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The NEAT Equating Via
Chaining Random Forests
in the Context of Small
Sample Sizes: A Machine-
Learning Method

Zhehan Jiang1, Yuting Han1, Lingling Xu1 , Dexin Shi2 ,
Ren Liu3 , Jinying Ouyang1 and Fen Cai1

Abstract

The part of responses that is absent in the nonequivalent groups with anchor test
(NEAT) design can be managed to a planned missing scenario. In the context of small
sample sizes, we present a machine learning (ML)-based imputation technique called
chaining random forests (CRF) to perform equating tasks within the NEAT design.
Specifically, seven CRF-based imputation equating methods are proposed based on
different data augmentation methods. The equating performance of the proposed
methods is examined through a simulation study. Five factors are considered: (a) test
length (20, 30, 40, 50), (b) sample size per test form (50 versus 100), (c) ratio of
common/anchor items (0.2 versus 0.3), and (d) equivalent versus nonequivalent
groups taking the two forms (no mean difference versus a mean difference of 0.5),
and (e) three different types of anchors (random, easy, and hard), resulting in 96 con-
ditions. In addition, five traditional equating methods, (1) Tucker method; (2) Levine
observed score method; (3) equipercentile equating method; (4) circle-arc method;
and (5) concurrent calibration based on Rasch model, were also considered, plus
seven CRF-based imputation equating methods for a total of 12 methods in this
study. The findings suggest that benefiting from the advantages of ML techniques,
CRF-based methods that incorporate the equating result of the Tucker method, such
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as IMP_total_Tucker, IMP_pair_Tucker, and IMP_Tucker_cirlce methods, can yield
more robust and trustable estimates for the ‘‘missingness’’ in an equating task and
therefore result in more accurate equated scores than other counterparts in short-
length tests with small samples.

Keywords

small samples, equating, chaining random forests, machine learning–based imputation
techniques

Introduction

In educational settings, producing interchangeable scores on different test forms (i.e.,

equating) is essential to make the assessment fair and comparable when examining

unidentical items/questions (Kolen & Brennan, 2004). A majority of researchers and

practitioners perform equating through the nonequivalent groups with an anchor test

(NEAT) design, which adjusts items’ properties to estimate what an examinee would

have performed if this examinee was administered items that were, in fact, never

administered (Maris et al., 2010). To illustrate without losing generalizability, a typi-

cal NEAT design with two forms made of three batches of items is given here: one

batch for the base/reference form only, the second batch for the target form only, and

the third batch shared between the forms (i.e., the anchor set). Traditionally, statisti-

cal techniques for equating are about transformations of both modeling parameters

and item responses, including the ones based on equipercentile equating, linear equat-

ing methods, item response theory (IRT) observed score and true score equating, van

der Linden local equating, Levine nonlinear method, Kernel equating (KE), and oth-

ers (see Kolen & Brennan, 2004 for details). Furthermore, post-stratification (PSE),

Levine observed score linear, and chained equating (CE) methods are typically used

in KE when a NEAT design is present (von Davier et al., 2004). In addition to treat-

ing equating as the transformation, it can also be handled as a missing data problem.

Following a popular definition of missing data in the statistics literature, the part

of responses absent in a NEAT design can be regarded as missing at random, known

as missing at random (MAR) mechanism (Little & Rubin, 2002). Accordingly, values

underlying the missing areas depend on the design part, of which the responses are

observable. On the other hand, Sinharay and Holland (2010) claimed that since the

missingness in the NEAT design is deliberately planned, and therefore theoretically,

it is likely to be missing completely at random (MCAR) instead of from a theoretical

perspective. We believe this assumption applies in most cases, except possibly

affected by testing time. Methodologically speaking, techniques for handling missing

data problems can be applied to both MAR and MCAR settings. Previous studies

have treated the NEAT design as an incomplete-data issue (Liou & Cheng, 1995;

Liou et al., 2001), involving imputation methods designated for MAR problem,
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including a kernel estimator, a log-linear model-based estimator, and an iterative

moment estimator.

Conventionally, imputation techniques can be either model-based or model-free.

