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Abstract

Diffusionally–accommodated Grain Boundary Sliding: Effects on Seismic Wave

Attenuation

by

Lik Chuan, Lee

Doctor of Philosophy in Mechanical Engineering

University of California at Berkeley

Professor Stephen Morris, Co-chair

Professor Tarek Zohdi, Co-chair

According to existing experiments on fine–grained polycrystalline mantle materials, in the

seismic frequency band, mechanical loss Q−1 decreases with increasing angular frequency

ω in an absorption background; roughly Q−1 ∼ ωα with different investigators reporting

values ofα ranging from∼ −0.35 to∼ −0.2. There is inconclusive evidence that, under some

conditions, a weak local maximum may be superposed on that absorption background.

To understand this behaviour, we use a combination of analytical and numerical methods

to analyze the Raj–Ashby bicrystal model of diffusionally–accommodated grain boundary

sliding on a finite slope interface. In that model, two perfectly elastic layers of finite

thickness are separated by a given fixed spatially periodic interface; dissipation is confined

to that interfacial (grain boundary) region having an effective viscosity. It occurs by two

processes: time–periodic shearing of the interfacial region; and time–periodic diffusion of

matter along the interface. Two timescales govern these processes; namely, a characteristic

time tη taken for the interfacial shear stress to relax and a characteristic time tD taken for

matter to move by grain–boundary diffusion over distances of order the grain size.

Of particular interest is the case when the timescales are widely separated. Under

that condition, we established two previously unrecognized features of themechanical loss

spectrum. First, the mechanical loss Q−1 in the seismic frequency band ωtD ≫ 1 can be

described by a strict power–law Q−1 ∼ ωα if corners along the interface are geometrically
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identical. For the two orthogonal sliding modes found in a regular array of hexagonal

grains, the values of α is roughly -0.3. Second, our analysis reveals a mechanism allowing

the magnitude of α to decrease slowly as ω is increased; when the corner angle varies from

one corner to another along the interface , the rate of decrease in Q−1 gradually slows.

Ultimately Q−1 is controlled by the corner having the most singular stress behaviour.

Though these results are obtained from the idealized bicrystal model, we argue physically

that similar behaviour will be found in numerical models of polycrystal. Overall, our

analysis suggests that the range of α–values found empirically may, in part, reflect the

differing ranges of ωtD covered in different experiments.

Because in experiments conducted on certain materials, a weak and broad peak

superposed onto the power–law absorption background is observed in the loss spectrum

whereas in others, the peak is completely absent, we evaluate three proposed factors that

mayweaken and broaden the peak. We show that the peak can beweakenmoderately by (i)

sharpening of corners along the interface, (ii) spatial variation in grain size and (iii) spatial

variation in interfacial (grain boundary) viscosity. Reduction of the peak by these factors,

however, does not suggest it to be completely hidden in the absorption background. By

contrast, we show that the loss peak can be markedly broadened if the interfacial viscosity

differs by an order of magnitude across adjacent interfaces. The shape of the loss peak is

insensitive to the other two factors.

Professor Stephen Morris
Professor Tarek Zohdi

Dissertation Committee Chair
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Chapter 1

Introduction

1.1 Background

Knowledge of the physical conditions in the earth interior is essential to un-

derstand its dynamics. Because direct access of geophysical data is limited by depth of

∼ 200km, if we consider geological samples from volcanic eruption [20] (compared to the

earth radius∼ 6000km), seismic velocity tomography and seismic attenuation tomography

are frequently used to infer conditions in the deep earth’s interior. These techniques have

been used to deduce physical conditions and chemical composition in the earth. For ex-

ample, Ishii & Tromp [15] and Cammarano et al. [6] have used seismic data to determine,

respectively, the density variation and the thermochemical structure in the earth’s mantle

while Shito et al. [39] have used attenuation tomography to determine water/hydrogen

content in the mantle. In order to accurately constrain the physical and chemical condi-

tions in the earth using seismic tomography, the effects of high–temperature viscoelasticity

on seismic wave attenuation and seismic wave dispersion must be known.

High–temperature viscoelastic effects on the attenuation anddispersion of seismic

waves manifest themselves in the form of a quality factor Q. Physically, the quality factor

Q is defined as the ratio of 4π times the average stored energy to the energy dissipated per

cycle in viscoelastic media [30]. The mechanical loss L is the inverse of the quality factor

i.e Q−1. When the attenuation is caused by thermally activated processes occurring in the

earth interior, the mechanical loss Q−1, in general, depends on temperature T, pressure P
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and angular frequency ω through the expression [21]

Q−1 ∝ ωα exp
(
αH

RT

)
. (1.1)

InEq. (1.1),H is the activation enthalpy that dependsonpressure,R is the gas constant andα

is a dimensionless exponent that governs the seismically observed power–law dependence

of Q−1 to frequency ω i.e. Q−1 ∼ ωα. To infer physical and chemical conditions in the

earth using seismic data, it is therefore necessary to know the temperature dependence of

Q which in turn, requires knowledge of the physical mechanisms causing seismic waves

to attenuate.

The quality factor Q, on the other hand, also affects seismic wave velocity c that

is used to estimate the elastic properties of the earth. From Minster & Anderson [25], the

elastic wave velocity c0 is related to wave velocity c and the quality factor Q by

c

c0
= 1 − 1

2
cot

(
πα

2

)
Q−1 . (1.2)

Because the elastic wave speed c0 is a function of the mechanical properties of the medium

through which seismic waves propagate, one can, in principle, improve the estimates on

the earth elastic properties using measured seismic wave velocity c, if the global mapping

of the quality factor Q−1 is known accurately.

Figure 1.1: Q as a function of depth in Earth’s mantle taken from Lawrence & Wysession
[24]. Upper mantle: < 410km. Transition zone: 410 − 610km. Lower mantle: > 610km.
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Figure 1.1 shows the variation of the shear–wave quality factor Q with depth in

the earth mantle where the different curves indicate the radial profiles ofQ obtained using

different models. From the figure, we find that themechanical lossQ−1 in the uppermantle

ranges between 0.005 to 0.01 and we also note that the lateral variation in Q can also be as

large as the depth variation [14]. The frequency–dependent exponent α, on the other hand,

is observed to lie within the range −0.4 ≤ α ≤ −0.2 by Shito et al. [1] in the upper mantle.

Many different physical processes can give rise to seismic wave attenuation (or

equivalently, produce high temperature viscoelastic behaviour). For example, an elastic

wave can be attenuated by the local motion of point defects, by diffusional creep caused

by bulk diffusion or grain boundary diffusion, by dislocation motion and by elastically–

accommodated (or viscous) grain boundary sliding. Further details of these processes can

be found in Karato [21] and Nowick & Berry [29].

To evaluate the contribution of these physical processes to seismic wave attenua-

tion, experiments have been conducted on geological materials. According to the accepted

“pyrolite” model by Ringwood [36], olivine (Mg, Fe)2SiO4 contributes nearly 60% of the

mass in the upper mantle. Fine–grained polycrystalline olivine and its aggregates have

been the subject of recent forced–torsional oscillation experiments at seismic frequencies

e.g. Gribb & Cooper [13] and Jackson et al. [18]. Results from these experiments suggest

that in the earth upper–mantle, attenuation of seismic wave may possibly be caused by

elastically and diffusionally accommodated grain boundary sliding [18]. These results

show a similar mild–frequency dependent behaviour of the mechanical loss Q−1 observed

in the upper mantle. Extrapolating these results to mantle conditions also produce a level

of attenuation Q−1 comparable to that observed in the upper mantle.

Though these experimental studies have attributed the mild–frequency depen-

dent behaviour of the mechanical loss to elastically and diffusionally accommodated grain

boundary sliding, these processes are still poorly understood and predictions using current

theoreticalmodels are inadequate to reconcilewith experimental observations. Two promi-

nent features in the attenuation experiments require reinforcements and/or supplements

to the existing theories; (i) the mild–frequency dependence of the mechanical loss Q−1 and

(ii) the presence of a dissipation peak in melt–bearing polycrystalline olivine.

Mild–frequency dependent behaviour of the mechanical loss Q−1 has been at-

tributed to transient creep originating from diffusionally–accommodated grain boundary
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sliding by Gribb & Cooper [13]. Its effects on the mechanical loss spectrum has been in-

vestigated recently by Morris & Jackson [26] using the Raj–Ashby bicrystal model [35] for

a small–slope interface. In that model, two perfectly elastic grains are separated by a fixed

spatially periodic interface where dissipation of energy occurs. It occurs by two processes;

time–periodic shearing of interfacial region and time–periodic diffusion ofmatter along the

interface. Morris & Jackson show that at frequencies corresponding to transient creep i.e.

when diffusive transport is limited to distances smaller than grain size, the mechanical loss

Q−1 decreases with frequency as 1/ lnω. They show that the logarithmic behaviour of Q−1

is an outcome of corner stress concentrations. Though the loss scaling that they obtained

is significantly milder than that observed in the experiments, where Q−1 ∼ ω−(0.2−0.4), that
scaling is expected to change for a finite–slope interface because the behaviour of stresses

near corner changes with corner angle. There is thus a need to evaluate the effects of slope

angle on themechanical loss spectrumdue to diffusionally–accommodated grain boundary

sliding.

The broaddissipationpeak found in themechanical loss spectrumofmelt–bearing

olivine that is absent in melt–free olivine has been attributed to dissipative time–periodic

shearing of the interfacial region i.e. elastically–accommodated grain boundary sliding by

Faul et al. [9]. Because the peak is observed even at temperature below the crystallization

temperature of the melt, Faul et al. eliminate the possibility that the dissipation peak

observed in their experiment is caused by grain–scale pressure–driven flow of melt i.e.

melt–squirt. To explain this contrasting behaviour of the mechanical loss found in melt–

free and melt–bearing olivine, they proposed that the dissipation peak is enhanced in

melt–bearing polycrystal because corners at the triple junctions are rounded bymelt which

facilitates grain boundary sliding. In melt-free polycrystal, grain boundary sliding is

inhibited by sharp corner at triple junctions and the peak weakened as a result. The peak

thus becomes inconspicuous in the presence of the high temperature background. Current

theoreticalmodels are, however, insufficient to confirmFaul’s explanation. Though a study

using the bicrystal model of elastically–accommodated grain boundary sliding by Jackson

et al. [16] suggests that the peak vanishes when corners become infinitely sharp, their study

is limited to a small–slope interface. It is unclear as to whether a finite–slope interface will

modify that conclusion. In order to assess Faul’s explanation and any other factors that

may help weaken the peak, it is necessary to extend the analysis of the bicrystal model of
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elastically–accommodated grain boundary sliding to a finite–slope interface.

1.2 Objective

With these motivations, we solve here for the bicrystal model with finite–slope

interface for diffusionally–accommodated and elastically–accommodated grain boundary

sliding to study the effects of slope angle. There are two main purposes of this study,

namely, (i) to give insights into the physical mechanisms controlling the mechanical loss

spectrum found in the experiments, and (ii) to provide reliable solutions that can be used

to verify numerical solutions for polycrystals.

1.3 Outline

We begin in chapter 2 with a survey of the results from relevant experiments

that are compiled over the years showing evidence of diffusionally–accommodated and

elastically–accommodated grain boundary sliding. These are attenuation experiments

and creep experiments conducted using various materials, ranging from pure metals to

geological materials. Theoretical models of grain boundary sliding are also discussed in

the context of these experiments

In chapter 3, we state the boundary value problems (b.v.p.’s) of the bicrystal

model for which we extend the analysis to a finite–slope interface. Specifically, the

b.v.p.’s are stated for diffusionally–accommodated grain boundary sliding and elastically–

accommodated grain boundary sliding.

In chapter 4, wediscuss the numerical procedure used to solve the b.v.p.’s. Solving

the b.v.p. of diffusionally–accommodated grain boundary sliding numerically is challeng-

ing, in particular, because the problem requires calculation of stress spatial derivatives

along interface having corners. Due to the presence of corner stress concentration, numeri-

cal evaluation of stress derivativeswill incur large errors and requires excessively finemesh

near corners. A fine mesh, on the other hand, requires a small time step if explicit methods

are used. Consequently, a large number of iterations is required to compute themechanical

loss. To circumvent this difficulty, we reformulate the b.v.p. in the language of operators

acting on functions defined on the grain boundary. The problem of finding the entire loss
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spectrum for a given geometry is then reduced to one of finding the eigenvalues and the

eigenfunctions of an evolution operator. To avoid issues caused by stress derivatives as

stated above, these eigenvalues and eigenfunctions are found using a constructed pseudo–

inverse of the evolution operator. By contrast, the b.v.p. of elastically–accommodated grain

boundary sliding does not require calculation of the stress derivative and can be solved

directly using conventional finite element method.

In chapter 5, we discuss the numerical results of diffusionally–accommodated

grain boundary sliding from the bicrystal model. To verify our numerical results, we

also derived analytical constraints of our numerical solution in that same chapter. These

constraints are, namely, the high and low frequency asymptotes in the mechanical loss

spectrum. We show that our numerical results are consistent with these constraints. Our

results show that there exists a band of frequencies where the mechanical loss decreases

slowly with frequency. That slowly–varying region is an outcome of corner stress concen-

tration and the behaviour of the mechanical loss in that region is shown to be sensitive to

slope angle. For the two orthogonal sliding modes found in a regular array of hexagonal

grains, we predict the mechanical loss Q−1 to vary approximately as ω−0.3. Our results

also show that the slope in the loss spectrum decreases with increasing frequency if corner

angle varies along the interface. That result is consistent with the experiments.

In chapter 6, we discuss the numerical results of elastically–accommodated grain

boundary sliding. We also derive constraints to the b.v.p. of elastically–accommodated

grain boundary sliding and show that our numerical solution satisfy these constraints.

We then evaluate three suggestions proposed to explain for the weakened and broadened

loss peak observed in certain experiments. They are, namely, (i) variation in grain sizes d,

(ii) variation in boundary viscosity η and (iii) sharp corners at triple junctions. We show

that these proposed explanations are only able to account for a moderate reduction in

peak height, and is unlikely to produce a large reduction necessary to completely conceal

the loss peak within the absorption background. We also show that the loss peak can be

significantly broaden by a variation in boundary viscosity η.

Finally in chapter 7, we summarize our chief findings of our analysis on the bicrys-

tal model having finite–slope interface. We also discuss briefly possible future extensions

of this work.
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Chapter 2

Survey of experiments

Here, we survey experiments providing evidence of both elastically anddiffusion-

ally accommodated grain boundary sliding. These are attenuation and creep experiments

conducted on metals, ceramics and geological materials. In the attenuation experiments,

mechanical loss Q−1 is measured either by using a forced–torsional oscillation method e.g.

in Gribb & Cooper [13], Schaller & Lakki [37] and Jackson et al. [18] or by using a torsion

pendulum method e.g. in Kê [22] and Pezzotti et al. [32]. In forced–torsional oscillation

method which allows robust measurement at frequencies of 10−3 – 1Hz [19] , an oscilla-

tory torque is applied to the sample and its dynamic torsional modulus is obtained. The

mechanical loss Q−1 is then the tangent argument of the modulus. By contrast in torsion

pendulum method where robust measurements can be made within the range 1–30 Hz

[31], the sample is allowed to vibrate freely and the logarithmic decrement δ is obtained.

For small δ, the mechanical loss Q−1 is approximately equal to δ/π. Existing theoretical

models and their predictions are also discussed here in relation to the experiments.

2.1 Elastically–accommodated grain boundary sliding

In theoretical models of elastically–accommodated grain boundary sliding, dis-

sipation occurs in polycrystal due to shearing along the thin disordered grain boundary

regions. Because these regions behaved like a thin layer of viscous fluid [2], interfacial

shear stresses relaxed at a timescale tη of order µℓ/ηd; here d is the grain size, ℓ is the

thickness of the disordered boundary region, µ is the rigidity of the grains and η is the
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effective viscosity of the boundary region. Dissipation thus vanishes both at very low

frequencies i.e. ω≪ t−1η , and at very high frequencies ω≫ t−1η and the effect of elastically–

accommodated grain boundary sliding manifests itself in the simple form of a dissipation

peak in the mechanical loss spectrum. Though that peak is expected to be easily observed

in experiments, that is not so; the peak has been observed clearly only in some experiments.

2.1.1 Experiments on pure metals

An example of a dissipation peak arising from elastically–accommodated grain

boundary sliding can be found in the experiments by Kê [22] [23], who used torsion

pendulum method to investigate the behaviour of mechanical loss Q−1 found in pure

polycrystallineAl. To establish the effects of grain boundaries, hemeasured themechanical

loss Q−1 in polycrystalline Al and single crystal Al.

Figure 2.1: Q−1 as a function of T at 0.8Hz for Al taken from Kê [22].

Figure 2.1 shows the result from his experiment. In single crystal Al, the me-

chanical loss Q−1 increases exponentially with temperature T whereas the behaviour of

Q−1 is non–monotonic with respect to T in polycrystalline Al. For the latter, the Q−1 − T



CHAPTER 2. SURVEY OF EXPERIMENTS 9

plot contains a strong Debye peak which he attributes to elastically–accommodated grain

boundary sliding. That peak has a magnitude of about 0.09 and stands out from the ab-

sorption background. Because creep experiments conducted on the same polycrystalline

samples show that dissipation is thermally activated, i.e. Eq. (1.1) applies, similar features

are also expected to be found in the mechanical loss spectrum. To prove that the loss peak

is not unique to Al, Kê also conducts experiment on pureMg and he shows that a loss peak

of ∼ 0.06 is found in pure polycrystalline Mg.

