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Abstract

Diffusionally-accommodated Grain Boundary Sliding: Effects on Seismic Wave

Attenuation

by
Lik Chuan, Lee
Doctor of Philosophy in Mechanical Engineering

University of California at Berkeley

Professor Stephen Morris, Co-chair
Professor Tarek Zohdi, Co-chair

According to existing experiments on fine—grained polycrystalline mantle materials, in the
seismic frequency band, mechanical loss Q™! decreases with increasing angular frequency
@ in an absorption background; roughly Q! ~ «® with different investigators reporting
values of @ ranging from ~ —0.35 to ~ —0.2. There is inconclusive evidence that, under some
conditions, a weak local maximum may be superposed on that absorption background.
To understand this behaviour, we use a combination of analytical and numerical methods
to analyze the Raj—Ashby bicrystal model of diffusionally-accommodated grain boundary
sliding on a finite slope interface. In that model, two perfectly elastic layers of finite
thickness are separated by a given fixed spatially periodic interface; dissipation is confined
to that interfacial (grain boundary) region having an effective viscosity. It occurs by two
processes: time—periodic shearing of the interfacial region; and time—periodic diffusion of
matter along the interface. Two timescales govern these processes; namely, a characteristic
time ¢, taken for the interfacial shear stress to relax and a characteristic time ¢p taken for
matter to move by grain-boundary diffusion over distances of order the grain size.

Of particular interest is the case when the timescales are widely separated. Under
that condition, we established two previously unrecognized features of the mechanical loss
spectrum. First, the mechanical loss Q! in the seismic frequency band wtp > 1 can be

described by a strict power-law Q™! ~ @® if corners along the interface are geometrically



identical. For the two orthogonal sliding modes found in a regular array of hexagonal
grains, the values of a is roughly -0.3. Second, our analysis reveals a mechanism allowing
the magnitude of a to decrease slowly as w is increased; when the corner angle varies from
one corner to another along the interface , the rate of decrease in Q™! gradually slows.
Ultimately Q! is controlled by the corner having the most singular stress behaviour.
Though these results are obtained from the idealized bicrystal model, we argue physically
that similar behaviour will be found in numerical models of polycrystal. Overall, our
analysis suggests that the range of a—values found empirically may, in part, reflect the
differing ranges of wtp covered in different experiments.

Because in experiments conducted on certain materials, a weak and broad peak
superposed onto the power—law absorption background is observed in the loss spectrum
whereas in others, the peak is completely absent, we evaluate three proposed factors that
may weaken and broaden the peak. We show that the peak can be weaken moderately by (i)
sharpening of corners along the interface, (ii) spatial variation in grain size and (iii) spatial
variation in interfacial (grain boundary) viscosity. Reduction of the peak by these factors,
however, does not suggest it to be completely hidden in the absorption background. By
contrast, we show that the loss peak can be markedly broadened if the interfacial viscosity
differs by an order of magnitude across adjacent interfaces. The shape of the loss peak is

insensitive to the other two factors.

Professor Stephen Morris
Professor Tarek Zohdi

Dissertation Committee Chair
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Chapter 1

Introduction

1.1 Background

Knowledge of the physical conditions in the earth interior is essential to un-
derstand its dynamics. Because direct access of geophysical data is limited by depth of
~ 200km, if we consider geological samples from volcanic eruption [20] (compared to the
earth radius ~ 6000km), seismic velocity tomography and seismic attenuation tomography
are frequently used to infer conditions in the deep earth’s interior. These techniques have
been used to deduce physical conditions and chemical composition in the earth. For ex-
ample, Ishii & Tromp [15] and Cammarano ef al. [6] have used seismic data to determine,
respectively, the density variation and the thermochemical structure in the earth’s mantle
while Shito et al. [39] have used attenuation tomography to determine water/hydrogen
content in the mantle. In order to accurately constrain the physical and chemical condi-
tions in the earth using seismic tomography, the effects of high-temperature viscoelasticity
on seismic wave attenuation and seismic wave dispersion must be known.

High—-temperature viscoelastic effects on the attenuation and dispersion of seismic
waves manifest themselves in the form of a quality factor Q. Physically, the quality factor
Qis defined as the ratio of 47 times the average stored energy to the energy dissipated per
cycle in viscoelastic media [30]. The mechanical loss £ is the inverse of the quality factor
i.e Q71. When the attenuation is caused by thermally activated processes occurring in the

earth interior, the mechanical loss Q7!, in general, depends on temperature T, pressure P
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and angular frequency w through the expression [21]

aH

Q! x wexp (ﬁ) (1.1)

InEq. (1.1), His the activation enthalpy that depends on pressure, Ris the gas constantand «
is a dimensionless exponent that governs the seismically observed power-law dependence
of Q7! to frequency w i.e. Q7! ~ w® To infer physical and chemical conditions in the
earth using seismic data, it is therefore necessary to know the temperature dependence of
Q which in turn, requires knowledge of the physical mechanisms causing seismic waves
to attenuate.

The quality factor Q, on the other hand, also affects seismic wave velocity c that
is used to estimate the elastic properties of the earth. From Minster & Anderson [25], the
elastic wave velocity cy is related to wave velocity ¢ and the quality factor Q by

c 1 T
—=1-Zcot({—|Q7!. 1.2
c 2C°(2)Q (12)

Because the elastic wave speed ¢ is a function of the mechanical properties of the medium
through which seismic waves propagate, one can, in principle, improve the estimates on
the earth elastic properties using measured seismic wave velocity c, if the global mapping

of the quality factor Q7! is known accurately.
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Figure 1.1: Q as a function of depth in Earth’s mantle taken from Lawrence & Wysession
[24]. Upper mantle: < 410km. Transition zone: 410 — 610km. Lower mantle: > 610km.
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Figure 1.1 shows the variation of the shear-wave quality factor Q with depth in
the earth mantle where the different curves indicate the radial profiles of Q obtained using
different models. From the figure, we find that the mechanical loss Q7! in the upper mantle
ranges between 0.005 to 0.01 and we also note that the lateral variation in Q can also be as
large as the depth variation [14]. The frequency-dependent exponent «, on the other hand,
is observed to lie within the range —0.4 < & < —0.2 by Shito et al. [1] in the upper mantle.

Many different physical processes can give rise to seismic wave attenuation (or
equivalently, produce high temperature viscoelastic behaviour). For example, an elastic
wave can be attenuated by the local motion of point defects, by diffusional creep caused
by bulk diffusion or grain boundary diffusion, by dislocation motion and by elastically—
accommodated (or viscous) grain boundary sliding. Further details of these processes can
be found in Karato [21] and Nowick & Berry [29].

To evaluate the contribution of these physical processes to seismic wave attenua-
tion, experiments have been conducted on geological materials. According to the accepted
“pyrolite” model by Ringwood [36], olivine (Mg, Fe),SiO4 contributes nearly 60% of the
mass in the upper mantle. Fine-grained polycrystalline olivine and its aggregates have
been the subject of recent forced—torsional oscillation experiments at seismic frequencies
e.g. Gribb & Cooper [13] and Jackson et al. [18]. Results from these experiments suggest
that in the earth upper-mantle, attenuation of seismic wave may possibly be caused by
elastically and diffusionally accommodated grain boundary sliding [18]. These results
show a similar mild—frequency dependent behaviour of the mechanical loss Q™! observed
in the upper mantle. Extrapolating these results to mantle conditions also produce a level
of attenuation Q™! comparable to that observed in the upper mantle.

Though these experimental studies have attributed the mild—frequency depen-
dent behaviour of the mechanical loss to elastically and diffusionally accommodated grain
boundary sliding, these processes are still poorly understood and predictions using current
theoretical models are inadequate to reconcile with experimental observations. Two promi-
nent features in the attenuation experiments require reinforcements and/or supplements
to the existing theories; (i) the mild—frequency dependence of the mechanical loss Q! and
(i) the presence of a dissipation peak in melt-bearing polycrystalline olivine.

Mild-frequency dependent behaviour of the mechanical loss Q! has been at-

tributed to transient creep originating from diffusionally-accommodated grain boundary
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sliding by Gribb & Cooper [13]. Its effects on the mechanical loss spectrum has been in-
vestigated recently by Morris & Jackson [26] using the Raj—Ashby bicrystal model [35] for
a small-slope interface. In that model, two perfectly elastic grains are separated by a fixed
spatially periodic interface where dissipation of energy occurs. It occurs by two processes;
time—periodic shearing of interfacial region and time—periodic diffusion of matter along the
interface. Morris & Jackson show that at frequencies corresponding to transient creep i.e.
when diffusive transport is limited to distances smaller than grain size, the mechanical loss
Q7! decreases with frequency as 1/ In w. They show that the logarithmic behaviour of Q~*
is an outcome of corner stress concentrations. Though the loss scaling that they obtained
is significantly milder than that observed in the experiments, where Q7! ~ @~ (0-2704) that
scaling is expected to change for a finite—slope interface because the behaviour of stresses
near corner changes with corner angle. There is thus a need to evaluate the effects of slope
angle on the mechanical loss spectrum due to diffusionally-accommodated grain boundary
sliding.

The broad dissipation peak found in the mechanical loss spectrum of melt-bearing
olivine that is absent in melt—free olivine has been attributed to dissipative time—periodic
shearing of the interfacial region i.e. elastically-accommodated grain boundary sliding by
Faul et al. [9]. Because the peak is observed even at temperature below the crystallization
temperature of the melt, Faul et al. eliminate the possibility that the dissipation peak
observed in their experiment is caused by grain-scale pressure-driven flow of melt i.e.
melt-squirt. To explain this contrasting behaviour of the mechanical loss found in melt-
free and melt-bearing olivine, they proposed that the dissipation peak is enhanced in
melt-bearing polycrystal because corners at the triple junctions are rounded by melt which
facilitates grain boundary sliding. In melt-free polycrystal, grain boundary sliding is
inhibited by sharp corner at triple junctions and the peak weakened as a result. The peak
thus becomes inconspicuous in the presence of the high temperature background. Current
theoretical models are, however, insufficient to confirm Faul’s explanation. Though a study
using the bicrystal model of elastically-accommodated grain boundary sliding by Jackson
etal. [16] suggests that the peak vanishes when corners become infinitely sharp, their study
is limited to a small-slope interface. It is unclear as to whether a finite—slope interface will
modify that conclusion. In order to assess Faul’s explanation and any other factors that

may help weaken the peak, it is necessary to extend the analysis of the bicrystal model of
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elastically-accommodated grain boundary sliding to a finite-slope interface.

1.2 Objective

With these motivations, we solve here for the bicrystal model with finite-slope
interface for diffusionally-accommodated and elastically-accommodated grain boundary
sliding to study the effects of slope angle. There are two main purposes of this study,
namely, (i) to give insights into the physical mechanisms controlling the mechanical loss
spectrum found in the experiments, and (ii) to provide reliable solutions that can be used

to verify numerical solutions for polycrystals.

1.3 OQOutline

We begin in chapter 2 with a survey of the results from relevant experiments
that are compiled over the years showing evidence of diffusionally-accommodated and
elastically-accommodated grain boundary sliding. These are attenuation experiments
and creep experiments conducted using various materials, ranging from pure metals to
geological materials. Theoretical models of grain boundary sliding are also discussed in
the context of these experiments

In chapter 3, we state the boundary value problems (b.v.p.’s) of the bicrystal
model for which we extend the analysis to a finite-slope interface. Specifically, the
b.v.p.’s are stated for diffusionally-accommodated grain boundary sliding and elastically—
accommodated grain boundary sliding.

In chapter 4, we discuss the numerical procedure used to solve theb.v.p.’s. Solving
the b.v.p. of diffusionally-accommodated grain boundary sliding numerically is challeng-
ing, in particular, because the problem requires calculation of stress spatial derivatives
along interface having corners. Due to the presence of corner stress concentration, numeri-
cal evaluation of stress derivatives will incur large errors and requires excessively fine mesh
near corners. A fine mesh, on the other hand, requires a small time step if explicit methods
are used. Consequently, a large number of iterations is required to compute the mechanical
loss. To circumvent this difficulty, we reformulate the b.v.p. in the language of operators

acting on functions defined on the grain boundary. The problem of finding the entire loss
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spectrum for a given geometry is then reduced to one of finding the eigenvalues and the
eigenfunctions of an evolution operator. To avoid issues caused by stress derivatives as
stated above, these eigenvalues and eigenfunctions are found using a constructed pseudo-
inverse of the evolution operator. By contrast, the b.v.p. of elastically-accommodated grain
boundary sliding does not require calculation of the stress derivative and can be solved
directly using conventional finite element method.

In chapter 5, we discuss the numerical results of diffusionally-accommodated
grain boundary sliding from the bicrystal model. To verify our numerical results, we
also derived analytical constraints of our numerical solution in that same chapter. These
constraints are, namely, the high and low frequency asymptotes in the mechanical loss
spectrum. We show that our numerical results are consistent with these constraints. Our
results show that there exists a band of frequencies where the mechanical loss decreases
slowly with frequency. That slowly—varying region is an outcome of corner stress concen-
tration and the behaviour of the mechanical loss in that region is shown to be sensitive to
slope angle. For the two orthogonal sliding modes found in a regular array of hexagonal

=03 Qur results

grains, we predict the mechanical loss Q! to vary approximately as @
also show that the slope in the loss spectrum decreases with increasing frequency if corner
angle varies along the interface. That result is consistent with the experiments.

In chapter 6, we discuss the numerical results of elastically-accommodated grain
boundary sliding. We also derive constraints to the b.v.p. of elastically-accommodated
grain boundary sliding and show that our numerical solution satisfy these constraints.
We then evaluate three suggestions proposed to explain for the weakened and broadened
loss peak observed in certain experiments. They are, namely, (i) variation in grain sizes d,
(ii) variation in boundary viscosity 1 and (iii) sharp corners at triple junctions. We show
that these proposed explanations are only able to account for a moderate reduction in
peak height, and is unlikely to produce a large reduction necessary to completely conceal
the loss peak within the absorption background. We also show that the loss peak can be
significantly broaden by a variation in boundary viscosity 7.

Finally in chapter 7, we summarize our chief findings of our analysis on the bicrys-
tal model having finite-slope interface. We also discuss briefly possible future extensions

of this work.



Chapter 2

Survey of experiments

Here, we survey experiments providing evidence of both elastically and diffusion-
ally accommodated grain boundary sliding. These are attenuation and creep experiments
conducted on metals, ceramics and geological materials. In the attenuation experiments,
mechanical loss Q7! is measured either by using a forced-torsional oscillation method e.g.
in Gribb & Cooper [13], Schaller & Lakki [37] and Jackson et al. [18] or by using a torsion
pendulum method e.g. in Ké [22] and Pezzotti et al. [32]. In forced—torsional oscillation
method which allows robust measurement at frequencies of 1073 — 1Hz [19] , an oscilla-
tory torque is applied to the sample and its dynamic torsional modulus is obtained. The
mechanical loss Q7! is then the tangent argument of the modulus. By contrast in torsion
pendulum method where robust measurements can be made within the range 1-30 Hz
[31], the sample is allowed to vibrate freely and the logarithmic decrement 6 is obtained.
For small §, the mechanical loss Q7! is approximately equal to 6/m. Existing theoretical

models and their predictions are also discussed here in relation to the experiments.

2.1 Elastically-accommodated grain boundary sliding

In theoretical models of elastically-accommodated grain boundary sliding, dis-
sipation occurs in polycrystal due to shearing along the thin disordered grain boundary
regions. Because these regions behaved like a thin layer of viscous fluid [2], interfacial
shear stresses relaxed at a timescale ¢, of order uf/nd; here d is the grain size, ¢ is the

thickness of the disordered boundary region, u is the rigidity of the grains and 7 is the
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effective viscosity of the boundary region. Dissipation thus vanishes both at very low
frequencies i.e. w < t;!, and at very high frequencies w > t;l and the effect of elastically—
accommodated grain boundary sliding manifests itself in the simple form of a dissipation
peak in the mechanical loss spectrum. Though that peak is expected to be easily observed

in experiments, that is not so; the peak has been observed clearly only in some experiments.

2.1.1 Experiments on pure metals

An example of a dissipation peak arising from elastically-accommodated grain
boundary sliding can be found in the experiments by Ké [22] [23], who used torsion
pendulum method to investigate the behaviour of mechanical loss Q7! found in pure
polycrystalline Al. To establish the effects of grain boundaries, he measured the mechanical

loss Q7! in polycrystalline Al and single crystal Al.

0.091- ' /{\ .
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e o)
— % 1 { 1 § :
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Temperature of Measurement (°C)
Figure 2.1: Q7! as a function of T at 0.8Hz for Al taken from Ké [22].