Readers interested in comprehensive imputation approaches can see Little and Rubin

(2019) and Enders (2010) for details. To illustrate the model-based one related to

equating tasks, Holland and Thayer (2000) proposed an algorithm based on ‘‘expec-

tation-maximization’’ (EM), where the aforementioned log-linear model was

deployed to produce values for the missing part (i.e., the equating target), and Moses

and colleagues (2011) found that the approach was fairly reliable in many NEAT

conditions. On the other hand, the model free–based imputations (i.e., K-nearest

neighbors, fuzzy K-means (i.e., an extension of K-means that does not simply predict

targets to a definitive class but provide class-probability estimates like a mixture

model; Bezdek, 1981; Equihua, 1990), singular value decomposition, principal com-

ponent analysis, and others) seem to be less favored in this kind of study of multiple

imputations by chained equations (MICE). These model-free approaches are now

labeled machine learning (ML)-based imputation techniques in the contemporary

world (Lakshminarayan et al., 1996; Lin & Tsai, 2020), emphasizing predictive

accuracy rather than interpretability.

Similar to other ML-based approaches, the advantages such as needing minimal

assumptions about the data-generating systems, being compatible with complex vari-

able patterns, subsuming various input formats, as well as producing more trustable

predictions make ML-based imputation techniques a popular choice in both research

and practice (Athey, 2018; Ij, 2018), especially in the conditions where simple linear

associations between the missing and the observed data do not exist (Hong et al.,

2020). These properties make ML-based imputation techniques promising for equat-

ing tasks. As listed in Figure 1, visual comparison bridges the essence of equating

tasks and imputing inquiries. Group X takes test form #1, while group Y takes test

form #2, and common items designed to be the same in both tests are called anchor

items. True responses from Group X on test form #2 and Group Y on test form #1

are missing except for anchor items. Imputation techniques used to deal with missing

data can be used to obtain equating scores for individuals on unanswered tests.

The primary inquiry of equating is about yielding more accurate estimates for

hypothetical scores obtained from the base form that an examinee never actually

takes. This inquiry matches the ML advantages mentioned above well and, therefore,

inspires the possibility of applying the techniques to situations where traditional

equating approaches commonly used in testing organizations fail to deliver reliable

results. Unsurprisingly, small sample equating is one of the situations; it has received

more attention in the literature nowadays. The literature review found that linear

equating methods have been suggested for use with small samples (Kolen &

Brennan, 2004; Skaggs, 2005). In addition, several new methods for small-sample

equating have been proposed, including circle-arc equating (Livingston & Kim,

2009), synthetic equating (Kim et al., 2008), nominal weights mean equating

(Babcock et al., 2012), and so on.
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Recent studies addressing small sample equating have primarily focused on evalu-

ating the performance of existing methods. For instance, circle-arc equating and nom-

inal weights mean equating yielded less-biased estimates in small samples compared

to applications within standard settings for each administration (Dwyer, 2016). A

recent study by Babcock and Hodge (2020) showed that Rasch-based approaches

could produce acceptable results in the context of small sample exams, especially for

non-Bayesian ones.

In this study, we propose using an ML-based imputation technique called chaining

random forests (CRF) to perform equating tasks within a NEAT design, given a sce-

nario of small sample sizes, defined as a low volume of both examinees and items.

The equating performance of the proposed methods was also compared with other

equating methods likely to be used in small-sample situations through a simulation

study. We hypothesized that by benefiting from ML techniques’ advantages, CRF

would yield more robust estimates for the ‘‘missingness’’ in an equating task and

therefore result in more reliable equated scores than other counterparts.

Method

Initially introduced by Stekhoven and Bühlmann (2012), CRF is an iterative imputa-

tion technique devising Breiman’s random forest algorithm (Breiman, 2001). As

CRF’s name suggests, the major components are random forests, trained on the

observed values to predict the missing ones. The advantage of this method is that it

considers complex interactions and non-linear relations among variables. Studies

have shown that CRF and MICE can be equivalent in many situations, where the

Figure 1. The Bridge Between Equating Task and Imputation.
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former is not only a better fit for mixed-type data (Penone et al., 2014; Yadav &

Roychoudhury, 2018) but also consumes less computational power when a similar

task is present (Wong et al., 2021). Substantial evidence has published to support this

study, for instance, Shah and colleagues (2014) compared random forest to multiple

imputation by chained equations (MICE) and showed that random forest parameters

were less biased.

