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ABSTRACT
We construct Galilean invariant theories (with Schrodinger
equations) at infinite momentum that describe interacting relativistic
systems. Classes of both first and second-quantized theories are éref
sented. The formalism provides a general approach to the saturation of
current algebra: positivity of the mass-spectirum is guaranteed, and
as much inelastisity as necesnary may>be introduced. More generally,
however, such theories offer the hope of poterntigl-theoretic intuition
for relativistic physics
)
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- I. INTRODUCTION

- The infinite momestum limit first found use in ﬁhé'derivafiqn
of covsriant sum fules from current algebra.l 1It was stressed from
the beginning.thétﬂthe applicability of the limit‘was tantamount to N
there being no subtractions in the covariant dispersion relations of.tﬁé‘_
invariant amplitudesiinvolved. Although the covariant and infinite mo-
mentum approaches to sum rules are equivalent under this assumption,
the infinite momentum technique carried with it csftain notational
intrigues - the dependence of matrix elements on longitudinal momenfa
is washed out in the limit, leaving structures reminiscent of a two-
diménsional non-relativistic quantum mechanies (in the transverse variables).
Indeed, this intuition plajed a central role ln the original Dashen-Gell-
Mann scheme> for the saturation of current algebra.s‘

Somewhat later, Weinberg3 showed that the "old—fashioned"
perturbstion expansions of some simple field theories hsve an infin;te
momentum 1imit, the topological structure of whicﬁ is non~relativisti¢
(e.g., non-relativistic propagators, simplifisd vacuum structure etc;)' o
Susskindh pushed the analogy further, using the infinite momentum frame
to focus attention on the (two-dimensional) Galilesn subgroup of the
Poincaré group.

These suggestions led us to inquire just how far the non-
relativistic analogy can be pushed. In paiticular, can one write
Schrodinger (Galilean invariant) theories at infinite momentum that
completely describe interacting relativistic systems? Y.e advantages
of such theories would be numerous: (a) They would be free of sub-

tractions, thus perhaps softening the divergence problems of ordinary
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formulation, and, in particular, because of their Slﬁpllfled vacuum

e f B
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;¥ :

theories. (b)‘tif representatione of current algebra could be

'constructed the sum rules would automatlcally be satisfled This is

true only in 8 few ordinary theories (c) Because of their Schrodinger

structure, such theories could offer potential theoretic intuition

for relat3v1stic phy51cs

Before sketching our results, we should state what we mean by
& theory (at infinite momehtum): We" shall demand Poincaré 1nvar1ance,

unitarity and pos1t1v1ty of the mass spectrum, but we shall be more re-

‘laxed about locality (crossing symmetrm spin-statistics, etc.) We shall’_

feed in some.iocality through the requirement of local current algebra
and/or Lorentz invariant S-matrix, and in our second-quantized represen-

tations we will work with (Schrodinger) fields local in the transverse

plane. As a result, we shall find that anti-particles and/or spin-

_ statistics are not required, although they may be inciuded if desired.

It may be that the universe is no more local than this; but we have no |

real objection to the reader viewing any of these theories as approximate.

Indeed, perhaps our primary obJective in writing such theories is to lay
the foundations for some approximate (potential theoretic) models. -
The plan of the paper is as follows. In Section II, we review

the infinite momentum limit, and emphasize that it can always be

viewed either as an integration over the light cone, or a change of

variables to a set natural to the infinite momentum frame, or both. - 4
The (free particle) results of Susskind for the infinite momentum-

. : 7

limit of the Galilean subgroup of the Poincare group are teken, in this

. . Pd . N
sense, as a starting point. Then we complete the Poincare algebra in

terms of the Galilean variables for n free particles. . The Hamiltonia
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for such systems have the usual non~reletivistic;form. The details
of the change of variable (necessary to obtein these repfesentations
from the usual onee) are givenlin the Appendix.' Another way of stating
the results of Section II is that the Poincaié group can always be re-
presented in the space of solutions of a free (two-dimensional)
Schrodinger equation. |

In Section IIY, we give a construction for introducingﬂ
potentials into the Hamilﬁonian (interactione 5etweeﬁ the particies),' .
while keeping the non-reletiVistic analegy. Among other constraints, i
it turns out that the potentlal must be Galilean-invariant in just ‘the
usual way. In group-theoretlc terms, the constructlon finds large f
classes of interacting (two~-dimensional) Schrodinger equations whose -
solutions provide representation spaces for.the Poincare group. ,At.
the end of Section III, we discuss positivity,of the mass-spectrum.
The neceesary and sufficient condition for this ie that the Hamilfonian/>
be a positive self-adjoint operator, just the condition that the potential
theory itself be well-defined. |

éection IV is devoted to second-quantized representations. A |
free representatien in terms of Schrodinger second-quantized fields is
given, along with an action principle at. infinite momentum to determlne
the 1nteract10ns. From the action pr1n01ple,we recover the usual theories
(i.e. the modified Feynman graphs of Welnberg) plus some others. These
others are non-local in the usual sense, in that they need not have cross-
ing, antiparticles, or the correct connection.betweeﬁ spin and statisties,

In Section V, we consider the construction of.Currents and the

saturation of current algebra. By Neother's theorem, it turns out that

a form for the "good current" is always the probability density of the
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Schrodinger equation, while the (transverse) spatinl currents may
be itaken as the (trensverse) probahility flux, These currents
entomatically satisiy ourvent algehra, out they are not guaranteed

to transform like four-v ctars at inf ~n1te mpmenuum, i.e., to zatisfy

3} " 1o ‘\ . 3 "2 -

the "engular condition”. In tris approach, since the pass-spectrun mast
be positive and the currents do satisfy the al‘ebra then the angular

‘ ¥ P . &

condition is the erux of the prohiem. By solving the falilean pars

of the Paincar?d grmun explicitly, we give the angular condition as a

relatively simple operator condition. Free solutions and solutions

jo N

for the ordinary Tield theoriss sre given, bub no atiemp® is made in

this paper o see if the augular condition is satisfied lor the nore

<

inieremt&ng cazes. It may be ?hat the angular condition is not satisfied

Yy b

for any ef these (Hcether) currents, in which casze one might want
tegin thinking aboul non-logal cwrr rents: .Solve the angular condition and
take whatever (in general non—laoal) currents that result.

n Section VI we discuss our results and collect zome mis-

-

cellanecus commenits, particularly ebout the introducticon of fermionic

representations.

*
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IT. _INFINITE.MDMENTUM AND FREE PARTICLES -

We begin by stating our c¢onvention forvf,_he' Poincaré algebrs:

.[1_:“, pv]: o, [M“v, Pp] = 5.(gvp Pu -8 Pv) 4 (I:F.l)

= : + . .- -
[Mw, MpK.] i[gvp Mot B M -8, Mo "B Mvn]

where 8o = = 83 =1 (1 = 1,2,3), The rotations and boosts are

respectively eijk Jk S Mij’ Ki = MiO; thus
= - = o K = . A
(g, Jj] [Ki,,KJ] i € 4k Jys [Ji, LJ] i € 3k Ky (11.2)

For historical reasons, we introduce infinite momentum with -

currents. Let V“a(x) be & local spin-one current (u = 0,1,2,3), with

internal symmetry index «, Its commutation relations with the Poincare’_

group are
x [0 (01 (0
M v = «i(x 0 ~x3)V " +1 v -
[w, o (x)] ( 10, v “) o : (gvp " €07y )
(11.3)
ip,v% = 2a v©
p’ p B op

where we take x" = (t, 3). The objects of particular interest in
current algebra are the time components of the current Voa(x). To

obtain these components at infinite momentum, we construct

» iij o —iM{3 : : :
o ,' , pa(i{‘l) = lim e fdz v, (x, 0) e (11.4)