Figure 2.1 shows the result from his experiment. In single crystal Al, the me-
chanical loss Q7! increases exponentially with temperature T whereas the behaviour of

Q! is non-monotonic with respect to T in polycrystalline Al. For the latter, the Q™! — T
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plot contains a strong Debye peak which he attributes to elastically-accommodated grain
boundary sliding. That peak has a magnitude of about 0.09 and stands out from the ab-
sorption background. Because creep experiments conducted on the same polycrystalline
samples show that dissipation is thermally activated, i.e. Eq. (1.1) applies, similar features
are also expected to be found in the mechanical loss spectrum. To prove that the loss peak
is not unique to Al, Ké also conducts experiment on pure Mg and he shows that a loss peak

of ~ 0.06 is found in pure polycrystalline Mg.

2.1.2 Experiments on ceramics-based materials

Subsequent experiments conducted on ceramics, however, do not show a pro-
nounced peak in the mechanical loss spectrum that is observed in pure metals. Instead,
the mechanical loss spectrum is described by Cooper [8] in his review to contain “a broad
absorption peak of low magnitude in the polycrystalline material, one barely ‘competing’
to be seen over the power-law background absorption”. Behaviour of the mechanical loss
fitting such a description can be found in ceramic-based materials e.g. SizN4 by Pezzotti
et al. [32], ALO3; and MgO by Pezzotti [31] and Barnhoorn et al. [3], and Zirconia ZrO; by
Schaller & Lakki [37]. !

Figure 2.2 shows an example of the Cooper’s description of a “broad absorption
peak of low magnitude” found in MgO from Pezzotti [31]. In his experiment (as well
as those in Schaller & Lakki), the peak is isolated by subtracting the experimental curve
from the absorption background and is studied separately. This procedure is shown in the
figure. In comparison with the loss peak found in pure metals by K¢, the peaks found in
ceramic-based materials are located at a higher temperature (~ 1600K) and do not stand
out from the absorption background. These peaks are also broader than the single Debye

peak found in pure metals discussed above.

2.1.3 Experiments on melt-bearing geological materials

A weak and broad mechanical loss peak has also been observed in geological

materials at seismic frequencies (~ 10°Hz to 1 Hz) and elevated temperature (~ 1300K) by

!The experiments by Schaller & Lakki [37] on 3 types of ceramics consistently show a mild and broad
absorption peak. However, only in the case of Zirconia, was the peak attributed to viscous grain boundary
sliding
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Figure 2.2: Q7! as a function of T for MgO at 13Hz taken from Pezzotti [31].

Jacksonet al. [17]. In fine—grained melt-bearing polycrystalline olivine (Mg,Fe),SiO4 speci-
mens prepared from natural olivine and sol-gel derived Fogg precursors, a peak superposed
onto the absorption background in the mechanical loss spectrum is consistently observed.
By contrast, the peak is absent in the loss spectrum obtained from melt—free polycrystalline
olivine, where the mechanical loss decreases monotonically with frequency. The results
of melt—free polycrystalline olivine are discussed later. Because the peak, as discussed in
chapter 1, is observed even at temperatures below the crystallization temperature of melt,
and its height is significantly larger than that predicted for grain—scale pressure—-driven
flow or melt-squirt, Faul et al. [9] eliminate melt-squirt as a possible mechanism causing
the peak. Instead, they attribute the peak to elastically-accommodated grain boundary
sliding.

Figure 2.3 shows the mechanical loss behaviour for one of the melt-bearing spec-
imen found in the experiments by Jackson et al. [17]. Similar to ceramics discussed above,
the superposed peak found in the figure is broad and does not stand out from the absorp-
tion background. We note here that in forced-torsional oscillation experiments conducted
on fine-grained peridotite (fabricated using natural dunite and orthopyroxene) with a melt

fraction of ~ 0.015 by Sundberg & Cooper [40], they too observed a non—-monotonic be-
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Figure 2.3: Q! as a function of T for melt-bearing (Mg,Fe),SiO4 taken from Jackson et al.
[17]. Melt fraction: 0.037. Sol-gel specimen.

haviour of the mechanical loss spectrum resembling the inception of a loss peak. They

attribute that non—-monotonic behaviour to elastically accommodated grain boundary slid-

ing.

2.1.4 Relating experiment to theory

Several suggestions have been proposed to explain the broader and weaker peak
found in other materials as opposed to the single Debye peak observed in pure metals,
which is well-predicted by existing theoretical models e.g. Ghahremani [12]. These sug-
gestions can be categorized into two broad classes: (i) grain-wise variation of parameters
controlling the timescale ¢, taken for shear stress to relax and (ii) grain boundary geometry.

In the first case, a broader and weaker dissipation peak is envisaged to be caused
by a widely distributed sliding timescale ¢, that is due to a variation in grain size d and a
variation in boundary viscosity 1 suggested by Pezzotti [31] and Cooper [8], respectively.
For the latter, 17 is an intrinsic viscosity, as explained by Ashby [2], that depends on the
degree of misalignment between adjacent grain lattices at the boundary interfaces. The in-
trinsic viscosity 7 is used to model the effects of elastically-accommodated grain boundary

sliding and is measured indirectly in experiments using the Debye peak found in the loss
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spectrum. That viscosity is not to be confused with a viscosity ascribed to the presence
of an amorphous silicate (e.g. SiO» in Pezzotti ef al. [32]) found in grain boundaries of
e.g. SizNy. Unlike the intrinsic boundary viscosity, the viscosity of the amorphous silicate
residing along the grain boundaries can be measured independently of the attenuation
spectrum. We also note that because the viscosity of the amorphous silicate does not vary
along grain boundaries, it cannot produce a variation in timescale ¢, described by Cooper
[8].

The second class of explanation concerns geometrical features that physically
affect sliding across grain boundaries. Faul et al. [9] suggest that the loss peak may be
weakened if corners at the triple junctions are sharp. Comparing triple junctions found in
their melt-bearing and melt—free polycrystalline olivine samples, they observed that the
junction corners are significantly rounded when melt is present, as opposed to the tight
corners found in their melt-free samples. Because the loss peak is absent in their melt-
free polycrystalline olivine sample as discussed in §2.1.3, they proposed that the peak is
significantly weakened and is concealed in the absorption background when sliding across
grain boundaries is inhibited by the sharp triple junction corners. This result is also broadly
consistent with the results found in existing theoretical models. In an analysis of the Raj—
Ashby bicrystal model using a small-slope interface by Jackson et al. [16], they show that
the loss peak vanishes as corners become infinitely sharp. In chapter 6, we evaluate the

sensitivity of the loss peak to these proposed factors.

2.2 Diffusionally-accommodated grain boundary sliding

In diffusionally-accommodated grain boundary sliding, dissipation occurs in
polycrystal due to the transport of matter along grain boundaries from regions under com-
pression to regions in tension. To accommodate that transfer of atoms, grain boundaries
slide relative to one another at a characteristic time fp taken for matter to be transported
across distances of order the grain size. A polycrystal therefore creeps at a constant rate de-
termined by a creep viscosity 15 only after a time t > tp has lapsed upon which a constant
load is applied. Note that the creep viscosity s is not to be confused with the boundary
viscosity n discussed previously. Correspondingly, that steady-state creep behaviour is

translated into an inverse relation between mechanical loss and frequency i.e. Q7! ~ 0™
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when a time—periodic load is applied at frequencies @ < t7.

2.2.1 Experiments on geological materials

Steady-state creep behaviour is however, not observed in the attenuation experi-
ments conducted on geological materials. Instead, a mild frequency—dependent absorption
background in the mechanical loss spectrum has been observed consistently in fine grained
O(um) geological materials deforming under small strain O(107°) at seismic frequencies
and elevated temperature ~ 1300K. In forced—torsional oscillation experiments conducted
on olivine aggregates fabricated from natural material, specifically peridotite by Sundberg
& Cooper [40] and dunite (> 90% olivine) by Gribb & Cooper [13] and Bunton [5], the

mechanical loss Q7! is observed to vary approximately as ™%

in the absorption back-
ground.? By comparison, a slightly milder frequency-dependent absorption background
Q7! ~ w2 is also observed in the experiment by Jackson et al. [18] using melt—free
polycrystalline olivine specimens prepared from both natural olivine and sol-gel derived
Fogp precursors. Because the grain size d is kept small ~ O(um) in these experiments
to exclude any effects caused by dislocations (and to prevent microcracking in the speci-
mens), the mild—frequency dependent absorption background is attributed by the different
investigators to diffusional creep originating from grain boundary diffusion.

Figure 2.4 shows the mechanical loss spectra obtained in these experiments obey
the similarity principle dictated by diffusional creep stated in Gribb & Cooper [13]: if the
behaviour of the mechanical loss Q™! is controlled solely by diffusional creep, Q™! should
depend on steady state creep viscosity 15, grain rigidity u and the angular frequency
w through a single dimensionless variable wns/u. From the figure, we find that the
mechanical loss Q! measured in the different experiments described above collapse onto
a single curve defined by a power law Q7! ~ (wnss/u)*, albeit with some scatter in the data.
The cause of that scatter is discussed later.

In the figure, the steady-state creep viscosity 1, used to normalize the frequency
w for the data from Bunton [5] and Sundberg & Cooper [40] is measured using torsional
microcreep test on the same specimens used in their attenuation experiments. By contrast,

the creep viscosity 1ss used to graph the data from Jackson et al. [18] is calculated using Eq.

ZNote: In these experiments, the melt content is not reported except in the case of Sundberg & Cooper,
where they reported a modest melt fraction of ~ 0.015 in their specimens.



CHAPTER 2. SURVEY OF EXPERIMENTS 14

1

10°F | | | E
- Gribb and Cooper (1998) 1
10° =
Q i
w0E TR g, | Morris and Jackson (2009)3
C AT e ]
B [ ] AL v ]
L s ° AVA“ Iv‘ ~ . i

L 0% " 4 4 M .

e Oy v ™ w
10-2 = ‘ v _;
a | | | | | ]
102 10° 102 10* 10° 10°
WNg/ M

Figure 2.4: Mechanical loss spectrum of the experiments. Jackson et al. [18]: e 2.9um, A
12.4pm, 30 v 23.4um, ¢ 165.1ym. Bunton [5] X. Sundberg & Cooper [40] m. Broken lines
have slopes -0.2 and -0.4. Solid lines: Prediction by Gribb & Cooper [13] and Morris &
Jackson [26]. Refer to text for explanation.

(6) in Morris & Jackson [27]. That equation describes a relation between creep viscosity 7ss,
grain size d and temperature T that is obtained by fitting the results of a separate uniaxial
compression microcreep test on fine—grained (3—6 um) polycrystalline olivine aggregates
given in Faul & Jackson [10]. We note that the result in the microcreep experiments
showing creep rate ¢ varying as the third power of grain size i.e. d° supports the argument
that the dominant dissipative mechanism operating in these attenuation experiments is
grain boundary diffusion.

As explained in Morris & Jackson [27], the scatter found at high frequencies is,
in fact, a systematic offset in wnss/u of the data from Jackson et al. [18] corresponding to
different grain sizes. They suggest that the offset is a systematic error introduced when
using the fit given by their Eq. (6) to extrapolate the creep viscosity 7ss to larger grain
sizes. The scatter found in the data from Sundberg & Cooper [40] at wnss/p ~ 10% is
attributed by them to be the inception of a loss peak caused by elastically-accommodated

grain boundary sliding as discussed below Figure 2.3.
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From the figure, the power-law exponent a has different values depending on
the frequency range. As indicated by the broken lines, the value of « varies from ~ —0.4
to ~ —0.2 as frequency w is increased. This range of exponent a is comparable with that
observed in the earth upper mantle [1]. In chapter 5, we show that this gradual decrease in

slope may, in part, be caused by a variation of triple junction corner angles in polycrystals.

2.2.2 Relating experiment to theory
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Figure 2.5: Mechanical loss spectrum predicted by Gribb & Cooper [13]. Refer to text for
explanation

The Raj-Ashby bicrystal model of diffusionally-accommodated grain boundary
sliding has been used by Gribb & Cooper [13] to interpret the results from their experiment.
Following Raj’s approach [34] of using a perturbation method, they calculate the creep rate
¢ as a function of time ¢ for a truncated sawtooth interface with slope angle ¢ = 60°. In
their calculation, they used the resultant interfacial normal stress o, when the interfacial
shear stresses are fully relaxed under elastically-accommodated grain boundary sliding as
an initial condition to compute the creep rate i.e. they assumed grain boundary diffusion

proceeds only upon the completion of elastically-accommodated grain boundary sliding.
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By time-integrating the creep rate é and applying numerical Laplace transform to the
resultant creep response e(t), they obtain the frequency-response of the mechanical loss
Q.

Figure 2.5 shows the prediction of the mechanical loss spectrum by Gribb &
Cooper [13]. Their predicted spectrum contains 3 distinct regions, namely, a steady-state
regime in the low frequencies where Q! ~ ™!, a transient regime at intermediate fre-

quencies and a high—frequency regime where Q7! ~ @02

. In the transient regime, the
mechanical loss Q™' decreases slowly and varies as w0254 According to Gribb &
Cooper, the differing values of the exponent in the power-law description of the tran-
sient regime reflects an error that arises when extrapolating their small-slope perturbation
solution to a finite—slope interface as described in Raj’s calculation [34].

To evaluate the prediction by Gribb & Cooper in terms of the attenuation exper-
iments, we digitized their curves given in Figure 2.5 and rescale the frequency with the
dimensionless variable wnss/u. The steady state creep viscosity 7ss used to rescale the
frequency is obtained from Raj & Ashby calculation of the steady state creep rate for a 2-D
hexagonal array of grains [35]. According to Gribb & Cooper, the creep viscosity nss is
related to the timescale 7 found in Figure 2.5 by t ~ 41nss/u. These curves are graphed with
the experiments using solid lines in Figure 2.4. In the figure, we find that their prediction is
close to the experiments in the frequency range 10° < wnss/u < 10%. At higher frequencies
ie. wnss/p > 103, their prediction of the power-law behaviour Q7! ~ w* starts to deviate
from the experiments; « increasing to -0.5 in their prediction whereas a decreases to roughly
-0.2 in the experiments. At low frequencies i.e. wngss/u ~ 10°, results from the attenuation
experiments start to deviate from the prediction by Gribb & Cooper. Specifically, the results
from the experiments do not exhibit a sharp transition between steady-state regime and
the transient regime predicted by them.

The prediction by Gribb & Cooper [13] is different from the prediction by Morris
& Jackson [26] who also analyze the bicrystal model using a perturbation method that is
accurate only for a small-slope interface. Unlike Gribb & Cooper who transform the time-
response of the bicrystal model deforming under creep to obtain its frequency—-responsei.e.
mechanical loss spectrum, they solve for the spectrum directly by imposing a time—periodic
displacement at the boundaries of the model. For a small-slope interface, they predict the

mechanical loss Q7! to vary as 1/ In w at frequencies w > t]‘Jl. That scaling is independent
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of the interface type and is shown in Figure 2.4. They also show that the logarithmic
scaling is an outcome of corner stress concentration where o,, ~ ™! near corners; here r
is the distance measured away from the corner along the interface. Because the behaviour
of the interfacial normal stress oy, is predicted to change with interface slope angle by a
local analysis of Picu & Gupta [33], the logarithmic scaling does not hold for a finite-slope
interface. We show in chapter 5 that our numerical results for small-slope interfaces agree
with that from the perturbation solution of Morris & Jackson [26] and the loss scaling is,
indeed, sensitive to the slope angle at frequencies w > tz)l.

Comparing the prediction by Morris & Jackson [26] to that from Gribb & Cooper
[13], we find that the mechanical loss Q! is more sensitive to frequency w in the latter’s
prediction. The high-frequency regime loss scaling Q! ~ ™% is also not predicted by
Morris & Jackson. Given that both predictions are obtained from a perturbation analysis
that assume the solution as a power—series of interface slope to the same order, we expect the
mechanical loss Q~! computed from the two solutions to behave similarly in the spectrum
even though different slope angles are used; the slope angle should cancel off in the

calculation of Q™! which is the tangent argument of the model shear modulus G.
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Figure 2.6: Comparison of interfacial normal stress 7, in Gribb & Cooper’s [13] and Morris
& Jackson [26]. Morris & Jackson: Eq. (24) w = 10%, N = 1000. Refer to text for explanation
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There is one inconsistency, however, between the normal interfacial stress 0., —co
found in the solution of Morris & Jackson at high frequency extreme and the stress o, =0
used to initiate the creep response calculation by Gribb & Cooper. In order for the predic-
tions to be consistent with one another, 0, -0 must be equal to 0., =0 and should serve
as an initial condition for the creep response calculation. However, that is not so.