Consider that in a data set where an arbitrary variable ys contains missingness at

entries i
sð Þ

mis 2 1, . . . , nf g, where ys can be viewed as the response vector for all n sub-

jects on item s. i
sð Þ

obs is the complement of i
sð Þ

mis at all entities, representing the index of

individuals with no missing on ys. The data set can be classified into four subsets: (1)

the observed values of variable ys denoted by y
sð Þ

obs, (2) the missing values of variable ys

denoted by y
sð Þ

mis, (3) the variables other than ys with observations i
sð Þ

obs denoted by X
sð Þ

obs,

and (4) the variables other than ys with observations i
sð Þ

mis denoted by X
sð Þ

mis. It should be

noted that X
sð Þ

obs does not imply the corresponding values are completely observed, as the

index i
sð Þ

obs corresponds to the observed values of the variable ys. Similarly, X
sð Þ

mis is not

completely missing neither. The algorithm starts by having initial values for all missing

areas. Then, the variables ys are sorted for s = 1, . . . , p according to their missing pro-

portions. For every ys, the imputation is achieved by using a random forest (RF) with

output y
sð Þ

obs and input X
sð Þ

obs; the trained RF is then used to predict y
sð Þ

mis from X
sð Þ

mis. This

process is iterated until a stopping criterion is met (see Stekhoven & Bühlmann, 2012

for algorithm details).

To eventually deploy CRF in equating tasks, we defined six ways of augmenta-

tions for the imputations and used the original data set to impute all missing values as

a baseline method (IMP); the corresponding implementations are listed in Figure 2.

Specifically, the first augmentation incorporated each student’s total score on anchor

items as a new column into the data (IMP_total). The second one augments the data

by adding the sum scores of each item pair nested within the anchor test (IMP_pair).

The latter four data augmentation methods were constructed by exploiting benefits

from well-known equating methods (e.g., the Tucker method and the circle-arc

method); these augmentation methods can be divided into two steps: (1) the equating

procedure (the Tucker method or the circle-arc method) is first implemented to calcu-

late the equating scores of the target group (group Y) on the reference test (test form

#1), and (2) the equating scores and the total scores of the reference group (group X)

on the reference test (test form #1) are combined to form a new variable to augment

the original data set. The method using both the total anchor test score and the equat-

ing results of the Tucker method is named IMP_toatl_Tucker method, while the one

using both the sum scores of each item pair in the anchor test and the equating results

of the Tucker method is called IMP_pair_Tucker method. To compare the outcomes

using different equating methods, the method called IMP_toatl_circle (i.e., using both

the total anchor test score and information from the circle-arc method) was used for

comparison. Finally, total scores of the anchor test, sum scores of each item pair in
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the anchor test, and the equating results from both the Tucker and the circle-arc meth-

ods were added to the data simultaneously to form IMP_Tucker_circle method to

investigate if the equating performance could be further improved by using more

information.

Simulation Study

When comparing different equating methods in simulation studies of this kind, com-

mon factors include the sample size (Arai & Mayekawa, 2011; Hanson & Béguin,

Figure 2. Six Methods of Augmentation for Imputations.
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2002; Kang & Petersen, 2012; Kim & Cohen, 1998; Sinharay & Holland, 2007), the

number or proportion of anchor items (Arai & Mayekawa, 2011; Hanson & Béguin,

2002; Kang & Petersen, 2012; Kim & Cohen, 1998; Sinharay & Holland, 2007; T.

Wang et al., 2008), the ability distribution of both the target group and reference

group (Hanson & Béguin, 2002; Kang & Petersen, 2012; Kim & Cohen, 1998;

Sinharay & Holland, 2007; T. Wang et al., 2008), the difficulty distribution of anchor

items (Hanson & Béguin, 2002; Kang & Petersen, 2012; Sinharay & Holland, 2007),

and the test length (Sinharay & Holland, 2007; T. Wang et al., 2008).

