CC1 -4.27 0.42

Table 6: The statement ranking results of Study 3 using a mixture model
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Figure 2: Graphical display of the estimated statement strength parameters from the mixture

model analysis of the data from studies 1-3. The colors of the statement abbreviations indicate the

classes of statements as presented in Table 1. For each study, the abbreviations on the left appear

at the location on the vertical axis indicating the estimated strength parameter for the statement

in Group 1. The line connects to the value of the estimated strength parameter for that statement

in Group 2. For example, In Study 1, the location of SP3 on the vertical axis is 1.06 which is the

estimated strength parameter for this statement in Group 1. The line connects to -0.24 which is

the value of the estimated strength parameter in Group 2 (See Table 4).

Tables 4-6 and Figure 2 present the results of applying the two component mixture model to the
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data for all three studies. The strength parameter estimates and the standard errors are presented

in Tables 4-6 and a graphic visualization of the estimated strength parameters is presented in

Figure 2. A high estimated strength parameter corresponds to a statement which was perceived as

a particularly strong statement. As in Thompson et al. (2018a) the strength parameter for RMP3

is set equal to zero to identify the model parameters.

Using the data of Study 1, the mixture model identi�es two subpopulations. One subpopulation

(group 1), estimated to comprise 75% of the population, ranks the statements in the order identi�ed

by Thompson et al. (2018a). The second subpopulation appears not to be able to distinguish

among the statements. This means that the way in which the expert words the conclusion has no

in�uence on them whatsoever. It is also possible that 25% of the population just choose randomly

and that is the reason it appears that they are not able to distinguish among the statements.

Subjects of group 1 ranked the statements in their natural order within a category of statements

(e.g SOS). They perceived SP3 as the strongest statement and SOS1 as the weakest. These subjects

did not choose all statements of one category as being stronger or weaker than the statements in

any other category and they perceived SPs as being stronger than their corresponding RMPs.

Estimate Std. Error

(Intercept) -6.22 1.73

SNS total 0.97 0.29

Age 0.06 -0.03

Gender 0.32 0.53

Education 0.33 0.16

Forensic knowledge -0.28 0.18

Table 7: The explanatory variables' coe�cient estimates using data from Study 1

Table 7 presents the explanatory variables' coe�cient estimates and the standard errors for
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the logistic part of the mixture model. The SNS, age and education estimates are found to be

signi�cant which means that these variables help distinguish between the groups. Group 1 is

characterized by people with higher SNS, age and education. The coe�cient in Table 7 describe

the impact of a di�erence in that variable on the likelihood of being in subpopulation 1. The

meaning of the SNS coe�cient for example is that for every increase of 1 point in SNS, the odds

of belonging to group 1 compared to group 2 increases by a factor of 2.64 (= e0.97).

The results of �tting the mixture model to Study 2 and 3 are quite di�erent from the Study 1

results. The key �nding in these studies is that there are two subpopulations which di�er in the

relative strength of di�erent statement categories. In Study 2, the two groups seem to agree on

the strength of the RMP statements but perceive the CC statements quite di�erently. Group 1

(59% of the population) tends to �nd CC statements stronger than RMP statements as opposed

to group 2 (41% of the population) which favors the numerical information presented by RMP

statements.

Study 3 resembles Study 2 in the sense that the two groups tend to agree on the RMP statements

and �nd the CC statements relatively di�erent. Members of group 1 (56% of the population) tend

to choose CC5, "suspect was the source", as stronger than RMP statements while subjects of

group 1 (44% of the population) are not impressed by this statement and rank it quite low. In

both studies the two groups rank SOS4 and SP2 statements below RMP4 but in each study the

groups di�er in the relative distance between these statements.

Table 8 presents a comparison of πij, the probability that statement i is preferred to statement

j, for statements included in Studies 2 and 3, i.e. RMP3, RMP4, SOS4, and SP2. In both studies,

group 2 is the one that favors the numerical statements. The consistency of the two studies is also

shown in the columns that represent these groups (marked in grey) as the probabilities are close.
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Study 2 Study 3

Statements Group 1 Group 2 Group 1 Group 2

RMP3 Vs RMP4 0.19 0.22 0.27 0.2

RMP3 Vs SOS4 0.51 0.86 0.29 0.77

RMP3 Vs SP2 0.73 0.91 0.58 0.95

RMP4 Vs SOS4 0.81 0.96 0.52 0.93

RMP4 Vs SP2 0.92 0.97 0.78 0.99

SOS4 Vs SP2 0.73 0.62 0.77 0.86

Table 8: Comparison of πij for statements included in Studies 2 and 3. Columns marked in grey

represent groups that favor the numerical statements

Interestingly, the explanatory variables are not found to be helpful in distinguishing between the

groups in Studies 2 and 3 (the estimates are not signi�cant) and thus an EM with no explanatory

variables (xk = ∅) is used there.