Figure 2.6 shows the initial stress distribution 0, 1o used in Gribb & Cooper’s
calculation and the stress distribution from Morris & Jackson [26]. The oscillation is
an artifact from the Fourier series approximation of the truncated sawtooth interface.
Compared to the prediction by Morris & Jackson where the normal stress 0, w—c0 ~ r1
near corners, we find that 0, =0 does not exhibit that singularity behaviour near corners.
Note in Figure 2.6b, 0, ~ r~! only at distance r > w~!/ measured from the corners for
finite frequencies. The behaviour of 0, 1= is significantly weaker. This disparity between
Onn, w—oo and 0yy, =0 May be a possible cause for that discrepancy between the prediction
by Morris & Jackson [26] and Gribb & Cooper [13] We show later that a weaker stress
concentration is, in fact, translated to a stronger frequency—dependent behaviour of Q_1

that is consistent with the differences between the two analysis.
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Chapter 3

Boundary value problems of the

bicrystal model

B.v.p.’s of diffusionally-accommodated grain boundary sliding and elastically—
accommodated grain boundary sliding are now formulated. Here and subsequently, we

use asterisks to denote dimensional variables.

MR

eriw*t*

2r/¢

A
/

Figure 3.1: Model schematic

Figure 3.1 shows the geometry of the bicrystal model. The sample consists of
two linear elastic grains having elastic shear modulus 1 and Poisson ratio v. The interface

is periodic with a wavelength 2n/&, where & ~ 1/d is the wavenumber. We assume
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the interface position to be a given time-independent function f*(x*) because the strains
occurring in the attenuation experiments are small in order to model the propagation of
seismic wave. Unit vectors in the coordinate directions are denoted by £ and #. The unit
tangent and unit normal vectors of the interface are denoted by § and 7, respectively. At the
upper and lower boundaries at y* = +a/¢&, the displacement varies sinusoidally in time t*
with angular frequency w* and amplitude Uy, i.e. u* = fUpe "t . The grains are assumed to
be undergoing plane deformation and the x and y components of the displacement vector
u* are denoted by 1] (x*, y*) and u3(x", y*), respectively. Similarly, the Cartesian components
of the stress and strain tensors (i.e. 0 and e) are denoted by a;.‘].(x*, y*) and ej].(x*, y).

There are two rate-dependent constitutive equations on the grain boundary ;.
The first constitutive equation is given in (3.1) and describes the viscous sliding along
interface S; caused by the presence of a boundary phase. In that equation, the interfacial
shear stress 07, is proportional to the discontinuity in tangential velocity [#}] across S; and
is given by

Cops =nlig] . (3.1)

Here, ¢ and 1 are, respectively, the thickness and the viscosity of the interface; both assumed
to be constant. We note that constitutive equation (3.1) is analogous to that of Couette flow
and the interface S; therefore acts as if it contains a thin film of Newtonian fluid.

The second constitutive equation describes the effects of grain boundary diffusion.
Volumetric flow rate (per unit z-length) along the interface j* occurs in the presence of a

normal stress gradient doy,,/ds*. From Fick’s first law, this flow rate is given by

_ VD dd},
kT dst

=%

(3.2)

where matter flows from region under compression to region in tension along the interface

Sr. Balancing mass along the interface i.e.
dj*
1+ —=—=0 , 3.3
[ul’l] ds* ( )
leads to the final form of the constitutive equation for grain boundary diffusion that is
given by
., VvtDd?c;,
+ JR—
[+ 2 32
Because time—derivatives enter these two constitutive equationsi.e. Eq. (3.1) and

=0. (3.4)

(3.4), we can define two timescales t, and tp from them. Following Mosher & Raj [28] and
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Parameters Values References

Temperature T 1500K

Grain size d S5um Jackson et al. [17]

Grain rigidity u 0.05TPa

Grain boundary thickness ¢ 1 nm

Frequencies w/2m 1073 -1 Hz

Steady—creep viscosity 1’ 50 TPa s Faul & Jackson [10];
Morris & Jackson [27]

Molecular volume v 0.05 nm? Frost & Ashby [11]

Diftusivity D 1073m3/sec Eq. (14) in Coble [7]: n’ = 1}78‘%‘5

Diffusive timescale tp 10° sec

Diffusive lengthscale 4 0.05-0.5 um

Table 3.1: Estimates of diffusive timescale fp and lengthscale {; based on Mg,S5iO4. Refer
to text for explanation.

Raj [34], the timescales are defined as:

by = % t = %. (3.5a, b)
Physically, t, and tp are the timescales on which the two sides of (3.1) and (3.4) balance. In
Eq. (3.5b), the terms balance if the derivative along the interface scales with its wavelength.
Thus at high frequencies i.e. w < t3!, diffusion only operates within a distance that is
small compared with the wavelength. At a given frequency w, the effects of diffusion on
an interface with sharp corners is then limited to within a distance £; measured away from

the corner given by

_(uVveD\'?
4"\ kTw '

(3.6)
In Table 3.1, we estimate the diffusive timescale fp and the diffusive distance ¢; in the
attenuation experiments. From the table, we find that the diffusive lengthscale ¢, is at least
order of magnitude smaller than the grain size. Consequently, diffusion does not occur at
a grain—scale level in the attenuation experiments.

We now define the following dimensionless variables (without asterisks):

oY) =Y/, (3.7a)

u* = uOu, (3.7b)
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f=efls, (3.7¢)
G;j = {JEU()GZ']‘, (3.7d)
t = tpt. (3.7e)

In Eq. (3.7¢), ¢ is the characteristic slope of the interface.
The dimensionless b.v.p. of diffusionally-accommodated grain boundary sliding
is stated as follows:

in grain 1 and grain 2,

V(V-u)+ (1 -20)V2u=0; (3.8a)
ony = +a,
Uy = +e'®t, (3.8b)
Uy = 0,‘ (38C)
ony = ef(x),
Miis] = oys, (3.8d)
. d2(7nn
(] + 2 0; (3.8¢)
[04s] =0 = [0pn] (3.8, g)

onx =2nand x =0,
u1(0,y) = m2m, y), (3.8h)
10, y) = 127, y). (3.8i)
In (3.8d), the viscosity parameter M is defined as
M=t,/tp. (3.9)

When M — 0 (for fixed frequency), the interface St becomes effectively inviscid on the
interface i.e. 0,,s = 0 and dissipation occurs solely through grain boundary diffusion.
Conversely when there is no diffusion, energy is dissipated solely through the

boundary viscosity 1. This specific case is referred to as elastically-accommodated grain
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boundary sliding described below §2.1. For this case, the normal displacement u,, becomes

continuous across the interface S; and Eq. (3.8e) is replaced by
[un] = 0. (3.10a)
Rescaling time t with the sliding timescale ¢, by setting M = 1, Eq. (3.8d) becomes
[1s] = Ops (3.10b)

Eq. (3.8a) - (3.8¢), (3.8f) — (3.8i) and (3.10) thus form the b.v.p. of elastically-accommodated
grain boundary sliding for the bicrystal model.

Because the elastic wavelength for our frequencies of interest is large compared to
the sample size, we used the plane elastostatic equation in (3.8a) instead of the dynamical
equation. With a grain interface Sy that is fixed in time, problem (3.8) is then linear
and separable in time. Consequently, the solution to (3.8) for a time—periodic boundary
displacement is also time—periodic with the same angular frequency w.

Because the constitutive equations (3.8d) and (3.8e) contain time derivatives, the
displacements within the sample lag the displacements imposed at the sample boundaries.
Consequently, the stress at the boundary lags the displacement there. That resulting phase
lag between the imposed boundary displacement and the resultant boundary stress is an
expression of dissipation occurring at the interface Sj.

By solving the b.v.p.’s (diffusionally and elastically accommodated grain bound-
ary sliding), we are able to obtain the x—averaged shear stress T applied at y = +a. The

averaged shear stress 7 is defined as

1 271
T(t) = E‘fo oxy(x,a,t)dx. (3.11)

The sample shear modulus G is then defined by the equation:

G =1(t)/y(®), (3.12)

where y(t) = €l*!/a is the sample shear strain. Because both 7 and y are proportional to e’
in (3.12), the modulus G is independent of t and is a function of frequency w.

The mechanical loss L is defined, as usual, by the equation

L =tanargG. (3.13)
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We note that L is a dimensionless quantity. If the material can be modelled as a network of
springs and dampers, the quantity defined by (3.13) is equal to the ratio of the loss per cycle
to 47 times the mean strain energy stored within the grains (see O’Connell & Budiansky
[30] and Bland [4]).

Type T'S

(a) Array of hexagonal grains

(b) Type S interface (c) Type TS interface

Figure 3.2: Polycrystal microstructure idealized as an array of hexagonal grains
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We consider the type S interface and the type TS interface shown in Figure 3.2.
These interfaces correspond to two orthogonal sliding surfaces found in an array of regular
hexagonal grains. Corners of the interface are rounded over a distance r. < 4 and we define

N as the ratio of the interface wavelength d with the corner radius . so that

N = i (3.14)
Te

When interfaces have sharp corners (i.e. 7. = 0 or N — o0), these interfaces can be

represented using piecewise functions defined by

x/Tma if O<x<ma;
f=q1 if ma<x<n(l-a); (3.15)

(m—x)/na if m(l-a)<x<m,

where the specific values @ = 1/2 and a = 1/4 correspond to a type S and a type TS
interface, respectively. To relate the characteristic slope ¢ to the interface slope angle ¢, we

use (3.16a) and (3.16b) for the type S and the type TS interface, respectively.

2 4
tangp = f, tangp = Eg (3.16a,b)

We note that because there are 3 axes that correspond with each of the two sliding surfaces

(See Figure 3.2a), the response of that sample has a 3—fold rotational symmetry.
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Chapter 4

Numerical method

Here we discuss the numerical method used to solve the b.v.p.’s of the bicrystal
model stated in the previous chapter. Using conventional finite element to solve b.v.p.
(3.8) of diffusionally-accommodated grain boundary sliding is challenging, in particular
because of the boundary condition (3.8d). As a result of corner stress concentrations
described in §5.1, numerical approximation of the term d?,,,/ds? found in (3.8d) will incur
a large numerical error and requires excessively fine mesh near corners.

To circumvent this difficulty, we use the method of eigenfunction expansion de-
scribed in Sethian & Wilkening [38]. In order to apply that method, we need to decompose
theb.v.p. stated in (3.8) into two separate b.v.p.’s, namely, b.v.p) and b.v.p®. These b.v.p.’s
are described in §4.1. B.v.p® has a trivial solution given in §4.2, whereas b.v.p® is solved
using eigenfunction expansion method discussed in §4.3. In §4.4, we describe the method
used to extract the required eigenvalues and eigenvectors. That method requires finite
element method which is described in §4.5. In that same section, we also describe the finite
element method used to solve the b.v.p. posed below 3.10 of elastically-accommodated

grain boundary sliding.

4.1 Decomposition of boundary value problem: b.v.p'Y and b.v.p®

Because the interface Sy is time-independent and the b.v.p. given in (3.8) is linear,
the principle of superposition applies. We decompose the b.v.p. into two separate b.v.p.’s,

namely, b.v.p¥) and b.v.p®. These two b.v.p.’s share the same geometry with the original
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problem that is shown in Figure 3.1. Using superscripts 1 and 2 to denote, respectively,
variables associated with b.v.p.(l) and b.V.p.(Z), the stress field ¢;j, strain field e;; and the

displacement field u1, u in (3.8) can be obtained by superposing the solution of the two

b.vp.s, ie.
oij = ol(.]l.)+a§?), (4.1a)
eij = ez(.;)+e§f), (4.1b)
(w,u) = @ ul)+@P,ud). (4.1¢)

To simplify the notation, we use g, and g; to denote, respectively, the normal gap [u,] and
the tangential gap [us] of interface S; in this chapter. Interfacial stresses and gaps are also
denoted here, using 2 x 1 vectors of functions o, = [0, ous]T and g =1gn, gs]T, respectively.

The plane elastostatic equation in Eq. (3.8a), the periodic boundary conditions
in Egs. (3.8h,i) and the requirement that normal and tangential stresses across the grain
boundary are continuous in Eqs. (3.8f,g) all apply in b.v.p.(l) and b.v.p.?). The other

boundary conditions are stated below.

4.1.1 Boundary conditions in b.v.p.!

In b.v.p.(), the boundary conditions at y = +a are

1) _ ot 1 _
u’ = +e'*, u,” =0, (4.2a,b)

and the boundary conditions along the interface Sy on y = ¢ f(x) are

aD =0, d=0. (4.3a,b)

4.1.2 Boundary conditions in b.v.p.?)

Conversely in b.v.p.?, boundary conditions at y = +a are
y p y y
2 2
u® =0, uP) =0, (4.4a,b)

whereas the boundary conditions along the interface S; on y = ¢f(x) are

2
@) @  d% @

MggZ) =0, Sy + e =0. (4.5a,b)
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4.2 Exact solution of b.v.p.V

By inspection of b.v.p.(), the two grains do not interact with one another through

their interface S;. Hence, the two grains moved rigidly across one another and the dis-

placement field u of the upper grain and the lower grain are £¢'“! and —£¢'“!, respectively.
The displacement fields satisfy all equations given in b.v.p( and the resulting normal gap

and the tangential gap across the interface Sy are, respectively,

1(11) — zeia)tf . i'\l, ggl) — Zeiwtﬁ' . § . (46a’b)

4.3 FEigenfunction expansion solution of b.v.p.?)

To solve b.v.p.?), we use eigenfunction expansion. In essence, we reduce a 2-
dimensional problem given in b.v.p.?) to a 1-dimensional problem defined along interface
S1. We define a linear operator S that maps a given interfacial gaps g(z) onto the interfacial

stresses 0\ in b.v.p.?). Because interfacial stresses in b.v.p.()) are zero i.e. o) =0, the

interfacial stresses in b.v.p(? are equivalent to that in the original b.v.p. i.e. a,(f) = 0,. The
operator S is defined as follows

S:g@ o, (4.7)
We also define a differential operator L given as

d%o T
L: [oum, Ons]T - _nn/ M_l(fns . (4.8)
ds?
Using the definition given in (4.7) and (4.8), we find from the constitutive equations of
the original b.v.p. given in (3.8d) and (3.8e) that LSg(z) = ¢. Applying the principle of
superposition ¢ = ¢V + ¢ to that equation, the 2-dimensional problem given in b.v.p.?)

is condensed into a single equation defined on the interface Sr:
¢P 4 1LSg? = —gM 4.9)

The r.h.s. term in (4.9) can be calculated using (4.6). We also note that without the forcing

term ¢, ¢@ is bounded in the limit t — oo, if the eigenvalues of LS are greater than or
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equal to zero. We show, using an example in Figure 4.2, that the eigenvalues are, indeed,
positive.

Time evolution of the interfacial gap ¢'» defined in (4.9) can thus be obtained by
eigenfunction expansion if the eigenvalues y; and the eigenfunctions Z(s) associated with

the composite operator LS are known i.e.
LS Zk(s) = yxZi(s) - (4.10)

Note: the eigenfunctions Z(s) are 2 X 1 vector of functions, where its first and second
components are associated with gf) and ggz), respectively. Using N, eigenfunctions, the
solution to the homogeneous part of (4.9) (i.e. with ¢() = 0) can be written in a separable

form

N
82,0 =Y Bre T Zi(s), (411)
k=1

where By are coefficients determined by the initial condition gf)z) (s). The coefficients fy are

found by requiring them to satisfy

N
Y BiZi(s) = 8566). 4.12)
k=1

Letting @z be a 1 X N, vector containing these eigenfunctions,

Dz =[Z1(s), 22(5), ..., ZNn(S)] ; (4.13)

and @7, be the adjoint operator of @7 so that @, g(()z) is a N; x 1 vector of scalars defined as

T
@5 = fs 12185, 2285, ..., Zngl| s, (4.14)
1

the coefficients § = [B1,B2,---, ,BN]T , upon solving (4.11) for B, can be written compactly
as
B = (@, D7) '@yl (4.15)

Substituting (4.15) into (4.11), the latter equation becomes
861 = E0g(6), (4.16)
where E(t) is defined as the source operator or evolution operator

E(t) = @z e M (DL, Dy) '@, (4.17)
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and A is a diagonal matrix defined as A = diag[y1,72,...,¥N,]- The solution to the

inhomogeneous p.d.e. given in (4.9) can then be obtained using Duhamel’s principle

t
g6, 1) =E(MgY - fo E(t—F) ¢V, )dF. (4.18)

Hence, the problem of diffusionally-accommodated grain boundary sliding on a bicrystal
model given in (3.8) is solved, if the eigenvalues y; and the eigenfunctions Z; defined in
(4.10) are found.