2.1.2 Experiments on ceramics–based materials

Subsequent experiments conducted on ceramics, however, do not show a pro-

nounced peak in the mechanical loss spectrum that is observed in pure metals. Instead,

the mechanical loss spectrum is described by Cooper [8] in his review to contain “a broad

absorption peak of low magnitude in the polycrystalline material, one barely ‘competing’

to be seen over the power–law background absorption”. Behaviour of the mechanical loss

fitting such a description can be found in ceramic–based materials e.g. Si3N4 by Pezzotti

et al. [32], Al2O3 and MgO by Pezzotti [31] and Barnhoorn et al. [3], and Zirconia ZrO2 by

Schaller & Lakki [37]. 1

Figure 2.2 shows an example of the Cooper’s description of a “broad absorption

peak of low magnitude” found in MgO from Pezzotti [31]. In his experiment (as well

as those in Schaller & Lakki), the peak is isolated by subtracting the experimental curve

from the absorption background and is studied separately. This procedure is shown in the

figure. In comparison with the loss peak found in pure metals by Kê, the peaks found in

ceramic–based materials are located at a higher temperature (∼ 1600K) and do not stand

out from the absorption background. These peaks are also broader than the single Debye

peak found in pure metals discussed above.

2.1.3 Experiments on melt–bearing geological materials

A weak and broad mechanical loss peak has also been observed in geological

materials at seismic frequencies (∼ 10−3Hz to 1 Hz) and elevated temperature (∼ 1300K) by

1The experiments by Schaller & Lakki [37] on 3 types of ceramics consistently show a mild and broad
absorption peak. However, only in the case of Zirconia, was the peak attributed to viscous grain boundary
sliding
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Figure 2.2: Q−1 as a function of T for MgO at 13Hz taken from Pezzotti [31].

Jackson et al. [17]. In fine–grainedmelt–bearing polycrystalline olivine (Mg,Fe)2SiO4 speci-

mens prepared fromnatural olivine and sol–gel derived Fo90 precursors, a peak superposed

onto the absorption background in the mechanical loss spectrum is consistently observed.

By contrast, the peak is absent in the loss spectrum obtained frommelt–free polycrystalline

olivine, where the mechanical loss decreases monotonically with frequency. The results

of melt–free polycrystalline olivine are discussed later. Because the peak, as discussed in

chapter 1, is observed even at temperatures below the crystallization temperature of melt,

and its height is significantly larger than that predicted for grain–scale pressure–driven

flow or melt–squirt, Faul et al. [9] eliminate melt–squirt as a possible mechanism causing

the peak. Instead, they attribute the peak to elastically–accommodated grain boundary

sliding.

Figure 2.3 shows the mechanical loss behaviour for one of the melt–bearing spec-

imen found in the experiments by Jackson et al. [17]. Similar to ceramics discussed above,

the superposed peak found in the figure is broad and does not stand out from the absorp-

tion background. We note here that in forced–torsional oscillation experiments conducted

on fine–grained peridotite (fabricated using natural dunite and orthopyroxene) with amelt

fraction of ∼ 0.015 by Sundberg & Cooper [40], they too observed a non–monotonic be-
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Figure 2.3: Q−1 as a function of T for melt–bearing (Mg,Fe)2SiO4 taken from Jackson et al.
[17]. Melt fraction: 0.037. Sol–gel specimen.

haviour of the mechanical loss spectrum resembling the inception of a loss peak. They

attribute that non–monotonic behaviour to elastically accommodated grain boundary slid-

ing.

2.1.4 Relating experiment to theory

Several suggestions have been proposed to explain the broader and weaker peak

found in other materials as opposed to the single Debye peak observed in pure metals,

which is well–predicted by existing theoretical models e.g. Ghahremani [12]. These sug-

gestions can be categorized into two broad classes: (i) grain–wise variation of parameters

controlling the timescale tη taken for shear stress to relax and (ii) grain boundary geometry.

In the first case, a broader and weaker dissipation peak is envisaged to be caused

by a widely distributed sliding timescale tη that is due to a variation in grain size d and a

variation in boundary viscosity η suggested by Pezzotti [31] and Cooper [8], respectively.

For the latter, η is an intrinsic viscosity, as explained by Ashby [2], that depends on the

degree of misalignment between adjacent grain lattices at the boundary interfaces. The in-

trinsic viscosity η is used to model the effects of elastically–accommodated grain boundary

sliding and is measured indirectly in experiments using the Debye peak found in the loss
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spectrum. That viscosity is not to be confused with a viscosity ascribed to the presence

of an amorphous silicate (e.g. SiO2 in Pezzotti et al. [32]) found in grain boundaries of

e.g. Si3N4. Unlike the intrinsic boundary viscosity, the viscosity of the amorphous silicate

residing along the grain boundaries can be measured independently of the attenuation

spectrum. We also note that because the viscosity of the amorphous silicate does not vary

along grain boundaries, it cannot produce a variation in timescale tη described by Cooper

[8].

The second class of explanation concerns geometrical features that physically

affect sliding across grain boundaries. Faul et al. [9] suggest that the loss peak may be

weakened if corners at the triple junctions are sharp. Comparing triple junctions found in

their melt–bearing and melt–free polycrystalline olivine samples, they observed that the

junction corners are significantly rounded when melt is present, as opposed to the tight

corners found in their melt–free samples. Because the loss peak is absent in their melt–

free polycrystalline olivine sample as discussed in §2.1.3, they proposed that the peak is

significantly weakened and is concealed in the absorption backgroundwhen sliding across

grain boundaries is inhibited by the sharp triple junction corners. This result is also broadly

consistent with the results found in existing theoretical models. In an analysis of the Raj–

Ashby bicrystal model using a small–slope interface by Jackson et al. [16], they show that

the loss peak vanishes as corners become infinitely sharp. In chapter 6, we evaluate the

sensitivity of the loss peak to these proposed factors.

2.2 Diffusionally–accommodated grain boundary sliding

In diffusionally–accommodated grain boundary sliding, dissipation occurs in

polycrystal due to the transport of matter along grain boundaries from regions under com-

pression to regions in tension. To accommodate that transfer of atoms, grain boundaries

slide relative to one another at a characteristic time tD taken for matter to be transported

across distances of order the grain size. A polycrystal therefore creeps at a constant rate de-

termined by a creep viscosity ηss only after a time t≫ tD has lapsed upon which a constant

load is applied. Note that the creep viscosity ηss is not to be confused with the boundary

viscosity η discussed previously. Correspondingly, that steady–state creep behaviour is

translated into an inverse relation between mechanical loss and frequency i.e. Q−1 ∼ ω−1
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when a time–periodic load is applied at frequencies ω≪ t−1
D
.

2.2.1 Experiments on geological materials

Steady–state creep behaviour is however, not observed in the attenuation experi-

ments conducted on geologicalmaterials. Instead, amild frequency–dependent absorption

background in themechanical loss spectrum has been observed consistently in fine grained

O(µm) geological materials deforming under small strain O(10−6) at seismic frequencies

and elevated temperature ∼ 1300K. In forced–torsional oscillation experiments conducted

on olivine aggregates fabricated from natural material, specifically peridotite by Sundberg

& Cooper [40] and dunite (> 90% olivine) by Gribb & Cooper [13] and Bunton [5], the

mechanical loss Q−1 is observed to vary approximately as ω−0.35 in the absorption back-

ground.2 By comparison, a slightly milder frequency–dependent absorption background

Q−1 ∼ ω−0.26 is also observed in the experiment by Jackson et al. [18] using melt–free

polycrystalline olivine specimens prepared from both natural olivine and sol–gel derived

Fo90 precursors. Because the grain size d is kept small ∼ O(µm) in these experiments

to exclude any effects caused by dislocations (and to prevent microcracking in the speci-

mens), the mild–frequency dependent absorption background is attributed by the different

investigators to diffusional creep originating from grain boundary diffusion.

Figure 2.4 shows the mechanical loss spectra obtained in these experiments obey

the similarity principle dictated by diffusional creep stated in Gribb & Cooper [13]: if the

behaviour of the mechanical loss Q−1 is controlled solely by diffusional creep, Q−1 should

depend on steady state creep viscosity ηss, grain rigidity µ and the angular frequency

ω through a single dimensionless variable ωηss/µ. From the figure, we find that the

mechanical loss Q−1 measured in the different experiments described above collapse onto

a single curve defined by a power lawQ−1 ∼ (ωηss/µ)α, albeit with some scatter in the data.

The cause of that scatter is discussed later.

In the figure, the steady–state creep viscosity ηss used to normalize the frequency

ω for the data from Bunton [5] and Sundberg & Cooper [40] is measured using torsional

microcreep test on the same specimens used in their attenuation experiments. By contrast,

the creep viscosity ηss used to graph the data from Jackson et al. [18] is calculated using Eq.

2Note: In these experiments, the melt content is not reported except in the case of Sundberg & Cooper,
where they reported a modest melt fraction of ∼ 0.015 in their specimens.
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Figure 2.4: Mechanical loss spectrum of the experiments. Jackson et al. [18]: • 2.9µm, △
12.4µm, 30 H 23.4µm, ♦ 165.1µm. Bunton [5] ×. Sundberg & Cooper [40] �. Broken lines
have slopes -0.2 and -0.4. Solid lines: Prediction by Gribb & Cooper [13] and Morris &
Jackson [26]. Refer to text for explanation.

(6) in Morris & Jackson [27]. That equation describes a relation between creep viscosity ηss,

grain size d and temperature T that is obtained by fitting the results of a separate uniaxial

compression microcreep test on fine–grained (3–6 µm) polycrystalline olivine aggregates

given in Faul & Jackson [10]. We note that the result in the microcreep experiments

showing creep rate ė varying as the third power of grain size i.e. d3 supports the argument

that the dominant dissipative mechanism operating in these attenuation experiments is

grain boundary diffusion.

As explained in Morris & Jackson [27], the scatter found at high frequencies is,

in fact, a systematic offset in ωηss/µ of the data from Jackson et al. [18] corresponding to

different grain sizes. They suggest that the offset is a systematic error introduced when

using the fit given by their Eq. (6) to extrapolate the creep viscosity ηss to larger grain

sizes. The scatter found in the data from Sundberg & Cooper [40] at ωηss/µ ∼ 102 is

attributed by them to be the inception of a loss peak caused by elastically–accommodated

grain boundary sliding as discussed below Figure 2.3.
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From the figure, the power–law exponent α has different values depending on

the frequency range. As indicated by the broken lines, the value of α varies from ∼ −0.4
to ∼ −0.2 as frequency ω is increased. This range of exponent α is comparable with that

observed in the earth upper mantle [1]. In chapter 5, we show that this gradual decrease in

slope may, in part, be caused by a variation of triple junction corner angles in polycrystals.

2.2.2 Relating experiment to theory

Figure 2.5: Mechanical loss spectrum predicted by Gribb & Cooper [13]. Refer to text for
explanation

The Raj–Ashby bicrystal model of diffusionally–accommodated grain boundary

sliding has been used byGribb &Cooper [13] to interpret the results from their experiment.

Following Raj’s approach [34] of using a perturbation method, they calculate the creep rate

ė as a function of time t for a truncated sawtooth interface with slope angle ϕ = 60◦. In

their calculation, they used the resultant interfacial normal stress σnn when the interfacial

shear stresses are fully relaxed under elastically–accommodated grain boundary sliding as

an initial condition to compute the creep rate i.e. they assumed grain boundary diffusion

proceeds only upon the completion of elastically–accommodated grain boundary sliding.
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By time–integrating the creep rate ė and applying numerical Laplace transform to the

resultant creep response e(t), they obtain the frequency–response of the mechanical loss

Q−1.

Figure 2.5 shows the prediction of the mechanical loss spectrum by Gribb &

Cooper [13]. Their predicted spectrum contains 3 distinct regions, namely, a steady–state

regime in the low frequencies where Q−1 ∼ ω−1, a transient regime at intermediate fre-

quencies and a high–frequency regime where Q−1 ∼ ω−0.5. In the transient regime, the

mechanical loss Q−1 decreases slowly and varies as ω−(0.25−0.4). According to Gribb &

Cooper, the differing values of the exponent in the power–law description of the tran-

sient regime reflects an error that arises when extrapolating their small–slope perturbation

solution to a finite–slope interface as described in Raj’s calculation [34].

To evaluate the prediction by Gribb & Cooper in terms of the attenuation exper-

iments, we digitized their curves given in Figure 2.5 and rescale the frequency with the

dimensionless variable ωηss/µ. The steady state creep viscosity ηss used to rescale the

frequency is obtained from Raj & Ashby calculation of the steady state creep rate for a 2-D

hexagonal array of grains [35]. According to Gribb & Cooper, the creep viscosity ηss is

related to the timescale τ found in Figure 2.5 by τ ≈ 4ηss/µ. These curves are graphed with

the experiments using solid lines in Figure 2.4. In the figure, we find that their prediction is

close to the experiments in the frequency range 100 ≤ ωηss/µ ≤ 103. At higher frequencies

i.e. ωηss/µ > 103, their prediction of the power–law behaviour Q−1 ∼ ωα starts to deviate

from the experiments; α increasing to -0.5 in their predictionwhereasαdecreases to roughly

-0.2 in the experiments. At low frequencies i.e. ωηss/µ ∼ 100, results from the attenuation

experiments start to deviate from the prediction byGribb&Cooper. Specifically, the results

from the experiments do not exhibit a sharp transition between steady–state regime and

the transient regime predicted by them.

The prediction by Gribb & Cooper [13] is different from the prediction by Morris

& Jackson [26] who also analyze the bicrystal model using a perturbation method that is

accurate only for a small–slope interface. Unlike Gribb & Cooper who transform the time–

response of the bicrystal model deforming under creep to obtain its frequency–response i.e.

mechanical loss spectrum, they solve for the spectrumdirectly by imposing a time–periodic

displacement at the boundaries of the model. For a small–slope interface, they predict the

mechanical loss Q−1 to vary as 1/ lnω at frequencies ω≫ t−1
D
. That scaling is independent
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of the interface type and is shown in Figure 2.4. They also show that the logarithmic

scaling is an outcome of corner stress concentration where σnn ∼ r−1 near corners; here r

is the distance measured away from the corner along the interface. Because the behaviour

of the interfacial normal stress σnn is predicted to change with interface slope angle by a

local analysis of Picu & Gupta [33], the logarithmic scaling does not hold for a finite–slope

interface. We show in chapter 5 that our numerical results for small–slope interfaces agree

with that from the perturbation solution of Morris & Jackson [26] and the loss scaling is,

indeed, sensitive to the slope angle at frequencies ω≫ t−1
D
.

Comparing the prediction by Morris & Jackson [26] to that from Gribb & Cooper

[13], we find that the mechanical loss Q−1 is more sensitive to frequency ω in the latter’s

prediction. The high–frequency regime loss scaling Q−1 ∼ ω−0.5 is also not predicted by

Morris & Jackson. Given that both predictions are obtained from a perturbation analysis

that assume the solution as apower–series of interface slope to the sameorder,we expect the

mechanical loss Q−1 computed from the two solutions to behave similarly in the spectrum

even though different slope angles are used; the slope angle should cancel off in the

calculation of Q−1 which is the tangent argument of the model shear modulus G.

(a) Gribb & Cooper
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Figure 2.6: Comparison of interfacial normal stress σnn in Gribb&Cooper’s [13] andMorris
& Jackson [26]. Morris & Jackson: Eq. (24) ω = 108, N = 1000. Refer to text for explanation
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There is one inconsistency, however, between the normal interfacial stressσnn, ω→∞

found in the solution of Morris & Jackson at high frequency extreme and the stress σnn, t=0

used to initiate the creep response calculation by Gribb & Cooper. In order for the predic-

tions to be consistent with one another, σnn, ω→∞ must be equal to σnn, t=0 and should serve

as an initial condition for the creep response calculation. However, that is not so.

Figure 2.6 shows the initial stress distribution σnn, t=0 used in Gribb & Cooper’s

calculation and the stress distribution from Morris & Jackson [26]. The oscillation is

an artifact from the Fourier series approximation of the truncated sawtooth interface.

Compared to the prediction by Morris & Jackson where the normal stress σnn, ω→∞ ∼ r−1

near corners, we find that σnn, t=0 does not exhibit that singularity behaviour near corners.

Note in Figure 2.6b, σnn ∼ r−1 only at distance r ≫ ω−1/3 measured from the corners for

finite frequencies. The behaviour of σnn, t=0 is significantly weaker. This disparity between

σnn, ω→∞ and σnn, t=0 may be a possible cause for that discrepancy between the prediction

by Morris & Jackson [26] and Gribb & Cooper [13] We show later that a weaker stress

concentration is, in fact, translated to a stronger frequency–dependent behaviour of Q−1

that is consistent with the differences between the two analysis.
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Chapter 3

Boundary value problems of the

bicrystal model

B.v.p.’s of diffusionally–accommodated grain boundary sliding and elastically–

accommodated grain boundary sliding are now formulated. Here and subsequently, we

use asterisks to denote dimensional variables.

Grain 1

Grain 2

Figure 3.1: Model schematic

Figure 3.1 shows the geometry of the bicrystal model. The sample consists of

two linear elastic grains having elastic shear modulus µ and Poisson ratio ν. The interface

is periodic with a wavelength 2π/ξ, where ξ ∼ 1/d is the wavenumber. We assume
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the interface position to be a given time–independent function f ∗(x∗) because the strains

occurring in the attenuation experiments are small in order to model the propagation of

seismic wave. Unit vectors in the coordinate directions are denoted by x̂ and ŷ. The unit

tangent and unit normal vectors of the interface are denoted by ŝ and n̂, respectively. At the

upper and lower boundaries at y∗ = ±a/ξ, the displacement varies sinusoidally in time t∗

with angular frequency ω∗ and amplitudeU0, i.e. u
∗ = x̂U0e

iω∗t∗ . The grains are assumed to

be undergoing plane deformation and the x and y components of the displacement vector

u∗ are denoted by u∗
1
(x∗, y∗) and u∗

2
(x∗, y∗), respectively. Similarly, the Cartesian components

of the stress and strain tensors (i.e. σ and e) are denoted by σ∗
i j
(x∗, y∗) and e∗

i j
(x∗, y∗).