A~ @

where x;, 1s just the transverse part of .'35. Bardakci and Segr’é‘j
no

showed that the limit can be taken explicitly,6 yielding

A L R R )
—_—fdz at o(t - z) gvg‘(x) + vg‘(x)g (11.5)




These are the so-called “good currents" at infinite momentum, usually taken

to satisfy, a two-dimensional algebra of the form

[ogly)s mp()] = Lo o, (xp) 8@ ey - xp) (11.6)

A lesson to bear in mind is that the infinite mbmentum limit can be
. achieved simply by doing this integral over the light cone. As con-
structed, the good currents commute with the '"light-like" subgroup of

the Poincarg group
L - {53, gyt Ky K =y, B+ 93% | (11.7)

These are the generators that leave the direction -of the light-like vector
q* =>(l, 0, 0, 1) invariant, so they are in this sense singled out at
infinite momentum. Because the light-like group commﬁtesvwith the good
currents, the simplest representation of the current matrix elements
involves boosting the states with J +K,, K =J, and K3.5’ |
We shall have use for this kind of boost in Section III, and will return
to theée subject of currents in Section V. |

What about the infinite momentum limit of the generators of
the Poincaré group themselves? The limit is defined as in Eq. (II.k),
but this in general leads to infinities in the limit. Susskindh showed

for free particle representations, and in particular for the generators '

of the (two-dimensional) Galilean sub-group of the Poincaré group, namely

ng = {PO + P5, P - 93, Pi(izl,a), I+ Ky K- g, Jig (11.8)

that these infinities can be scaled and/or subtracted out consistently.’

For the case of one free particle of mass m, that is,
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_ . s w9 .2 2
Mﬁv = quv xvpu"[xu’ Pv] = -lg, .P = mszav, P ._‘m. (11.9)
Susskind's results are in the limit,
' 2 S
P P 2 ' ,
P +P_ = H=P -P_ === 0 = = 4= .10,
3= o "3 n T T T Yw (11.10)

-1 9, (i'='l,2), I vEy =%, K -Jd,=nx

[
]

J5 = 'i(xl 82 - X2 al)i K_j = 'é' [ﬂ;gﬁ']*-

where V- = 3.2 +23,°, P°=P%+P° andall coordinates- and derivatives

1 2’ 74 1 "2
refer to x. In Susskind's derivation, -q has a definite meaning .
(Being essentially Weinberg's 4d), but we shall take tﬁis represenfatioﬁ
as a starting p&iﬁt, considering it as an evidentAchange of variablesf
from the usual set to those which are natural in the infinite momentum n
frame. The details of the change of variable (to obtain this representa-
tion from the usual one) are given in the Appendix;7 The representationl'v

emphasizes the fact that (up to factors of two which can be fixed it

desired) P, + P, is (analogous to) the non-relativistic mass, H =

3
P - P3 is the Hamiltonian,8 P, = (Pl’ P2) are the (transverse)’
translation operators, Jl + K2 . and K1 -‘J2 are the non-relativiStic
(transverse) boosts, J5 generates rotations in the tfansverse plane,'
and K3 is the mass scaling éperator.

“ If we are to fully describe the scalar particle, we must
complete the representation of the Poincaré group in terms of tﬁese

~ non~-relativistic variables. This is accomplished by

3 1
L= Sy % vl Bl .
5 (11.21)
. : 1,
27 o % ER Bl



where P, (and P.) is already known from (II.10)

3
P. = -V2+m2) +$+~m
T3 1 |

Y(II.12).': v

[%
g
mlt—'

(ﬁ - (n

R

For the case of n free particles, we need only add the single S
particle representation n times. Of special interest in what follows
is the representation for two free particles, and, in particular, its

form in "center of mass" variables. We define these variables in

accord with our Schrodinger analogy

A =_,§(l) +£(2') , Z = ;—Z (n x(]f) N X

2ok 02 - np®) - g™ - 6P (1),
| . Ml 3 D

R A

where Z, P, x, ® are 2-dimensionalv(i = 1,2) #ectors with the.

propefties

(wi, nj) =18

(2, PJ) =l-1 8 42 81 L
| | : (I1.14)
(.\Z/ W) = (’g) ’(e') = (’Zv, L) = (,E; '&) =0 '
' The result. for the Poincar€ group is, after some algebra,
| -v,? v? 2
' POI'P3=M, H=PO-P3=T-T+~‘I— -
Jy + Ky, =MZy, K -J,=M2Z 1’ K [M,B—] + [u,g-l
J3 =2y Py = Zy Py +ay wtp =y Wy o (II 15)
. 1.1 . 1 1 |
Iy =5 [ﬁ, K3]+ Py +_—[Z2, P3]+ + §[N, ﬁ2]+

No=7 )
2.1 (:2 + )],

- £a>,-~n-P+ + m
L% “1"2

Mau
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1l 1 S i
J2 =3 [M’ K3]+ P, - §[Zl, P3]+ -5 [N, ﬂ1]+
2 12" , 2 2
+ h [“i’ TR A T g (= .+ m )J+

The next question is how to put an interaction into the
system. We set ourselves the task of doing this while keeping the
non-relatlvistic.analogy, namely Po + P3’ EL » Ji + KE’ Kl - J2,

J3, K3 should keep the above forms, while H, the Hamiltonian,
changes to

H= -3~ +5%= +7V (I1.16)
The problem then is to find the restrictions on V and the forms of
J-l" 2
to guess these things, we introduce in Section TII a fairly general
method of construction.that does everything automatically.

. 2 . .

Notice that we do not expllcltly include the term %f in

the potentlal, as we expect to find the mass spectrum directly by

diagonalizing the Hamiltonian. The four-momentum squared has the form

Q (2=t

BT = MG V) = MH | - (Irar).

80 the eigenvalues of M Hint glve the mass~spectrum and it need not

resemble the "bare' spectrum. We shall leave the discussion of p081t1vity

of the mass-spectrum (P° > 0) until the end of Section III.

J. such that we still have the Poincaré group. Instead of trying '




T, CONSTRUCTION OF INTERACTING SYSTEMS
By commuting H (4including V) with the generatoro of the
1'Gaiilean sub?group'(and demanding the Poincaré group), one learns
. immediately that’ I

[Jl + Ky V] = _[Kl = o v] = [PQ'+ Pj, vl = [JB, V] =vr0

..

[k, V] e | B -  (I11.1)

ihus the potential must be Galilean invariant (jost s in two-dimensional »
quantum.mechanics), and have scale~l with'respect to KB.. To get the o
:_restvof the conditiohs on';V, and the form Of, Jl andv J2, we introduoe
'ua.conStruction due to‘WignerlQ which reduces the problem to internal .
.voriables._ Although the construction works with states, it will’yieid
oporthr repfesentations in the end.
: Consider the states of the system at rost, 'say- |Q), where
P

1 19) =00 (1 =1,2,3) o (1II.2)

‘We can boost these states to states with flnlte P (i = J 2,3) in- the |

' following way,5

B)=0E) (9, B ) =F )

U(E) = exp {ial(xl - ;2) * iQ:Q(J‘l + Ke) ¥ cLa}KB; S (111.3) =
: P! _ P " (P + P
. 1 < . : 0 3

a, = 1 T Qa, = (i -Y) "G = e ey

1 P+ P_3 ? T2 Py o+ P5 773 (PE)?

'.where the primed quantities denote (C-number) eigenvalues, and
= (P ) - B} is the invarient four momentum squared. Now consider

the action of AI on the boosted state
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u(z) 319)

JIED = o
(I
A ’ .
J=0iE) guE) B

- A . ’ .
One can eagily calculate ng from the commutation relations of the Poin-

care group. For example

A 1 1 2 o 2 '
Jy _—,é_; Jy o+ Iz - Oy K3 + 55«3{(:3:2 -t JL)fs3 - l](Jl + K2) |
Pt’ + P? . .
B, = exp (@) = g2
5 5 (p7)2

o .
In Eq. (IIT.k), J operates directly on [Q), We denote the angular .

momentum operators as they operate on states at rest by J, i.e.