4.4 Extraction of eigenvalues/eigenvectors

We now describe the method used to extract the eigenvalues yx and eigenfunctions
Zj in finite dimension. Though the composite operator LS can be obtained directly using
finite element method to approximate S and finite difference method to approximate L,
corner stress concentrations described in §5.1.4 will lead to large numerical errors when
using finite difference to approximate L.

To circumvent that problem, we use a method given in Sethian & Wilkening
[38], where they solve the problem of electromigration due to grain boundary diffusion.
Instead of constructing L directly using finite difference method, a “pseudo—inverse” A of
the composite operator LS is constructed. That operator A has similar eigenfunctions Z to

that of LS, and has eigenvalues (; that are related to 4 by

vk iy #0
Gk = : (4.19)
0 if Yk = 0
The operator A is defined as
A =QBGQ. (4.20)

InEq. (4.20), Bis the inverse of S and maps interfacial stresses 01(12) to the gap ¢'?, G contains
a Poisson operator and Q is a non-orthogonal projection operator. We now describe these

operators and show how they are constructed in finite dimensional space.

4.4.1 Operator B

The operator B is defined as follows:

B:o? - ¢@. (4.21)
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In essence, B is the inverse of S defined in (4.7) and maps the interfacial stresses a,(f)(s) to
the interfacial gaps g% (s). The functions in the vectors ¢» and 6512) can be approximated

using conventional finite element hat functions 1;(s)

Figure 4.1: Linear shape functions 1(s) on S;

Figure 4.1 shows the schematic of the hat functions ;(s) defined along interface
S1. We have denoted Lg, as the length of that interface in the figure. The interfacial gaps

and stresses are approximated using N, hat functions by

gPs) = Z Y8,  ¢d6) = 2 0937 (4.22a,b)
j=1
and
Onn(s) = Z ED](S) Onn,j Ous(8) = Z QD](S) Ons,j - (4.23a,b)

In Eq. (4.22), g(z) and g refer to the values of the normal gap and tangential gap at node
J, whereas G, and 65 j in Eq. (4.23) refer to the values of the normal stress and tangential

stress at node j. Henceforth, we use tilde to denote vectors containing the nodal values of
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a function. Letting W5 be a 2 X 2N, matrix containing these hat functions i.e.

_ ¢1(s) I,DNX(S) 0 0

v, , (4.24)
o ... 0 Pi(s) ... Pn,(s)
the vector function of interfacial gap ¢/» and interfacial stress 0, can be written compactly
as
) =w,3?, cP(s) =w,5?, (4.25a,b)
- (2 s2) 52 (2 ~(2) _ 22 ~2) = ~(2
where §? = [gflj, . ,g;’) x,gil), .. ,gillz]x]T and 051) = [a;rz,l, e ,airlex,ails),l, e 'qus),Nx]T are

vectors of size 2N, X 1. Mathematically, W, is also an operator that maps a 2N, X 1 vector
into a 2 X 1 vector of functions, i.e. W, : R?Nr — Wﬁ. Correspondingly, we denote its

adjoint by W, that is define as follows
W hy = fs Wi, ds, (4.26)
1
where hy(s) is a 2 X 1 vector of functions defined along S;.
To obtain the finite dimensional operator B € R?Mr x R?N+ that maps the nodal
values of the interfacial stresses 5,(12) to the nodal values of the interfacial gaps 3@, i.e.

B : R®x — R2Nx we use the identity W,B g<2> = 0512)(5) = BW, g<2> that results in
W,B = BW,. (4.27)

Multiplying (4.27) by the i-th direction unit vector &; and then applying the adjoint operator

W5 to the resulting expression leads to
W, W, Be; = W), BW78, . (4.28)

Letting My = W, W), and multiplying the above expression by Mgl, the first column of B,

which is given by Bé;, becomes
Be; = M, 'W;BW,¢; . (4.29)

In Eq. (4.29), M; is the “mass matrix” found in finite element formulation. We also note
that in Eq. (4.29), the resultant of BW,g, is the interfacial gaps g?(s) = [ gfqz) (s), ggz)(s)]T that
is obtained from a given interfacial stress 0512)(5) = W, g;, whereas Mgl‘I’; g(z)(s) results in

a 2N, x 1 vector §? containing nodal values of interfacial gaps defined below (4.25). The
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i~th column of B, therefore, contains nodal values of the interfacial gaps §® found from

solving b.v.p.?) with boundary conditions (4.5) replaced by

0512,1) _ W, for i=1,...,Ny ; (4.300)
0 for i=Ny+1,...,2N,
05125) _ 0 for i=1,...,Ny ' (430b)
ViN, for i=N,+1,...,2N,

The entire B matrix can therefore be populated by solving, repeatedly, for the nodal inter-
facial gaps §® using finite element method (described in §4.5) with the above boundary
conditions fori=1,...,2N,.

4.4.2 Operator G

The operator G is defined as follows:

G- [dzann(s)

T
7 ans<s>] = [omn(s), ~Mons®)]", (4.31)

where 0,,, and o0, satisfy periodic boundary conditions at the two end points of S;. The
operator G can be decomposed into two operators P and G that operates on the functions

0ns and d%o,,;,/ds? separately, i.e.

P:o,— -Moys, (4.32a)
— d?%
: ds;’” — Opn - (4.32b)

In Eq. (4.32a), P simply multiply o,s by a scalar —M and can be represented, in finite
dimension by
P=-MI. (4.33)

Here, I € RN x RMr is the identity matrix. The operator G defined in (4.32b) is referred
here as a Poisson operator. That operator solves the Poisson equation with given function
h1(s) and periodic boundary conditions for ,,(s) i.e.

A%,

S =h(), (4.34a)
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Gi’l}’lls:() = O'i’ll’lls:LSl 7 (434b)
doyun don
= . (434:C)
ds |s—o ds s=Ls,

We use finite element method to obtain G in finite dimensional space. Denoting v(s) as the

test function, the weak formulation of (4.34) becomes

doy, dv f
—ds=- vhyds. (4.35)
‘[SI dS dS S;

The variables v, 0, and h; are approximated using hat functions i illustrated in Figure

4.1. Letting W1 be a 1 X N, matrix containing these hat functions i i.e.
Wi =[y1,..., 9N, (4.36)
these variables can be written as

v=W;7, O = W1 Gpn, =W h. (4.37a,b, c)

In Eq. (4.37), 9, 6un and hy are, respectively, Ny X 1 vectors containing the nodal values of
the variables v, 0,,, and h;. Substituting (4.37) into (4.35), the latter expression becomes

KG G = —Mi Iy (4.38)

where Kg and M; are N, X N, matrices given by

dwl
Kg = f 1 4% e My = f Wiy, ds. (4.39a, b)
S ds ds S

We note that K¢ is the stiffness matrix found in finite element method, whereas M; is the
mass matrix analogous to M, described below (4.29). Because the solution to (4.34) is not
unique, K is not invertible. Hence, to obtain the finite dimensional Poisson operator G so
that

Gun =Ghy, (4.40)

we uses the singular value decomposition of Kg i.e.

K¢ = UzvT (4.41)
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where U, V and X are, respectively, the left-singular matrix, the right-singular matrix and
a diagonal matrix containing the singular values of K;. We note that one of the singular
value is zero. Letting X” be a diagonal matrix having entries that are reciprocal of thatin X,
and has zero entry if the corresponding entry in X is zero, the finite dimensional Poisson
operator becomes

G=-vZu'™m;. (4.42)

Noting that P and G, which are defined respectively in (4.33) and (4.42), operate separately

as described in (4.32), the operator G in finite dimension is given by

G 0

. (4.43)
0P
In Eq. (4.43), G is a 2N, X 2N, matrix.

4.4.3 Projection Operator Q

The non-orthogonal projection operator Q is defined following Sethian & Wilken-
ing [38] as

((:’B' e)) Be, (4.44)

Q=I-
where | is an identity operator and e(s) = [1,0]T is a 2 X 1 vector of constants. Note: the
projection operator Q defined here is equivalent to Q* defined in Wilkening et al. [41]. In
Eq. (4.44), the round brackets denote the inner product between two 2 x 1 vector functions

hy(s) and g2(s) that are defined along Sy i.e.

(h2,q2) = fs hy gads. (4.45)
I

Operator Q is constructed to have its range for the first component restricted to the space of
“mean zero” functions szwz = {h e L2(S)); fSI hds = 0}. In other words, for a 2 x 1 vector of
functions /;(s), the first component of the resultant mapping ¢’Qh; € L3 . That operator
Q also has kernel along Be. Note: the resultant of Be is the interfacial gaps produced by
interfacial stresses 0, = ¢ = 1 and 0,s = 0. The main purpose of Q is to restrict g, (or
g,(f) because g,(}) defined in (4.6a) € L3 ) to functions € L2 . That restriction is required

doy, _ dou

by mass conservation across s = 0 and s = Lg,, i.e. Tleo = TE . To see that mass

S:LSI
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2

conservation requires g, € LMZ,

we integrate (3.8d) with respect to s and find that

P)
5 ) & ds=0. (4.46)

From (4.46), , gn € L?VIZ at all time ¢ if the normal interfacial gap has zero mean along the
interface att = 0.
We now consider the following mappings by QBG:

(2) (2 (2
8n Q 8n B Opy tC G
— +cBe —— —
g(z) (2 (2

s

gS GHS

day)
ds? ) (4.47)
-1 (2
(—M 10,(15)]

In Eq. (4.47), c is an integration constant introduced by the Poisson operator G in G, and Q

annihilate the additional terms produced by c. Comparing (4.47) to the mappings by LS:

@@ s (6?) L Loy
(?2)]—>[ ’(“2”)]—> “ o (4.48)
gS UI’[S

M1 0(2)
ns
we thus find that the composite map QBG is the inverse of LS i.e.

QBGLS =1, (4.49)

where | is the identity operator. Applying the expression given in (4.49) to Z; and using
(4.10), we find that
VkQBGZy = Z; . (4.50)

The above equation (4.50), however, does not hold if y; = 0 or equivalently, when Z; €
Be = ker(LS). Because QZ; = Z; when Z; € L%/IZ’ and QZ; = 0 when Z; € Be, we can insert

Q between G and Z; in the L.h.s. of (4.50) and applying Q to r.h.s. of that equation to obtain

7kQBGQZ; = QZ . (4.51)

Eq. (4.51) is thus satisfied for all values of y, and QBGQ has eigenfunctions Z; that are
similar to that of LS and eigenvalues (; that are related to eigenvalues yj of LS by (4.19).
The operator Q in finite dimensional space, denoted here as Q, can be obtained
as follows. Letting & = (1,..., 1)T be a N, X 1 vector of ones and z = (0, ..., 0)T bea N, x1
vector of zeros, the vector e(s) defined below (4.44) is given, in finite dimensional space, by

T = (éT,ZT). To relate between ¢(s) and §, we use

e=W,%. (4.52)
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Note: this form is analogous to the representation given in (4.25). Using (4.52), (4.27) and

the definition given in (4.45), we find that the denominator in (4.44) becomes
(¢,Be) = f dwlw,Beds = ¢TM,B¢. (4.53)
S

We have use the definition of M, given above (4.29) to obtain the last expression in the
above equation. Similarly, one can prove using (4.52), (4.27) and the identity QW,; = W>,Q

that
B I M,
§TM,BE

Here, Q is a 2N, X 2N, matrix and I is an identity matrix.

Q=1I- (4.54)

4.4.4 Steady state solution to b.v.p.?)

The pseudo-inverse operator A defined in (4.20), in finite dimensional space, is
A = QBGQ, (4.55)

where Q, G are defined in (4.54), (4.43), respectively, and B is found using finite element
method described below (4.30).
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Figure 4.2: Eigenvalues yy as a function of k. Type S interface. ¢ = 30°. N = 100. N, = 748.
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Figure 4.2 shows the eigenvalues (i of A obtained for the interface described in
the caption. These eigenvalues are related to y by (4.10). In the figure, the eigenvalues
Cx > 0 and correspondingly eigenvalues yi of LS are also greater than zero. The positivity
of these eigenvalues y; thus ensures the solution ¢ given in (4.18) is bounded at all times.

To relate the eigenfunctions Z(s) of LS to the eigenvectors Z;, we use Z(s) = W2 Z;.
Using that relation and letting &)Z =[Z,..., ZNZ] be a matrix containing eigenvectors, we
find from (4.13) that

D, =V, D, . (4.56)

Substituting (4.56) into (4.17) and using the identity EW, = W,E, we find that the source
operator in finite dimension becomes

E(f) = ®ze M@ (4.57)

From (4.18), the time evolution of the nodal gaps in b.v.p® becomes
t
g®@=E®§”1LEa—D§WﬂdL (4.58)

where géz) is the nodal values of the initial condition gf)z) and ¢ is the nodal values of ¢V
evaluated using (4.6). At steady state, the first rh.s. term of (4.58) vanishes. Consequently,

the steady—state solution for the interfacial gap is

t
£W=IHFEW®&. (459)

This expression can be simplified further by substituting (4.57) and (4.6), and then evalu-

ating that resultant integral to obtain
g2t = Dz D, @130 Ve (4.60)

In Eq. (4.60), D is a diagonal matrix with k-th component given as

iwyg + w?
Dsicry = w2—+y2 (4.61)
k

Denoting §2(f) = §2(w)el! where

8@ (@) = ®, D, @;'30)V, (4.62)
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the nodal values of ¢, can be found using
Gu(@) = B3 (@). (4.63)
Noting that o,(w) - gV(0)/2 is the projection of the interfacial stresses in the x—direction, the

x—average shear stress at y = +a becomes

1 1
(@) = 5 fs 0, (@)W W2 §(0)Vds = 55, (@)Ma3(0)", (4.64)
1

and the mechanical loss spectrum £(w) can then be calculated from its definition in (3.13).

4.5 Finite Element Method

Here we describe the finite element method used (i) to solve the b.v.p. described
above (4.30) needed to generate the matrix B, and (ii) to solve for the b.v.p. of elastically—
accommodated grain boundary sliding posed below (3.10). To begin, we first derive the

weak formulation of the b.v.p. described above (4.30).

4.5.1 Weak formulation

The Navier-Cauchy equation of elasticity given in (3.8a) is the resultant of the
balance of linear momentum, the isotropic material constitutive equation and the small

strain definition given, respectively, as

gijj =0, (4.65a)
1 v
0jj = 1+v (61‘]‘ + 1= 2V6kk(5ij) , (465b)
1
eij = E (ui,]- + M]',Z') . (465C)

We shall use these equations (instead of the Navier—-Cauchy equation) to derive the weak
formulation here. Letting v be the test function that is zero at boundaries having prescribed
displacement, and v; be its component, we take the inner product of Eq. (4.65a) with v
and integrate the resultant expression over the entire material region V to obtain the weak

formulation

f Uz‘jvi,]' dvV - fai]-n]-vi dI'=0. (466)
4% r
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In the above equation, V and I denotes, respectively, the combined volume and boundaries
of grain 1 and grain 2, whereas n; refers to the vector components of the outward normal
along theboundaries. In arriving at (4.66), we have used the identity 0;; jv; = (0;0;),j—0ij,jvi
and the divergence theorem. We also note that the traction along boundary I' is given by
ti = ojjn;. Correspondingly, the second integral in (4.66) becomes sz OOy + 0,50, ds, where
0nn and oy, are prescribed on Si.

To enforce the boundary conditions, we use the standard penalty method. For
the general case when displacement u = +U is prescribed at y = +4, and when a periodic
boundary condition is imposed across x = 0 and x = 2m, we add terms scaled by a large

positive penalty parameter P in the weak formulation (4.66) to obtain

f 0ijv;; dV — OO ds + 0,505 ds
Vv Sy

traction b.c.

+P f {ui(0, y) — ui(2m, y)} vi(0, y) + {u; 27, y) — u; (0, y)} vi(27, y) dy
—a (4.67)

periodic b.c.

270
+ Pf {ui(x, a) = Ui} vi(x, a) + {ui(x, —a) + Uj)} vi(x, —a) dx = 0.
0

displacement b.c.

We note that the periodic and the displacement boundary conditions are exactly enforced

in the limit as P — .

4.5.2 Discretization

Figure 4.3 shows the finite element discretization of grain 1. To capture the
rounded corners in the interface S;, we increase the mesh density near corners. The
expression given in (4.67) is now discretized using finite element method. Specifically,
we approximate the displacement field u; and the test function v; in each element using

bilinear shape functions ¢;(x, ) i.e.