There are two rate-dependent constitutive equations on the grain boundary SI.

The first constitutive equation is given in (3.1) and describes the viscous sliding along

interface SI caused by the presence of a boundary phase. In that equation, the interfacial

shear stress σ∗ns is proportional to the discontinuity in tangential velocity
[
u̇∗s

]
across SI and

is given by

ℓσ∗ns = η
[
u̇∗s

]
. (3.1)

Here, ℓ and η are, respectively, the thickness and the viscosity of the interface; both assumed

to be constant. We note that constitutive equation (3.1) is analogous to that of Couette flow

and the interface SI therefore acts as if it contains a thin film of Newtonian fluid.

The second constitutive equation describes the effects of grain boundary diffusion.

Volumetric flow rate (per unit z–length) along the interface j∗ occurs in the presence of a

normal stress gradient dσ∗nn/ds
∗. From Fick’s first law, this flow rate is given by

j∗ =
VℓD

kT

dσ∗nn
ds∗

, (3.2)

where matter flows from region under compression to region in tension along the interface

SI. Balancing mass along the interface i.e.

[
u̇∗n

]
+

d j∗

ds∗
= 0 , (3.3)

leads to the final form of the constitutive equation for grain boundary diffusion that is

given by
[
u̇∗n

]
+

VℓD

kT

d2σ∗nn
ds∗2

= 0 . (3.4)

Because time–derivatives enter these two constitutive equations i.e. Eq. (3.1) and

(3.4), we can define two timescales tη and tD from them. Following Mosher & Raj [28] and
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Parameters Values References

Temperature T 1500K
Grain size d 5µm Jackson et al. [17]
Grain rigidity µ 0.05TPa
Grain boundary thickness ℓ 1 nm
Frequencies ω/2π 10−3 – 1 Hz
Steady–creep viscosity η′ 50 TPa s Faul & Jackson [10];

Morris & Jackson [27]
Molecular volume v 0.05 nm3 Frost & Ashby [11]

Diffusivity ℓD 10−23m3/sec Eq. (14) in Coble [7]: η′ = 1
148

d3kT
ℓDv

Diffusive timescale tD 105 sec
Diffusive lengthscale ℓd 0.05 – 0.5 µm

Table 3.1: Estimates of diffusive timescale tD and lengthscale ℓd based on Mg2SiO4. Refer
to text for explanation.

Raj [34], the timescales are defined as:

tη =
η

ξℓµ
, tD =

kT

µVℓDξ3
. (3.5a, b)

Physically, tη and tD are the timescales on which the two sides of (3.1) and (3.4) balance. In

Eq. (3.5b), the terms balance if the derivative along the interface scales with its wavelength.

Thus at high frequencies i.e. ω ≪ t−1
D
, diffusion only operates within a distance that is

small compared with the wavelength. At a given frequency ω, the effects of diffusion on

an interface with sharp corners is then limited to within a distance ℓd measured away from

the corner given by

ℓd =

(
µVℓD

kTω

)1/3
. (3.6)

In Table 3.1, we estimate the diffusive timescale tD and the diffusive distance ℓd in the

attenuation experiments. From the table, we find that the diffusive lengthscale ℓd is at least

order of magnitude smaller than the grain size. Consequently, diffusion does not occur at

a grain–scale level in the attenuation experiments.

We now define the following dimensionless variables (without asterisks):

(x∗, y∗) = (x, y)/ξ , (3.7a)

u∗ = U0u , (3.7b)
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f ∗ = ε f/ξ , (3.7c)

σ∗i j = µξU0σi j , (3.7d)

t∗ = tDt . (3.7e)

In Eq. (3.7c), ε is the characteristic slope of the interface.

The dimensionless b.v.p. of diffusionally–accommodated grain boundary sliding

is stated as follows:

in grain 1 and grain 2 ,

∇(∇ · u) + (1 − 2ν)∇2u = 0 ; (3.8a)

on y = ±a,
u1 = ±eiωt , (3.8b)

u2 = 0 ; (3.8c)

on y = ε f (x),

M [u̇s] = σns , (3.8d)

[u̇n] +
d2σnn
ds2

= 0 ; (3.8e)

[σns] = 0 = [σnn] (3.8f, g)

on x = 2π and x = 0,

u1(0, y) = u1(2π, y) , (3.8h)

u2(0, y) = u2(2π, y) . (3.8i)

In (3.8d), the viscosity parameterM is defined as

M = tη/tD . (3.9)

WhenM → 0 (for fixed frequency), the interface SI becomes effectively inviscid on the

interface i.e. σns = 0 and dissipation occurs solely through grain boundary diffusion.

Conversely when there is no diffusion, energy is dissipated solely through the

boundary viscosity η. This specific case is referred to as elastically–accommodated grain
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boundary sliding described below §2.1. For this case, the normal displacement un becomes

continuous across the interface SI and Eq. (3.8e) is replaced by

[un] = 0 . (3.10a)

Rescaling time t with the sliding timescale tη by settingM = 1, Eq. (3.8d) becomes

[u̇s] = σns . (3.10b)

Eq. (3.8a) – (3.8c), (3.8f) – (3.8i) and (3.10) thus form the b.v.p. of elastically–accommodated

grain boundary sliding for the bicrystal model.

Because the elastic wavelength for our frequencies of interest is large compared to

the sample size, we used the plane elastostatic equation in (3.8a) instead of the dynamical

equation. With a grain interface SI that is fixed in time, problem (3.8) is then linear

and separable in time. Consequently, the solution to (3.8) for a time–periodic boundary

displacement is also time–periodic with the same angular frequency ω.

Because the constitutive equations (3.8d) and (3.8e) contain time derivatives, the

displacements within the sample lag the displacements imposed at the sample boundaries.

Consequently, the stress at the boundary lags the displacement there. That resulting phase

lag between the imposed boundary displacement and the resultant boundary stress is an

expression of dissipation occurring at the interface SI.

By solving the b.v.p.’s (diffusionally and elastically accommodated grain bound-

ary sliding), we are able to obtain the x–averaged shear stress τ applied at y = ±a. The

averaged shear stress τ is defined as

τ(t) =
1

2π

∫ 2π

0

σxy(x, a, t)dx . (3.11)

The sample shear modulus G is then defined by the equation:

G = τ(t)/γ(t) , (3.12)

where γ(t) = eiωt/a is the sample shear strain. Because both τ and γ are proportional to eiωt

in (3.12), the modulus G is independent of t and is a function of frequency ω.

The mechanical loss L is defined, as usual, by the equation

L = tan argG . (3.13)
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We note thatL is a dimensionless quantity. If the material can be modelled as a network of

springs and dampers, the quantity defined by (3.13) is equal to the ratio of the loss per cycle

to 4π times the mean strain energy stored within the grains (see O’Connell & Budiansky

[30] and Bland [4]).

(a) Array of hexagonal grains

ϕ

ε

(b) Type S interface

ϕ

ε

(c) Type TS interface

Figure 3.2: Polycrystal microstructure idealized as an array of hexagonal grains
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We consider the type S interface and the type TS interface shown in Figure 3.2.

These interfaces correspond to two orthogonal sliding surfaces found in an array of regular

hexagonal grains. Corners of the interface are rounded over a distance rc < d andwe define

N as the ratio of the interface wavelength dwith the corner radius rc so that

N =
d

rc
. (3.14)

When interfaces have sharp corners (i.e. rc = 0 or N → ∞), these interfaces can be

represented using piecewise functions defined by

f =



x/πα if 0 < x < πα ;

1 if πα < x < π(1 − α) ;
(π − x)/πα if π(1 − α) < x < π ,

(3.15)

where the specific values α = 1/2 and α = 1/4 correspond to a type S and a type TS

interface, respectively. To relate the characteristic slope ε to the interface slope angle ϕ, we

use (3.16a) and (3.16b) for the type S and the type TS interface, respectively.

tanϕ =
2ε

π
, tanϕ =

4ε

π
. (3.16a,b)

We note that because there are 3 axes that correspond with each of the two sliding surfaces

(See Figure 3.2a), the response of that sample has a 3–fold rotational symmetry.
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Chapter 4

Numerical method

Here we discuss the numerical method used to solve the b.v.p.’s of the bicrystal

model stated in the previous chapter. Using conventional finite element to solve b.v.p.

(3.8) of diffusionally–accommodated grain boundary sliding is challenging, in particular

because of the boundary condition (3.8d). As a result of corner stress concentrations

described in §5.1, numerical approximation of the term d2σnn/ds2 found in (3.8d) will incur

a large numerical error and requires excessively fine mesh near corners.

To circumvent this difficulty, we use the method of eigenfunction expansion de-

scribed in Sethian &Wilkening [38]. In order to apply that method, we need to decompose

the b.v.p. stated in (3.8) into two separate b.v.p.’s, namely, b.v.p(1) and b.v.p(2). These b.v.p.’s

are described in §4.1. B.v.p(1) has a trivial solution given in §4.2, whereas b.v.p(2) is solved

using eigenfunction expansion method discussed in §4.3. In §4.4, we describe the method

used to extract the required eigenvalues and eigenvectors. That method requires finite

element method which is described in §4.5. In that same section, we also describe the finite

element method used to solve the b.v.p. posed below 3.10 of elastically–accommodated

grain boundary sliding.

4.1 Decompositionofboundaryvalueproblem: b.v.p(1) andb.v.p(2)

Because the interface SI is time-independent and the b.v.p. given in (3.8) is linear,

the principle of superposition applies. We decompose the b.v.p. into two separate b.v.p.’s,

namely, b.v.p(1) and b.v.p(2). These two b.v.p.’s share the same geometry with the original
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problem that is shown in Figure 3.1. Using superscripts 1 and 2 to denote, respectively,

variables associated with b.v.p.(1) and b.v.p.(2), the stress field σi j, strain field ei j and the

displacement field u1, u2 in (3.8) can be obtained by superposing the solution of the two

b.v.p.’s, i.e.

σi j = σ(1)
i j
+ σ(2)

i j
, (4.1a)

ei j = e
(1)
i j
+ e

(2)
i j
, (4.1b)

(u1,u2) = (u
(1)
1
,u(1)

2
) + (u

(2)
1
,u(2)

2
) . (4.1c)

To simplify the notation, we use gn and gs to denote, respectively, the normal gap [un] and

the tangential gap [us] of interface SI in this chapter. Interfacial stresses and gaps are also

denoted here, using 2×1 vectors of functions σn = [σnn, σns]T and g = [gn, gs]T, respectively.

The plane elastostatic equation in Eq. (3.8a), the periodic boundary conditions

in Eqs. (3.8h,i) and the requirement that normal and tangential stresses across the grain

boundary are continuous in Eqs. (3.8f,g) all apply in b.v.p.(1) and b.v.p.(2). The other

boundary conditions are stated below.

4.1.1 Boundary conditions in b.v.p.(1)

In b.v.p.(1), the boundary conditions at y = ±a are

u
(1)
1
= ±eiωt, u

(1)
2
= 0 , (4.2a,b)

and the boundary conditions along the interface SI on y = ε f (x) are

σ(1)ns = 0 , σ(1)nn = 0 . (4.3a,b)

4.1.2 Boundary conditions in b.v.p.(2)

Conversely in b.v.p.(2), boundary conditions at y = ±a are

u
(2)
1
= 0, u

(2)
2
= 0 , (4.4a,b)

whereas the boundary conditions along the interface SI on y = ε f (x) are

Mġ
(2)
s = σ

(2)
ns , ġ

(2)
n +

d2σ(2)nn

ds2
= 0 . (4.5a,b)
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4.2 Exact solution of b.v.p.(1)

By inspection of b.v.p.(1), the two grains do not interact with one another through

their interface SI. Hence, the two grains moved rigidly across one another and the dis-

placement field u of the upper grain and the lower grain are x̂eiωt and −x̂eiωt, respectively.
The displacement fields satisfy all equations given in b.v.p(1) and the resulting normal gap

and the tangential gap across the interface SI are, respectively,

g
(1)
n = 2eiωtx̂ · n̂ , g

(1)
s = 2eiωtx̂ · ŝ . (4.6a,b)

4.3 Eigenfunction expansion solution of b.v.p.(2)

To solve b.v.p.(2), we use eigenfunction expansion. In essence, we reduce a 2–

dimensional problem given in b.v.p.(2) to a 1–dimensional problem defined along interface

SI. We define a linear operator S that maps a given interfacial gaps g(2) onto the interfacial

stresses σ(2)n in b.v.p.(2). Because interfacial stresses in b.v.p.(1) are zero i.e. σ(1)n = 0, the

interfacial stresses in b.v.p(2) are equivalent to that in the original b.v.p. i.e. σ(2)n = σn. The

operator S is defined as follows

S : g(2) → σ(2)n . (4.7)

We also define a differential operator L given as

L : [σnn, σns]
T →

[
d2σnn
ds2

, M−1σns
]T
. (4.8)

Using the definition given in (4.7) and (4.8), we find from the constitutive equations of

the original b.v.p. given in (3.8d) and (3.8e) that LSg(2) = ġ. Applying the principle of

superposition ġ = ġ(1) + ġ(2) to that equation, the 2-dimensional problem given in b.v.p.(2)

is condensed into a single equation defined on the interface SI:

ġ(2) + LS g(2) = −ġ(1) . (4.9)

The r.h.s. term in (4.9) can be calculated using (4.6). We also note that without the forcing

term ġ(1), g(2) is bounded in the limit t → ∞, if the eigenvalues of LS are greater than or



CHAPTER 4. NUMERICAL METHOD 29

equal to zero. We show, using an example in Figure 4.2, that the eigenvalues are, indeed,

positive.

Time evolution of the interfacial gap g(2) defined in (4.9) can thus be obtained by

eigenfunction expansion if the eigenvalues γk and the eigenfunctions Zk(s) associated with

the composite operator LS are known i.e.

LSZk(s) = γkZk(s) . (4.10)

Note: the eigenfunctions Zk(s) are 2 × 1 vector of functions, where its first and second

components are associated with g
(2)
n and g

(2)
s , respectively. Using Nz eigenfunctions, the

solution to the homogeneous part of (4.9) (i.e. with ġ(1) = 0) can be written in a separable

form

g
(2)

h
(s, t) =

Nz∑

k=1

βk e
−γktZk(s) , (4.11)

where βk are coefficients determined by the initial condition g
(2)
0
(s). The coefficients βk are

found by requiring them to satisfy

Nz∑

k=1

βkZk(s) = g
(2)
0
(s) . (4.12)

LettingΦZ be a 1 ×Nz vector containing these eigenfunctions,

ΦZ = [Z1(s),Z2(s), . . . ,ZN(s)] ; (4.13)

andΦ∗
Z
be the adjoint operator ofΦZ so thatΦ∗

Z
g
(2)
0

is a Nz × 1 vector of scalars defined as

Φ∗Zg
(2)
0
=

∫

SI

[
Z1g

(2)
0
,Z2g

(2)
0
, . . . ,ZNg

(2)
0

]T
ds , (4.14)

the coefficients β =
[
β1, β2, . . . , βN

]T , upon solving (4.11) for βk, can be written compactly

as

β = (Φ∗ZΦZ)
−1Φ∗Zg

(2)
0
. (4.15)

Substituting (4.15) into (4.11), the latter equation becomes

g
(2)

h
(s, t) = E(t)g(2)

0
(s) , (4.16)

where E(t) is defined as the source operator or evolution operator

E(t) =ΦZ e−Λt (Φ∗ZΦZ)
−1Φ∗Z (4.17)
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and Λ is a diagonal matrix defined as Λ = diag
[
γ1, γ2, . . . , γNZ

]
. The solution to the

inhomogeneous p.d.e. given in (4.9) can then be obtained using Duhamel’s principle

g(2)(s, t) = E(t)g(2)
0
−

∫ t

0

E(t − t̄ ) ġ(1)(s, t̄ ) dt̄ . (4.18)

Hence, the problem of diffusionally–accommodated grain boundary sliding on a bicrystal

model given in (3.8) is solved, if the eigenvalues γk and the eigenfunctions Zk defined in

(4.10) are found.

4.4 Extraction of eigenvalues/eigenvectors

Wenowdescribe themethodused to extract the eigenvaluesγk and eigenfunctions

Zk in finite dimension. Though the composite operator LS can be obtained directly using

finite element method to approximate S and finite difference method to approximate L,

corner stress concentrations described in §5.1.4 will lead to large numerical errors when

using finite difference to approximate L.

To circumvent that problem, we use a method given in Sethian & Wilkening

[38], where they solve the problem of electromigration due to grain boundary diffusion.

Instead of constructing L directly using finite difference method, a “pseudo–inverse” A of

the composite operator LS is constructed. That operator A has similar eigenfunctions Zk to

that of LS, and has eigenvalues ζk that are related to γk by

ζk =


γk if γk , 0

0 if γk = 0
. (4.19)

The operator A is defined as

A = QBGQ . (4.20)

In Eq. (4.20), B is the inverse ofS andmaps interfacial stresses σ(2)n to the gap g(2), G contains

a Poisson operator and Q is a non-orthogonal projection operator. We now describe these

operators and show how they are constructed in finite dimensional space.