Here the division of the population into two groups which best describe the observed data

was presented. A crucial question is whether the two-subpopulation model does in fact provide

a substantially better �t than a single model �tted to the entire population. One approach to

determine the number of subpopulations is to conduct a Monte Carlo LR test (Everitt, 1981). In

this setting, the Monte Carlo test supports the presence of two subpopulations rather than one.

It also suggests that the sample sizes are not large enough to determine whether there are more

than two subpopulations.

4 Discussion

The �data-driven� study reported here allows detection of coherent subgroups from the data itself

in contrast to the traditional research strategy which is "hypothesis driven." The advantage of this

approach is the ability to detect subgroup structure in the data that might be missed otherwise.
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The study examines whether the data are more consistent with a model assuming subpopulations

than a model that assumes homogeneity (no subpopulations). Using data from the three studies

of Thompson et al. (2018a) it was found that there is evidence that di�erent subpopulations tend

to perceive the statements presented by the examiner di�erently. This in itself is an important

�nding since there is a need to acknowledge that even when solid scienti�c evidence is presented,

it may be interpreted at least by a certain percent of the population in a way that is di�erent from

the way the examiner intended.

The exploratory analysis suggests that there appear to be di�erences based on the subjective

numeracy levels (SNS) and that high SNS subjects tend to better distinguish between stronger

and weaker statements which supports the �ndings of Thompson, Kaasa and Peterson (2013) and

Scurich (2015). The mixture model approach suggests that there is a subpopulation that �nds

quantitative summaries of the strength of the evidence more compelling. One might expect that

SNS would be associated with membership in this subpopulation, however we do not �nd this

relationship in the data. This latter �nding is more consistent with the results of Thompson and

Newman (2015); Martire et al. (2013; 2014).

As noted in Section 2.2, Study 1 by its design allowed us to focus on di�erences in the population

with respect to quasi-quantitative and quantitative scales while studies 2 and 3 allowed us to

compare qualitative categorical statements to newer quantitative approaches.

The mixture model which does not require pre-de�ned subpopulations identi�ed two subpopu-

lations in Study 1 that di�er completely in the way that they perceive the statements: the subjects

of group 2 were unable to distinguish between statements while those of group 1 ranked the state-

ments in the same order found in Thompson et al. (2018a). One possible explanation is that

participants in Group 1 paid more attention to the details of what the expert was saying than

those in Group 2. Alternatively, Group 1 participants may have been more capable of processing

27



and appreciating the signi�cance of the expert's statements about the strength of the evidence

than those in Group 2. Group 1 consisted of older, better-educated participants with higher sub-

jective numeracy than Group 2, which makes it plausible that they were more conscientious or

more discerning in their evaluations of the evidence. These possible explorations could be tested

and clari�ed through further research.

A more interesting picture is presented in Studies 2 and 3, both of which show that the groups

seem to agree on the strength of the RMP statements though one subpopulation prefers categorical

statements. This �nding may re�ect a general di�erence among individuals in their willingness

or ability to make use of numbers, and their preferences for numerical versus more qualitative

statements. Previous research has suggested that people who express high con�dence in their

ability to draw correct conclusions from numerical data respond more strongly and correctly to

statistical data about the value of forensic evidence than do people who express less con�dence

(Kaasa et al. 2007). This research may have implications for the process of juror selection,

prompting attorneys to consider the preferences of potential jurors in accordance with the expected

nature and presentation of evidence in court.

A limitation in using these studies stems from the fact that since not all statements are included

in all studies, it is di�cult to reach a more general conclusion. In addition, as noted in Section 3, a

model which allows for a larger number of subpopulations might provide a better description of the

population but since the data sets are relatively small and the number of parameters increases in

such models, they can be hard to �t. For these reasons it is recommended that additional studies

which include a greater number of participants be carried out. Moreover, alternative approaches for

dealing with heterogeneity in the data are currently under investigation. An additional issue is the

limited covariates information. To better characterize the subpopulations found in this study, such

as the group that prefers categorical versus RMP statements, additional personal characteristics
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should be taken into account in future studies.

The discovery that the population of potential jurors consists of subgroups which interpret

expert testimony in di�erent ways, may prompt courts to review existing policies. Though the

�ndings of this study do not necessarily support the demand for highly numerate �Blue ribbon�

juries (Halle, 2014; Hans and Helm, 2019), the group di�erences in preferred types of statements

suggest that forensic scientists do need to present their �ndings in multiple ways. Perhaps there is

no single approach that works best for all potential jurors, but by o�ering several complementary

alternative statements, forensic experts may be able to assure that their testimony is more broadly

understood. Similarly, training of attorneys and judges as well as the pre-trial instruction of jurors

could well facilitate a clearer and more uniform understanding of the terms used to describe the

strength of forensic evidence presented in court (Evans, et al. 2019). It is our hope that research

like that reported here will cast light on how this might be done.