4 4
= Zl. G, y) di, = sz GixX, ) Biea, (4.68a, b)
i= =
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Figure 4.3: Finite element mesh in grain 1. 22200 nodes and 21903 elements. Type S,a =5,
@ =30°, N = 100. Inset: mesh around a corner.

and A A
0 = Z Pi(x,y) by, vy = Z ®i(x, ) bisa - (4.69a, b)
i=1 k=1

Here, .. 4 and ds,.. g are, respectively, the £-displacements and fj-displacements at the
nodes of a quadrilateral element. Similarly, b; contains the values of the test function v at

~ - ~ T
the nodes of an element. Letting 4 = {4y, ---, dS}T, b= { by, -, bg} and

o |0 92 s 0 0 0 0
0 0 0 0 ¢ ¢ 3 dg|

Egs. (4.69) can be written compactly as

(4.70)
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Local coordinates Global coordinates

7 T
4 g2ll\ 3 y)\
-1 1S >
x
1 -l 2
Figure 4.4: Isoparametric mapping.
u=diq, v=Dh. (4.71a, b)

Shape functions ¢; are usually defined using local coordinates ¢1, ¢> of an element. These

coordinates can be mapped onto the global coordinates x, y using isoparametric mapping

4 4
x(e1,62) = Y e, )X y(e,) = ) diler, )Yk (472a,b)
k=1 k=1

Here, (Xk, Yx) defines the (x, y) position of the corners in an element and we give a
schematic in Figure 4.4 to illustrate isoparametric mapping. In the local coordinates, the

shape functions are then defined as follows

o= 70 -1 - <),
2 = %1(1 +c1)(1 -¢2),

: 4.73)
P3 = 1(1 +c1)(1+c2),

6s= 70 -1 +<2).
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Discretization of volume integral

Using N, quadrilateral elements to discretize the material domain V, the leftmost

integral given in (4.67) can be discretized and become

Ne
Z f 0ij Ui, dv. (4.74)
m=1"Vm

Using (4.65b), (4.65c) and (4.71), the above integral can be written as
T =[m] T T
Z f i (Do) E (Do) 2" gy . (4.75)
m=1 m

Here, the superscript "l is used to denote variables associated with element m. This
notation is used in the remaining section. In Eq. (4.75), 5" and al"! therefore denote
the nodal values of the displacements and test functions in element m. Correspondingly,
(D®)" and E are matrices that contain, respectively, spatial derivatives of the shape

functions in @ evaluated in element m and material constants. These matrices are defined

as follows:
i o O 5 0
E=|mZ5 4oy 0|, D®=|0 5|®. (4.76a,b)
0 0 1 5
Defining the stiffness matrix of element m as
Kl = f (DCD[’”])TE(DCD[’”]) dv, (4.77)

m

the leftmost integral given in (4.67), after substituting (4.77) into (4.75), becomes
N, T
Y U gl gl (4.78)
m=1

Note: It is easier to evaluate the integral given in (4.77) using the local coordinates ¢y, ¢».

Discretization of grain boundary integral

Using our previous definition of 6, = [0, ons]T and noting that v, = —sinp(s) £+
cos @(s) 1, vs = cos @p(s) X +sin @(s) §J , we can re-write the second integral in (4.67) in a more

compact form

f OpnUn + OpsUs ds = f vTRTan ds (4.79a)
S] Sl
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Grain 2 :

Figure 4.5: Finite element discretization along S;.

where

(4.79b)

r=|" sin@(s) cos@(s)
| cos @(s) sing(s) .

Figure 4.5 illustrates the finite element discretization of the grain boundary S;.
That boundary is shared by elements in grain 1 and grain 2, and correspondingly, each
black dot @ along Sj in the figure represents two coinciding nodes (from grain 1 and 2).
Letting Eg, be the set of elements m € grain 1 having boundary S}m] C 81, and Eg, be the
corresponding set of elements k € grain 2 having boundary ng] , the discretized form of

(4.79), and hence of the second integral in (4.67), is given as

T kT T
Y fo et R s 3 [Tl R e a0
SEm] SEmI

me]ESl kE]ESZ

Discretization of periodic boundary condition

Figure 4.6 illustrates the finite element discretization along the x = 0 and x = 2m.
For simplicity in imposing periodic boundary condition, we create a mesh so that there is
a one to one correspondence between element m that has a boundary on x = 0 and element
k that has a boundary on x = 2n. The two nodes of element m on x = 0 are separated

horizontally from the two nodes of element k on x = 2r by a distance 2. Denoting Er, and
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Grain 1

r =27

Tl

Grain 2

Figure 4.6: Finite element discretization on x = 0, x = 2m.

Er, be corresponding sets of elements m and k having boundaries I"[Lm] onx =0and Fg(] on
x = 27 respectively, the 3rd integral in (4.67), after substituting from (4.71), is discretized
into

sl T i T (ol Al _ Ikl Ak
PZf[m]b @l (@l glm — @l 71H1) gy

mG]ErL r

KT T (k] A6 _ qolm] Al
+P2f[k]b @ (@l M — @l 1) 4y

ke ]EFR IﬂL

L

(4.81)

Because the fj—coordinates defining elemental boundaries F[Lm] and F%c] are identical, the

two integrals in (4.81) can be combined and the resultant can be written more compactly as

_ T
Z [b[m]] K[ml(ﬁ[m]] (4.82a)
=[k] A P -62a
mE]ErL b a[k]

where K},m] is the penalty matrix for enforcing periodic boundary conditions and is given
by

oIl _plm T k]
K" =P f T T dy. (4.82b)
i |~ Tl kT @l
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Discretization of displacement boundary condition

The final integral given in (4.67) of the displacement boundary conditions is
discretized here. Denoting [Er, and Er, be sets of elements m and k having boundaries Fgﬁ" ]
on y =aand Fg‘]

(4.72), becomes

on y = —a, respectively, the final integral in (4.66), after substituting from

Py, 51 @il gt — 51 @i Ty gy
r[m]

mE]ErT T

-1 T T 1T T
+P ) f B @l @l 4k 1 lk g g
i
kelErB B

(4.83)

Defining the K¢[im] and K([ik] as the penalty matrices used to enforce displacement boundary
conditions at ¥ = a and y = —a, respectively, i.e.

T
K,[im] =P | ]q)[m]Tq)[m] dx, K}jl =P | DK @l gy . (4.84a,b)
r Ir

Eq. (4.83) can be written more compactly as

Fiml T ] ] AR
Z b K, am™ o+ Z b K, a

melEpT keIErB

ALORPYY 7T T
+ ) Pf[m]b " ude+ ) P LB ol udx

me ]EFT rT me IEFB 1—‘B

(4.85)

to give the discretized form of the final integral in (4.67).

4.5.3 Linear system of equations

Replacing the integrals in the weak formulation (4.67) by the discretized form
given in (4.78), (4.80), (4.82) and (4.85), and then further imposing the condition that b is
arbitary (because the test function v is arbitary) leads to a linear system of equations with
the nodal displacements 4 as unknowns. For details of assemblying the linear system of
equations, refer to Zienkiewicz & Taylor [42]. We use a parallel sparse solver PARDISO
from Intel®Fortran Compiler to solve that system of equations with penalty parameter
P ~ O(10°). In a typical run using 2642700 nodes and 2638104 elements, which results in
5285400 number of degree of freedom, solving that system of equations with PARDSIO
using 8 CPU of 3.00GHz and 16GB of memory takes about 4.5 minutes.
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4.5.4 Elastically-accommodated grain boundary sliding

The b.v.p. of elastically-accommodated grain boundary sliding posed below
(3.10) is solved using finite element method. This b.v.p. differs from the previous only in
terms of the constitutive equations along the interface S;. The weak form of that b.v.p. is

given as follows:

f 0ij0;;dV — | iw[uslosds+P | [un]o,ds
% S

Si
b.c. (3.10b) b.c. (3.10a)
+p f (10, y) — 127, )} 00, y) + (127, ) = (0, )} 0i(2, v) dy
» (4.86)

periodic b.c.

271
+ [ o) - U o) + s, =) + U)oy, =) dx = 0.
0

displacement b.c.

In Eq. (4.86), the imposed displacements are U; = 1 and U, = 0. Comparing the weak
form given here with that given in (4.67), we find that only the second integral in the
latter equation is replaced by sz iw[us] vs + P [u,] v, ds. Consequently, the discretization
of the volume integral, the periodic boundary condition and the displacement boundary
conditions are the same with those given in the previous sub—sections. We now give the
discretization of the second and the third integrals of (4.86).

Based on the grain boundary element discretization illustrated in Figure 4.5 and
using the notation given below that figure, the second integral given in (4.86) in discretized
form becomes

, Pl T ST (T e (@l Aml _ @kl Ak
1a)Z b @ ss((D a™ - @ a)ds
ng]

mE]ES]

- (4.87)
Hiw Z P Ik 4Ty (@H g — @l zlm) gs
SIm] )
kE]ESz I

We note here that the 2 x 2 matrix 474 is an outcome of the product between us = §T® a

and v5 = §7® b. Noting that there is a one to one correspondence between element 1 in
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Eg, and element k in [Eg,, the discretized form given in (4.87) can be written compactly as

» T
Z an | K| (4.88a)
mE]Esl

where Kg"] is the penalty matrix used to enforce the periodic boundary conditions given

below by

il _ @l gTg@lnl  _@lmTgTg @l . (4.58b)
= S. .
> S| —oi s Ts i ltTgTs ik

Grain 1

Grain 2 '

Figure 4.7: Enforcing continuous normal displacement between i € grain 1 and j € grain 2

For simplicity, we enforce boundary condition (3.10a) given by the third integral of
(4.86) directly on the nodes. Figure 4.7 illustrates how that boundary condition is enforced.
In the figure, the interfacial node i € grain 1 is tied directly to the corresponding interfacial
node j € in grain 2. We note that i and j have the same coordinates on S;. We also let N,
be the set of nodes i € grain 1 on Sy and N, to be the corresponding set of nodes j € grain
2 on S;. Denoting 4!l and B! respectively as the 2 x 1 displacement vector u and test

function vector v at node i, the third integral in (4.86) can be discretized to become

i) o @
Py s | K| | (4.892)
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where

Here, the sub—matrices al

—'h
| (4.89b)

n

1 are 2 X 2 matrix and Kg} is, therefore, a 4 X 4 matrix.

A linear system of equations can be obtained by replacing the integrals in the weak
formulation (4.86) with the discretized form given in (4.78), (4.82), (4.85), (4.88) and (4.89)

and then imposing the condition that b is arbitrary. This system of equation is complex

because the boundary condition (3.10b) contains a time—derivative.
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Chapter 5

Diffusionally-accommodated grain

boundary sliding

Here we discuss the numerical results from the bicrystal model of diffusionally—
accommodated grain boundary sliding. To begin, we derive analytical constraints in §5.1
to the mechanical loss spectrum for which the numerical solution must satisfy. These
constraints are, specifically, the high and low frequency asymptotes to the spectrum.

In §5.2, we discuss our numercal results and show that they satisfy all the con-
straints set forth previously. We show that the mechanical loss spectrum contains a band
of frequencies where the mechanical loss £ decreases slowly with frequency w when the
timescales are widely separated i.e. M < 1. That slowly-varying region is caused by
corner stress concentrations and is sensitive to slope angle. For the two orthogonal slid-
ing modes found in a regular array of hexagonal grains (see Figure 3.2), we show that
the mechanical loss L varies approximately as w93, Beyond that slowly—varying region,
the mechanical loss spectrum contains a mechanical loss peak that stands out from the
absorption background.

We also extend our analysis to consider the effects of varying corner angles along
a sliding interface on the slowly—varying region. We show that as a result of that variation,
the slope of the mechanical loss spectrum decreases gradually and is eventually controlled
by the corner having the most singular stress behaviour.

In §5.3, we compare the mechanical loss spectrum obtained from the bicrystal

model with that from the experiments. We show that the mechanical loss scaling in the
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slowly—varying region for the two orthogonal sliding modes found in an array of hexagonal
grains is close to the scaling observed experimentally. We also give evidence to support
our explanation that the scaling seen in the experiments is likely to be controlled by corner
stress concentration at triple junctions. Though we are able to predict the loss scaling in
the experiments using the bicrystal model, the magnitude of the mechanical loss £ found
using that model is still an order of magnitude less than that observed in the experiments.
Thus, a numerical model that allows for the concurrent sliding along multiple planes
in a polycrystal is necessary in order to predict the magnitude of the loss seen in the

experiments.

5.1 Analytical constraints on the numerical solution

Here, we develop analytical constraints for which our numerical solution has to
satisfy. We follow the scaling analysis found in Morris & Jackson [26] to derive the be-
haviour of the mechanical loss spectrum by evaluating the strain energy and the dissipation
directly.

For the bicrystal system shown in Figure 3.1, the external power supplied at the
sample boundaries is either dissipated at the time-independent grain interface Sy or stored

as strain energy within the perfectly elastic grains, i.e.

du . dw
477"[5 =Y+ E ; (51&)
_ V 2.2
w= | (T=s e+ e dV, (5.1b)
. 1, dou, )2
= - d Nl
T s Mans +( s S, (5.1¢)

define the strain energy function W(t) and the dissipation rate Y(t). Here, ‘V is the combined
volume of the upper and the lower grains and 7 is the x—averaged shear stress defined in
(3.11).

51.1 Low-frequency asymptote

The low frequency (i.e. w < 1) behaviour of the mechanical loss L has been

established in Morris & Jackson [26]. Because diffusion acts over the entire bicrystal
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system at low frequencies, the strain energy function W and the dissipation rate Y do not
depend on frequency w. As a result, the time available for dissipation varies inversely with

w and the mechanical loss at low frequencies scales as
L~o™. (5.2)

Physically for w — 0, the quality factor Q = £7! is proportional to @ as one might expect

from Taylor’s theorem.

5.1.2 High-frequency asymptote

In the limiting case as w — oo, the displacement becomes continuous across the
interface Sy, i.e. [u,] = 0 = [us]. However when the timescales are widely separated i.e.
M <« 1, discontinuity in the normal displacement [u,,] — 0 faster than the discontinuity in
the tangential displacement [us] as @ — co. The latter term therefore dominates the former.
Correspondingly, the dissipation rate Y in (5.1c) is controlled by the shear stress oy in the
high frequency extreme and can be calculated by evaluating only the first term in the r.h.s
of (5.1¢).

The tangential shear o,; can be evaluated directly because the two grains behave
as if they are welded at the interface in the limit as w — 0. As a result the sample deforms
under simple shear and the stress components become oy, = 7 and 0,y = 0 = ;. By the
discussion following (3.10b), we may assume that 7(t) = % sin wt where the amplitude % is
independent of {. Noting that the shear stress is given by 0,s = 7 cos2¢p at the interface
S; under simple shear, we evaluate the dissipation rate Y and then integrate the resultant

with respect to time t over one period i.e. from ¢t = 0 to t = 271/w to show that
T~ %ZL f cos? 2¢p ds. (5.3)
Si

The time mean strain energy W of the system can be obtained by using Hooke’s law to eval-
uate (5.1b) and then time-averaging the resultant expression. The asymptotic expression

of the time mean strain energy is given by
W ~ mat?. (5.4)

Using (5.4), (5.3), and the interpretation of £ given below (3.13), we find that in the limit

as w — oo, L is given asymptotically by
1

L~ 2aMw

8(p); (5.5a)
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g(p) = % L cos? 2¢p ds. (5.5b)
1

The geometric factor g(¢) depends only on interface geometry. This quantity is a measure
of the slip along the interface; in the limit w — oo, the amplitude of f [us]? ds is proportional
to g/w?. Evaluating (5.5b) for the type S and type TS interfaces shown in Figure 3.2, we

find that
cos? 2¢/ cos ¢, type S;
8= (5.6)
3(1 + cos?2¢p/ cos @), type TS,
The geometric factor varies inversely with cos ¢ because for fixed wavelength, the interface

length increases with slope.

5.1.3 Sliding Peak

When the timescales are widely separated i.e. M < 1, the effects of diffusion at
high frequencies become negligibly small and the dissipation Y is controlled by the bound-
ary viscosity 7. The b.v.p. then simplifies to that describing elastically-accommodated
grain boundary sliding. For that case, which will be discuss further in chapter 6, the me-
chanical loss L is predicted to have a maximum in the spectrum at an angular frequency

w* ~ t;l, or equivalently at the non-dimensional frequency w ~ M.

5.1.4 High frequency behaviour for M — 0

In the limiting state: M — 0, the interface S; becomes inviscid i.e. 0,s = 0 and
the loss peak located at w ~ M™! shifts into the high frequency extreme w — co. The peak
thus vanishes from the mechanical loss spectrum, and the features located within the band
of frequencies 1 < w < M are extended towards the entire r.h.s of the spectrum. These
features are study here.