4.4.1 Operator B

The operator B is defined as follows:

B : σ(2)n → g(2) . (4.21)
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In essence, B is the inverse of S defined in (4.7) and maps the interfacial stresses σ(2)n (s) to

the interfacial gaps g(2)(s). The functions in the vectors g(2) and σ(2)n can be approximated

using conventional finite element hat functions ψ j(s)

Figure 4.1: Linear shape functions ψk(s) on SI

Figure 4.1 shows the schematic of the hat functions ψ j(s) defined along interface

SI. We have denoted LSI as the length of that interface in the figure. The interfacial gaps

and stresses are approximated using Nx hat functions by

g
(2)
n (s) =

Nx∑

j=1

ψ j(s) g̃
(2)
n, j
, g

(2)
s (s) =

Nx∑

j=1

ψ j(s) g̃
(2)
s, j

; (4.22a,b)

and

σnn(s) =
Nx∑

j=1

ψ j(s) σ̃nn, j , σns(s) =
Nx∑

j=1

ψ j(s) σ̃ns, j . (4.23a,b)

In Eq. (4.22), g̃
(2)
n, j

and g̃
(2)
s, j

refer to the values of the normal gap and tangential gap at node

j, whereas σ̃nn, j and σ̃ns, j in Eq. (4.23) refer to the values of the normal stress and tangential

stress at node j. Henceforth, we use tilde to denote vectors containing the nodal values of
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a function. LettingΨ2 be a 2 × 2Nx matrix containing these hat functions i.e.

Ψ2 =



ψ1(s) . . . ψNx(s) 0 . . . 0

0 . . . 0 ψ1(s) . . . ψNx(s)


 , (4.24)

the vector function of interfacial gap g(2) and interfacial stress σn can be written compactly

as

g(2)(s) =Ψ2 g̃
(2) , σ(2)n (s) =Ψ2 σ̃

(2)
n , (4.25a,b)

where g̃(2) = [g̃
(2)
n,1
, . . . , g̃(2)

n,Nx
, g̃(2)

s,1
, . . . , g̃(2)

s,Nx
]T and σ̃(2)n = [σ̃(2)

nn,1
, . . . , σ̃(2)

nn,Nx
, σ̃(2)

ns,1
, . . . , σ̃(2)

ns,Nx
]T are

vectors of size 2Nx × 1. Mathematically,Ψ2 is also an operator that maps a 2Nx × 1 vector

into a 2 × 1 vector of functions, i.e. Ψ2 : R2Nx → W2
h
. Correspondingly, we denote its

adjoint byΨ∗2 that is define as follows

Ψ∗2 h2 ≡
∫

SI

ΨT
2 h2 ds , (4.26)

where h2(s) is a 2 × 1 vector of functions defined along SI.

To obtain the finite dimensional operator B ∈ R2Nx × R2Nx that maps the nodal

values of the interfacial stresses σ̃(2)n to the nodal values of the interfacial gaps g̃(2), i.e.

B : R2Nx → R2Nx , we use the identityΨ2B g̃(2) = σ(2)n (s) = BΨ2 g̃
(2) that results in

Ψ2B = BΨ2 . (4.27)

Multiplying (4.27) by the i-th direction unit vector ẽi and then applying the adjoint operator

Ψ∗2 to the resulting expression leads to

Ψ∗2Ψ2 Bẽi =Ψ
∗
2 BΨ2ẽi . (4.28)

Letting M2 = Ψ
∗
2Ψ2 and multiplying the above expression by M−1

2
, the first column of B,

which is given by Bẽi, becomes

Bẽi =M−12 Ψ
∗
2BΨ2ẽi . (4.29)

In Eq. (4.29), M2 is the “mass matrix” found in finite element formulation. We also note

that in Eq. (4.29), the resultant of BΨ2ẽi is the interfacial gaps g
(2)(s) = [g

(2)
n (s), g(2)s (s)]T that

is obtained from a given interfacial stress σ(2)n (s) = Ψ2 ẽi, whereas M−1
2
Ψ∗2 g

(2)(s) results in

a 2Nx × 1 vector g̃(2) containing nodal values of interfacial gaps defined below (4.25). The
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i–th column of B, therefore, contains nodal values of the interfacial gaps g̃(2) found from

solving b.v.p.(2) with boundary conditions (4.5) replaced by

σ(2)nn =


ψi for i = 1, . . . ,Nx

0 for i = Nx + 1, . . . , 2Nx

; (4.30a)

σ(2)ns =


0 for i = 1, . . . ,Nx

ψi−Nx for i = Nx + 1, . . . , 2Nx

. (4.30b)

The entire B matrix can therefore be populated by solving, repeatedly, for the nodal inter-

facial gaps g̃(2) using finite element method (described in §4.5) with the above boundary

conditions for i = 1, . . . , 2Nx.

4.4.2 Operator G

The operator G is defined as follows:

G :

[
d2σnn(s)

ds2
, σns(s)

]T
→ [σnn(s), −M σns(s)]

T , (4.31)

where σnn and σns satisfy periodic boundary conditions at the two end points of SI. The

operator G can be decomposed into two operators P and G that operates on the functions

σns and d2σnn/ds2 separately, i.e.

P : σns → −M σns , (4.32a)

G :
d2σnn
ds2

→ σnn . (4.32b)

In Eq. (4.32a), P simply multiply σns by a scalar −M and can be represented, in finite

dimension by

P = −M I . (4.33)

Here, I ∈ RNx × RNx is the identity matrix. The operator G defined in (4.32b) is referred

here as a Poisson operator. That operator solves the Poisson equation with given function

h1(s) and periodic boundary conditions for σnn(s) i.e.

d2σnn
ds2

= h1(s) , (4.34a)
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σnn|s=0 = σnn|s=LSI , (4.34b)

dσnn
ds

∣∣∣∣∣
s=0
=

dσnn
ds

∣∣∣∣∣
s=LSI

. (4.34c)

We use finite element method to obtain G in finite dimensional space. Denoting v(s) as the

test function, the weak formulation of (4.34) becomes

∫

SI

dσnn
ds

dv

ds
ds = −

∫

SI
v h1 ds . (4.35)

The variables v, σnn and h1 are approximated using hat functions ψk illustrated in Figure

4.1. LettingΨ1 be a 1 ×Nx matrix containing these hat functions ψk i.e.

Ψ1 = [ψ1, . . . , ψNx] , (4.36)

these variables can be written as

v =Ψ1 ṽ, σnn =Ψ1 σ̃nn, h1 =Ψ1 h̃1 . (4.37a, b, c)

In Eq. (4.37), ṽ, σ̃nn and h̃1 are, respectively, Nx × 1 vectors containing the nodal values of

the variables v, σnn and h1. Substituting (4.37) into (4.35), the latter expression becomes

KG σ̃nn = −M1 h̃1 (4.38)

where KG and M1 are Nx ×Nx matrices given by

KG =

∫

SI

dΨT
1

ds

dΨ1

ds
ds , M1 =

∫

SI
ΨT

1Ψ1 ds . (4.39a, b)

We note that KG is the stiffness matrix found in finite element method, whereas M1 is the

mass matrix analogous to M2 described below (4.29). Because the solution to (4.34) is not

unique,KG is not invertible. Hence, to obtain the finite dimensional Poisson operatorG so

that

σ̃nn = G h̃1 , (4.40)

we uses the singular value decomposition of KG i.e.

KG = UΣVT (4.41)
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where U, V and Σ are, respectively, the left–singular matrix, the right–singular matrix and

a diagonal matrix containing the singular values of KG. We note that one of the singular

value is zero. Letting Σ∗ be a diagonal matrix having entries that are reciprocal of that in Σ,

and has zero entry if the corresponding entry in Σ is zero, the finite dimensional Poisson

operator becomes

G = −VΣ∗UTM1 . (4.42)

Noting that P andG, which are defined respectively in (4.33) and (4.42), operate separately

as described in (4.32), the operator G in finite dimension is given by

G =



G 0

0 P


 . (4.43)

In Eq. (4.43),G is a 2Nx × 2Nx matrix.

4.4.3 Projection Operator Q

The non–orthogonal projection operator Q is defined following Sethian &Wilken-

ing [38] as

Q = I − (e, · )
(e,Be)

Be , (4.44)

where I is an identity operator and e(s) = [1, 0]T is a 2 × 1 vector of constants. Note: the

projection operator Q defined here is equivalent to Q∗ defined in Wilkening et al. [41]. In

Eq. (4.44), the round brackets denote the inner product between two 2× 1 vector functions
h2(s) and q2(s) that are defined along SI i.e.

(h2, q2) ≡
∫

SI
hT2 q2 ds . (4.45)

Operator Q is constructed to have its range for the first component restricted to the space of

“mean zero” functions L2
MZ

:=
{
h ∈ L2(SI);

∫
SI
hds = 0

}
. In other words, for a 2×1 vector of

functions h2(s), the first component of the resultant mapping eTQ h2 ∈ L2MZ
. That operator

Q also has kernel along Be. Note: the resultant of Be is the interfacial gaps produced by

interfacial stresses σnn = e = 1 and σns = 0. The main purpose of Q is to restrict gn (or

g
(2)
n because g

(1)
n defined in (4.6a) ∈ L2

MZ
) to functions ∈ L2

MZ
. That restriction is required

by mass conservation across s = 0 and s = LSI , i.e.
dσnn
ds

∣∣∣
s=0
=

dσnn
ds

∣∣∣
s=LSI

. To see that mass
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conservation requires gn ∈ L2MZ
, we integrate (3.8d) with respect to s and find that

∂

∂t

∫

SI
gn ds = 0 . (4.46)

From (4.46), , gn ∈ L2
MZ

at all time t if the normal interfacial gap has zero mean along the

interface at t = 0.

We now consider the following mappings by QBG:



g
(2)
n

g
(2)
s




Q←−−−−−


g
(2)
n

g
(2)
s


 + cBe

B←−−−−−


σ(2)nn + c

σ(2)ns




G←−−−−−




d2σ(2)nn

ds2

−M−1σ(2)ns


 . (4.47)

In Eq. (4.47), c is an integration constant introduced by the Poisson operator G in G, and Q

annihilate the additional terms produced by c. Comparing (4.47) to the mappings by LS:



g
(2)
n

g
(2)
s




S−−−−−→


σ(2)nn

σ(2)ns




L−−−−−→




d2σ(2)nn

ds2

−M−1σ(2)ns


 , (4.48)

we thus find that the composite map QBG is the inverse of LS i.e.

QBGLS = I , (4.49)

where I is the identity operator. Applying the expression given in (4.49) to Zk and using

(4.10), we find that

γkQBGZk = Zk . (4.50)

The above equation (4.50), however, does not hold if γk = 0 or equivalently, when Zk ∈
Be = ker(LS). Because QZk = Zk when Zk ∈ L2MZ

, and QZk = 0 when Zk ∈ Be, we can insert

Q between G and Zk in the l.h.s. of (4.50) and applying Q to r.h.s. of that equation to obtain

γkQBGQZk = QZk . (4.51)

Eq. (4.51) is thus satisfied for all values of γk and QBGQ has eigenfunctions Zk that are

similar to that of LS and eigenvalues ζk that are related to eigenvalues γk of LS by (4.19).

The operator Q in finite dimensional space, denoted here as Q, can be obtained

as follows. Letting ẽ = (1, . . . , 1)T be a Nx × 1 vector of ones and z̃ = (0, . . . , 0)T be a Nx × 1

vector of zeros, the vector e(s) defined below (4.44) is given, in finite dimensional space, by

ẽ
T =

(
ẽT, z̃T

)
. To relate between e(s) and ẽ, we use

e =Ψ2 ẽ . (4.52)
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Note: this form is analogous to the representation given in (4.25). Using (4.52), (4.27) and

the definition given in (4.45), we find that the denominator in (4.44) becomes

(e,Be) =
∫

SI
ẽ
TΨT

2Ψ2Bẽ ds = ẽ
TM2Bẽ . (4.53)

We have use the definition of M2 given above (4.29) to obtain the last expression in the

above equation. Similarly, one can prove using (4.52), (4.27) and the identity QΨ2 = Ψ2Q

that

Q = I − BẽẽTM2

ẽ
TM2Bẽ

. (4.54)

Here, Q is a 2Nx × 2Nx matrix and I is an identity matrix.

4.4.4 Steady state solution to b.v.p.(2)

The pseudo–inverse operator A defined in (4.20), in finite dimensional space, is

A = QBGQ , (4.55)

where Q, G are defined in (4.54), (4.43), respectively, and B is found using finite element

method described below (4.30).
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Figure 4.2: Eigenvalues γk as a function of k. Type S interface. ϕ = 30◦. N = 100. Nx = 748.
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Figure 4.2 shows the eigenvalues ζk of A obtained for the interface described in

the caption. These eigenvalues are related to γk by (4.10). In the figure, the eigenvalues

ζk > 0 and correspondingly eigenvalues γk of LS are also greater than zero. The positivity

of these eigenvalues γk thus ensures the solution g(2) given in (4.18) is bounded at all times.

To relate the eigenfunctionsZk(s) ofLS to the eigenvectors Z̃k, weuseZk(s) =Ψ2Z̃k.

Using that relation and letting Φ̃Z = [Z̃1, . . . , Z̃NZ] be a matrix containing eigenvectors, we

find from (4.13) that

ΦZ =Ψ2Φ̃Z . (4.56)

Substituting (4.56) into (4.17) and using the identity EΨ2 = Ψ2E, we find that the source

operator in finite dimension becomes

E(t) = Φ̃Ze
−ΛtΦ̃−1Z . (4.57)

From (4.18), the time evolution of the nodal gaps in b.v.p(2) becomes

g̃(2)(t) = E(t)g̃
(2)
0
−

∫ t

0

E(t − t̄ ) ˙̃g(1)(t̄ ) dt̄ , (4.58)

where g̃
(2)
0

is the nodal values of the initial condition g
(2)
0

and ˙̃g(1) is the nodal values of ġ(1)

evaluated using (4.6). At steady state, the first r.h.s. term of (4.58) vanishes. Consequently,

the steady–state solution for the interfacial gap is

g̃
(2)
ss (t) =

∫ t

∞
E(t − t̄ ) ˙̃g(1)(t̄ ) dt̄ . (4.59)

This expression can be simplified further by substituting (4.57) and (4.6), and then evalu-

ating that resultant integral to obtain

g̃
(2)
ss (t) = Φ̃Z Ds Φ̃

−1
Z g̃(0)(1)eiωt . (4.60)

In Eq. (4.60),Ds is a diagonal matrix with k-th component given as

Ds(k,k) =
iωγk + ω

2

ω2 + γ2
k

. (4.61)

Denoting g̃
(2)
ss (t) = ĝ

(2)
ss (ω)e

iωt where

ĝ
(2)
ss (ω) = Φ̃Z Ds Φ̃

−1
Z g̃(0)(1) , (4.62)
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the nodal values of σn can be found using

σ̃n(ω) = B−1 ĝ(2)ss (ω) . (4.63)

Noting that σn(ω) · g(1)(0)/2 is the projection of the interfacial stresses in the x–direction, the

x–average shear stress at y = ±a becomes

τ(ω) =
1

2

∫

SI
σ̃Tn (ω)Ψ

T
2Ψ2 g̃(0)

(1)ds =
1

2
σ̃Tn (ω)M2 g̃(0)

(1) , (4.64)

and the mechanical loss spectrum L(ω) can then be calculated from its definition in (3.13).

4.5 Finite Element Method

Here we describe the finite element method used (i) to solve the b.v.p. described

above (4.30) needed to generate the matrix B, and (ii) to solve for the b.v.p. of elastically–

accommodated grain boundary sliding posed below (3.10). To begin, we first derive the

weak formulation of the b.v.p. described above (4.30).

4.5.1 Weak formulation

The Navier–Cauchy equation of elasticity given in (3.8a) is the resultant of the

balance of linear momentum, the isotropic material constitutive equation and the small

strain definition given, respectively, as

σi j, j = 0 , (4.65a)

σi j =
1

1 + ν

(
ei j +

ν

1 − 2ν
ekkδi j

)
, (4.65b)

ei j =
1

2

(
ui, j + u j,i

)
. (4.65c)

We shall use these equations (instead of the Navier–Cauchy equation) to derive the weak

formulation here. Letting v be the test function that is zero at boundaries having prescribed

displacement, and vi be its component, we take the inner product of Eq. (4.65a) with v

and integrate the resultant expression over the entire material regionV to obtain the weak

formulation ∫

V
σi jvi, j dV−

∫

Γ

σi jn jvi dΓ = 0 . (4.66)
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In the above equation,V and Γdenotes, respectively, the combined volume and boundaries

of grain 1 and grain 2, whereas n j refers to the vector components of the outward normal

along the boundaries. In arriving at (4.66), we have used the identity σi j, jvi = (σi jvi), j−σi j, jvi, j
and the divergence theorem. We also note that the traction along boundary Γ is given by

ti = σi jn j. Correspondingly, the second integral in (4.66) becomes
∫
SI
σnnvn+σnsvn ds, where

σnn and σns are prescribed on SI.

To enforce the boundary conditions, we use the standard penalty method. For

the general case when displacement u = ±U is prescribed at y = ±a, and when a periodic

boundary condition is imposed across x = 0 and x = 2π, we add terms scaled by a large

positive penalty parameter P in the weak formulation (4.66) to obtain

∫

V
σi jvi, j dV−

∫

SI
σnnvn ds + σnsvs ds

︸                       ︷︷                       ︸
traction b.c.

+ P

∫ a

−a

{
ui(0, y) − ui(2π, y)

}
vi(0, y) +

{
ui(2π, y) − ui(0, y)

}
vi(2π, y) dy

︸                                                                                   ︷︷                                                                                   ︸
periodic b.c.

+ P

∫ 2π

0
{ui(x, a) −Ui} vi(x, a) + {ui(x,−a) +Ui)} vi(x,−a) dx

︸                                                                      ︷︷                                                                      ︸
displacement b.c.

= 0 .

(4.67)

We note that the periodic and the displacement boundary conditions are exactly enforced

in the limit as P→∞.