29 =319 (111.6)
’é is the "internal" angular momentum. Of course, we shall in general

take
Jg =@ 1y = wyw (I11.7)

while jl and 32 are as yet unknown.

Our task basically 1s now to guess forms Tor j and boost
appropriately. Wigner guaranteesll us that the following procedure
leads té a J which satisfies the Poincarg algebra: (1) Construct the
rest of ﬂé such that it is Galilean invariant and satisfies the

algebras of SU(2) on states at reste

(355 330 100 = % ey gy 3 IR (I11.8)
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(2) construct P° - MH out of the rotational,'s'calars of this

13

int

group
_. L3, ®7) IQ,} =0 S (111.9) ~

Physically, this requlres that & rotation does,ndt change the energy
. : A
of a state at rest. (3) Invert the above machinery - i.e., from J,

now as a function of ’J, calculate
J( v)4= u(pr) 3(3) ut(er) - . (111.10)
AR B VR~ & A~ ' N o

Put all the factors B‘ in this expression to;’the 'figﬁt, and replace'
them by operator ,\13 The resulting ,.3 wilj. satisfy the Poincaré
algebra. |

| E[hus'._our prbblem is mechanical. We need only construct varidué e
sets of A-j/’ a.pd run themachinery backward. Not sur'prising].y; ,Q,
may be constructed either a) out of T @ élone or b) out of
5 & Non, - My The first case realizes garden-variety two-
dimensional Schrodinger equations, while the second yields two-
dimensional Schrodinger equations with much more géneral "mass-depehdent" -

potentials. - We begin with case a).

Two-Dimensional Potentials

Construct a Galilean invariant 'g’ as

1 - 1o 1 : 41Y
4y = E[ml’ SR ]+ + 3, 1!2]+ T tE W - (rIr.) T
! 2_ 2. 1 1 3
Jp = - glap,m "=y U slw Ml Mo T

Ca
i}

3 = O Ty Ty
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Doing the inverse machinery, we find

| o SN |
L4 1 p7)2

Jy = Y {M, K5] P + = [Za’ P ]+»+ J5 T .+ jl_ﬁfﬁ;— (111.12)

J _...:.L.. L 1 P _;1.'.,[7 p]'.*_ ?.2..,. .(.13.2_)_%.

=3 lp &5 P 3l Byl Yyt Ty

The first three terms in each of these expressions are of course -

independent of our choice of Jl, 32.' What about P2 =M Hint

only invariant in this two-dimensional .representation of #L is .32

? The

itself. Thus P2 may be an arbitrary function of jg. The most

general internal Hamiltonian is then
HE 1 ‘ -
TV £(3° ) (I1I.13)

Note that the conditions (IIT.1) are‘automatica;iy satisfled. With |
this form for P2, ihe reader is invited to check the Poincar® aigebra.-
The restricted form of the Hamiltonian in this representa£ion'means
that the spectrum is always discrete.(although arbitrary). It ié
not likelylu that such representations will be'of help in the -
saturation of current algebra.

Unitary équivalents of the representaticn (III.11) may

easily be constructed, but there is at least one inequivalent repre-

sentation using only I and & We take

el 212w g?)
dp =L b T e TG

o (TII.1h)

o

Jp =75 () mp + @ )

|
o=

(@) g = 0 mp)
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This is the SU(2) part.of the representation of the Torentz group

| genertaed by the two-dimen51ona1 harmonlc 0801llator.: That it is
s
jBf R

.'This angular momentum has half-integral eigenvalues - thus being an \

not equivalent to (III.ll)‘is_evident in the factor %- in

illustration of our contention in Sections  II-%7 that the bos onic ﬁ
substratumof .the representation need not be observable. The only 1n-

variant of this representation is the famiiiar form

e+ af = 23 +1 | (II1.15)

2

so P° = M(E~ + V) must be some function of this - again an

arbitrary discrete spectrum. The special case that looks most like

a two-dimensional harmonic oscillator

2 .
2 >
P° - LN'[ (" + o°) —> V = © (111.16)

illustrates a general property of all these two-dimensional representa- -
tions. The potential cannot be turned off (because n2 alone is not
a rotational scalar). In the more general three dimensional representaQ'

tions, we shall have a choice in this matter.

Three-dimensional Potentials

First consider the Galilean invariant structures

1 - 1 M0 L3
W=2(w)2e, — l 2, N+ 'J-P -\ rew .
1
bid 2
4 =§(—-)-% , (—) (111.17) «
" .

where C 1is an arbitrary constant. These have the properties

(i, J range from 1 to 3)
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: [Wi, ﬁj]'= 184, [Wi, Wj] = [?i, Lﬁj] =0 -(III.18)‘
We have written E, g‘ as three-dimensional vectors, and indeed they

will be if we construct

3= Eiqe Wy Iy

After a little algebra, we can write ‘g’ e@licitly as

1 7 1M P. ' . . '
2 2 A 1l .
2 1 jTN 2R + =yl “2]

3, = (C) - S - s X ]
1 %27 eF | ey +  2(cF 4
1 T Pw
o = ~(CPaw + —-1-_12_ Ul 4N - _— - Loewy w1,
(CF {ay=ny | + o2(e)p T

d5 =@ mp =ty 1y | o o (rIrag)y-

The inverse machinery16 yields exactly the form Eq. (III.12). P =M H.int‘
. 2 :

must be constructed out of the invariants Wz, I-W and QE- = -’-EL— + -g- ,

or, more precisely, to get the scale right, out of M 102, WE/M, and U°'W.
Fad

A
Thus the most general Hamiltonian is (V = I%/I V)

2
P 2 > W2
M

_3 L, 10 a
H = +“+“+MV(M§I(, ,1;@ (111.20)

We learn that C 1is the analogue of m2 in the free particle representsa-
tions, although, even in the limit '\} = 0, ;J; does not go over into
the free two-particle A‘,I of Bq. (II.14). Notice finally that this
representation is not restricted to discrete spectra; indeed the class
of potentials is strikingly large.

It would be nice to have a representation which reduces to the
two-free particle case when the potential is turned off. Such can be -

| constructed in the following way. We take the Galilean invariant Je{ as
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]

o,
Moy o L) -
3 {iN' o [, w1 ( o
1 To By 2 +j N3

¥ : S 1
: LB 2 % C’f‘z 3
: Ja {—lN l , .rng_q [OJ.L, T 1_*_ “;'é'j

J3=U.\ln24w2nl

where N' =N + T P- m, as introduced above. These"j‘s afe Hermitéaﬁf 7

’ (III..Q.l.)-" |

[y

2 y -
because - .commutes with the (curly) bracketed structures in 31'
~ and 32' The inverse machxnery yields
' P
1.1 i
Jy=-3 [M, K5]+ Py + [Ze’ 93]+ + 35 N

(T1r.22) .-

o

L .
g. ngnl . WQ) : H‘_.,é— 1[2
+ th'ﬁe - We (,l)2, "ll-'- - (ﬁe) _ (TI + V)

ete.  We need the invariants of J to construct the Hamiltonian. These;'-v"Af»"

‘we find again by exhibiting 3-véctors under J:

1
| Mo A2 é}
gﬂ ‘g;&’ 2 \ﬂln2.>

b 14 ' '
. 1
W= g“’l Y= [lng = np) myngs M, 5
7 . _ R

| ' (II1.23)
- i .

1 ' '
2 | ,
Wy TM'E:" g = my) mgngs W,

(ﬂlTIQ)Z ﬂlﬂg 1N : g
+

The invariants W2, I-H‘ and i“ = %r= % are Galilean invariant, now

- with zero scale, so we can use them directly to form _Pe. The most

general Hamiltonian is then

2

P R ‘ "
14 2

H,___.;_—{_ +%_ +M‘V(W2»§‘,'}i’,’§)' | (III.24)
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Notice thet with ? = Q,. all the square roots cancel'and the-representa- g

tion reduces to the free two-particle representation (II.14). To see

this explicitly, one needs to use the identity

Eg

, P .
L | L | | |
Flep aBlsdw cF B ml. (111.25)

in J, ete. OFf course we attain the m- = 0 (FPree) case, but, if

desired, this can_be trivally fixed‘by writing -ﬁ2~w> n2'+ m? An.