For small slope angle ¢, the high frequency behaviour of the mechanical loss £
for an inviscid interface i.e. M — 0 is given in Morris & Jackson [26]. At high frequencies
@ — oo, the mechanical loss L varies as 1/ In w when the interface has sharp corners. This
result is an outcome of corner stress concentration, where the normal stress o,, varies

inversely with distance r from the corner in the limit w — co.
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For finite slope ¢, the form of the corner stress concentration changes and the
small-slope logarithmic scaling no longer holds. Because the interfacial boundary condi-
tions (3.8d) and (3.8e) approach those used in a local stress analysis by Picu & Gupta [33]
: [un] = 0 = 045 as w — oo, the interfacial normal stress 0y, (in that limiting state) has to

behave as described by them and is given by
Onn ~ . (5.7)

In Eq. (5.7), the stress exponent A is a function of the corner angle and is restricted by
1 > A > 0. The first inequality ensures that the strain energy of the bicrystal system
remains finite whereas the second inequality follows because stress is singular at » = 0 for

sharp corners.

Figure 5.1: Definition sketch to describe corner singularity

In our model, the interfacial normal stress 0, is not singular at the corners as
a result of either diffusion (occurring at finite w) or geometric rounding of the corners.
Letting r, be the distance over which o0, is smoothed (See Figure 5.1), there is a separation
of lengthscales when 7, < d. Under that condition, o, varies with r according to (5.7) at
distance r; < r < d and the cut-off length r, determines the form of the loss spectrum.

Using (5.7) to estimate the strain energy W in (5.1b) and the dissipation Y in (5.1c), we find

d re\ 224
W ~ f o2, rdr~1- (—) , (5.8a)
re d

that they vary as

2 1+2A
Y~lf(d0”") dr ~1(1) . (5.8)
w J, \ dr w \1¢
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We note that r appears in the integrand in Eq. (5.8a) because the integration is carried
out over an annular region defined by r, < r < d. The resultant strain energy function
W in (5.8a) is found to be insensitive to 7, because A < 1 and the lengthscales are widely
separated i.e. r; < d. The last condition d/r, > 1 has also been used to obtain the final
expression in (5.8b). According to the interpretation of mechanical loss £ as the ratio of
Y to W given below (3.13), .L is thus controlled by the dissipation Y through the cut-off
length 7, and the stress exponent A. The length r, can be set either by diffusion or by an
imposed corner radius 7.

In the first case, the cut off length r; is set by the diffusive lengthscale ¢; ~ w™/3
defined in (3.6). Replacing r, in (5.8b) by £; , we find that the behaviour of the mechanical

loss in the spectrum can be described using a power-law relation

L ~ a)a (598)
where
a = %(/\ -1). (5.9b)

Eq. (5.9) holds except for a type S interface with slope angle ¢ = 45°. For that angle, the
interface coincides with the direction of the principal stresses as described in 6.1.1. As a
result, the grains are deformed under simple shear with interfacial normal stress ,,, — +7
at high frequencies. Because 0,, approaches a constant as w — oo, the stress exponent
A = 0. Substituting that value of A into (5.9), we find that the mechanical loss L varies as
w2/ for this specific interface.

In the second case, the cut-off length r; is imposed by the geometric rounding of
corners. That occurs when the corner radius 7. > {4, or equivalently when w > (d/r.)>.
Unlike the diffusive lengthscale ¢;, the corner radius r. (and d/r.) does not depend on
frequency. Consequently, the dissipation Y in (5.8b) and the mechanical loss L varies as

w~!. That scaling applies to all interfaces when w > (d/r.)°.

5.1.5 Features in the mechanical loss spectrum

Figure 5.2 summarizes the main features in the loss spectrum predicted by the

scaling arguments given above. If the frequencies defining each region of the spectrum are
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widely separated (i.e. 1 < (d/r;)® < M), the mechanical loss £ should scale accordingly

as defined in the figure. We test that prediction in §5.2.

Elastically-accommodated

sliding peak
. £ i) A=0 Type S, p = 45° )
, Lr~w , A=Fn(f) Otherwise , L~ w1 ~ L= 53-9(9) N
! 1 p . 1 B 7 W
0 1 (d/re) M

Figure 5.2: Schematic of the mechanical loss spectrum

5.2 Discussion of numerical results

Figure 5.3 shows the shear rigidity G computed as a function of the angular
frequency @ with M as a parameter for a type S interface with ¢ = 30°. That interface has
a wavelength to corner radius ratio N ~ 100. The mechanical loss spectrum £ = tanarg G
and the sample rigidity |G| are shown, respectively, in the upper and lower figures.

Figure 5.3a confirms the prediction summarized in Figure 5.2: that if the band of
frequencies that define each region are widely separated, all features predicted in §5.1 are
present in the mechanical loss spectrum. That result is shown by the curve for M = 10713,
For w < 1, the mechanical loss £ varies as w™!. At higher frequencies 1 < w <« 10°, corner
stress concentrations control the spectrum. For that interface with corners subtending at an
angle equal to 120°, we find that the mechanical loss £ ~ ™3 for that band of frequencies.
With this value of power-law exponent @ = —0.3, the stress exponent calculated from
(5.9) has a value A = 0.55, close to the prediction of A = 0.58 given by the local solution
of Picu & Gupta [33] in their Figure 5.! To make that comparison, we have used the
stress exponent associated with that of an anti-symmetric stress field about the corner
because our solution (see Figure 5.6) shows that o, is anti-symmetric about the corner.
Subsequently at even higher frequencies 107 < w < 108, the diffusion lengthscale ¢,
become smaller than the corner radius r.. As a result, stresses are smoothed over by a

distance ~ 7. and the mechanical loss, as described above §5.1.5, then scales as £ ~ w™!.

!Note: In Figure 5 of Picu & Gupta [33], the curve labels are switched i.e. the dashed and the solid lines
should correspond to the symmetric eigenfunction and the anti-symmetric eigenfunction, respectively. Also
in Figure 6, the eigenvectors in (a) and (b) should correspond, respectively, to the anti-symmetric fields and
the symmetric fields instead.
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Figure 5.3: Rigidity as a function of w with M as a parameter. Type S interface, N = 100,
a=5¢=30°v=03. (a) L=tanargG; (b) |G|. Curve labels give values of M. ————-
asymptote Eq. (5.5). ---------- asymptote Eq. (5.9). ———- asymptote Eq. (5.2).
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Figure 5.4: Rigidity as a function of @ with M as a parameter. Type TS interface, N = 100,
@ = 60°. (a) L = tanargG; (b) |G|. Curve labels give values of M. ————- asymptote Eq.
(5.5). +eeereenn asymptote Eq. (5.9). ——— asymptote Eq. (5.2). Refer to Figure 5.3 for other
parameters.



CHAPTER 5. DIFFUSIONALLY-ACCOMMODATED GRAIN BOUNDARY SLIDING 59

Lastly, a local maximum due to elastically-accommodated grain boundary sliding is found
at w ~ 107'% and the mechanical loss £ varies according to (5.5) after the peak. That peak
has a magnitude of about 0.05 that is invariant with M.

The peak and the slowly varying region is, however, not present in the curve for
M = 1073 because the timescales are not widely separated. As a result, the mechanical loss

£ decreases rapidly as v

in most parts of the spectrum. For that same reason, the region
at which the corner radius sets the cut-off lengthscale (i.e. (d/r.)® < @ < M™)isnot found
when M = 1078, Instead, the loss peak follows immediately after the slowly-varying
region (1 < w < 10°) in the mechanical loss spectrum.

In Figure 5.3b, we show that the corresponding sample rigidity for the loss spec-
trum obey the physical constraint |G| < 1: that the sample cannot be made stronger than
the individual grains. The figure shows that as frequency w — oo, the sample rigidity |G|
approaches unity because the two grains then behaved as if they are welded together at
the interface, i.e. [1,] = 0 and [us] = 0. For 1 < w < M™! where the mechanical loss £
decreases slowly with frequency w, the sample rigidity |G| increases slowly with frequency.

Figure 5.4 shows that the slowly—varying region in the mechanical loss spectrum
also depends on corner orientation, whereas the general features described in Figure 5.2
and shown in Figure 5.3 does not depend interface type. Comparing Figure 5.4a and Figure
5.3a, the mechanical loss L scales differently only in the slowly-varying region. Though
corners also subtend an angle equal to 120° in type TS interface having slope angle ¢ = 60°,
the mechanical loss L scales differently because the normal stress distribution (see Figure
5.6 ) is an even function with respect to the corner (instead of an odd function as in type S
interface with ¢ = 30°). For a type TS interface with ¢ = 60°, the mechanical loss £ ~ w0
and the corresponding stress exponent A obtained from (5.9) is found to be 0.45. That value
is equal to the prediction of A = 0.45 given in Figure 5 of Picu & Gupta [33] for a symmetric
stress field of 0;,.

So as to concentrate on the essential features in the loss spectrum not affected by

slip—viscosity 1, we now set the interface to be inviscid i.e. 7 = 0 or M = 0 and show that

the slowly-varying region is sensitive to slope angle ¢.



CHAPTER 5. DIFFUSIONALLY-ACCOMMODATED GRAIN BOUNDARY SLIDING 60

0
10 : T T T T T TTTTIT T T TTTTIT T |||||||| T |||||||| T T TTTTIT T T TTTTTH
SR ¢ =0.36°
10_1 g_ .................................... b :180
- ¢ = 30°
102 |
B _ 0
Q103 L $=45
ot T ¢ =58
-5
107 g
10'6 -l 1 IIIIIIIIO 1 IIIIIIIIl 1 IIIIIIII2 1 IIIIIIII3 1 IIIIIIII4 1 IIIIIIII5 1 IIIIIII6
10 10 10 10 10 10 10 10

w

Figure 5.5: Mechanical loss £ as a function of angular frequency w when the interface is

inviscid i.e. n = 0 or M = 0. Type S interface. N = 500. ---------- asymptotes Eq. (5.9) with
A given in Table 1. ——-—- Eq. (39b) of Morris & Jackson [26]. Refer to Figure 5.3 for other
parameters.

5.2.1 Sensitivity of slowly-varying region to ¢

Figure 5.5 shows the mechanical loss £ as a function of the angular frequency w
with slope angle ¢ as a parameter for a type S interface. The figure confirms the scaling
argument stated above and shows that the mechanical loss scaling in the slowly—varying
region depends on the interface corner angle. For a small-slope interface (i.e. ¢ = 0.36°),
the figure shows that the mechanical loss £ varies as 1/ In w in the slowly—varying region
That result is consistent with the prediction given in Morris & Jackson [26]. For a finite—
slope interface however, the mechanical loss £ varies as w® in the slowly-varying region.
In Table 5.1, we give the values of a for the finite—slope interfaces found in Figure 5.5. The
stress exponents A are calculated using (5.9). Because the normal stress distribution for
a type S interface is an odd function with respect to the corner, these stress exponents A
are compared to the eigenvalues Apg associated with an anti-symmetric eigenfunction in
the local analysis by Picu & Gupta [33] given in their Fig. 5. Due to a lack of parity in

the normal stress distribution for a type TS interface (see Figure 5.6b), we did not use that



CHAPTER 5. DIFFUSIONALLY-ACCOMMODATED GRAIN BOUNDARY SLIDING 61

) a A APG
18° -0.17 0.75 0.77
30° -0.3 0.55 0.58
45° -0.66 0 0.26
58° -0.49 0.26 0.26

Table 5.1: Comparison of stress exponent A derived from the mechanical loss scaling with
that Apg obtained from Picu & Gupta [33]. See text for explanation.

interface for comparison here. From the table, we find that the computed stress exponents
A are close to those obtained from the Picu & Gupta local analysis, except when ¢ = 45°.

For that specific case, A vanishes and the mechanical loss scales as £ ~ w23

below (5.9).

Figure 5.6 shows the interfacial normal stress 0., distribution near a corner for the

as explained

interfaces described in the caption. Because the inner solution of the normal stress must
match the outer Picu & Gupta solution given by (5.7) at r = ¢4 ~ w™/3, the inner solution of
Onn ~ {’;A. Consequently, graphing the normal stress distribution using variables o, ~"/3
and rw'/? for different frequencies should define a single curve near corner. This self-
similar behaviour of 0y, is evident in the figure. For a type S interface, the local behaviour
of the stress is anti-symmetric with respect to the corner. By comparison, the local stress

behaviour of a type TS interface does not display a strong parity.

5.2.2 Implication of the scaling analysis

Because the total dissipation Y along an interface can be found by summing up the
contribution from each region surrounding a corner, our scaling analysis suggests that the
mechanical loss behaviour in polycrystals at high frequenciesi.e. w — oo will be controlled
by the corner having the largest stress exponent A.

To test this prediction, we consider a type TS interface that is illustrated in Figure
5.7 by the solid line. Dotted line in that figure shows the original type TS interface when
¢1 = ¢2. Along the interface, there are two different corners C; and C, that have angles
¢1 = 175° and ¢po = 107°, respectively. For these two corners C; and C,, the local analysis
by Picu & Gupta (1996) predicts the stress exponent A to be about 1 and 0.5, respectively.
The behaviour of the mechanical loss £ at high frequencies is therefore expected to be
controlled by C;.
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Figure 5.6: Normal stress oy, distribution near corner. Inset shows geometry. ——
w=10° w=10% eeeeenn w =103 (a) Type S interface. ¢ = 30°. A = 0.55. (b) Type
TS interface. ¢ = 60°. A = 0.45. (c) Type S interface. ¢ = 45°. A = 0. Refer to Figure 5.3 for
other parameters.



CHAPTER 5. DIFFUSIONALLY-ACCOMMODATED GRAIN BOUNDARY SLIDING 63

Figure 5.7: Type TS interface having two different corner angles. C; and C; refer to corners.
————— Original TS interface with ¢1 = ¢».

Figure 5.8 shows the mechanical loss spectrum obtained for the interface given in
Figure 5.7 with different corner angles. There are two main features in the figure. First,
the behaviour of the mechanical loss is consistent with the above prediction and appears
to approach a logarithmic scaling i.e. 1/Inw that correspond to a stress exponent A = 1 at
C1. The graph is truncated at @ = 5 x 10% due to a lack of numerical resolution at higher
frequencies. Second, the slope decreases gradually with frequency in the slowly-varying
region due to the diminishing effects from the other corner C,. To show that the effect of
C> indeed diminishes with increasing frequency @ , we also graph the scaling £ ~ w03

produced by C,.

5.3 Comparison with experiments

Our result thus suggests that the mild frequency—dependent behaviour of the
mechanical loss L that is observed in the experiments is likely to be caused by local stress

concentrations near triple junctions. Because corner stress concentration does not depend
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Figure 5.8: Mechanical loss £ as a function of angular frequency w for the geometry given
in Figure 5.7. ¢ = 175°, ¢ = 107°. Dotted lines: £ ~ @3 and £ ~ 1/ In . Refer to text
for explanation.

on large scale geometries, its effect also should not depend on these details. Hence, we
expect the effect of corner stress concentration to persist even in polycrystals. Microstruc-
tures from experimental samples also support that argument. From Figure 11 in Faul et al.
[9], we find that the ratio of grain size to corner radius in a typical triple junction ~ 200 even
when melt, which give rise to rounded corners, is present. According to the predicted form
of the loss spectrum given in Figure 5.2, the band of frequencies over which the mechanical
loss L decreases mildly with frequencies would then be large (spanning over 7 decades in
frequency).

Figure 5.9 shows the comparison of the mechanical loss behaviour from the bicrys-
tal model with that from the experiments. In the figure, the steady-state creep viscosity 1sg
of the bicrystal model is calculated from the low frequency behaviour of the rigidity G(w);
a Fourier transform is applied to G(w) to obtain the corresponding time-response when a
constant stress is applied to the sample.

From the figure, we find that the mild—frequency dependent behaviour occurs
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Figure 5.9: Mechanical loss £ as a function of w*ngss/p. Data points: experiments. Refer
to Figure 2.4 for explanation of symbols. Solid lines: bicrystal model (interface, ¢). Inset:
Quality factor Q = £7! as a function w*njss/p at low frequency.

over a large band of frequencies in the experiments and the mechanical loss scaling is close
to that predicted by the two interfaces found in an array of hexagonal grains i.e. type S
and TS interface with ¢ = 30° and ¢ = 60°, respectively. However, these interfaces under
predict the mechanical loss £ found in the experiments by roughly an order of magnitude
(for a type S interface). Because each of these two interfaces only account for part of the
loss found in a regular array of hexagonal grains, a larger mechanical loss is expected when
concurrent sliding along multiple interfaces of that array is allowed. Numerical models
of polycrystal are therefore necessary in order to predict the magnitude of the mechanical
loss L found in the experiments.