4.5.2 Discretization

Figure 4.3 shows the finite element discretization of grain 1. To capture the

rounded corners in the interface SI, we increase the mesh density near corners. The

expression given in (4.67) is now discretized using finite element method. Specifically,

we approximate the displacement field ui and the test function vi in each element using

bilinear shape functions φi(x, y) i.e.

u1 =

4∑

i=1

φi(x, y) ãi, u2 =

4∑

k=1

φi(x, y) ãi+4 , (4.68a, b)
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Figure 4.3: Finite element mesh in grain 1. 22200 nodes and 21903 elements. Type S, a = 5,
ϕ = 30◦, N = 100. Inset: mesh around a corner.

and

v1 =

4∑

i=1

φi(x, y) b̃i, v2 =

4∑

k=1

φi(x, y) b̃i+4 . (4.69a, b)

Here, ã1,··· ,4 and ã5,··· ,8 are, respectively, the x̂-displacements and ŷ-displacements at the

nodes of a quadrilateral element. Similarly, b̃i contains the values of the test function v at

the nodes of an element. Letting ã = { ã1, · · · , ã8}T, b̃ =
{
b̃1, · · · , b̃8

}T
and

Φ =



φ1 φ2 φ3 φ4 0 0 0 0

0 0 0 0 φ1 φ2 φ3 φ4


 , (4.70)

Eqs. (4.69) can be written compactly as
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Figure 4.4: Isoparametric mapping.

u =Φ ã, v =Φ b̃ . (4.71a, b)

Shape functions φi are usually defined using local coordinates ς1, ς2 of an element. These

coordinates can be mapped onto the global coordinates x, y using isoparametric mapping

x(ς1, ς2) =
4∑

k=1

φk(ς1, ς2)Xk y(ς1, ς2) =
4∑

k=1

φk(ς1, ς2)Yk . (4.72a, b)

Here, (Xk, Yk) defines the (x, y) position of the corners in an element and we give a

schematic in Figure 4.4 to illustrate isoparametric mapping. In the local coordinates, the

shape functions are then defined as follows

φ1 =
1

4
(1 − ς1)(1 − ς2) ,

φ2 =
1

4
(1 + ς1)(1 − ς2) ,

φ3 =
1

4
(1 + ς1)(1 + ς2) ,

φ4 =
1

4
(1 − ς1)(1 + ς2) .

(4.73)
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Discretization of volume integral

UsingNe quadrilateral elements to discretize the material domainV, the leftmost

integral given in (4.67) can be discretized and become

Ne∑

m=1

∫

Vm

σi j vi, j dV. (4.74)

Using (4.65b), (4.65c) and (4.71), the above integral can be written as

Ne∑

m=1

∫

Vm

b̃
[m]T (

DΦ[m]
)T

E
(
DΦ[m]

)
ã[m] dV . (4.75)

Here, the superscript [m] is used to denote variables associated with element m. This

notation is used in the remaining section. In Eq. (4.75), b̃
[m]

and ã[m] therefore denote

the nodal values of the displacements and test functions in element m. Correspondingly,

(DΦ)[m] and E are matrices that contain, respectively, spatial derivatives of the shape

functions inΦ evaluated in element m and material constants. These matrices are defined

as follows:

E =




2(1−ν)
(1−2ν)

2ν
(1−2ν) 0

2ν
(1−2ν)

2(1−ν)
(1−2ν) 0

0 0 1



, DΦ =




∂
∂x 0

0 ∂
∂y

∂
∂y

∂
∂x



Φ . (4.76a, b)

Defining the stiffness matrix of element m as

K[m] =

∫

Vm

(
DΦ[m]

)T
E
(
DΦ[m]

)
dV , (4.77)

the leftmost integral given in (4.67), after substituting (4.77) into (4.75), becomes

Ne∑

m=1

b̃
[m]T

K[m] ã[m] . (4.78)

Note: It is easier to evaluate the integral given in (4.77) using the local coordinates ς1, ς2.

Discretization of grain boundary integral

Using our previous definition of σn = [σnn, σns]
T and noting that vn = − sinϕ(s) x̂+

cosϕ(s) ŷ, vs = cosϕ(s) x̂+sinϕ(s) ŷ , we can re–write the second integral in (4.67) in amore

compact form ∫

SI
σnnvn + σnsvs ds =

∫

SI
vTRTσn ds (4.79a)
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Figure 4.5: Finite element discretization along SI.

where

R =



− sinϕ(s) cosϕ(s)

cosϕ(s) sinϕ(s)


 . (4.79b)

Figure 4.5 illustrates the finite element discretization of the grain boundary SI.

That boundary is shared by elements in grain 1 and grain 2, and correspondingly, each

black dot � along SI in the figure represents two coinciding nodes (from grain 1 and 2).

Letting ES1 be the set of elements m ∈ grain 1 having boundary S[m]
I
⊂ SI, and ES2 be the

corresponding set of elements k ∈ grain 2 having boundary S[m]
I

, the discretized form of

(4.79), and hence of the second integral in (4.67), is given as

∑

m ∈ ES1

∫

S[m]
I

b̃
[m]T
Φ[m]TRT σn ds +

∑

k ∈ ES2

∫

S[m]
I

b̃
[k]T
Φ[k]TRT σn ds . (4.80)

Discretization of periodic boundary condition

Figure 4.6 illustrates the finite element discretization along the x = 0 and x = 2π.

For simplicity in imposing periodic boundary condition, we create a mesh so that there is

a one to one correspondence between elementm that has a boundary on x = 0 and element

k that has a boundary on x = 2π. The two nodes of element m on x = 0 are separated

horizontally from the two nodes of element k on x = 2π by a distance 2π. DenotingEΓL and
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Figure 4.6: Finite element discretization on x = 0, x = 2π.

EΓR be corresponding sets of elements m and k having boundaries Γ[m]
L

on x = 0 and Γ[k]
R

on

x = 2π respectively, the 3rd integral in (4.67), after substituting from (4.71), is discretized

into

P
∑

m ∈ EΓL

∫

Γ
[m]
L

b̃
[m]T
Φ[m]T

(
Φ[m] ã[m] −Φ[k] ã[k]

)
dy

+P
∑

k ∈ EΓR

∫

Γ
[k]
L

b̃
[k]T
Φ[k]T

(
Φ[k] ã[k] −Φ[m] ã[m]

)
dy .

(4.81)

Because the ŷ–coordinates defining elemental boundaries Γ[m]
L

and Γ[k]
R

are identical, the

two integrals in (4.81) can be combined and the resultant can be written more compactly as

∑

m ∈ EΓL



b̃
[m]

b̃
[k]




T

K[m]
p



ã[m]

ã[k]


 , (4.82a)

where K[m]
p is the penalty matrix for enforcing periodic boundary conditions and is given

by

K[m]
p = P

∫

Γ
[m]
L



Φ[m]TΦ[m] −Φ[m]TΦ[k]

−Φ[k]TΦ[m] Φ[k]TΦ[k]


dy . (4.82b)
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Discretization of displacement boundary condition

The final integral given in (4.67) of the displacement boundary conditions is

discretized here. Denoting EΓT and EΓB be sets of elementsm and k having boundaries Γ[m]
T

on y = a and Γ[k]
B

on y = −a, respectively, the final integral in (4.66), after substituting from

(4.72), becomes

P
∑

m ∈ EΓT

∫

Γ
[m]
T

b̃
[m]T
Φ[m]TΦ[m] ã[m] − b̃

[m]T
Φ[m]TU dx

+P
∑

k ∈ EΓB

∫

Γ
[k]
B

b̃
[k]T
Φ[k]TΦ[k] ã[k] + b̃

[k]T
Φ[k]TU dx .

(4.83)

Defining the K[m]
d

and K[k]
d

as the penalty matrices used to enforce displacement boundary

conditions at y = a and y = −a, respectively, i.e.

K[m]
d
= P

∫

Γ
[m]
T

Φ[m]TΦ[m] dx , K[k]
d
= P

∫

Γ
[k]
T

Φ[k]TΦ[k] dx ; (4.84a,b)

Eq. (4.83) can be written more compactly as

∑

m ∈ EΓT

b̃
[m]T

K[m]
d

ã[m] +
∑

k ∈ EΓB

b̃
[k]T

K[k]
d

ã[k]

+
∑

m ∈ EΓT

P

∫

Γ
[m]
T

b̃
[m]T
Φ[m]TU dx +

∑

m ∈ EΓB

P

∫

Γ
[k]
B

b̃
[k]T
Φ[k]TU dx

(4.85)

to give the discretized form of the final integral in (4.67).

4.5.3 Linear system of equations

Replacing the integrals in the weak formulation (4.67) by the discretized form

given in (4.78), (4.80), (4.82) and (4.85), and then further imposing the condition that b̃ is

arbitary (because the test function v is arbitary) leads to a linear system of equations with

the nodal displacements ã as unknowns. For details of assemblying the linear system of

equations, refer to Zienkiewicz & Taylor [42]. We use a parallel sparse solver PARDISO

from Intel R©Fortran Compiler to solve that system of equations with penalty parameter

P ∼ O(105). In a typical run using 2642700 nodes and 2638104 elements, which results in

5285400 number of degree of freedom, solving that system of equations with PARDSIO

using 8 CPU of 3.00GHz and 16GB of memory takes about 4.5 minutes.



CHAPTER 4. NUMERICAL METHOD 47

4.5.4 Elastically–accommodated grain boundary sliding

The b.v.p. of elastically–accommodated grain boundary sliding posed below

(3.10) is solved using finite element method. This b.v.p. differs from the previous only in

terms of the constitutive equations along the interface SI. The weak form of that b.v.p. is

given as follows:

∫

V
σi jvi, j dV−

∫

SI
iω[us]vs ds

︸            ︷︷            ︸
b.c. (3.10b)

+P

∫

SI
[un]vn ds

︸           ︷︷           ︸
b.c. (3.10a)

+ P

∫ a

−a

{
ui(0, y) − ui(2π, y)

}
vi(0, y) +

{
ui(2π, y) − ui(0, y)

}
vi(2π, y) dy

︸                                                                                   ︷︷                                                                                   ︸
periodic b.c.

+ P

∫ 2π

0
{ui(x, a) −Ui} vi(x, a) + {ui(x,−a) +Ui)} vi(x,−a) dx

︸                                                                      ︷︷                                                                      ︸
displacement b.c.

= 0 .

(4.86)

In Eq. (4.86), the imposed displacements are U1 = 1 and U2 = 0. Comparing the weak

form given here with that given in (4.67), we find that only the second integral in the

latter equation is replaced by
∫
SI
iω[us] vs + P [un] vn ds. Consequently, the discretization

of the volume integral, the periodic boundary condition and the displacement boundary

conditions are the same with those given in the previous sub–sections. We now give the

discretization of the second and the third integrals of (4.86).

Based on the grain boundary element discretization illustrated in Figure 4.5 and

using the notation given below that figure, the second integral given in (4.86) in discretized

form becomes

iω
∑

m ∈ ES1

∫

S[m]
I

b̃
[m]T
Φ[m]TŝTŝ

(
Φ[m] ã[m] −Φ[k] ã[k]

)
ds

+iω
∑

k ∈ ES2

∫

S[m]
I

b̃
[k]T
Φ[k]TŝTŝ

(
Φ[k] ã[k] −Φ[m] ã[m]

)
ds .

(4.87)

We note here that the 2 × 2 matrix ŝTŝ is an outcome of the product between us = ŝTΦ ã

and vs = ŝTΦ b̃. Noting that there is a one to one correspondence between element m in
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ES1 and element k in ES2 , the discretized form given in (4.87) can be written compactly as

∑

m ∈ ES1



b̃
[m]

b̃
[k]




T

K[m]
s



ã[m]

ã[k]


 , (4.88a)

where K[m]
s is the penalty matrix used to enforce the periodic boundary conditions given

below by

K[m]
s = iω

∫

S[m]
I



Φ[m]TŝTŝΦ[m] −Φ[m]TŝTŝΦ[k]

−Φ[k]TŝTŝΦ[m] Φ[k]TŝTŝΦ[k]


ds . (4.88b)

Figure 4.7: Enforcing continuous normal displacement between i ∈ grain 1 and j ∈ grain 2

For simplicity, we enforce boundary condition (3.10a) given by the third integral of

(4.86) directly on the nodes. Figure 4.7 illustrates how that boundary condition is enforced.

In the figure, the interfacial node i ∈ grain 1 is tied directly to the corresponding interfacial

node j ∈ in grain 2. We note that i and j have the same coordinates on SI. We also letNS1

be the set of nodes i ∈ grain 1 on SI andNS2 to be the corresponding set of nodes j ∈ grain
2 on SI. Denoting ã{i } and b̃

{i }
respectively as the 2 × 1 displacement vector u and test

function vector v at node i, the third integral in (4.86) can be discretized to become

P
∑

i ∈NS1



b̃
{i }

b̃
{ j }




T

K{i}n



ã{i }

ã{ j}


 ; (4.89a)
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where

K{i}n =



n̂Tn̂ −n̂Tn̂
−n̂Tn̂ n̂Tn̂


 . (4.89b)

Here, the sub–matrices n̂Tn̂ are 2 × 2 matrix and K{i}n is, therefore, a 4 × 4 matrix.

A linear systemof equations can be obtained by replacing the integrals in theweak

formulation (4.86) with the discretized form given in (4.78), (4.82), (4.85), (4.88) and (4.89)

and then imposing the condition that b̃ is arbitrary. This system of equation is complex

because the boundary condition (3.10b) contains a time–derivative.
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Chapter 5

Diffusionally-accommodated grain

boundary sliding

Here we discuss the numerical results from the bicrystal model of diffusionally–

accommodated grain boundary sliding. To begin, we derive analytical constraints in §5.1

to the mechanical loss spectrum for which the numerical solution must satisfy. These

constraints are, specifically, the high and low frequency asymptotes to the spectrum.

In §5.2, we discuss our numercal results and show that they satisfy all the con-

straints set forth previously. We show that the mechanical loss spectrum contains a band

of frequencies where the mechanical loss L decreases slowly with frequency ω when the

timescales are widely separated i.e. M ≪ 1. That slowly–varying region is caused by

corner stress concentrations and is sensitive to slope angle. For the two orthogonal slid-

ing modes found in a regular array of hexagonal grains (see Figure 3.2), we show that

the mechanical loss L varies approximately as ω−0.3. Beyond that slowly–varying region,

the mechanical loss spectrum contains a mechanical loss peak that stands out from the

absorption background.

We also extend our analysis to consider the effects of varying corner angles along

a sliding interface on the slowly–varying region. We show that as a result of that variation,

the slope of the mechanical loss spectrum decreases gradually and is eventually controlled

by the corner having the most singular stress behaviour.

In §5.3, we compare the mechanical loss spectrum obtained from the bicrystal

model with that from the experiments. We show that the mechanical loss scaling in the
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slowly–varying region for the two orthogonal slidingmodes found in an array of hexagonal

grains is close to the scaling observed experimentally. We also give evidence to support

our explanation that the scaling seen in the experiments is likely to be controlled by corner

stress concentration at triple junctions. Though we are able to predict the loss scaling in

the experiments using the bicrystal model, the magnitude of the mechanical loss L found

using that model is still an order of magnitude less than that observed in the experiments.

Thus, a numerical model that allows for the concurrent sliding along multiple planes

in a polycrystal is necessary in order to predict the magnitude of the loss seen in the

experiments.

5.1 Analytical constraints on the numerical solution

Here, we develop analytical constraints for which our numerical solution has to

satisfy. We follow the scaling analysis found in Morris & Jackson [26] to derive the be-

haviour of themechanical loss spectrumby evaluating the strain energy and the dissipation

directly.

For the bicrystal system shown in Figure 3.1, the external power supplied at the

sample boundaries is either dissipated at the time–independent grain interfaceSI or stored

as strain energy within the perfectly elastic grains, i.e.

4πτ
dU

dt
= Υ̇ +

dW

dt
; (5.1a)

W =

∫

V

{ ν

1 − 2ν
e2kk + e2i j

}
dV, (5.1b)

Υ̇ =

∫

SI

1

Mσ2ns +
(
dσnn
ds

)2
ds, (5.1c)

define the strain energy functionW(t) and the dissipation rate Υ̇(t). Here,V is the combined

volume of the upper and the lower grains and τ is the x–averaged shear stress defined in

(3.11).

5.1.1 Low–frequency asymptote

The low frequency (i.e. ω ≪ 1) behaviour of the mechanical loss L has been

established in Morris & Jackson [26]. Because diffusion acts over the entire bicrystal
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system at low frequencies, the strain energy function W and the dissipation rate Υ̇ do not

depend on frequencyω. As a result, the time available for dissipation varies inversely with

ω and the mechanical loss at low frequencies scales as

L ∼ ω−1 . (5.2)

Physically for ω → 0, the quality factor Q = L−1 is proportional to ω as one might expect

from Taylor’s theorem.

5.1.2 High–frequency asymptote

In the limiting case as ω → ∞, the displacement becomes continuous across the

interface SI, i.e. [un] = 0 = [us]. However when the timescales are widely separated i.e.

M≪ 1, discontinuity in the normal displacement [un]→ 0 faster than the discontinuity in

the tangential displacement [us] asω→∞. The latter term therefore dominates the former.

Correspondingly, the dissipation rate Υ̇ in (5.1c) is controlled by the shear stress σns in the

high frequency extreme and can be calculated by evaluating only the first term in the r.h.s

of (5.1c).