(I1I1.21), As a final comment on thils representation, we note that it ié

unitarily equivalent to (ITI.19), being an evident change of variable.
There is another unitarily eguivalent representation of interest

because it is simpler than the previous two. We take

Tll - ﬁg

W = (@ -imv), gé(j‘;, s ) ' .V (111.26)-

I = €ige Wy Iy

The inverse machinery ylelds (IIT.12) again, and the most general

Hamiltonian is

2
P 2 .
1~ 2
H.—_—iﬁ'ﬁ- +-1%—— g Vv (w2, irgg, g,ﬁ‘f) | (IILQ?I)

Before passing on to a discussion of positivity of the mass~spectrum,

it is helpful to relate these representations to the literature. These
representations appear to accomplish for the infinite momentum frame

what Foldy17 accomplished for the center of mass frame. Among the
differences between our representations and foldy?s, cne is particularly
notable. While Foldy was not actually able to find representations

which reduced (for zerco potentiai and arbitrary frame) to the representa-

tion of two free particles (separable repreéentations), we have had no
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- particular difficulty with this. - Thus . the infinite momentum frame {

e carries with it a rather more thorough going non-relativistic analogy.

Positivitj o£~the Méss-spectrum

For the case of one free particle of mass m, we have:

“”.P?_; m > 0. For two free particlegrof mass m, where
5 2 2N - L PR
=M(-—- +--) , - ITI.28) -

2

L one cen easily show by the usugl argument. that P~ > hn®,” What‘about;ﬁ' 

- S 2 .
. our interacting representations, where %%——~> v?.

"In the first plaée, positivity of the maés—spectrum is aiways.q ;; 
-"'triVial if one is asking only for a representation of the Poincaré

_group itself. These operators do not connect different values of PQ;;1f”

8o it is easy to stay in the space _P2 > 0. This is of course not the;fyiépl“f

‘ whole story. . In general, one woﬁld like the individual operators in o

the representation, say x( ), Bﬁ“’ ete., to be observables, and hence PR

’

net to link time-like and space-~like states. ' There are two reasons why  Lff,¢

,éne might like the 1ﬁdividual operators to have this property: (1)

If the potential fell off rapidly for large distances, one would iike

: the individual particles, suffic1ently separated, to be separately

| opservable. Of course, this daes not apply to any of the harmonlc-

. oscillator-like potentials for which there is no hope of observing the :}
; input particles. (2) One has in mind constructing (observable) curreﬁts
- out of (all) the operators in the representation. Thus we mﬁst in geﬁ;v
érél have P2 > 0 as an operator cbndition.

| Of course it is easy to quarantee P2 > 0 formally simply by

constructing it as a positive definite function of the invariants of j
, / : ~
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LY

. (as does Foldy), but then.the breakup Hipp = M -’-:1— o ,V) is somewhat -
" LB R ‘ ' o L v
formal (i.e., 's%%— - £, end ve would have trouble with

separability. Since we have a representation which goés to two fiée. .
particles whet_l~ V =0, it is instructive to‘discuss the.cbnditions B
directly on V itself.

Wbrking in the space discussed in the Appendix, wifh .nl5 My
and hencel M positive, we see from (11.16) that P2 $ 0 is guarantééd, : 

2 .

if H, |, = %T + V' 1is a positive (essentially) self-adjoint operator.

int
Strikingly, this 1s Just the copndition that the pptenﬁial‘theory
itself be well-defined. The problem is then essentidlly the sameiasfj ;1 ) L
in non-relativistic quantum mechanics: .tq find those potentialé ’  -
which, if they.analytiéaily dominate f;e.; then they do so in a.posiﬁiﬁé'»:’ )
manner - i.e.; Singular;ties of the potenﬁiai need be in general pbéitivé.'1 
In the general case, our potentials are more complicated than those_of‘-‘
two-dimensional quantum mechanics, in that - they involve the "masses"

eand their derivatives, but thié does not appear to hinder one's ability ' ¥
to tell.acceptable potentials on inspection. -(One need remember that i
2 )2

operators like w = M?(N' etc. are formally positive).  Such points

however can be subtle, and a rigorous description of the allowed potentials

(with attention to overlap of the domainsl8 of %? and V ete.), al-
though beyond the goals of this paper, is worth invgstigating |

A comment about cﬁrrents is in order here.. If the mass-spectrum
'1s constructed pésitive definite, then the currents, constructed out of
the operators in the representation cannot connect space-like with time-

like states. That is, elther we can find currents in our scheme or not,

but if we can, they will not be diseased. Put another way, one can



show (Section V) that M commites with the currents at infinite.
momentum, so if the currents required space-~like states, then, again from

"(II.16),’ would not be positive self-adjoint, and hence the

Hint
potential theory would not have been well-defined in the first place.
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IV. SECOND QUANTIZED REPRESENTATIONS
To allow eventually for creation and annihilation; we will need
second~gquantized representations. To construct these we introduee the

second-quantized (Schrodinger) fields
o .
¥ 0,370g, 1)1 = 8™ - 1) s(n - 0") (1v.1)

where, as usual, X and 3&' are the (transverse) two-dimensional posi-
tion vectors. Later we will append isospin indices ete. to these fields.,
The fields have the usual non-relativistic expansion in terms of creation

~and annihilation operators

o . |
¥(x, n) = f%—ﬂg" g AR a(g, ) (1v.2a)
%f(ﬁ, n) = f | Naf(g ) | . (1Iv.2b)
la(g,n), an%': n')] = 8(2) (g,~ q') 8 (n - q') (Iv.2¢)

vhere 9, :a' are two-dimensional momentum vectors. In terms of these
fields, it is easy to construct a second quantized representation for
free particles. Simply séndwich cur first-quantized representation
(I1.10,11) for one free particle between QT and ¥, and integrate

over x and o us
Y n Th

av)

+

Y
i

5 = fde an ¥z, n) n Iz, n)
Po—f3=u=fa2xaw’f<;,g,n ){ -E]'fqi 1‘;;—-% Tz n)
P, =fd2x an ¥¥(x, 1) g-i 6_}5;_; T(x,m)

1

I+ K, =fd2x dn ﬁf(gg, n)én XQ; T(x, n)



00

¥

Kj: J'vdexl d"f] @t(}g, 1) % %‘[ﬂ: g}'{]+§ W(I}f” )
2 :

J
and so on.

Schrodinger and Heisenberg Pictures

The reader is aware that both in our first and second quantized
representations,vwe have been working in & "Schrodinger" picture - in
' 7that the variable conjugate to the Hamiltonian has not appeared;..In

 fact, the introduction of a "time" variable ¢ cénjugate to H vallows'.

‘l=fd2x dﬂi’f(}& ﬂ)%‘%ﬁ{aa-i-%:[xg,n-;. T']m ]‘3&(}5” 1) (IV:B)_ ,'.‘

£

 some geometric'intuitian about the Lorentz transformations and will hel@g “¢F

19

- us introduce potentials.