Transition between the low—frequency behaviour and the high—frequency be-
haviour of the mechanical loss £ in the experiments is also not well predicted by the
bicrystal model. Closer examination of the experiments however show the ANU data
appears to approach gradually towards the low—frequency behaviour of the two interface,

whereas the other data appears to approach that behaviour at a lower frequency. That
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transition is gradual as opposed to that from the bicrystal model because the transition
frequency depends on interface slope ¢ and the diffusive timescale tp that are expected to
be widely distributed in a polycrystal.

In the figure, the mechanical loss becomes less sensitive to frequency w with
increasing frequencies in the experiments. This result is consistent with our prediction that
a gradual decrease in the slope of the mechanical loss spectrum is an outcome when the
angles differ from corner to corner along a sliding surface. Given that corner angle in triple
junctions vary spatially along any sliding surfaces in a polycrystal, that behaviour is also
expected to be found in polycrystal.

An effective slope angle ¢ that matches the data from the experiments may
also be derived using a type S interface. Though some discrepancies are found at lower
frequencies, an effective slope angle @qf = 17.7° is found to match the experimental results
closely at high frequencies, as shown in the figure. The behaviour of the quality factor
Q = £7! at low frequency is shown in the inset using linear scale. At low frequency, the
quality factor Q approaches linearly to zero in the bicrystal model with an effective slope
angle ¢ = 17.7° whereas the experimental data, specifically from Bunton [5] and Sundberg

& Cooper [40], approach the origin at a faster rate.

54 Summary

In summary, the general features found in the mechanical loss spectrum for a
bicrystal model of diffusionally-accommodated grain boundary sliding at finite slope is
consistent with the prediction by the small-slope analysis [26]. When the timescales are
widely separated i.e. when M < 1, the two key features found in the spectrum for a

finite—slope interface are:

1. A slow-varying region of the mechanical loss £ at frequencies 1 < w < M™! for
interface having sharp corners. In that region, the mechanical loss has a power-law
dependence on frequency i.e. L ~ w®, where the power-law exponent o depends on
the corner stress concentration. Owing to the constraint of the stress exponent A, the
power-law exponent is bounded by —2/3 < a < 0. When corner angle varies along
the interface, the slope of the mechanical loss decreases with increasing frequency,

and is ultimately controlled by the corner having the most singular stress behaviour.
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2. A local maximum near frequency w ~ M™!. That peak stands out from the high-

temperature or absorption background caused by diffusion.

To assess the sensitivity of the mechanical loss peak to factors that were pro-
posed to explain for the broader and weaker peak found in the experiments (described in
§2.2.1), we now isolate the peak from the absorption background and consider the case of

elastically-accommodated grain boundary sliding using the bicrystal model.
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Chapter 6

Elastically-accommodated grain

boundary sliding

Here, we use the bicrystal model to study the mechanical loss peak caused by
elastically-accommodated grain boundary sliding. Specifically, we isolate the loss peak
from the high-temperature background by suppressing diffusion along the grain boundary.
The resultant b.v.p. is posed below (3.10).

In §6.1, we derive analytical constraints of our numerical solution for that b.v.p.
These constraints are, namely, (i) a new elementary solution of the bicrystal model for a
type S interface with slope angle ¢ = 45°, (ii) the high and low frequency asymptotes in
the mechanical loss spectrum, (iii) the local solution from Picu & Gupta [33] and (iv) the
perturbation solution obtained for a small slope interface from Morris & Jackson [26]. The
high and low frequency asymptotes are used to obtain master variables for the mechanical
loss spectrum.

In §6.2, we discuss the numerical results. We show that our numerical solution
satisfy all the constraints stated above. We then extend our analysis to study the effects of
non-uniform grain size and non—uniform viscosity in §6.3. Using these results, we evaluate
three proposed suggestions used to explain the small and broad peak commonly found in

the experiments. These proposed suggestions are described in §2.1.4 and are restated here:
e variation in grain size by Pezzoti [31],

e variation in boundary viscosity 1 by Cooper [8],
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e sharp corners at triple junctions by Faul et al. [9].

Our result suggests that of the three proposed explanations, only a large variation in
boundary viscosity 1 along grain boundaries is able to broaden the loss peak significantly.
Concurrent with that effect, all the proposed explanations are also found to be able to
reduce the loss peak moderately, but is unlikely to completely suppress its presence in the

mechanical loss spectrum when the timescales are widely separated.

6.1 Analytical constraints on the numerical solution

6.1.1 A simple shear solution

For all interface shapes, the simple shear field given by

u= %eiwtﬁ (6.1)

satisfies all governing equations except the slip condition (3.10b). For an arbitrary interface
shape, (6.1) does not satisfy that condition because the left hand side (l.h.s.) vanishes, but
the right hand side (r.h.s.) is non-zero in general. However, for a type S interface with
@ = +45°, the interface coincides with the principal axes of stress calculated from (6.1).
Consequently for that special case, the shear stress on the interface vanishes. Eq. (6.1) then
satisfies the b.v.p. of elastically-accommodated grain boundary sliding described below
(3.10) exactly. The two grains are thus effectively welded together and for all w, G = 1 for
a type S interface with ¢ = 45°. In particular, the mechanical loss vanishes identically for

this case.

6.1.2 Asymptotes for high frequency and for low frequency

Because mechanical energy is only dissipated by viscous shearing along the inter-

face S, the dissipation rate is controlled by the shear stress o,;. As a result, the dissipation

Y= f o2, ds. (6.2)
Si

We note that T here is non-dimensionalized using the sliding timescale f,,.

rate in (5.1c) becomes
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High-frequency limit

In the limit as @ — oo, (3.10b) requires [us] — 0. Together with the bound-

ary condition (3.10a), that limiting case is equivalent to the condition stated in §5.1.2.

Correspondingly, the mechanical loss at high frequencies varies inversely with frequency

according to (5.5). Setting M = 1 to rescale the frequency according to the sliding timescale
ty, Eq. (5.5) becomes

L~ s, ©63)

2aw

The geometric factor g(¢) in (6.3) is given for both type S and type TS interfaces in Eq. (5.6).

Low—frequency limit

In the limit as @ — 0, (3.10b) simplifies to 0,; = 0. Consequently, the sample
behaviour again becomes perfectly elastic. The energy balance (5.1a) then simplifies: the
Lh.s. balances the second term on the r.h.s.; power supplied at the sample boundary now
balances the rate of increase of stored strain energy. Integrating that simplified balance in
time, we find that at zero frequency, the rigidity and strain energy are related by

1

GO:ZH

Wo a. (64)

Here, W is calculated from (5.1b) using the solution of the b.v.p stated below (3.10) for
w =0and u = +1 at y = +a. We have used the relation 7 ~ GoU/a where Gg = 3)1:% G(w).
Next, using successive approximations, and assuming that the displacement vec-
tor varies sinusoidally in time so that u(x, y, t) = #i(x, y) sin wt, we find that the first correction
to the shear stress at the interface is given by 0,5 = w[ils] coswt. Here [ils] is calculated
from the solution of the b.v.p. posed immediately below (6.4). Using the expression given
in (6.2) for the dissipation rate Y, we find that Y = w? cos? wt f [05]* ds. Integrating that

relation over one period, we find that
Y ~ twdg ; (6.5a)
O = f [45]% ds (6.5b)
S

is the mean square slip at @ = 0. Similarly, the mean strain energy is given by W = 1 W,

where W is obtained by using u to evaluate (5.1b). Using the interpretation of L given
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below (3.13), we obtain

D
L~ Z—I/VOCU. (66)

Although @y and Wy need to be computed numerically to obtain the low frequency asymp-
tote, this result, nevertheless, enables us to verify that our numerical solution is self-

consistent.

6.1.3 Master variables for the mechanical loss curve

Using the above asymptotes, we introduce master variables allowing numerical
results for different interface geometries to be represented on a single curve. According to
(6.3) and (6.6), in the extremes of high and of low frequency, the mechanical loss depends
on interface geometry solely through the parameters ®y/Wy and g(¢)/a. Defining new

variables w’, L' by

o = —_—, L’ = — (67a,b)

then choosing the scales wm and L, so that the asymptotes (6.3) and (6.6) become respec-
tively L' ~ 1/w" and L’ ~ @', we find that

_ /Wog@)
Wm = P (6.8a)

_ 1 [ Poglp)
Ln=3 e (6.8b)

Provided no additional processes enter at intermediate frequencies, values of £ computed

for different interface geometries should define a single curve when £/, is graphed
against w/wm. This prediction is tested in §6.2.

We may note that the master variables are particularly useful because as N is
increased above about 10, the interface length rapidly approaches that of the limiting
forms given in Eq. (3.15), so the geometric factor g(¢) can be calculated using the results
for a piecewise linear interface. By contrast, both Wy and @ prove to converge slowly as
N is increased, making it useful to be able to present results for differing N in terms of a

single curve.
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6.1.4 Local solution of Picu & Gupta

For interfaces having sharp corners, the stress obtained by solving the b.v.p. of
elastically-accommodated grain boundary sliding proves to be singular at corners. The
asymptotic behaviour near the corner must be compatible with a local analysis given by
Picu & Gupta [33]. Specifically, because the displacements are finite, boundary condition
(3.10b) requires the shear stress on the interface to remain finite as the distance r from the
corner vanishes. Within the grains however, the stress becomes infinite as ¥ — 0. Compared
with that infinity, the interfacial stress appears to vanish, and so, the effective interfacial
boundary condition is 0,5 = 0 on the interface near a corner. The local problem applying
near the corner is defined by the b.v.p. of elastically-accommodated grain boundary sliding
but with (3.10b) replaced by the simplified condition 0,5 = 0. As described above (5.7),
that local problem admits a separable solution in which the stress o r~A where 7 is
defined in Figure 5.1 and A satisfying the constraints given below (5.7). The Picu-Gupta
solution shows that, owing to the condition of finite strain energy, the displacement must
be continuous at the corner, i.e. as the corner O is approached along any path, the difference
| — up| — 0. In his numerical solution for a hexagonal array, Ghahremani [12] imposed,
without discussion, the equivalent condition of vanishing relative displacement of the
grains at corners. In §6.2, we demonstrate that our numerical solution of the b.v.p. for

elastically-accommodated grain boundary sliding is consistent with that local analysis.

6.1.5 Perturbation solution for small-slope interface

The numerical solution also has to satisfy the small-slope perturbation solution
from Morris & Jackson [26]. To obtain the small-slope solution of elastically-accommodated
grain boundary sliding, we use Egs. (14), (17), (31) and (32) from Morris & Jackson. We
replace wM by @ and then set M = 0 in these equations. Letting

[s¢]

— 1 32
b= 30 Z;” 2, (6.92)
by=3) n*f2, (6.9b)
n=1

we find that the boundary shear stress 7 is then given by 7 = 7@ + £2t@ + O(eb);
1+ 2iaw

(6.10a)
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@ - hitibe 4, (6.10b)
(1 + 2aiw)?
Equation (6.10a) gives the boundary stress for the flat interface corresponding to ¢ = 0,
and (6.10b) gives the first correction caused by the interface topography that enters the
calculation for characteristic slope ¢ # 0.
For time—periodic forcing, the constitutive equation for a standard linear solid in
simple shear is
{1 +iwA}t —{C+iwB}U = 0. (6.11)

In our case, the material constants A, B, C for the sample are functions of interface slope to
be determined.

To prove that the mechanical system shown in Figure 3.1 behaves as a standard
linear solid, at least to the order 2 to which we have carried the perturbation analysis,
we substitute (6.10) into (6.11), then multiply by the denominator of (6.10b). The result is
a cubic polynomial in w. Equating the coefficients of that polynomial to zero, we obtain
an over—determined system of 4 linear equations for 3 unknowns A, B and C. Noting that
those equations themselves involve an error of order ¢*, we solve them correct to O(&?),
and find that

A =2a+ %a(by — 2aby) + O(e?), (6.12a)
B =2+ &%(by — 2aby) + O(eY), (6.12b)
C = €2hy + O(e™). (6.12¢)

(To O(2), the b.v.p. of elastically-accommodated grain boundary sliding also satisfies the
extra equation making the system over—determined.) We conclude that the mechanical
system shown in Figure 3.1 behaves as a standard linear solid with an error O(¢*). The
zero—-frequency (relaxed) rigidity Go, and the relaxation time ¢, = A at constant strain are
given by

Gy = €%aby, (6.13a)

ty = 2a + e%a(by — 2aby); (6.13b)

1
Wo /Py = Zgzblr (6.13¢)
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because in the limit as ¢ — 0, [#;] = 2 + O(¢?) by Morris & Jackson [26] in Egs. (17b) and
(20a).

In the limit as ¢ — 0, the geometric factor g(¢) — 1, and the scales defined by
(6.8a) and (6.8b) become

wm = 36/ % = Go/t, +O(E) (6.142)
1

L -1, O(e%) (6.14b)

" evab  \Go

Forming the expression for £ = tanarg G from (6.11) and (6.12), rewriting in terms of the

master variables «’, £’ defined by (6.7), then taking the limit as ¢ — 0 (fixed '), we find
that

a)/

1+ @?

4

(6.15)

According to (6.15), in the limit as ¢ — 0, the maximum loss of —L_ occurs at angular
2+Gy

frequency w = \VGo/ t,. Because Go < 1, these results are consistent with usual theory for
the standard linear solid, in which the maximum loss is given by (1 — Go)/2 VGo.

For comparison with the numerical solution, we use (6.14b) to derive an expres-
sion giving Lm as a function of the number N of terms included in the Fourier series
representation of the interface given in Eq. (11) of Morris & Jackson [26]. We note that N is
approximately equal to the ratio N of corner radius to wavelength as defined in (3.14). For

type S and type TS interfaces, by is given by the expression

N
1-v)h 326 Z n!

T n=1,3,5,...

ey
16p, -
= —{In@N +2) + &} + ON). (6.16)
s
(A standard sum has been used.) The Euler constant yg = 0.577 ..., and the numerical factor
p takes the value 1 or 2 according as the interface is type S or TS respectively. According
to (6.13a), (6.14b) and (6.16), the zero—frequency rigidity increases logarithmically with N
for small slopes. That result holds for large fixed N in the limit as ¢ — 0; and is consistent
with the local analysis of Picu & Gupta [33]. That analysis shows that in the limit as the
angle subtended by a corner approaches 7, the stress in the elastic solution varies locally

as r !, so that the strain energy diverges logarithmically.
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6.2 Discussion of numerical results

Figure 6.1a shows the computed values of £ graphed using the master variables
defined by (6.7). Results are shown for slope angles including those appropriate for a
regular hexagonal array. The solid curve shows the prediction of the small slope analysis,
as given by (6.15). A similar master plot is also possible for |G|. Because Fig. 6 of
Ghahremani [12] shows that an array of regular hexagons behaves as a standard solid,
we assume and then verify that the same is true of the Raj-Ashby bicrystal system. For a
standard solid, however, (1 — |G]?)/(1 — Gg) depends only on w VGo/wm, where Gy is the
rigidity at zero frequency, and we have identified the time scale for the loss curve with
wyy. Substituting for Gp and wm, from (6.4) and (6.8) respectively, we find that if the sample
behaves as a standard solid, values of |G| computed for different N and ¢ will define a
curve when (1 -|G])/(1 - G%) is graphed against wa \/q)()/Tg((p). Figure 6.1b confirms that
prediction. The bicrystal system therefore behaves as a standard solid. This result also
justifies our having used the physical interpretation of £ given below (3.13) to define the
asymptotes given in §6.1.2.

We note that although Ghahremani [12] also concludes that elastically accomm-
modated grain boundary sliding can be fitted to the constitutive equation for a standard
solid, our procedure above differs from his. Whereas Ghahremani fitted numerical results
for a single geometry (hexagonal array) to the response curve for a standard solid, we
instead have used Figure 6.1 to show that the results for many different geometries (i.e.
values of ¢ and N) obey the same similarity principle as the standard solid. Moreover,
the response curves shown in Figure 6.1 are not fitted curves. As described in §6.1.5, they
are, in fact, calculated analytically as part of the small-slope analysis, and proved to be
identical with the corresponding response curves for a standard solid.

Owing to the self-similarity demonstrated in Figure 6.1, at arbitrary frequency,
the values of N and ¢ affect G purely through their influence on the elastic solution for
@ = 0. In particular, the mechanical loss £ is controlled by the quantity Wy/®y.