The tangential shear σns can be evaluated directly because the two grains behave

as if they are welded at the interface in the limit as ω→∞. As a result the sample deforms

under simple shear and the stress components become σxy = τ and σxx = 0 = σyy. By the

discussion following (3.10b), we may assume that τ(t) = τ̂ sinωt where the amplitude τ̂ is

independent of t. Noting that the shear stress is given by σns = τ cos 2ϕ at the interface

SI under simple shear, we evaluate the dissipation rate Υ̇ and then integrate the resultant

with respect to time t over one period i.e. from t = 0 to t = 2π/ω to show that

Υ ∼ τ̂2 π

Mω

∫

SI
cos2 2ϕds. (5.3)

The timemean strain energy W̄ of the system can be obtained by usingHooke’s law to eval-

uate (5.1b) and then time–averaging the resultant expression. The asymptotic expression

of the time mean strain energy is given by

W̄ ∼ πaτ̂2. (5.4)

Using (5.4), (5.3), and the interpretation of L given below (3.13), we find that in the limit

as ω→∞, L is given asymptotically by

L ∼ 1

2aMω
g(ϕ) ; (5.5a)



CHAPTER 5. DIFFUSIONALLY-ACCOMMODATED GRAIN BOUNDARY SLIDING 53

g(ϕ) =
1

2π

∫

SI
cos2 2ϕds. (5.5b)

The geometric factor g(ϕ) depends only on interface geometry. This quantity is a measure

of the slip along the interface; in the limitω→∞, the amplitude of
∫
[us]

2 ds is proportional

to g/ω2. Evaluating (5.5b) for the type S and type TS interfaces shown in Figure 3.2, we

find that

g =


cos2 2ϕ/ cosϕ, type S;

1
2 (1 + cos2 2ϕ/ cosϕ), type TS,

(5.6)

The geometric factor varies inverselywith cosϕ because for fixedwavelength, the interface

length increases with slope.

5.1.3 Sliding Peak

When the timescales are widely separated i.e. M ≪ 1, the effects of diffusion at

high frequencies become negligibly small and the dissipationΥ is controlled by the bound-

ary viscosity η. The b.v.p. then simplifies to that describing elastically–accommodated

grain boundary sliding. For that case, which will be discuss further in chapter 6, the me-

chanical loss L is predicted to have a maximum in the spectrum at an angular frequency

ω∗ ∼ t−1η , or equivalently at the non-dimensional frequency ω ∼ M−1.

5.1.4 High frequency behaviour forM→ 0

In the limiting state: M → 0, the interface SI becomes inviscid i.e. σns = 0 and

the loss peak located at ω ∼ M−1 shifts into the high frequency extreme ω→∞. The peak

thus vanishes from the mechanical loss spectrum, and the features located within the band

of frequencies 1 ≪ ω ≪M−1 are extended towards the entire r.h.s of the spectrum. These

features are study here.

For small slope angle ϕ, the high frequency behaviour of the mechanical loss L
for an inviscid interface i.e. M→ 0 is given in Morris & Jackson [26]. At high frequencies

ω→ ∞, the mechanical loss L varies as 1/ lnω when the interface has sharp corners. This

result is an outcome of corner stress concentration, where the normal stress σnn varies

inversely with distance r from the corner in the limit ω→∞.
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For finite slope ϕ, the form of the corner stress concentration changes and the

small–slope logarithmic scaling no longer holds. Because the interfacial boundary condi-

tions (3.8d) and (3.8e) approach those used in a local stress analysis by Picu & Gupta [33]

: [un] = 0 = σns as ω → ∞, the interfacial normal stress σnn (in that limiting state) has to

behave as described by them and is given by

σnn ∼ r−λ . (5.7)

In Eq. (5.7), the stress exponent λ is a function of the corner angle and is restricted by

1 > λ > 0. The first inequality ensures that the strain energy of the bicrystal system

remains finite whereas the second inequality follows because stress is singular at r = 0 for

sharp corners.

Figure 5.1: Definition sketch to describe corner singularity

In our model, the interfacial normal stress σnn is not singular at the corners as

a result of either diffusion (occurring at finite ω) or geometric rounding of the corners.

Letting rℓ be the distance over which σnn is smoothed (See Figure 5.1), there is a separation

of lengthscales when rℓ ≪ d. Under that condition, σnn varies with r according to (5.7) at

distance rℓ ≪ r ≪ d and the cut–off length rℓ determines the form of the loss spectrum.

Using (5.7) to estimate the strain energyW in (5.1b) and the dissipation Υ in (5.1c), we find

that they vary as

W ∼
∫ d

rℓ

σ2nnrdr ∼ 1 −
(
rℓ
d

)2−2λ
, (5.8a)

Υ ∼ 1

ω

∫ d

rℓ

(
dσnn
dr

)2
dr ∼ 1

ω

(
d

rℓ

)1+2λ
. (5.8b)
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We note that r appears in the integrand in Eq. (5.8a) because the integration is carried

out over an annular region defined by rℓ < r < d. The resultant strain energy function

W in (5.8a) is found to be insensitive to rℓ because λ < 1 and the lengthscales are widely

separated i.e. rℓ ≪ d. The last condition d/rℓ ≫ 1 has also been used to obtain the final

expression in (5.8b). According to the interpretation of mechanical loss L as the ratio of

Υ to W given below (3.13), L is thus controlled by the dissipation Υ through the cut–off

length rℓ and the stress exponent λ. The length rℓ can be set either by diffusion or by an

imposed corner radius rc.

In the first case, the cut off length rℓ is set by the diffusive lengthscale ℓd ∼ ω−1/3

defined in (3.6). Replacing rℓ in (5.8b) by ℓd , we find that the behaviour of the mechanical

loss in the spectrum can be described using a power–law relation

L ∼ ωα (5.9a)

where

α =
2

3
(λ − 1) . (5.9b)

Eq. (5.9) holds except for a type S interface with slope angle ϕ = 45◦. For that angle, the

interface coincides with the direction of the principal stresses as described in 6.1.1. As a

result, the grains are deformed under simple shear with interfacial normal stress σnn → ±τ
at high frequencies. Because σnn approaches a constant as ω → ∞, the stress exponent

λ = 0. Substituting that value of λ into (5.9), we find that the mechanical loss L varies as

ω−2/3 for this specific interface.

In the second case, the cut–off length rℓ is imposed by the geometric rounding of

corners. That occurs when the corner radius rc > ℓd, or equivalently when ω ≫ (d/rc)3.

Unlike the diffusive lengthscale ℓd, the corner radius rc (and d/rc) does not depend on

frequency. Consequently, the dissipation Υ in (5.8b) and the mechanical loss L varies as

ω−1. That scaling applies to all interfaces when ω≫ (d/rc)3.

5.1.5 Features in the mechanical loss spectrum

Figure 5.2 summarizes the main features in the loss spectrum predicted by the

scaling arguments given above. If the frequencies defining each region of the spectrum are
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widely separated (i.e. 1≪ (d/rc)3 ≪M−1), the mechanical lossL should scale accordingly

as defined in the figure. We test that prediction in §5.2.

Figure 5.2: Schematic of the mechanical loss spectrum

5.2 Discussion of numerical results

Figure 5.3 shows the shear rigidity G computed as a function of the angular

frequency ω withM as a parameter for a type S interface with ϕ = 30◦. That interface has

a wavelength to corner radius ratio N ∼ 100. The mechanical loss spectrum L = tan argG

and the sample rigidity |G| are shown, respectively, in the upper and lower figures.

Figure 5.3a confirms the prediction summarized in Figure 5.2: that if the band of

frequencies that define each region are widely separated, all features predicted in §5.1 are

present in the mechanical loss spectrum. That result is shown by the curve forM = 10−13.

For ω≪ 1, the mechanical lossL varies as ω−1. At higher frequencies 1≪ ω≪ 106, corner

stress concentrations control the spectrum. For that interface with corners subtending at an

angle equal to 120◦, we find that the mechanical lossL ∼ ω−0.3 for that band of frequencies.

With this value of power–law exponent α = −0.3, the stress exponent calculated from

(5.9) has a value λ = 0.55, close to the prediction of λ = 0.58 given by the local solution

of Picu & Gupta [33] in their Figure 5.1 To make that comparison, we have used the

stress exponent associated with that of an anti–symmetric stress field about the corner

because our solution (see Figure 5.6) shows that σnn is anti–symmetric about the corner.

Subsequently at even higher frequencies 107 ≪ ω ≪ 108, the diffusion lengthscale ℓd

become smaller than the corner radius rc. As a result, stresses are smoothed over by a

distance ∼ rc and the mechanical loss, as described above §5.1.5, then scales as L ∼ ω−1.
1Note: In Figure 5 of Picu & Gupta [33], the curve labels are switched i.e. the dashed and the solid lines

should correspond to the symmetric eigenfunction and the anti–symmetric eigenfunction, respectively. Also
in Figure 6, the eigenvectors in (a) and (b) should correspond, respectively, to the anti–symmetric fields and
the symmetric fields instead.



CHAPTER 5. DIFFUSIONALLY-ACCOMMODATED GRAIN BOUNDARY SLIDING 57

10-5

10-4

10-3

10-2

10-1

100

101

100 102 104 106 108 1010 1012 1014

L

ω

10-3

10-8 10-13

 

 

 

 

 

 

 

        

 

 

10-3

10-8 10-13

 

 

 

 

 

 

 

        

 

 

10-3

10-8 10-13

 

 

 

 

 

 

 

        

 

 

10-3

10-8 10-13

 

 

 

 

 

 

 

        

 

 

10-3

10-8 10-13

 

 

 

 

 

 

 

        

 

 

10-3

10-8 10-13

 

 

 

 

 

 

 

        

 

 

10-3

10-8 10-13

(a) L

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

100 102 104 106 108 1010 1012 1014

|G
|

ω

10-3 10-8 10-13

(b) |G|

Figure 5.3: Rigidity as a function of ω withM as a parameter. Type S interface, N = 100,
a = 5, ϕ = 30◦, ν = 0.3. (a) L = tan argG; (b) |G|. Curve labels give values ofM.
asymptote Eq. (5.5). asymptote Eq. (5.9). asymptote Eq. (5.2).
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Figure 5.4: Rigidity as a function of ω withM as a parameter. Type TS interface, N = 100,
ϕ = 60◦. (a) L = tan argG; (b) |G|. Curve labels give values ofM. asymptote Eq.
(5.5). asymptote Eq. (5.9). asymptote Eq. (5.2). Refer to Figure 5.3 for other
parameters.
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Lastly, a local maximum due to elastically–accommodated grain boundary sliding is found

at ω ∼ 10−13 and the mechanical loss L varies according to (5.5) after the peak. That peak

has a magnitude of about 0.05 that is invariant withM.

The peak and the slowly varying region is, however, not present in the curve for

M = 10−3 because the timescales are not widely separated. As a result, the mechanical loss

L decreases rapidly as ω−1 in most parts of the spectrum. For that same reason, the region

at which the corner radius sets the cut-off lengthscale (i.e. (d/rc)3 ≪ ω≪M−1) is not found
when M = 10−8. Instead, the loss peak follows immediately after the slowly–varying

region (1≪ ω≪ 106) in the mechanical loss spectrum.

In Figure 5.3b, we show that the corresponding sample rigidity for the loss spec-

trum obey the physical constraint |G| ≤ 1: that the sample cannot be made stronger than

the individual grains. The figure shows that as frequency ω → ∞, the sample rigidity |G|
approaches unity because the two grains then behaved as if they are welded together at

the interface, i.e. [un] = 0 and [us] = 0. For 1 ≪ ω ≪ M−1 where the mechanical loss L
decreases slowly with frequencyω, the sample rigidity |G| increases slowly with frequency.

Figure 5.4 shows that the slowly–varying region in the mechanical loss spectrum

also depends on corner orientation, whereas the general features described in Figure 5.2

and shown in Figure 5.3 does not depend interface type. Comparing Figure 5.4a and Figure

5.3a, the mechanical loss L scales differently only in the slowly–varying region. Though

corners also subtend an angle equal to 120◦ in type TS interface having slope angleϕ = 60◦,

the mechanical loss L scales differently because the normal stress distribution (see Figure

5.6 ) is an even function with respect to the corner (instead of an odd function as in type S

interfacewithϕ = 30◦). For a type TS interfacewithϕ = 60◦, themechanical lossL ∼ ω−0.37

and the corresponding stress exponent λ obtained from (5.9) is found to be 0.45. That value

is equal to the prediction of λ = 0.45 given in Figure 5 of Picu & Gupta [33] for a symmetric

stress field of σnn.

So as to concentrate on the essential features in the loss spectrum not affected by

slip–viscosity η, we now set the interface to be inviscid i.e. η = 0 orM = 0 and show that

the slowly–varying region is sensitive to slope angle ϕ.
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Figure 5.5: Mechanical loss L as a function of angular frequency ω when the interface is
inviscid i.e. η = 0 orM = 0. Type S interface. N = 500. asymptotes Eq. (5.9) with
λ given in Table 1. Eq. (39b) of Morris & Jackson [26]. Refer to Figure 5.3 for other
parameters.

5.2.1 Sensitivity of slowly–varying region to ϕ

Figure 5.5 shows the mechanical loss L as a function of the angular frequency ω

with slope angle ϕ as a parameter for a type S interface. The figure confirms the scaling

argument stated above and shows that the mechanical loss scaling in the slowly–varying

region depends on the interface corner angle. For a small–slope interface (i.e. ϕ = 0.36◦),

the figure shows that the mechanical loss L varies as 1/ lnω in the slowly–varying region

That result is consistent with the prediction given in Morris & Jackson [26]. For a finite–

slope interface however, the mechanical loss L varies as ωα in the slowly–varying region.

In Table 5.1, we give the values of α for the finite–slope interfaces found in Figure 5.5. The

stress exponents λ are calculated using (5.9). Because the normal stress distribution for

a type S interface is an odd function with respect to the corner, these stress exponents λ

are compared to the eigenvalues λPG associated with an anti–symmetric eigenfunction in

the local analysis by Picu & Gupta [33] given in their Fig. 5. Due to a lack of parity in

the normal stress distribution for a type TS interface (see Figure 5.6b), we did not use that
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ϕ α λ λPG
18◦ -0.17 0.75 0.77
30◦ -0.3 0.55 0.58
45◦ -0.66 0 0.26
58◦ -0.49 0.26 0.26

Table 5.1: Comparison of stress exponent λ derived from the mechanical loss scaling with
that λPG obtained from Picu & Gupta [33]. See text for explanation.

interface for comparison here. From the table, we find that the computed stress exponents

λ are close to those obtained from the Picu & Gupta local analysis, except when ϕ = 45◦.

For that specific case, λ vanishes and the mechanical loss scales as L ∼ ω−2/3 as explained
below (5.9).

Figure 5.6 shows the interfacial normal stress σnn distribution near a corner for the

interfaces described in the caption. Because the inner solution of the normal stress must

match the outer Picu & Gupta solution given by (5.7) at r = ℓd ∼ ω−1/3, the inner solution of

σnn ∼ ℓ−λd . Consequently, graphing the normal stress distribution using variables σnnω−λ/3

and rω1/3 for different frequencies should define a single curve near corner. This self–

similar behaviour of σnn is evident in the figure. For a type S interface, the local behaviour

of the stress is anti–symmetric with respect to the corner. By comparison, the local stress

behaviour of a type TS interface does not display a strong parity.

5.2.2 Implication of the scaling analysis

Because the total dissipationΥ along an interface can be found by summing up the

contribution from each region surrounding a corner, our scaling analysis suggests that the

mechanical loss behaviour in polycrystals at high frequencies i.e. ω→∞will be controlled

by the corner having the largest stress exponent λ.

To test this prediction, we consider a type TS interface that is illustrated in Figure

5.7 by the solid line. Dotted line in that figure shows the original type TS interface when

φ1 = φ2. Along the interface, there are two different corners C1 and C2 that have angles

φ1 = 175◦ and φ2 = 107◦, respectively. For these two corners C1 and C2, the local analysis

by Picu & Gupta (1996) predicts the stress exponent λ to be about 1 and 0.5, respectively.

The behaviour of the mechanical loss L at high frequencies is therefore expected to be

controlled by C1.
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Figure 5.6: Normal stress σnn distribution near corner. Inset shows geometry.
ω = 105. ω = 104. ω = 103. (a) Type S interface. ϕ = 30◦. λ = 0.55. (b) Type
TS interface. ϕ = 60◦. λ = 0.45. (c) Type S interface. ϕ = 45◦. λ = 0. Refer to Figure 5.3 for
other parameters.
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Figure 5.7: Type TS interface having two different corner angles. C1 and C2 refer to corners.
Original TS interface with φ1 = φ2.

Figure 5.8 shows the mechanical loss spectrum obtained for the interface given in

Figure 5.7 with different corner angles. There are two main features in the figure. First,

the behaviour of the mechanical loss is consistent with the above prediction and appears

to approach a logarithmic scaling i.e. 1/ lnω that correspond to a stress exponent λ = 1 at

C1. The graph is truncated at ω = 5 × 108 due to a lack of numerical resolution at higher

frequencies. Second, the slope decreases gradually with frequency in the slowly–varying

region due to the diminishing effects from the other corner C2. To show that the effect of

C2 indeed diminishes with increasing frequency ω , we also graph the scaling L ∼ ω−0.33

produced by C2.

5.3 Comparison with experiments

Our result thus suggests that the mild frequency–dependent behaviour of the

mechanical loss L that is observed in the experiments is likely to be caused by local stress

concentrations near triple junctions. Because corner stress concentration does not depend
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Figure 5.8: Mechanical loss L as a function of angular frequency ω for the geometry given
in Figure 5.7. φ1 = 175◦, φ2 = 107◦. Dotted lines: L ∼ ω−0.33 and L ∼ 1/ lnω. Refer to text
for explanation.

on large scale geometries, its effect also should not depend on these details. Hence, we

expect the effect of corner stress concentration to persist even in polycrystals. Microstruc-

tures from experimental samples also support that argument. From Figure 11 in Faul et al.