Summarizing the aforementioned designs to accommodate the small sample con-

text (e.g., a classroom setting; Perry & Dickens, 1987; Stewart & Gibson, 2010), this

study considered the following factors:

1. Test length. Four levels of test length were considered: 20, 30, 40, and 50.

2. Sample size. The sample sizes for X and Y were equally set with two levels:

50 and 100.

3. Proportion of anchor items: 0.2 and 0.3.

4. Two (latent) ability distributions for the target group Y: N(0,1) and N(0.5,1).

5. Difficulty distribution of anchor items: random, easy, and hard. When the

type of anchor items was random, the anchor items were randomly selected

from test form #1. Otherwise, the difficulty distribution of anchor items was

biased from test form #1. When the type of anchor items was easy, the anchor

items were randomly selected from half of the items with lower difficulty val-

ues from test form #1. Conversely, when the type of anchor items was diffi-

cult, the anchor items were randomly selected from half of the items with

higher difficulty values in test form #1.

There were 96 conditions in total (i.e., 4 3 2 3 2 3 2 3 3). The three-parameter

logistic (3PL) IRT model (Birnbaum, 1968) was adopted for data generation in mul-

tiple conditions via the NEAT design, assuming that group X took test form #1 and

group Y took test form #2. While the specific procedures can be found in Online

Appendix, the simulation and analyses involved the following steps:

Step 1: The discrimination parameters, difficulty parameters, and guessing

parameters of both tests (test form #2 did not include anchor items at this

step) were randomly generated from N(0.8, 0.2), N(0, 1), and Unif(0, 0.25).

Step 2: Ability values for group X were randomly generated from the standard

normal distribution N(0,1). The ability values for group Y were generated

according to its factor levels. The full data set was generated using the IRT

model based on the item parameters and ability values.

Step 3: Sort the items in test form #1 according to their difficulty values. A pre-

defined number (according to the simulation condition) of anchor items was

randomly selected from test form #1 in alignment with their difficulty levels.
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The responses of group X on test form #2 and group Y on test form #1 were

treated as true observed data and set as missing data, as shown in Figure 1.

Step 4: Given group X’s responses on test form #1 and group Y’s responses on

test form #2, different equating methods were used to compute equivalent

scores converted from test form #2 to test form #1.

Step 5: Steps 2 to 4 were repeated 100 times. Two measures were used accord-

ing to the literature (i.e., Wolkowitz & Wright, 2019; Zeng, 1993)—the

average absolute bias (BIAS) and root mean square difference (RMSD):

BIAS =

PN
p

Xp equated � Xp observed

�� ��

N
ð1Þ

RMSD =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PN
p

Xp equated � Xp observed

� �2

N

vuuut
ð2Þ

where N is the total number of examinees taking test form #1, Xp equated is a person’s

equated score converted from test form #2 onto test form #1, and Xp observed is a per-

son’s observed score on test form #1 in the simulated data. Based on the repeated

samples, the measures were calculated by averaging over 100 repetitions.

Step 6: Steps 1 to 5 were repeated for each simulation condition, where the

indexes were recorded for further comparisons.

The descriptive statistics of the mean and standard deviation of the difficulty for

the anchor items under different anchor types are shown in Table 1.

To compare the proposed method with equating methods commonly used in

large-scale testing organizations, especially those performed better with small sam-

ples, linear equating methods (Tucker method and Levine observed score method),

equipercentile equating method, circle-arc method and concurrent calibration (CC)

Table 1. Descriptive Statistics for the Difficulty Parameter of the Anchor Items.

Anchor type Statistic M Minimum Maximum

Easy M (b) 20.566 21.161 0.113
SD (b) 0.663 0.118 1.199

Random M (b) 0.109 20.931 1.104
SD (b) 0.853 0.170 1.740

Hard M (b) 0.798 0.490 1.294
SD (b) 0.381 0.094 0.624
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(Hanson & Béguin, 2002; Hu et al., 2008) based on Rasch model with true score

equating (Kolen & Brennan, 2004) were selected to serve as references. R software

was used (R Core Team, 2022), while the packages ‘‘equate’’ (Albano, 2016),

‘‘equateIRT’’ (Battauz, 2015), ‘‘SNSequate’’ (González, 2014), and ‘‘missRanger’’

(Mayer & Mayer, 2022) were implemented to execute the reference methods and

CRF imputation, respectively. All the package settings were left default. The R script

for data generation, imputation/equating, and result gathering was documented in the

Appendix.