We introduce & in the "Schrodinger" picture via an equation ;;ffﬂ;

for the state‘vector :

HO[LE)) =1 § [BGE)) @

. ~ vhere H 1s given in "(IV.3). In the 'Heisenberg" picture

1 n 8) = Mgy ) <I"5) |

i 2
..~‘?2;m ¥(gon,t) = 1 3 §Gn.e)

In terms of creation and annihilation operators, the free time dependence .

is
- o) . o3 q +m )g
¥(x, n, &) = %f' &Y a(g, 1) e 5 (1v.6)

- end similarly for 3T,

Of course ¢ is not the "real® time because H is not P;.

v
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Writing

1 ' 1 ' B
P, X, = P3 % = 5By + Bg) (x, = x)+ 5(F ) - By) (x) * %5) (Iv-_7)

with all indices covariant; we learn that ¢ = %(t»z). Later we shall

have some use for the variable ¢ = g(t+z) conjugate to P + P

3¢

Actilon Principle

Toward finding interacting representations, it will be helpful
to introduce an action principle. Among other things, this will allow
us to give a more familiar geometric interpretation for our genefators
of the Poincaré group.

We begin with the actlion for a free system:

a i 2 + P2~m2
r- [ a [ e [oB v 0 (TG, 0) (1v.8)
oco !
where Pg = (PO - P5)(P0 + P5) - g? =1 7 %E + VE_ is the invariant

fouf-momentum squared of the first quantized representation. At first,
we consider the system as & classical field theory and derive the Poincaré
trancformations in the usual way via Ce-number invarianées of the action.

I is invariant under any of the transformations.

1ad §, H—sitiiad, gr’fg (p,)

e
=3
e

=
'

ian?, if1'-’>i£T+i,aqﬂﬂ} (P0+P3)4

a(’dB;mQ)I , ¥yt 4a (—"‘-‘f—%‘ﬁ) gﬂ'; (e, - P, = Hi , |

’Z
L=
]

an X, v, ﬁf—ww> QT + Oy X, QT} (Jl + K2)4

SN Fiane i gty Eanomn™ I~
' v
W
L3
¢

>t -anxg ¥, M—ilvanx it (k-3



’2,"‘“ .

fi e, k2 it atd, s 0y
>y -t & - B8 sttt datn BB ofey

B BEUE R VRS P 28 LS RELENE: o
‘ | o (3

\ o o - - , ‘

R SR AR Y
s gt 'oe-[a L)ool -1, ~"Ea]‘f

\i’v P+l (&{ Qn) LtERE TR ! ¥ o
o . : (1v.9)

‘vﬁhere‘ a‘ is sdme constant, different in geher&l,ofAcourse for egch -
transfbrmétion. "In this way, one identifies the‘Pdincaré,group. In
,addition to the introduction of E dependence, there are two simplé
" differences between this representation and our previous (IV.3). In
the first place, wherever H appeared, it has néw been replaced by -  :”¥7:i"
1 gg . This is closer to thg usual field theoretic way of approgchiné
the Poincaré group, and, not suprisingly;alloﬁs geomeﬁ?ic interpretatiqn:' -v
(which is particularly needed for our Jl,2)° Fof example in thevcagéV£ l
of J., going over to Laplace transform space ( i(gﬁ - %ﬁ)w¥> )

1

- -i %E)’ the rotation due to J, - takes a more familiar form,eo .

1 ,
namely i(x Bt - t62) where t = %(E + 4). The second difference
] 2 k

1 e

3 ' . /0
is that, wherever 1 SH appeared before, we now have 1(§H - 55 . This
is the natural (hermitean) derivative in a space where the 1n metric
is %? - as is dictated by the action. In the corresponding hermitean

second-quantized representation, say for J,
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o [ . oy N
'Jlmfdx_f dn %T(x» ns &) %""5'{1‘02 '45_.}{28—5—_*'"2-){2.“1'1& 82%
X ¥(x, n50) | - | (1v.10) -

the extraiterms in %H 62, being antihermifean, cancel out. “For convenim .-
ence we will continue our discussion . in this Section via the C-number
transformations.

Now we want to add an interaétionitérm to the action. In - -
general such a term must be Poincaré invariant, but we would like also t§J v
preéér*e the Schrodinger analogy. To keep gt coﬁjugate to ¥, we
mist Qemand that the ihteraction is local in €.  Thus, before imposingv,

. L . . .
Poincare invariance, the most general number-conserving intersction is

of the form
+o o L . ' v
1 2 1.2 . %
f dg f dnl-“fdmﬁ x]_‘“jd- x) *I'(j:}ml,i) W(f?,flz;s)
- O, D) . . ’
XU (x oy e eom (R, 8T((rymy 08) o (1v.ii)
R S W= s s I

wherePis the "poﬁential". Because the interaction is iccallin 5;‘
it is simple to show from Poincarf invariance that it must alsé'be-.
local in x and ¢ (the Laeplace-transform-conjugate of 1n); in fact,
we are‘allowed.only one number-conserving interaction

+ o . ] 8( . ) :
5 . N3 =Nz
I=1I,.,.. * >f dgjddx qulu-f dn, L2 38 (a2
! 2
e 0 0 (T\‘l ) T\3 Tlu) '

%yt ,6) Txn,,6) V(xomss8) T(xompt) '

where ) 1s a coupling constant.
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{

It is instructive to reduce this.to a Sghrodinger equatibn in the two
particle subspace. In our fifst-qﬁantizedinotation, one obtains in the .
usual way

ang dny d(my+ny-ni-ns) -

W' Ve (2)
= “1 - T]Q 4 (f}si?ﬂll,ﬂg,ﬁ) + A0 (:}";ig)

T
(ny 1M1 15) 2

“Q(ﬁ’fﬁg’"i{"é’g) =1 %g ﬁ(’ﬁ,fgml,ﬁg,é) (IV.,l‘B)»'

Potentiais non-local in % were not explicitly'discussed in Section IIIX
but the reader will verify that this pbtential meets all the requirements
set forth there. This Schrodinger equation is algebraic in the position
yarables and is almost trivial, corresponding; as we shall note beiow, to
an S-wave 'chain graph" appfoximation in the_?\dl+ theory.

" More compliéated potentials can be constructed if creatibﬁ and
annihilation is aliowed. The general ﬁrescfiﬁtion for-constructing'é"
scalar interaction is simply to take any local product of ¥'s and =

. .

' -1 : o
¥ 's with a factor 1 2 for each, and the mn-conserving ©&-function.

Of particular interest is the interaction
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f ag j ‘:f jf dﬁ'l__ jwdnfv \
| TTwEF ) ardan?

%20 8) U ', ©) ¥ 0% 8) 6y + ntoe )

* ¥(g, R AC I (A R ")
+‘ V(;g,, 1, &) ¥(x, n, e) ¥(x, 1", &) §(11 - - n'.‘)
+ (% s 8) ﬁf{§,1r;§) 1, ne) B(nlm‘ﬁ' = ")

| + @TQ5, ﬁ, ) T(x, n‘» £) ?*(x n", £) B(n -+ u")

G, n, 8) TG e, 8) :‘E(N, E) (n + o - n")} - ; o (Iv.1h)
Consisting of every combination of three fields, but omitting terms
which are purely creation or purely annihilatibn. As we shall note
below, this turns oﬁt to be exaétly the h¢3. theory. The analogous ‘
quartic interactipn (14 terms, being all possible quartics, omitting
purely creation or annihilation terms) similarly turns out to be the

x¢4 theory.

S-matrix
Just as for ordinary theories, each picture has its character-
istic form.for the S-matrix. Suppose we wanted to cal ~ulate in the |
Schrodinger picture. The potential V (H = H + V) can be read off

from the action

oo (1v.15) |



Thus, for exampleqfinitheZCgse of,thgAnumber¥qonsérvithinteractiOn ﬁﬂf’”‘

(Vv .12)

T A A YO T A S
v =">\.fd2x f dﬂl“;{- ,dnh. 1 .= 3 - (_IV~16) R
a 0 o Co e

(T]l 'ng n3 Tlh)?