[9], we find that the ratio of grain size to corner radius in a typical triple junction∼ 200 even

whenmelt, which give rise to rounded corners, is present. According to the predicted form

of the loss spectrum given in Figure 5.2, the band of frequencies over which the mechanical

loss L decreases mildly with frequencies would then be large (spanning over 7 decades in

frequency).

Figure 5.9 shows the comparison of themechanical loss behaviour from the bicrys-

tal model with that from the experiments. In the figure, the steady–state creep viscosity ηss

of the bicrystal model is calculated from the low frequency behaviour of the rigidity G(ω);

a Fourier transform is applied to G(ω) to obtain the corresponding time–response when a

constant stress is applied to the sample.

From the figure, we find that the mild–frequency dependent behaviour occurs
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Figure 5.9: Mechanical loss L as a function of ω∗ηss/µ. Data points: experiments. Refer
to Figure 2.4 for explanation of symbols. Solid lines: bicrystal model (interface, ϕ). Inset:
Quality factor Q = L−1 as a function ω∗ηss/µ at low frequency.

over a large band of frequencies in the experiments and the mechanical loss scaling is close

to that predicted by the two interfaces found in an array of hexagonal grains i.e. type S

and TS interface with ϕ = 30◦ and ϕ = 60◦, respectively. However, these interfaces under

predict the mechanical loss L found in the experiments by roughly an order of magnitude

(for a type S interface). Because each of these two interfaces only account for part of the

loss found in a regular array of hexagonal grains, a largermechanical loss is expectedwhen

concurrent sliding along multiple interfaces of that array is allowed. Numerical models

of polycrystal are therefore necessary in order to predict the magnitude of the mechanical

loss L found in the experiments.

Transition between the low–frequency behaviour and the high–frequency be-

haviour of the mechanical loss L in the experiments is also not well predicted by the

bicrystal model. Closer examination of the experiments however show the ANU data

appears to approach gradually towards the low–frequency behaviour of the two interface,

whereas the other data appears to approach that behaviour at a lower frequency. That
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transition is gradual as opposed to that from the bicrystal model because the transition

frequency depends on interface slope ϕ and the diffusive timescale tD that are expected to

be widely distributed in a polycrystal.

In the figure, the mechanical loss becomes less sensitive to frequency ω with

increasing frequencies in the experiments. This result is consistent with our prediction that

a gradual decrease in the slope of the mechanical loss spectrum is an outcome when the

angles differ from corner to corner along a sliding surface. Given that corner angle in triple

junctions vary spatially along any sliding surfaces in a polycrystal, that behaviour is also

expected to be found in polycrystal.

An effective slope angle ϕeff that matches the data from the experiments may

also be derived using a type S interface. Though some discrepancies are found at lower

frequencies, an effective slope angle ϕeff = 17.7◦ is found to match the experimental results

closely at high frequencies, as shown in the figure. The behaviour of the quality factor

Q = L−1 at low frequency is shown in the inset using linear scale. At low frequency, the

quality factor Q approaches linearly to zero in the bicrystal model with an effective slope

angle ϕ = 17.7◦ whereas the experimental data, specifically from Bunton [5] and Sundberg

& Cooper [40], approach the origin at a faster rate.

5.4 Summary

In summary, the general features found in the mechanical loss spectrum for a

bicrystal model of diffusionally–accommodated grain boundary sliding at finite slope is

consistent with the prediction by the small–slope analysis [26]. When the timescales are

widely separated i.e. when M ≪ 1, the two key features found in the spectrum for a

finite–slope interface are:

1. A slow–varying region of the mechanical loss L at frequencies 1 ≪ ω ≪ M−1 for

interface having sharp corners. In that region, the mechanical loss has a power–law

dependence on frequency i.e. L ∼ ωα, where the power–law exponent α depends on

the corner stress concentration. Owing to the constraint of the stress exponent λ, the

power–law exponent is bounded by −2/3 ≤ α < 0. When corner angle varies along

the interface, the slope of the mechanical loss decreases with increasing frequency,

and is ultimately controlled by the corner having the most singular stress behaviour.
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2. A local maximum near frequency ω ∼ M−1. That peak stands out from the high–

temperature or absorption background caused by diffusion.

To assess the sensitivity of the mechanical loss peak to factors that were pro-

posed to explain for the broader and weaker peak found in the experiments (described in

§2.2.1), we now isolate the peak from the absorption background and consider the case of

elastically–accommodated grain boundary sliding using the bicrystal model.
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Chapter 6

Elastically–accommodated grain

boundary sliding

Here, we use the bicrystal model to study the mechanical loss peak caused by

elastically–accommodated grain boundary sliding. Specifically, we isolate the loss peak

from the high–temperature backgroundby suppressing diffusion along the grain boundary.

The resultant b.v.p. is posed below (3.10).

In §6.1, we derive analytical constraints of our numerical solution for that b.v.p.

These constraints are, namely, (i) a new elementary solution of the bicrystal model for a

type S interface with slope angle ϕ = 45◦, (ii) the high and low frequency asymptotes in

the mechanical loss spectrum, (iii) the local solution from Picu & Gupta [33] and (iv) the

perturbation solution obtained for a small slope interface from Morris & Jackson [26]. The

high and low frequency asymptotes are used to obtain master variables for the mechanical

loss spectrum.

In §6.2, we discuss the numerical results. We show that our numerical solution

satisfy all the constraints stated above. We then extend our analysis to study the effects of

non–uniformgrain size and non–uniformviscosity in §6.3. Using these results, we evaluate

three proposed suggestions used to explain the small and broad peak commonly found in

the experiments. These proposed suggestions are described in §2.1.4 and are restated here:

• variation in grain size by Pezzoti [31],

• variation in boundary viscosity η by Cooper [8],
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• sharp corners at triple junctions by Faul et al. [9].

Our result suggests that of the three proposed explanations, only a large variation in

boundary viscosity η along grain boundaries is able to broaden the loss peak significantly.

Concurrent with that effect, all the proposed explanations are also found to be able to

reduce the loss peak moderately, but is unlikely to completely suppress its presence in the

mechanical loss spectrum when the timescales are widely separated.

6.1 Analytical constraints on the numerical solution

6.1.1 A simple shear solution

For all interface shapes, the simple shear field given by

u =
y

a
eiωtx̂ (6.1)

satisfies all governing equations except the slip condition (3.10b). For an arbitrary interface

shape, (6.1) does not satisfy that condition because the left hand side (l.h.s.) vanishes, but

the right hand side (r.h.s.) is non–zero in general. However, for a type S interface with

ϕ = ±45◦, the interface coincides with the principal axes of stress calculated from (6.1).

Consequently for that special case, the shear stress on the interface vanishes. Eq. (6.1) then

satisfies the b.v.p. of elastically–accommodated grain boundary sliding described below

(3.10) exactly. The two grains are thus effectively welded together and for all ω, G = 1 for

a type S interface with ϕ = 45◦. In particular, the mechanical loss vanishes identically for

this case.

6.1.2 Asymptotes for high frequency and for low frequency

Because mechanical energy is only dissipated by viscous shearing along the inter-

face SI, the dissipation rate is controlled by the shear stress σns. As a result, the dissipation

rate in (5.1c) becomes

Υ̇ =

∫

SI
σ2ns ds . (6.2)

We note that Υ̇ here is non–dimensionalized using the sliding timescale tη.
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High–frequency limit

In the limit as ω → ∞, (3.10b) requires [us] → 0. Together with the bound-

ary condition (3.10a), that limiting case is equivalent to the condition stated in §5.1.2.

Correspondingly, the mechanical loss at high frequencies varies inversely with frequency

according to (5.5). SettingM = 1 to rescale the frequency according to the sliding timescale

tη, Eq. (5.5) becomes

L ∼ 1

2aω
g(ϕ) . (6.3)

The geometric factor g(ϕ) in (6.3) is given for both type S and type TS interfaces in Eq. (5.6).

Low–frequency limit

In the limit as ω → 0, (3.10b) simplifies to σns = 0. Consequently, the sample

behaviour again becomes perfectly elastic. The energy balance (5.1a) then simplifies: the

l.h.s. balances the second term on the r.h.s.; power supplied at the sample boundary now

balances the rate of increase of stored strain energy. Integrating that simplified balance in

time, we find that at zero frequency, the rigidity and strain energy are related by

G0 =
1

2π
W0 a. (6.4)

Here, W0 is calculated from (5.1b) using the solution of the b.v.p stated below (3.10) for

ω = 0 and u = ±1 at y = ±a. We have used the relation τ ∼ G0U/awhere G0 = lim
ω→0

G(ω).

Next, using successive approximations, and assuming that the displacement vec-

tor varies sinusoidally in time so thatu(x, y, t) = û(x, y) sinωt, wefind that thefirst correction

to the shear stress at the interface is given by σns = ω[ûs] cosωt. Here [ûs] is calculated

from the solution of the b.v.p. posed immediately below (6.4). Using the expression given

in (6.2) for the dissipation rate Υ̇ , we find that Υ̇ = ω2 cos2ωt
∫
[ûs]

2 ds. Integrating that

relation over one period, we find that

Υ ∼ πωΦ0 ; (6.5a)

Φ0 =

∫

SI
[ûs]

2 ds (6.5b)

is the mean square slip at ω = 0. Similarly, the mean strain energy is given by W̄ = 1
2W0,

where W0 is obtained by using u to evaluate (5.1b). Using the interpretation of L given
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below (3.13), we obtain

L ∼ Φ0

2W0
ω. (6.6)

AlthoughΦ0 andW0 need to be computed numerically to obtain the low frequency asymp-

tote, this result, nevertheless, enables us to verify that our numerical solution is self-

consistent.

6.1.3 Master variables for the mechanical loss curve

Using the above asymptotes, we introduce master variables allowing numerical

results for different interface geometries to be represented on a single curve. According to

(6.3) and (6.6), in the extremes of high and of low frequency, the mechanical loss depends

on interface geometry solely through the parameters Φ0/W0 and g(ϕ)/a. Defining new

variables ω′, L′ by

ω′ =
ω

ωm
, L′ = LLm

, (6.7a,b)

then choosing the scales ωm and Lm so that the asymptotes (6.3) and (6.6) become respec-

tively L′ ∼ 1/ω′ and L′ ∼ ω′, we find that

ωm =

√
W0g(ϕ)

aΦ0
, (6.8a)

Lm =
1

2

√
Φ0g(ϕ)

aW0
. (6.8b)

Provided no additional processes enter at intermediate frequencies, values ofL computed

for different interface geometries should define a single curve when L/Lm is graphed

against ω/ωm. This prediction is tested in §6.2.

We may note that the master variables are particularly useful because as N is

increased above about 10, the interface length rapidly approaches that of the limiting

forms given in Eq. (3.15), so the geometric factor g(ϕ) can be calculated using the results

for a piecewise linear interface. By contrast, both W0 and Φ0 prove to converge slowly as

N is increased, making it useful to be able to present results for differing N in terms of a

single curve.
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6.1.4 Local solution of Picu & Gupta

For interfaces having sharp corners, the stress obtained by solving the b.v.p. of

elastically–accommodated grain boundary sliding proves to be singular at corners. The

asymptotic behaviour near the corner must be compatible with a local analysis given by

Picu & Gupta [33]. Specifically, because the displacements are finite, boundary condition

(3.10b) requires the shear stress on the interface to remain finite as the distance r from the

corner vanishes. Within the grains however, the stress becomes infinite as r→ 0. Compared

with that infinity, the interfacial stress appears to vanish, and so, the effective interfacial

boundary condition is σns = 0 on the interface near a corner. The local problem applying

near the corner is defined by the b.v.p. of elastically–accommodated grain boundary sliding

but with (3.10b) replaced by the simplified condition σns = 0. As described above (5.7),

that local problem admits a separable solution in which the stress σ ∝ r−λ, where r is

defined in Figure 5.1 and λ satisfying the constraints given below (5.7). The Picu-Gupta

solution shows that, owing to the condition of finite strain energy, the displacement must

be continuous at the corner, i.e. as the cornerO is approached along any path, the difference

|u − uO| → 0. In his numerical solution for a hexagonal array, Ghahremani [12] imposed,

without discussion, the equivalent condition of vanishing relative displacement of the

grains at corners. In §6.2, we demonstrate that our numerical solution of the b.v.p. for

elastically–accommodated grain boundary sliding is consistent with that local analysis.

6.1.5 Perturbation solution for small–slope interface

The numerical solution also has to satisfy the small–slope perturbation solution

fromMorris& Jackson [26]. Toobtain the small–slope solutionof elastically–accommodated

grain boundary sliding, we use Eqs. (14), (17), (31) and (32) from Morris & Jackson. We

replace ωM by ω and then setM = 0 in these equations. Letting

b1 =
1

2(1 − ν)

∞∑

n=1

n3 f 2n , (6.9a)

b2 =
7
2

∞∑

n=1

n2 f 2n , (6.9b)

we find that the boundary shear stress τ is then given by τ = τ(0) + ε2τ(2) +O(ε4);

τ(0) =
2iω

1 + 2iaω
U; (6.10a)
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τ(2) =
b1 + ib2ω

(1 + 2aiω)2
U. (6.10b)

Equation (6.10a) gives the boundary stress for the flat interface corresponding to ε = 0,

and (6.10b) gives the first correction caused by the interface topography that enters the

calculation for characteristic slope ε , 0.

For time–periodic forcing, the constitutive equation for a standard linear solid in

simple shear is

{1 + iωA}τ − {C + iωB}U = 0. (6.11)

In our case, the material constants A, B, C for the sample are functions of interface slope to

be determined.

To prove that the mechanical system shown in Figure 3.1 behaves as a standard

linear solid, at least to the order ε2 to which we have carried the perturbation analysis,

we substitute (6.10) into (6.11), then multiply by the denominator of (6.10b). The result is

a cubic polynomial in ω. Equating the coefficients of that polynomial to zero, we obtain

an over–determined system of 4 linear equations for 3 unknowns A, B and C. Noting that

those equations themselves involve an error of order ε4, we solve them correct to O(ε2),

and find that

A = 2a + ε2a(b2 − 2ab1) +O(ε4), (6.12a)

B = 2 + ε2(b2 − 2ab1) +O(ε4), (6.12b)

C = ε2b1 +O(ε4). (6.12c)

(To O(ε2), the b.v.p. of elastically–accommodated grain boundary sliding also satisfies the

extra equation making the system over–determined.) We conclude that the mechanical

system shown in Figure 3.1 behaves as a standard linear solid with an error O(ε4). The

zero–frequency (relaxed) rigidity G0, and the relaxation time tγ = A at constant strain are

given by

G0 = ε
2ab1, (6.13a)

tγ = 2a + ε2a(b2 − 2ab1) ; (6.13b)

W0/Φ0 =
1

4
ε2b1, (6.13c)
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because in the limit as ε → 0, [ûs] = 2 + O(ε2) by Morris & Jackson [26] in Eqs. (17b) and

(20a).

In the limit as ε → 0, the geometric factor g(ϕ) → 1, and the scales defined by

(6.8a) and (6.8b) become

ωm =
1

2
ε

√
b1
a
=

√
G0/tγ +O(ε3) (6.14a)

Lm =
1

ε
√
ab1
=

1√
G0

+O(ε3) (6.14b)

Forming the expression for L = tan argG from (6.11) and (6.12), rewriting in terms of the

master variables ω′,L′ defined by (6.7), then taking the limit as ε → 0 (fixed ω′), we find

that

L′ = ω′

1 + ω′2
. (6.15)

According to (6.15), in the limit as ε → 0, the maximum loss of 1
2
√
G0

occurs at angular

frequency ω =
√
G0/tγ. Because G0 ≪ 1, these results are consistent with usual theory for

the standard linear solid, in which the maximum loss is given by (1 − G0)/2
√
G0.

For comparison with the numerical solution, we use (6.14b) to derive an expres-

sion giving Lm as a function of the number N̄ of terms included in the Fourier series

representation of the interface given in Eq. (11) of Morris & Jackson [26]. We note that N̄ is

approximately equal to the ratio N of corner radius to wavelength as defined in (3.14). For

type S and type TS interfaces, b1 is given by the expression

(1 − ν)b1 =
32β

π4

N̄∑

n=1,3,5,...

n−1

=
16β

π4

{
ln(2N̄ + 2) + γE

}
+O(N̄−2). (6.16)

(A standard sumhas beenused.) TheEuler constantγE = 0.577 . . . , and thenumerical factor

β takes the value 1 or 2 according as the interface is type S or TS respectively. According

to (6.13a), (6.14b) and (6.16), the zero–frequency rigidity increases logarithmically with N̄

for small slopes. That result holds for large fixed N̄ in the limit as ε→ 0; and is consistent

with the local analysis of Picu & Gupta [33]. That analysis shows that in the limit as the

angle subtended by a corner approaches π, the stress in the elastic solution varies locally

as r−1, so that the strain energy diverges logarithmically.
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6.2 Discussion of numerical results

Figure 6.1a shows the computed values of L graphed using the master variables

defined by (6.7). Results are shown for slope angles including those appropriate for a

regular hexagonal array. The solid curve shows the prediction of the small slope analysis,

as given by (6.15). A similar master plot is also possible for |G|. Because Fig. 6 of

Ghahremani [12] shows that an array of regular hexagons behaves as a standard solid,

we assume and then verify that the same is true of the Raj–Ashby bicrystal system. For a

standard solid, however, (1 − |G|2)/(1 − G2
0
) depends only on ω

√
G0/ωm, where G0 is the

rigidity at zero frequency, and we have identified the time scale for the loss curve with

ω−1m . Substituting for G0 and ωm from (6.4) and (6.8) respectively, we find that if the sample

behaves as a standard solid, values of |G| computed for different N and ϕ will define a

curve when (1− |G|2)/(1−G2
0
) is graphed against ωa

√
Φ0/2πg(ϕ). Figure 6.1b confirms that

prediction. The bicrystal system therefore behaves as a standard solid. This result also

justifies our having used the physical interpretation of L given below (3.13) to define the

asymptotes given in §6.1.2.