Result

Aggregated results are presented across all conditions in Table 2. The smallest

RMSD and BIAS values among the equating methods are boldfaced. The three impu-

tation methods using only raw data or its integrated information (IMP, IMP_total and

IMP_pair method) did not perform as well as the traditional equating methods: those

that used data augmentations (IMP_total and IMP_pair) yielded smaller RMSD val-

ues than the one used the original data set only (i.e., IMP). Using the sum of item

pairs to augment the data (IMP_pair) was slightly better than using the total scores of

anchor items (IMP_total). Meanwhile, adding information from other equating meth-

ods significantly improved the performance of the imputation methods, with a signif-

icant decrease in both averaged RMSD and BIAS. IMP_total_Tucker and IMP_

total_circle outperformed the other methods as they had the lowest RMSD and BIAS

values. IMP_pair_Tucker method, which also uses Tucker method information, was

inferior to IMP_total_Tucker method. In addition, the equating accuracy could not be

further enhanced when multiple sources were used together (i.e., the total scores of

Table 2. Average Equating Errors From Different Equating Methods.

Equating method RMSD BIAS

IMP 4.021 3.227
IMP_total 3.971 3.185
IMP_pair 3.917 3.149
IMP_total_Tucker 3.235 2.609
IMP_pair_Tucker 3.348 2.699
IMP_total_circle 3.235 2.609
IMP_Tucker_circle 3.236 2.610
Tucker 3.314 2.643
Levine 3.455 2.748
equipercentile 3.398 2.708
circle-arc 3.367 2.686
Rasch 3.398 2.710

Note. The smallest values among the equating methods are boldfaced. RMSD = root mean square

difference.
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anchor items, the sum of anchor item pairs, and the equating results of both Tucker

and circle-arc methods) to augment the data (IMP_ total_circle), and its RMSD and

BIAS were close to those of IMP_total_Tucker method.

The Tucker method performed best among the traditional equating methods

because it had the lowest RMSD and BIAS values, followed by the circle-arc method.

The equipercentile equating and the Rasch-based methods both performed poorly

because they produced the largest RMSD value, and the Levine method generated the

largest BIAS among the traditional methods.

The results for the average equating errors of the 12 equating methods across dif-

ferent test conditions are presented in Tables 3 to 10 and discussed in the following

paragraphs.

Test Length and Sample Size

A comparison of Tables 3 to 6 and Tables 7 to 10 indicates that all the equating meth-

ods followed a similar pattern, where they tended to produce larger RMSD and BIAS

values as the number of items on a test form increased. When the test length was 20

and 30, imputation methods incorporating results from other methods (i.e.,

IMP_total_Tucker, IMP_pair_Tucker, IMP_total_circle and IMP_Tucker_cirlce) out-

performed any other single (non-incorporated) equating methods. Among them,

IMP_Tucker_cirlce method, which uses more information, was more accurate than

its counterparts in most cases. When the test length was 40, the Tucker method started

to show a slight advantage on a small set of conditions, and when the test length

reached 50, the advantage became more apparent; however, imputation methods,

such as IMP_total_Tucker and IMP_total_circle methods, still produced the highest

equating accuracy in some cases. In addition, the advantage of IMP_Tucker_cirlce

method over IMP_total_Tucker and IMP_total_circle methods faded apart.