5 Summary

Data from three studies investigating the perceptions of the lay public regarding presentations

of forensic evidence point to the existence of subpopulations which perceive statements reported

by expert witnesses di�erently. In Study 1, which focused on di�erences with respect to quasi-

quantitative and quantitative statements, the participants' numeracy, age, education and possibly

the degree of attention paid to the proceedings (or capacity to understand them) a�ected their

ability to distinguish between statements. In studies 2 and 3, which included both numerical

and categorical statements, di�erences were observed in the relative strength assigned to the two

categories of statements. These �ndings could in�uence the selection of juries in cases where

forensic evidence is considered, and might support the argument for training important actors in
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the judicial process (prosecutors, juries and judges) in the appropriate interpretation of forensic

evidence. The justice system might well be advised to consider multiple ways of presenting evidence

in court in order to provide for its better understanding by diverse subpopulations.

The mixture models illustrated here have a broad range of potential applications in research

on jury decision making. They may prove particularly helpful in identifying di�erences among

subpopulations that researchers fail to anticipate because subpopulations cohere in unexpected

ways. They are an important new tool for mock jury research.

Appendices

A The EM algorithm

The EM algorithm is an iterative method for �nding maximum likelihood estimates of parameters in

situations with missing data or with unobserved latent variables (Dempster et al. 1977). To develop

the algorithm the complete data likelihood is �rst de�ned for the observed paired comparison data

Y and the latent variables (subpopulation indicators) Z,

L(θ|Y,Z) =
∏
k∈K

U∏
zk=1

∏
ij∈Ik

( eλ
(Zk)

i −λ(Zk)

j

1 + eλ
(Zk)

i −λ(Zk)

j

)ykij
·

(
1

1 + eλ
(Zk)

i −λ(Zk)

j

)1−ykij

·

(
eβZkxk∑U
u=1 e

βuxk

)I{Zk=zk}

.

where θ = (λ, β) are the parameters of the model and dependence on the covariates X is sup-

pressed in the notation. Each iteration of the algorithm is comprised of two steps. The E-step

or Expectation step computes the expectation of the complete data log likelihood conditional on

current estimates of the parameter θ. The M-step or Maximization step then updates the pa-

rameter estimates. In our case, assuming we have completed the tth iteration, the next step

involves de�ning Q(θ|θ(t)), the expected complete data log likelihood given θ(t) where the expec-

tation is over the latent variables Zk, k ∈ K. Evaluating the function Q requires computation

of E(I{Zk=zk}|θ(t), Y ) = Pr(Zk = zk|θ(t), Y ) for zk = 1, . . . , U . These conditional probabilities are
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computed as

W (t)
zk

= Pr(Zk = zk|θ(t), Y ) ∝
∏
ij∈Ik

( eλ
(Zk)

i −λ(Zk)

j

1 + eλ
(Zk)

i −λ(Zk)

j

)ykij
·

(
1

1 + eλ
(Zk)

i −λ(Zk)

j

)1−ykij

·

(
eβZkxk∑U
u=1 e

βuxk

) .
Plugging these expectations into the expression for Q yields

Q(θ|θ(t)) =
∑
k∈K

∑U
zk=1

∑
ij∈Ik log

[(
e
λ
(Zk)
i

−λ
(Zk)
j

1+e
λ
(Zk)
i

−λ
(Zk)
j

)ykij
·
(

1

1+e
λ
(Zk)
i

−λ
(Zk)
j

)1−ykij
]I{Zk=zk}

·W (t)
zk

+
∑
k∈K

∑U
zk=1

∑
ij∈Ik log

[(
e
βZk

xk∑U
u=1 e

βuxk

)]I{Zk=zk} ·W (t)
zk .

The M-step maximizes Q(θ|θ(t)) over the parameters θ to give the next iterate θ(t+1). Examina-

tion of the form of Q indicates that λ(t+1) and β(t+1) can be obtained independently of one another

by maximizing the relevant Bradley-Terry and multinomial logistic terms. The E- and M-steps

are iterated until the parameter estimates don't change.

B Calculation of starting points for the EM

The EM algorithm used here utilizes the following algorithm which produces relatively good start-

ing points in order to reduce the time to convergence.

1. The n individuals are randomly divided into C clusters (the number of clusters is chosen in

advance). For the work presented here C is 2.

2. In each cluster an unstructured Bradley-Terry model is �t to the data using the BradleyTerry2

package (Turner and Firth, 2012) for the R software package. The strength parameters are

denoted λ(c).

3. The likelihood of individual k using cluster c parameters is calculated as follows.

Let Yij =


1 if i is prefered over j

0 o.w
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and Πij = P (Yij = 1) = e
λ
(c)
i

−λ(c)
j

1+e
λ
(c)
i

−λ(c)
j

, then the likelihood of individual k is:

∏
(ij)∈Ik

(Πij)
yijk(1− Πij)

1−yijk ,

where Ik represents the questions presented to individual k.

4. The likelihoods of the various clusters are compared for each individual. The individual is

assigned to the cluster with the highest likelihood.

5. The process (step 2-4) is repeated until the cluster assignment remains constant.

6. A logistic regression is calculated using the cluster variable as the dependent variable.
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