Figure 6.2 shows Wy/®y as a function of ¢ with N as a parameter. For the N—
values included there, the numerical solution approaches the perturbation solution when
@ < 10°. In Figure 6.2a, the vertical line corresponds to the simple shear solution described

in in §6.1.1; for that solution ®y = 0, so that Wy/® is infinite. The dotted curve shows
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Figure 6.1: (a) £’ as a function of «’. (b) (1 - |GI*)/(1 - Gg) as a function of wa /@y /21 g(¢p)
. L’ and o’ are defined in (6.7); g(¢) is defined in (5.6); Wy, ®y and Gy are computed
numerically. Numerical solution of (N, ¢, interface) are (10, 17.6°, S) O, (100, 51.8°, S) O,
(1000, 30°, S) A, (10,17.6°, TS) v, (100, 32.4°, TS) <, (1000, 60°, TS) ©. Solid curves indicate
perturbation solution. Other parameters: a =5, v = 0.3.
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(a) Type S

(b) Type TS

Figure 6.2: Wy/® as a function of ¢ with N as a parameter. Curve labels give value of
N. Dotted line, pinned corners solution. Dashed line, perturbation solution (6.13c). For

values of 2 and v, see caption in Figure 6.1.



CHAPTER 6. ELASTICALLY-ACCOMMODATED GRAIN BOUNDARY SLIDING 78

Interface ¢ N max, L

S 30° 10 0.068
00 0.047
TS 60° oo 0.040

Table 6.1: Maximum mechanical loss L for Raj and Ashby’s two sliding modes

the solution obtained for a piecewise linear interface, but using the Ghahremani (pinned
corner) boundary condition, namely that [u] = 0 at a vertex. That solution, computed for a
large value of N, is independent of the parameter N itself. Apart from the curve for N =1,
the behaviour is independent of N for sufficiently large ¢; and as N is increased (so that the
corners are made tighter), the dependence on N is confined to a range of ¢ of decreasing
size. We infer that in the limit as N — oo (fixed ¢ # 0), Wy/®y approaches the solution
obtained when the corners are pinned.

The existence of that limiting state strongly constrains the effect of rounding
corners on the loss and frequency scales defined by (6.8). For a type S sliding surface in a
regular hexagonal array, the slope angle ¢ = 30° and, according to Figure 6.2a, increasing
N from 1 to co causes Wy/®y to vary about tenfold. The corresponding variation in the
frequency and loss scales is only about a factor of three. The effect is even weaker for
the TS surface. For it, ¢ = 60° and, according to Figure 6.2b, Wy/®y is then essentially
independent of N.

To emphasize this conclusion, in Table 6.1 we give a numerical example. Compar-
ing lines 1 and 2 in the table, we see that for the type S interface with ¢ = 30°, increasing
N from 10 to oo causes the maximum value of L to decrease by only about 30%; according
to Figure 6.2a, the limiting case shown in line 2 is attained for N > 100. In line 3, we
show only the limiting case, as explained at the end of the previous paragraph. These
values are equal to the magnitude of the peaks found in Figure 5.3a and Figure 5.4a for
diffusionally-accommodated grain boundary sliding. We note that these values of max-
imum loss are roughly half the corresponding value reported by Ghahremani [12] for
elastically accommodated sliding in an array of regular hexagons. In that array, sliding
occurs simultaneously on 2 orthogonal surfaces, and a larger loss is to be expected.

The function Wy/®y is, in the limit as N — oo, clearly discontinuous at ¢ = 0. In

that case, the interface is plane and the displacement imposed on the sample is completely
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accounted for at zero frequency by slip; consequently Wy = 0. By contrast, Figure 6.2 shows
that for pinned corners, Wy/®y # 0. Because the response is discontinuous in the limit,
Wo/®g always depends on N within a sufficiently small neighbourhood of the origin, as
demonstrated by (6.13c) and (6.16) of the perturbation analysis for ¢ — 0. The convergence
of the solution as N — oo is thus non—uniform in ¢, i.e. the solution has an inner-and-outer
structure with respect to ¢.

Figure 6.3 shows the zero frequency rigidity Gop = Woa/2m as a function of ¢. We
note that Gy < 1, in agreement with the physical constraint that the sample can not have a
rigidity exceeding that of the individual grains. Further, Gg is a non—-monotonic function
of ¢. For the type S interface, that non—-monotonicity is a consequence of the simple shear
solution for ¢ = 45°, as discussed in §6.1.1. Figure 6.3b shows that even for the type TS
interface, Gy has a maximum at around 50°.

Figure 6.4 shows the distribution of slip [u,] along the interface for the parameter
values given in the caption. The slip decreases monotonically as N increases and the corners
become sharper. That is consistent with the requirement that the total strain energy of the
sample is finite. That condition requires that the stress tensor varies with distance r from
a sharp corner in such a way that rg;; — 0 as r — 0, and the local solution of Picu &
Gupta [33] then requires the slip to vanish at the corner. This result is evident from the
figure. By increasing N, the slip distribution approaches the limiting case when the corners
are numerically pinned, as assumed by Ghahremani [12]. We also note that the weak
dependence of slip [us] on N is consistent with the result shown in Figure 6.2a: that the
ratio Wy/®g becomes almost independent of N when ¢ = 30°.

Figure 6.5 shows, as a function of distance r from the origin shown in the inset,
the computed shear stress 0,9 on the interface at © = 0°. The origin sets a corner length
scale at which the stresses are smoothed out. From the figure, we find that 0,¢ scales with
1709 when ¢ = 0.001. This result is close to the 1/r scaling predicted by the perturbation
solution in Morris & Jackson [26], and explains the logarithmic scaling for G found in that
solution. Consistent with the local solution by Picu & Gupta [33], our numerical solution
also predicts that the stress singularity weakens as ¢ increases. When ¢ = 32.5°, our
eigenvalue A = 0.53. That result is close to the solution given in Fig. 5 of Picu & Gupta [33]
where we estimate, using our slope angle definition, their eigenvalue A = 0.55 at ¢ = 32.5°.

The weakened singularity with A < 1 thus ensures that the strain energy W remains finite.



CHAPTER 6. ELASTICALLY-ACCOMMODATED GRAIN BOUNDARY SLIDING 80

e 1 1 1 1
o° 10° 20° 30° 40° 50° 60° 70°

(a) Type S

Z 1 1 1 1
° 10° 20° 30° 40° 50° 60° 70°

¢
(b) Type TS
Figure 6.3: Go as function of ¢ with N as a parameter. Curve labels give value of N. Dotted

line, pinned corners solution. Dashed line, perturbation solution (6.13a). For values of a
and v, see caption in Figure 6.1.
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Figure 6.4: Upper part, zero frequency slip [us] as a function of position with ¢ = 30°.
Curve labels give value of N. Dotted line, pinned corners solution. Lower part, type S
interfaces using above values of N, curves 100 and 1000 are graphically identical. For
values of 2 and v, see caption in Figure 6.1.

6.3 Effects of non-uniform grain size and viscosity

The idealization of a constant grain size d and a constant boundary viscosity 7 is
usually not found in real polycrystalline solids. Even in experiments on synthetic samples,
e.g. inFauletal. [9], grainsize can vary by about a factor of 4. The boundary viscosity n may
also vary by about an order of magnitude as described in Ashby [2]. This non-uniformity
of grain size and viscosity is often invoked to explain the broad absorption peak (instead
of a single Debye peak) commonly found in experiment, e.g in Schaller & Lakki [37]. We
test these suggestions using the bicrystal model.

Figure 6.6 shows the type S interfaces used to assess these effects. In the left
tigure, there are two adjacent grains of equal size d with viscosities 171 and 7, along their
interface. The right figure shows 5 adjacent grains of two different sizes d; and d,. In that
tigure, the total area occupied by the “small” grains is equal to that of the “big” grain, and
the viscosities along their interface are 1, and 71, respectively. We note the total interfacial

length available for sliding is the same in both configurations. Four systems are considered
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Figure 6.5: 0,9 at ® = 0° as a function of r when w = 0 and N = 900 for ¢ = 0.001 and ¢ = 1.0
(i.e @ = 32.5°) of a type S interface. Dashed lines indicates fitted 7~ scaling. Coordinate
system is shown in the inset figure. For values of a and v, see caption in Figure 6.1.

here:
1. configuration 1 with 11 = 12 = 1 (Uniform grain size and viscosity);
2. configuration 1 with 11 = n and 1, = 10 (Non-uniform viscosity);
3. configuration 2 with dy = d, d, = d1/4 and 11 = 2 = 7 (Non-uniform grain size);

4. configuration 2 with d; = d, d = d1/4, m = 10n and 1, = n (Non-uniform viscosity

and grain size).

In Figure 6.7, we graphed the mechanical loss spectra obtained from these systems.
There are two main features in the figure. First, the loss peak weakens as well as broadens
when boundary viscosity n varies with position, i.e. in systems (ii) and (iv). Second,
comparing systems (i) to (iii) and (ii) to (iv), we find that, when grain size varies spatially,
the loss peak only weakens without any significant change to its shape.

The two effects (broadening and weakening) are caused by a difference in the

sliding frequency t, ™! across adjacent interfaces. Because sliding frequency t,”! depends
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(a) Configuration 1 (b) Configuration 2

Figure 6.6: Two configurations having type S interface. (a) uniform grain size: d. (b)
non-uniform grain sizes: d; = d and d, = d/4. Adjacent grains are separated by dashed
line.
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Figure 6.7: L as a function of w for the four systems (i)-(iv). Slope angle ¢ = 30°.

on grain size and the boundary viscosity as defined in (3.5a), sliding in systems (ii) — (iv)
occurs at two different timescales and the peak broadens as a result. In the figure, the

broadening effect caused by a spatial variation in boundary viscosity in system (ii) is more
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significant than that caused by non-uniform grain size in system (iii) because the difference

in timescale is larger in the former.

max,L
o () () @) ()
5° 1.300 1.200 0.773  0.698
15°  0.288 0.242 0.148 0.123
30°  0.049 0.037 0.024 0.020
45°  0.000 0.000 0.000 0.000
60° 0.079 0.058 0.038 0.033

Table 6.2: Maximum mechanical loss .L for systems (i) — (iv) with ¢ as a parameter. For
definition of systems (i) — (iv), see Figure 6.7.

Besides broadening the peak, the presence of multiple sliding frequencies within
a system also cause the peak to weaken because the amount of sliding along an interface
is constrained by the slip along the adjacent interface. Consequently, the response is
controlled by the interface having a smaller sliding frequency. This result is evident in
the figure where the peak is consistently located close to the smaller of the two sliding
frequencies in systems (ii) — (iv).

Here, we note that according to the definition of the mechanical loss given in
(3.13), the peak magnitude is invariant to both boundary viscosity and grain size if these
two quantities are constant in a sample. When these two quantities change entirely within
a system, the loss spectrum simply shifts along the frequency axis and remains self-similar
to a Debye peak. Thus, the weakening of the loss peak found here is caused purely by
a spatial variation in grain size and in boundary viscosity; and the amount of weakening
depends on the degree of variation, as well as the distribution of these two quantities
within a system.

In Table 6.2, we give, for different slope angles ¢, the numerical values of the
maximum mechanical loss £ in systems (i) — (iv). Except at ¢ = 45° when the systems are
under simple shear as discussed in §6.1.1, we find that, in system (iii), where grain size
is non-uniform, the loss peak decreases by about 50% when compared to system (i) with
uniform grain size and boundary viscosity. That decrease is insensitive to slope angle ¢.
By contrast, the weakening effect caused by a non-uniform viscosity interface is stronger
when the slope angle ¢ is large. In system (ii) with slope angle ¢ = 60°, the loss peak

decreases by about 25% when viscosity varies spatially by an order of magnitude; whereas
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at @ = 5°, we find that the peak only decreases slightly by about 8%. Combining these two

effects in system (iv), the loss peak can decrease up to about 60%.

6.4 Summary

We now summarize our findings on the sensitivity of the mechanical loss spectrum
of elastically-accommodated grain boundary sliding to (i) variation in boundary viscosity,
(ii) rounding of corners and (iii) variation in grain size, all obtained using the bicrystal

model. The effects due to these factors are as follows:

(a) Whenboundary viscosity 1 varies by an order of magnitude across adjacent interface,
the loss peak becomes significantly broader and its magnitude is reduced. According
to Table 6.2, the loss peak decreases up to about 25% and the amount of reduction

depends on the interface slope angle ¢.

(b) When corners are made sharper, the loss peak remains self-similar to a single Debye
peak and weakens. That effect becomes insensitive to the rounding of corners once
the corner radius is less than a tenth of the wavelength of the spatially periodic
interface (i.e. N > 10). For a type S interface with slope angle ¢ = 30°, the loss peak
decreases by about 30% when an interface with corner radius about a tenth of the

wavelength is replaced with one that has infinitely sharp corners.

(c) When the grain size d is non—uniform, the loss peak weakens. A fourfold variation
in grain size roughly halves the peak height which remains nearly self-similar to a

single Debye peak.

Our results, thus suggests, that it is unlikely, that all three factors can produce a
reduction of the peak magnitude (of several decades) that is require to completely eliminate
the peak when timescales are widely separated as shown in Figure 5.3a and Figure 5.4a.
Even when these factors are combined (see Table 6.2), the bicrystal model only predicts a
reduction less than a decade. We therefore conclude that unless other physical processes
enter into the system, the effect of elastically-accommodated grain boundary sliding should
be easily observed in the experiments if the timescales are widely separated i.e. t; < tp

and the samples are oscillating near the effective sliding frequency f; L
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Chapter 7

Conclusion

We have made the numerical calculations for the bicrystal model of diffusionally
—accommodated grain boundary sliding and elastically-accommodated grain boundary
sliding using a finite slope interface, and our results are consistent with the analytical
constraints derived by us.

We show that the general structure of the mechanical loss spectrum predicted in
the small-slope analysis when timescales are widely separated i.e. M < 1 is preserved
even at finite-slope. The key features found in the spectrum for a bicrystal having finite—

slope interface are as follows:

(a) aslowly-varying region in the mechanical loss spectrum that is an outcome of corner
stress concentration. The mechanical loss scaling in this region can be described by
L ~ w*, where the power-law exponent « is sensitive slope angle and is constrained
within -2/3 < a < 0. For the two orthogonal sliding modes found in an array of
hexagonal grains, the mechanical loss £ varies approximately as w™"3. When corner
angle varies along an interface, the slope in the mechanical loss spectrum decreases

with increasing frequency.

(b) a mechanical loss peak that stands out from the absorption (or high temperature)
background. The mechanical loss peak is self-similar to a Debye peak and can be
weaken moderately by an increase in corner radius, a variation in boundary viscosity
n along the interface and a variation in grain size. The peak can also be broaden

significantly when ) varies along the interface.
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Because triple junctions of the polycrystalline samples used in the experiments
are sharp i.e. N > 200, our result suggests that the mild frequency dependence of the
mechanical loss L that is observed in the experiments on finely grained mantle mineral
is likely to be caused by corner stress concentration. Two of our results support that
argument. First, our predicted scaling in the slowly-varying region for the two orthogonal
modes found in an array of hexagonal grains is close to that observed experimentally [18],
[13], [40]. Second, our prediction that the slope in the mechanical loss spectrum decreases
gradually with frequency when corner angles vary along an interface is also consistent
with experiments.

Despite being able to predict the mechanical loss scaling seen in the experiments,
the bicrystal model is not sufficient to predict the magnitude of loss found in the experi-
ments. Comparison with experiment (see Figure 5.9 ) shows that the bicrystal model under
predicted by the mechanical loss for the two sliding modes found in an array of hexag-
onal grains mechanical loss; a result that is expected because the bicrystal model does
not account for the concurrent sliding along multiple planes. Model that accounts for the
concurrent sliding along multiple planes is therefore necessary to predict the magnitude

of the mechanical loss found in experiment.

7.1 Future extension of current work

We now describe briefly some of the directions one may undertake to extend the

current work.

(@) Models having a more realistic geometry to address the limitations of the bicrystal model.
As stated above, the model should be able to account for the concurrent sliding
along different interfacial geometries in polycrystal to predict the magnitude of the

mechanical loss L seen in experiments.

(b) Homogenization techniques to obtain an effective mechanical loss scaling for polycrystalline
solids. Because triple junction angles are not constant and vary randomly within a
sample, a homogenization model of diffusionally-accommodated grain boundary
sliding will be useful to determine the aggregate effect of the corner stress concen-
trations (which depend on corner angles) on the mechanical loss spectrum. Naively,

one can expand a model iteratively with some random grain boundaries geometry of
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(©)

constant mean grain size until the loss spectrum becomes insensitive to the expansion

to obtain the homogenized loss spectrum.

Singular basis shape function in finite element method for fast computation. Due to corner
stress concentration, conventional finite element requires a very fine corner mesh to
capture that rapid behaviour of stress with distance. Consequently, accurate results
require large amount of memory and long computation time. By using singular basis
shape functions near corners, one can reduce the required corner mesh density and

speed up the computation.
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