N

x ¥ 1) ¥y 1) 15 ny) Ty )

,

" and.so oni From V; the T-matrix may be constructed in?the>usuél wéy;f_;“7~f"

via the Lippmann-Schwinger equation =

Tg =V VG Ty G= FRwe o . ,4(;\{*1_.»7)»

Tl -

taken between states constrﬁcted by'creation.operators.on‘thelvaéﬁum;' E_;;f;fjf”

'Visiof course the eiggnvalue of the Hamiltonian{ 'In>aﬂ infinité,momentum ¥¥§f&fr~~~

"interaction picture, constructed in the usual way, the S-matrix is given < )

by -

o0
‘where E‘vdenoteé time.or&ering ﬁith»fespectltév;g; and fhe fields'iﬁv;‘
\4 'ére free fields. .
o Thgée structuréstwilllin general guara;ﬂée'unitafiﬁy,'but.Loreh££* :i
invariance is more difficult.l Evidently, ufim V(t) d¢ must be a four-
séélé;;¥%ut this ié.probably”ﬂ;;fé;fficiéﬁtjm’In thehhiégé;"ﬁrder férms‘u
of tIV.18), locality may pl#y'a role in making the £-ordering covariant.
It is an interesting problem to find the necessary gnd sufficient conditions

on V such that S and T are scalars, but, except for the following

paragraph, this is beyond the scope of the present paper.

8 = EexPEi fvd&’ v(g)} | (‘:»:Vv.lgl);f.
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Using the Tematrix formulatlon in the Schrodinger picture,
we have examined the perturbétion expansioﬁ for the potentials given
abave, with these results: The potential (ITT.14) yields exactly the
grephs founi by Weihbérg3 for the infinite momeni-am limit of the x¢5
theory. To make direct contact with Weinberg, one calculates T between '
states with.'PO + P5 = l.‘ There is no loss of generality hefe-because |
the S-matrix explicitly‘commutes with this ganeratorh. Similarly, the
1lh-term quartic potential mentioned above gives WEinBefg's x@h graphs;
.The interaction (IV.12) xields & set of chain graphs in Weinberg's notation,
. that is, the Z-wave, numbervconserving part of the x¢u theory. This

. . 21 P
is then a Zachariason model 8t infinite momentunm.

Infinite Momentum Limit of K¢§ “and x¢h Theories

In this seétiom we want to show directly by boosting that the
thecries exhibited aﬁove corresﬁond to the K@B and x¢h theories. We
shall content ourselves with boosting the potentials themselves, leaving the
rest as an exercise similar to that of the Arpendix. We begin with the
interaction Hamiltonian for the x¢3 theory at zero time: x‘[ABx ¢3(£> 0).

Boosting this as in Section II, and doing an obvious rescaling, we reach

A jdgx dz at s(t - ) $7(x) - (1v.19)

We will evaluate this integral with ¢ & free field, namely

. Qgﬁ)f’mk) - ‘ &

[b(}g)) bT(}g) = 5(5)(}\3 ~ k! )! (Iv.20)

where k-.x 1is the invarilant four-product; that is, one imagines working
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either in the (ordinary) interaction.picture, or to lowest order in
perturbation theory. There are eight different terms (with different - - .

cubies in b, bf) over which to integrate. Consider one of them, say the term

in bobl, Using &(t - z), one can do the dz dt integrations, obtaining -

another &-function 8[(ko+k3) - (k'+ké) - (k;+k;)] (all indices covariant,

as above) which one rewrites as-
00 - « ‘ , ) . .
' » - - ' [ I [ 19t
f dn fdn' 5(n (ko+k3)] 8[n" - (ké+1<:3] 6_[71 + ' - (1:o+1:3)]
0 0 : E : -

These - functions can be used to do the dk .integrations.‘ Then .make

3

the identification,

- 1&2 e - ng)(l>% 1:‘12 e + 'q2> 2
ally , n) = b(k,zf ~ 2q “/\q ( 2n |

nJ

1

kof‘%)z b (k) o | | _V(I'v.aa) S

- and simllarly for . bT These neW'quantltles satlsfy the commutation
relations (Iv.2¢), and are in fact the crestion and annihilation opera~' ﬁfj
tors at infinite momentum.22 With this identification, and the relatlon'.-‘ixl
between a, al and Q, ﬁf we find finally for this term DR
©0 (<] ' o - - - -
2 ' " EM—IL—;. , _‘_ " " R
Ajdx | dn| dn! dn (g n) ¥y n') ¥z, ) (Tv.23)” -

(na' a")?

-

The other terms may be tredted similarly. Terms which are purely cre&tioh j"
- " operators or purely amnihilation operators (pair-production terms) integrate N

to zero. They involve 5[(ko+k3) + (ké+ké) + (kg+kg)] whose argument

is always positive. Thus out of the eight terms, six survive and these

are exactly (the Schrodinger picture form of) Eq. (IV.14). An entirely

e
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similar calculatlon can. be done for the x¢u theory, leading to.ﬁhe
lh»tefm quartic potential describe@ above. B |

The hﬁmber conserving potential'(IV.l2) is just the boosted
form of the term in bfbibd of the A¢h inﬁeraction,.that is, in terms
of the positive_and negative frequency components of..@, it is .
xd{ABX $"$"97¢". At finite momentum we do ﬁot'reallj know how to formulate

a theory with such a non-local interaction. At infinite msmeﬁtum, on. the

- other hand, such an interaction generates, quite straight forwardly, a

covariant unitary (not crbssing symmetric) S-matrix. It will be'interésting‘
to study this case more fully, especially with reference to the g-ordering.
(Eq(IV.18)) and locality. | |

To re-emphasize that our hoosting is essentially a change of
variable, we note finally'that the (free)‘field '¢ can be written

directly in terms of § and ¥T. From Eqs. (IV.20) and (Iv.22),

f -in(52 m(zy
4)(}5) = ‘”(‘?ﬂ)-é-f Ef‘;'% gi’(ffj 1, £) e e + ﬁt(}&’ 1, &) e n_ 2? :
0 (Tv.2k)

A formal comment is in order here. We have noticed that our
1limit procedure yields the infinite momentum results in the "Schrodinger"
picture. This happensAof course because of the factor &5(t - z) = % 8(&)
that appears in the limit. We can get.some feeling for the different
pictures via the following argument. We have shown that if S(x) is the

scalar interaction of an ordinary field theory, then

v =jd2x dz dt 8(t - z) S(x) . (Iv.25)

is the potential in the Schrodinger plcture at infinite momentum. There is




»

-

o

. a simple relation between f fihxls(x.) and the interaction in the

+o0

"interaction" picture f v(e) dE. 1In fact, they are equal: Changing

-0

variables, using anslational invé,riance, and ignoring factors of two,

il

.fdhx s(x)

This is then a,nother

scalar.

fdex ag de s(xJ , By 1) o (1IV.26)
. %y | e

f HHE %fdzx de S(x_ , 0, 2,} ¢ "iHE

f qe S 8;2:: dz at B(t - z) S(x)} e IHE

-00
oo

f & v(e)

~Q00

way of seeing that this structure mist be a four-
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V. CURRENTS
One of the main motivations for introducing dynamics at
infinite momentum ig the problem of'finding relativistic currents that

satisfy current algebra

[pa(.f}),. pﬁ(ﬁ)] =1 OB p"(xdv) 5(2)(33 - x}) (v.1)

Our formalism provides a fairly general approach to the problem: (a)
Because we have Schrodinger equations, simple currents that satisfy (V.1)
are always provided. 1In general, e.g., the "good" current is the probability
denisty ¥T7. (v) 4s discuséed in Section III, any reasonable Hamiltonian
will guarsntee 8 positive mass-spectrum. (¢) We can allow as much inelas-
ticity as necessary in the saturation. That éolutions to the scheme exist,
given enough inelasticity, is obvious: The ¢3 and ¢h theories (with
. isospin, rewritten ﬁt infinite momentum) solve the pfoblem mathematically.,
The task is to find more interesting solutions, preferably in smaller
spaces, so they can be handled non-perturbatively.