We note that although Ghahremani [12] also concludes that elastically accomm-

modated grain boundary sliding can be fitted to the constitutive equation for a standard

solid, our procedure above differs from his. Whereas Ghahremani fitted numerical results

for a single geometry (hexagonal array) to the response curve for a standard solid, we

instead have used Figure 6.1 to show that the results for many different geometries (i.e.

values of ϕ and N) obey the same similarity principle as the standard solid. Moreover,

the response curves shown in Figure 6.1 are not fitted curves. As described in §6.1.5, they

are, in fact, calculated analytically as part of the small–slope analysis, and proved to be

identical with the corresponding response curves for a standard solid.

Owing to the self–similarity demonstrated in Figure 6.1, at arbitrary frequency,

the values of N and ϕ affect G purely through their influence on the elastic solution for

ω = 0. In particular, the mechanical loss L is controlled by the quantity W0/Φ0.

Figure 6.2 shows W0/Φ0 as a function of ϕ with N as a parameter. For the N–

values included there, the numerical solution approaches the perturbation solution when

ϕ < 10◦. In Figure 6.2a, the vertical line corresponds to the simple shear solution described

in in §6.1.1; for that solution Φ0 = 0, so that W0/Φ0 is infinite. The dotted curve shows
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Figure 6.1: (a) L′ as a function of ω′. (b) (1 − |G|2)/(1 − G2
0
) as a function of ωa

√
Φ0/2πg(ϕ)

. L′ and ω′ are defined in (6.7); g(ϕ) is defined in (5.6); W0, Φ0 and G0 are computed
numerically. Numerical solution of (N, ϕ, interface) are (10, 17.6◦, S) 2, (100, 51.8◦, S) ©,
(1000, 30◦, S) △, (10, 17.6◦, TS) ▽, (100, 32.4◦, TS) 3, (1000, 60◦, TS) D. Solid curves indicate
perturbation solution. Other parameters: a = 5, ν = 0.3.
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Figure 6.2: W0/Φ0 as a function of ϕ with N as a parameter. Curve labels give value of
N. Dotted line, pinned corners solution. Dashed line, perturbation solution (6.13c). For
values of a and ν, see caption in Figure 6.1.
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Interface ϕ N maxωL
S 30◦ 10 0.068

∞ 0.047
TS 60◦ ∞ 0.040

Table 6.1: Maximum mechanical loss L for Raj and Ashby’s two sliding modes

the solution obtained for a piecewise linear interface, but using the Ghahremani (pinned

corner) boundary condition, namely that [u] = 0 at a vertex. That solution, computed for a

large value of N, is independent of the parameter N itself. Apart from the curve for N = 1,

the behaviour is independent ofN for sufficiently large ϕ; and asN is increased (so that the

corners are made tighter), the dependence on N is confined to a range of ϕ of decreasing

size. We infer that in the limit as N → ∞ (fixed ϕ , 0), W0/Φ0 approaches the solution

obtained when the corners are pinned.

The existence of that limiting state strongly constrains the effect of rounding

corners on the loss and frequency scales defined by (6.8). For a type S sliding surface in a

regular hexagonal array, the slope angle ϕ = 30◦ and, according to Figure 6.2a, increasing

N from 1 to ∞ causes W0/Φ0 to vary about tenfold. The corresponding variation in the

frequency and loss scales is only about a factor of three. The effect is even weaker for

the TS surface. For it, ϕ = 60◦ and, according to Figure 6.2b, W0/Φ0 is then essentially

independent of N.

To emphasize this conclusion, in Table 6.1 we give a numerical example. Compar-

ing lines 1 and 2 in the table, we see that for the type S interface with ϕ = 30◦, increasing

N from 10 to∞ causes the maximum value of L to decrease by only about 30%; according

to Figure 6.2a, the limiting case shown in line 2 is attained for N ≥ 100. In line 3, we

show only the limiting case, as explained at the end of the previous paragraph. These

values are equal to the magnitude of the peaks found in Figure 5.3a and Figure 5.4a for

diffusionally–accommodated grain boundary sliding. We note that these values of max-

imum loss are roughly half the corresponding value reported by Ghahremani [12] for

elastically accommodated sliding in an array of regular hexagons. In that array, sliding

occurs simultaneously on 2 orthogonal surfaces, and a larger loss is to be expected.

The function W0/Φ0 is, in the limit as N → ∞, clearly discontinuous at ϕ = 0. In

that case, the interface is plane and the displacement imposed on the sample is completely
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accounted for at zero frequency by slip; consequentlyW0 = 0. By contrast, Figure 6.2 shows

that for pinned corners, W0/Φ0 , 0. Because the response is discontinuous in the limit,

W0/Φ0 always depends on N within a sufficiently small neighbourhood of the origin, as

demonstrated by (6.13c) and (6.16) of the perturbation analysis forϕ→ 0. The convergence

of the solution asN→∞ is thus non–uniform inϕ, i.e. the solution has an inner–and–outer

structure with respect to ϕ.

Figure 6.3 shows the zero frequency rigidity G0 = W0a/2π as a function of ϕ. We

note that G0 ≤ 1, in agreement with the physical constraint that the sample can not have a

rigidity exceeding that of the individual grains. Further, G0 is a non–monotonic function

of ϕ. For the type S interface, that non–monotonicity is a consequence of the simple shear

solution for ϕ = 45◦, as discussed in §6.1.1. Figure 6.3b shows that even for the type TS

interface, G0 has a maximum at around 50◦.

Figure 6.4 shows the distribution of slip [us] along the interface for the parameter

values given in the caption. The slip decreasesmonotonically asN increases and the corners

become sharper. That is consistent with the requirement that the total strain energy of the

sample is finite. That condition requires that the stress tensor varies with distance r from

a sharp corner in such a way that rσi j → 0 as r → 0, and the local solution of Picu &

Gupta [33] then requires the slip to vanish at the corner. This result is evident from the

figure. By increasingN, the slip distribution approaches the limiting case when the corners

are numerically pinned, as assumed by Ghahremani [12]. We also note that the weak

dependence of slip [us] on N is consistent with the result shown in Figure 6.2a: that the

ratio W0/Φ0 becomes almost independent of N when ϕ = 30◦.

Figure 6.5 shows, as a function of distance r from the origin shown in the inset,

the computed shear stress σrΘ on the interface at Θ = 0◦. The origin sets a corner length

scale at which the stresses are smoothed out. From the figure, we find that σrΘ scales with

r−0.95 when ε = 0.001. This result is close to the 1/r scaling predicted by the perturbation

solution in Morris & Jackson [26], and explains the logarithmic scaling for G0 found in that

solution. Consistent with the local solution by Picu & Gupta [33], our numerical solution

also predicts that the stress singularity weakens as ϕ increases. When ϕ = 32.5◦, our

eigenvalue λ = 0.53. That result is close to the solution given in Fig. 5 of Picu & Gupta [33]

where we estimate, using our slope angle definition, their eigenvalue λ = 0.55 at ϕ = 32.5◦.

The weakened singularity with λ < 1 thus ensures that the strain energyW remains finite.
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Figure 6.3: G0 as function of ϕwithN as a parameter. Curve labels give value ofN. Dotted
line, pinned corners solution. Dashed line, perturbation solution (6.13a). For values of a
and ν, see caption in Figure 6.1.
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Figure 6.4: Upper part, zero frequency slip [us] as a function of position with ϕ = 30◦.
Curve labels give value of N. Dotted line, pinned corners solution. Lower part, type S
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6.3 Effects of non-uniform grain size and viscosity

The idealization of a constant grain size d and a constant boundary viscosity η is

usually not found in real polycrystalline solids. Even in experiments on synthetic samples,

e.g. in Faul et al. [9], grain size can vary by about a factor of 4. The boundary viscosity ηmay

also vary by about an order of magnitude as described in Ashby [2]. This non-uniformity

of grain size and viscosity is often invoked to explain the broad absorption peak (instead

of a single Debye peak) commonly found in experiment, e.g in Schaller & Lakki [37]. We

test these suggestions using the bicrystal model.

Figure 6.6 shows the type S interfaces used to assess these effects. In the left

figure, there are two adjacent grains of equal size d with viscosities η1 and η2 along their

interface. The right figure shows 5 adjacent grains of two different sizes d1 and d2. In that

figure, the total area occupied by the “small” grains is equal to that of the “big” grain, and

the viscosities along their interface are η2 and η1, respectively. We note the total interfacial

length available for sliding is the same in both configurations. Four systems are considered
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(i.e ϕ = 32.5◦) of a type S interface. Dashed lines indicates fitted r−λ scaling. Coordinate
system is shown in the inset figure. For values of a and ν, see caption in Figure 6.1.

here:

1. configuration 1 with η1 = η2 = η (Uniform grain size and viscosity);

2. configuration 1 with η1 = η and η2 = 10η (Non-uniform viscosity);

3. configuration 2 with d1 = d, d2 = d1/4 and η1 = η2 = η (Non-uniform grain size);

4. configuration 2 with d1 = d, d2 = d1/4, η1 = 10η and η2 = η (Non-uniform viscosity

and grain size).

In Figure 6.7, wegraphed themechanical loss spectra obtained from these systems.

There are two main features in the figure. First, the loss peak weakens as well as broadens

when boundary viscosity η varies with position, i.e. in systems (ii) and (iv). Second,

comparing systems (i) to (iii) and (ii) to (iv), we find that, when grain size varies spatially,

the loss peak only weakens without any significant change to its shape.

The two effects (broadening and weakening) are caused by a difference in the

sliding frequency tη
−1 across adjacent interfaces. Because sliding frequency tη

−1 depends
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line.

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

10-3 10-2 10-1 100 101 102

L

ω

(i) Uniform grain size and viscosity

(iii) Non-uniform grain size

(ii) Non-uniform 
viscosity

(iv) Non-uniform viscosity
Non-uniform grain size

Figure 6.7: L as a function of ω for the four systems (i)–(iv). Slope angle ϕ = 30◦.

on grain size and the boundary viscosity as defined in (3.5a), sliding in systems (ii) – (iv)

occurs at two different timescales and the peak broadens as a result. In the figure, the

broadening effect caused by a spatial variation in boundary viscosity in system (ii) is more
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significant than that caused by non-uniform grain size in system (iii) because the difference

in timescale is larger in the former.

maxωL
ϕ (i) (ii) (iii) (iv)

5◦ 1.300 1.200 0.773 0.698
15◦ 0.288 0.242 0.148 0.123
30◦ 0.049 0.037 0.024 0.020
45◦ 0.000 0.000 0.000 0.000
60◦ 0.079 0.058 0.038 0.033

Table 6.2: Maximum mechanical loss L for systems (i) – (iv) with ϕ as a parameter. For
definition of systems (i) – (iv), see Figure 6.7.

Besides broadening the peak, the presence of multiple sliding frequencies within

a system also cause the peak to weaken because the amount of sliding along an interface

is constrained by the slip along the adjacent interface. Consequently, the response is

controlled by the interface having a smaller sliding frequency. This result is evident in

the figure where the peak is consistently located close to the smaller of the two sliding

frequencies in systems (ii) – (iv).

Here, we note that according to the definition of the mechanical loss given in

(3.13), the peak magnitude is invariant to both boundary viscosity and grain size if these

two quantities are constant in a sample. When these two quantities change entirely within

a system, the loss spectrum simply shifts along the frequency axis and remains self-similar

to a Debye peak. Thus, the weakening of the loss peak found here is caused purely by

a spatial variation in grain size and in boundary viscosity; and the amount of weakening

depends on the degree of variation, as well as the distribution of these two quantities

within a system.

In Table 6.2, we give, for different slope angles ϕ, the numerical values of the

maximum mechanical loss L in systems (i) – (iv). Except at ϕ = 45◦ when the systems are

under simple shear as discussed in §6.1.1, we find that, in system (iii), where grain size

is non-uniform, the loss peak decreases by about 50% when compared to system (i) with

uniform grain size and boundary viscosity. That decrease is insensitive to slope angle ϕ.

By contrast, the weakening effect caused by a non-uniform viscosity interface is stronger

when the slope angle ϕ is large. In system (ii) with slope angle ϕ = 60◦, the loss peak

decreases by about 25%when viscosity varies spatially by an order of magnitude; whereas
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at ϕ = 5◦, we find that the peak only decreases slightly by about 8%. Combining these two

effects in system (iv), the loss peak can decrease up to about 60%.

6.4 Summary

Wenowsummarize ourfindings on the sensitivity of themechanical loss spectrum

of elastically–accommodated grain boundary sliding to (i) variation in boundary viscosity,

(ii) rounding of corners and (iii) variation in grain size, all obtained using the bicrystal

model. The effects due to these factors are as follows:

(a) When boundary viscosity η varies by an order ofmagnitude across adjacent interface,

the loss peak becomes significantly broader and its magnitude is reduced. According

to Table 6.2, the loss peak decreases up to about 25% and the amount of reduction

depends on the interface slope angle ϕ.

(b) When corners are made sharper, the loss peak remains self-similar to a single Debye

peak and weakens. That effect becomes insensitive to the rounding of corners once

the corner radius is less than a tenth of the wavelength of the spatially periodic

interface (i.e. N > 10). For a type S interface with slope angle ϕ = 30◦, the loss peak

decreases by about 30% when an interface with corner radius about a tenth of the

wavelength is replaced with one that has infinitely sharp corners.

(c) When the grain size d is non–uniform, the loss peak weakens. A fourfold variation

in grain size roughly halves the peak height which remains nearly self–similar to a

single Debye peak.

Our results, thus suggests, that it is unlikely, that all three factors can produce a

reduction of the peakmagnitude (of several decades) that is require to completely eliminate

the peak when timescales are widely separated as shown in Figure 5.3a and Figure 5.4a.

Even when these factors are combined (see Table 6.2), the bicrystal model only predicts a

reduction less than a decade. We therefore conclude that unless other physical processes

enter into the system, the effect of elastically–accommodated grain boundary sliding should

be easily observed in the experiments if the timescales are widely separated i.e. tη ≪ tD

and the samples are oscillating near the effective sliding frequency t−1η .
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Chapter 7

Conclusion

We have made the numerical calculations for the bicrystal model of diffusionally

–accommodated grain boundary sliding and elastically–accommodated grain boundary

sliding using a finite slope interface, and our results are consistent with the analytical

constraints derived by us.

We show that the general structure of the mechanical loss spectrum predicted in

the small–slope analysis when timescales are widely separated i.e. M ≪ 1 is preserved

even at finite–slope. The key features found in the spectrum for a bicrystal having finite–

slope interface are as follows:

(a) a slowly–varying region in the mechanical loss spectrum that is an outcome of corner

stress concentration. The mechanical loss scaling in this region can be described by

L ∼ ωα, where the power–law exponent α is sensitive slope angle and is constrained

within −2/3 ≤ α < 0. For the two orthogonal sliding modes found in an array of

hexagonal grains, the mechanical loss L varies approximately as ω−0.3. When corner

angle varies along an interface, the slope in the mechanical loss spectrum decreases

with increasing frequency.

(b) a mechanical loss peak that stands out from the absorption (or high temperature)

background. The mechanical loss peak is self–similar to a Debye peak and can be

weakenmoderately by an increase in corner radius, a variation in boundary viscosity

η along the interface and a variation in grain size. The peak can also be broaden

significantly when η varies along the interface.



CHAPTER 7. CONCLUSION 87

Because triple junctions of the polycrystalline samples used in the experiments

are sharp i.e. N ≥ 200, our result suggests that the mild frequency dependence of the

mechanical loss L that is observed in the experiments on finely grained mantle mineral

is likely to be caused by corner stress concentration. Two of our results support that

argument. First, our predicted scaling in the slowly–varying region for the two orthogonal

modes found in an array of hexagonal grains is close to that observed experimentally [18],

[13], [40]. Second, our prediction that the slope in the mechanical loss spectrum decreases

gradually with frequency when corner angles vary along an interface is also consistent

with experiments.

Despite being able to predict the mechanical loss scaling seen in the experiments,

the bicrystal model is not sufficient to predict the magnitude of loss found in the experi-

ments. Comparisonwith experiment (see Figure 5.9 ) shows that the bicrystal model under

predicted by the mechanical loss for the two sliding modes found in an array of hexag-

onal grains mechanical loss; a result that is expected because the bicrystal model does

not account for the concurrent sliding along multiple planes. Model that accounts for the

concurrent sliding along multiple planes is therefore necessary to predict the magnitude

of the mechanical loss found in experiment.

7.1 Future extension of current work

We now describe briefly some of the directions one may undertake to extend the

current work.

(a) Models having a more realistic geometry to address the limitations of the bicrystal model.

As stated above, the model should be able to account for the concurrent sliding

along different interfacial geometries in polycrystal to predict the magnitude of the

mechanical loss L seen in experiments.

(b) Homogenization techniques to obtain an effective mechanical loss scaling for polycrystalline

solids. Because triple junction angles are not constant and vary randomly within a

sample, a homogenization model of diffusionally–accommodated grain boundary

sliding will be useful to determine the aggregate effect of the corner stress concen-

trations (which depend on corner angles) on the mechanical loss spectrum. Naively,

one can expand a model iteratively with some random grain boundaries geometry of
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constantmean grain size until the loss spectrum becomes insensitive to the expansion

to obtain the homogenized loss spectrum.

(c) Singular basis shape function in finite element method for fast computation. Due to corner

stress concentration, conventional finite element requires a very fine corner mesh to

capture that rapid behaviour of stress with distance. Consequently, accurate results

require large amount of memory and long computation time. By using singular basis

shape functions near corners, one can reduce the required corner mesh density and

speed up the computation.
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