In our formalism then, the difficﬁlt part of the current algebra
problem is to insure that the current trasforms like a four-vector at infinite
momentum. In what follows, we examine this requirement.

The currents at infinite momentum are given by
K = -8 - H
Py (,f,l)“ dz dat &.(t’ z) vy (x) (v.2)

where Va“(x) is a local four-vector current. The "good" current [that
combinaticon which dppears in current algebra, Eq.(V.l)] is

= O paﬁ. From the integral representation (V.2), one deduces the
following light-like (or Galilean) transformation properties of the currents




,3h;

[K39 §L] =v’iﬁlﬁ [PO+P.,.p“] = o
[Jl + K, PO] = [Jl + Ky, éé],= uipe
[Jl + KZ’ le = 0, [Jl + K2’ﬂpa] = ip .
| [K, = Jps 0°] = [k, - T 0] = .,i:pl
.' [Kl - JQ’ o ] = -ip, : [Kl - J2, p ] = O,‘ o (V-3) .

‘where the internal symmetry label d_ has been suppreéSéd, and
QL E-(pl, pg). As mentioned in Section IT, the good current then commutes .

- with the light-~like group

3

In. the first quantized notation,

'3 .
23

one can verify that the general solution

to this algebra is

0o 1 1 K
P = [f;P]"' [P_ﬂg-}_,m+
oM olv T o2 FTi Pty | e
O i ;
o= aw B EL YA | | (v.5)
0
p=p-p =f

where f,.‘% = (gl, g?) and k are as yet undetermined functions that

commute with Jl + Ke, Kl - Jsy PO + P In the two particle

2 3 3

case, these functions must then involve only Z, i W, and scale in-
I

and K

variant combinations of N', ql and ne. By further commuting the

currents with J one learns that f and & must transform as

3}‘

scalars under this rotation, while g 1is a two-vector.
’ o
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There is one final condition that must be met to insure .

 correct Lorentz transformation properties for the curtent.
o, . ) —. ;
[P, [J., o V(ﬁ)]] =0 (i summed from 1 to 3) - . (V.6)
i i’ o ,

. Tﬁis "scalar angular condition" followq immediately from the definitlon

of. p“ and the commutatlon rela ions of Vaf(&) with J and A;,ﬁ@ihi.

f&ct,-the scalar anguier ccndition has a very'simple,physical,ihtefprefa-

| tion: Thefbmﬁh='component'ofvthe:cﬁrrent.carries na sbin, its angﬁlaf

nementum being entirely orbital. Thus, on po, we - must have .

g2=0 (i=1,23), which is the content of (V.6). Eqs. (V. 5) and (v 6),'

are necessary and sufficient for the cprrect Larentz transformatlon proper- _*

Tties.of the infinite momentum current.zu |
| In‘géneral the scalar angular coﬁditioh is a set of coupled

linear differéntial equations for £, & end k. The easiesﬁ ﬁay_ﬁo |

project out these equations is‘by commuting (V.6) with the generators of

the light-like group. As an example, we give the results for the case

“of two free (first quantized) particles.

[IE » ~] Ma %[Pl’ g1 - [Py, gl}% =0 | . .’ ((v.7)
[&f"g ) [Plj gi]} + nM Lhiﬂ“"’s EEPJ-, gg} - [PE, gl}% } = O |

1 ) . A ) . 3 . _ i : 2 -
[;3',5 ? ﬁ{[P2) g.l.] - tpl) 62"; _}-f:-i-:é" fPE’ [P2, ECJ] - —.\;2@ [Pl’P [Pl’ K.]} ’

, M I : ‘ .
i A
* 5w Mingr [Pys 530 =0
- K i 2 ' ’ BRI |

LB » g+ 5lP [Py gp) - (B, g 01 + 55 Uy, gp] fpe, gl], int] =0
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o
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ﬁhere '
3501 = 17, [0, m:ﬁ G emmamond w3
01z e, 2, 80| (V8)

o 2 , . 3 ‘ ) . _ -
"and H, =v%r. These equatlons commute w1th the light-llke group and

.;hence havé no hanging derivatlves In fact, they are relatively s1mple

’.equatidns} Forvany function, say " A, whlch has scale-l,

.LQ)B, Al = - [H nt’ [35’ A]] + [Ji’ (Pl; A]] E “ e o ? i F;‘ Au
' | | | R B
' oM [j5, [I.)‘l’ [Pl’>A]] + [ng [PQ: A“]+
- This applies to each or‘thefequations'in (v.7). We Shall’n°t~attempt“ ,;;3;;¥,;¢
. to find the general solution to this system, although a Particular 1,1'9

solution will be noted below. One remark is-instructive however:,i‘”

If f is known, then (from thésé equations) g and. k. are kn°wn;quji ?if; I;,:

to constants. This feature is independent of the free case, andk,”iﬁ f;§£;faeg?l*

perfectly general. | L |
One can also write a "vector" angular condition on the gdod-'

current p. Either by combining (V.5) and (V.6), or directly one can:"'

verify that

. o - o
[g-B, gg'}j, (3P, pa(f}.)]]] - {J'P; [p7, pa‘(lﬁ)]] ‘ (v.10)
This relation is essentially, but not quite equivalent to the scalar
angular condition: Evidently it does not determine }% and &, although v

these can always be determined from equations like (V.7), once p = f 1is’
known. This "vector" angular condition is equivalent to the "angular-

condition" popular in the literature, the usual form being derived for
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certain matrix elements of the curren%s, thereby involving the masses
of the states in a complicated way. We believe that the operator
formalism, and in particular the écalar angular condition, is simpler and
more transparent.

It is also useful to know the statemént of current coﬁservationA
at infinite momentum. Again from the integral repreéentation (V.2),rit.éan

" be shown that a“ Vd“(x) =0 impliesh
[H, oyl + 2[R, o, 1 =0 (i sumed over 1,2) (v.11)

. This is in fact just the statement offﬁrobability conservation for a two-
dimensional Schrodinger equtién,(p being the probability density and
pl being the two-dimensional probability flux). in'terms of the fUnétionsi

a o« " '
£, g Kg introduced above, current conservatlion becomes

o 2 ' ‘
[Hint’ £ + M[Pi, gl =0 - (Vfl2)

Simple Solutions -

Although we shall not attempt to solve the current algebra
problem in this papef, we can at least give solutions for the free cases,
and for the AJ° and x¢u theorieé at infinite momentum (with internal
symmetry).

For the case of two free (first-quantized) particles, a

solution is

i
]
—~
D
S

n

o (8) = T(8) = 2y (.1) 5(2) %(1)_'3) . Xa(e) 5(2) %(2)_'3)

g, =x¥=0 | | (v.13)

where a = (al, a2) is the position label of the current, and Ay 1sa
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representation of 8U(2),:. SU(3), ete. In fact, each term of o Q;i;\
satisfies_the.énéular condition separately (similarly for pa). Tt ‘is
' gratifying to note that, at least in the free'case, the non-relativistic =

analogy is preserved. is precisely the probability density for

POy
two Schrodinger particles in a two~dimensional worid. ‘Similarly, P -
_ is the (transverse) probability flux. Moreover, of course,.this current
satisfies the two-dimensional continuity equation (V.ll)° It is.not.likély
that this is the most general solution.to (V.7), but it may be that it
.is the only solution that satisfieS a local current algebra.

The situation for the second quantized theories.is quite
analogous. For the free case or the xdE and x¢u interactions dis-

cussed. in Section.IV, we have directly from Noether's theorem and the

action principle

) = 7 [ an g0 w5 G 0 (v
) - 5 cw’fﬂ ¥ lf(x (13 ¥ (5 )
P %/ = 3 0 B e P

vhere we have trivally addended internal symmetry to the basic fields
- 2 , ,
[ M Et0g, 1)1 =8, 8 (- x)8(n - 1) (v.15)

From this, one might guess /

ey y oL ooy [odn oot Y

(x,) =35 ¢C f 7 LG B T (xom) (v.16)
0]

where Pp is just the usual first quantized form in (II1.10). This form

is entirely analogous to (V.1%) and indeed solves the angular condition.

This form may also be derived directly by boosting the analogous field
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‘ theorieé; that is,take j'V'p.‘(x = ¢ ¢P a“ $” and evaluate the integralb'
représentatiop for pau . (in the fashion of Section IV).

Before passing on, we can make a few comments abégt the
general case. A form for p and pl is always given (by Noether's
theorem) that satisfies.the locel current algebra (V.1) Because of the:
Schrodingér formalism, this p always has the characteristic form dis-
played above, while‘ﬁhe form of pi will change in tﬁe presence of .

o derivative coupling. One approach thep is to check directly whethei

p satisfies the triple (vector) angular condition. Alternately, one

can try to use the (simpler) scalaf angular condition to caiculate

po. For the free case and the simple field theories discussed, the angular
“condition is sa£isfied, but it is doubtful that this is true for ver&

many of the first-quantized potentials. If it turned out that none éf thé
(non-trivial) Noether currents transformed correctly, oné.might be tempted
to solve the angular condition anyway and take whatever (in general

non-local) currents resulted.




".discuss in thls Sectlon. The flrst is: half—integral Spln

* tivistic analogy. For example, we take thevone—freedparticle.forms:qfhi;;f

_ a particle of spin 2, positive energy and TASS m.' The representatlon ;., B

L ,'v.'b,"O-r." o

lf"

VI. .. DISCUSSION

't"

| In the flrst place, 1t is easy to construct half-lntegral

spin repreéentatlons (at 1nfin1te.mgmentum) while keeping the nonfrelafi

3 o3

J

1. - 1, m .
1 5—8+ [x 3]++-2-U»3-ﬁ—+ﬂﬁl

oy
n

2 - L é ] +x0 f£ + S ? s inI(Vi{i);’fa,‘

ey
|

| s o N
- J -i (xlaay— xeal) + 5%

5

:'iwhere. u"is thefset of PauliAmatricesi. .This is’ a repfesentatlon for

can be constructed via the method of Sectlon III, taklng Ji lc..IibeiELf:fIi

2-i?

’ alternately by boosting the usual representatlon. Hav1ng this representa-foyh?

tion,.the paper could be repeated * for it. Here we only want to make .:ﬁﬁivfffﬁ

some comments about second-quantization, and spin-statistics: A freé;‘";
second-quantized representation may be constructed, as in Section Iv;f
either with_commuting or anti-commuting ¥'s. Thus, although the correct
connection between spin and statistics can be maintainéd, it is not
required. (Although it was not explicitly mentioﬁed in Section IV, fhe':
spin zero particles can also be second-quantized with énti—commuting ﬁ's)_'\v
Similarly, anti-fermions may be included but are not required.

vOn the other hand, it may be possible to include half-integral

spin without such direct methods. That the bosonic substructure of the

There are .a. number of loose ends ‘that, ve would like to L;ui;fﬂvkﬁ;"‘i
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previous representations need not he observable was already evident in

the représentation (I11.14), which contains half-integral spin; '

More generally, however, it is well known that the two dimensional .
Schrodinger equation for two free,particles'admits half-integral solu-
t:ions,25 in the space of which all operators are self-adjoint and all
observableé single-valuedf At infinite momentum,‘ﬁe are dealing ﬁith
exactly this situation, and fhere may be both integral andvhalf integral -f
solutions to many of the first-quantized thegries of Section III. Whether
this is in fact true depends on whether the rest of the Poincaré generators

are self-adjoint in the space of the half-integral solutions. This is

- presently under investigation.

A second comment concerns our second-quantized theories.
Evidently, our unfortunately brief list of theories follows from our
strict'adherence to the usual second-quantization scheme - which guarantees
thatAall particles are on an equal footing. ‘In Section III, we obtained
much larger classes of theories by manipulating the internal variables
freély. On the other hand, the interactions.of the second~quantized
theories do not disturb the current algebra, while most of the potentials
of Section III probably do not admit (relativistic) current algebra. Thisv.
gives rise to two possible lines of thought: (a) Can one write other |
kinds of creation - annihilation theories, say that are ﬁot derivable
from an action? Such a question is of course relevant to ordinary |
theories and is probably too much to ask at the present time. (b). More
practically, can one find first-quantized representations thaf more closeiy_'
resemble the field~theoretic representations? These are likely to satisfy

the angular condition, etc., but are difficult to find. This is also

under investigation.
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Actually the scalar angular condition can be simplified somewhat

by using translational invarience. . Call the position label of the

current g = (al, ag), ie., pM = p“(g). Then we can write

A

with which it is easy to show that

(P, [d,, p,°(0)11 =0 (1 summed over 1 and 2)

is equivalent to (V.6).. In this form of course

(355 £,(0)] = [J5, £,(0)] =0
35, 8, %(0)] = 1 g,(0), 135, 8,7(0)] = -1 g,%(0).

We thank Prof. C. Schwartz for a discussion on this subject.
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- APPENDIX., INFINITE MOMENTUM LIMIT AS VARIABLE CHANGE

| OQur purpose here is to spell out the chang - of variable
‘.necessary to achieve the inflnlte momentum llmit rePresentatlons of
Sussklnd and our completlon of the Poincaré group. In thls way, we can“' f§ﬂ'3
.also learn thea@proprlate 1nner product and sultable dense sets of test -
functions. We confine our dlscu331on here to the case of one free partlcle
of mass m. l | |

We begin'with‘the Poincaré group

: 1 Tl ' S
- P - if{p )2 El o '
=B xVp, K =1(F )R VYR o (a.2)
2, 2,2, aF |
where Po = (Pl + P2 + P3' + m )2 . The inner produet appropriate for

this repregehtation is
_ LI : _ . :
§lr, g]~fdeg§)(9g(£) =0 (a.2)

where the integration is ovef all momentum space and 8 is some'qperator,
A suitable dense set of test functions for obtaining relastions between uﬁ-
bounded operators is, for example, the usual set of Gaussian-smeared func-:
tions
lim  exp {-lela%f(P): 0. . : (A.3)
Bl S |
Now we want to make a change of variable from the set
(Pl’ Py, P3) to (Pl’ Pos M= P+ PB)' The metric of the n§W‘}nner

~ product differs by the Jacobian of the transformation.

. . ol P ‘
Olz, el = O£, , g,] =fd2jP f dn(—ﬁ‘{) £ 0 g (a.4)
| 5 .

2 2 2
1
Po = 5 (n° + EL + m")
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where f_, g  and Gm are the same functions and coperator as before,

now in terms of the new variables. To complete the change of variable,

we list
| 1 2 > 2
P3 =57 (n° - P~ - )
o . (A.5)

d . L O '

o cmsmeawy> p— 4 e — ——

dli dP.L Po an
dP3 Po an

With this in hand, we can rewz‘;:{.»te'the generators themselves.

For example, in the case of Jl, we find

: ; P
_p L& S L2 o
J, = -iP, P o + 1P5 5%, + B o | | (A.6)

With a little algebra and the fact that -(l}’:)o’ J]) = 0, We can express this

as
-l 1

o O 1 A

In fact, one learns that all the generators can be put in the form
1
2
- @ )
v n uv n

where Mva are (the transverse momentum spacecounterparts of) the

S

generatofs given in the text. If new test functions

P «
;‘\m = (—9—) £ (A.9)

are defined, the generators can thus be taken as MuvT’ with the simple

I) N
metric de d1. Note finelly the typical behavior of the test functions
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for large and small 1 ‘(PB going to plus and minus infinity respectively)

‘ , o 5 |
2 , 2 1 2 2 2
exp (-[P[7) = exp{w‘tj,_ T3 (0" -2 = m) % . (A20) .
' 1 , , . -
This is certainly adequate to drop boundary terms. - v:- L
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