The equating accuracy for traditional equating methods tends to improve as the

sample size increases. When the sample size was 100, they produced smaller RMSD

and BIAS values in most cases than when the sample size was 50. On the contrary,

for CRF-based imputation methods, the effect of sample sizes was inconsistent: they

yielded larger RMSD or BIAS values when the sample size became larger in several

conditions, except for IMP_pair_Tucker method, of which the equating accuracy

improved as sample size increased. Although the performance of IMP_pair_Tucker

method was not as good as IMP_total_Tucker method on average, the RMSD and

BIAS values of IMP_pair_Tucker method were lower than those of

IMP_total_Tucker method in cases of 100 examinees, especially when the test length

was 20: the RMSD and BIAS values of IMP_total_Tucker method were always

lower than those of IMP_pair_Tucker method and even the smallest among all equat-

ing methods in most cases.
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Ratio of Anchor Items

As the ratio of anchor items increased, the equating accuracy of all methods improved

as their RMSD and BIAS values dropped without exception. In particular, the RMSD

and BIAS values of the three methods using only raw data or their integrated informa-

tion (IMP, IMP_total, and IMP_pair method) declined the most as the ratio of anchor

items increased.

Ability Distribution

The equating accuracy of all equating methods was very similar regardless of the

ability distribution of the second group. That said, the difference in the mean ability

of the two groups does not affect the performance of the reference methods in terms

of equating accuracy.

Anchor Type

The gaps in RMSD and BIAS values among the three anchor types for all equating

methods were not substantial. Their RMSD and BIAS values for imputation methods

were slightly larger when hard anchor items were used than the random or the easy

sets.

Conclusion and Discussion

Based on different data augmentation methods, seven CRF-based imputation meth-

ods were proposed to perform equating in a NEAT design. The performance of seven

imputation methods and several traditional equating methods was investigated under

varying sample sizes, test lengths, the ratios of anchor items, the difference in exami-

nee ability, and the types of anchors. The findings suggest that imputation methods

incorporated with the wisdom of other methods (e.g., the Tucker method or circle-arc

method) yield the highest equating accuracy when the test length is short, but when

the test length reaches 50, the Tucker method shows a slight advantage. Increasing

the sample size does not always reduce equating errors for the proposed methods; this

finding makes the largest difference between the imputation methods and the refer-

ence ones. Furthermore, the lower the proportion of anchor items, the worse the per-

formance of all equating methods, while the type of anchor items and group ability

differences had little impact on the equating results.

The imputation methods possess high flexibility in subsuming good results from

various augmenting strategies and equating methods. Some specific methods from

the former (i.e., using different data augmentation methods) can be unstable, espe-

cially for the one using response data of the anchor test only, leading to low equating

accuracy. On the other hand, the latter kind that combines information from other

equating methods’ results can significantly improve the performance, even better than

the original ones that were selected for augmentations. Particularly, given the Tucker

1002 Educational and Psychological Measurement 83(5)



method is selected to incorporate into the proposed methods, the equating accuracy

obtained by using the total scores of the anchor test (IMP_total_Tucker) is better than

using the sum scores of anchor item pairs (IMP_pair_Tucker) in most cases.

IMP_pair_Tucker method performs better only when the test length is the shortest

(20) and the sample size is relatively large (100). In addition, IMP_Tucker_cirlce

method which uses the most information is more advantageous in short tests.

Therefore, we suggest that when the test length is not more than 40, imputation

methods with more information to augment the data set, such as aggregated scores

from the test itself and information from other equating methods (e.g.,

IMP_Tucker_cirlce), are recommended. Moreover, when the test length is extremely

short, say less than 20, and the sample size is relatively large, IMP_pair_Tucker

method is also applicable.

In this study, we not only set a small sample situation but also limited the test

length to a short range (50 items and below) to be suitable for equating the analysis

of short tests. Short tests are very popular in educational measurement, such as

quizzes, unit tests, and subtests in comprehensive tests. There have been some equat-

ing studies on short tests that contain 40 or fewer items (Dimitrov, 2018; Lim & Lee,

2020), but few studies have focused on small samples equating with short tests,

although such scenarios are not rare in educational practice. While comparing the

performance of various equating methods under this condition, this study proposes

several imputation methods that are particularly suitable for this case. The imputation

methods can also be directly extended to polytomous scoring situations for equating

mental health questionnaires using Likert-type scales, which are usually short in

length.

Although the current research successfully used the ML-based imputation tech-

nique to perform equating tasks within the NEAT design in the small sample sce-

nario, several limitations should be considered in future studies. (a) As the proposed

methods were developed and applied for dichotomous items only, future research can

extend the application to polytomous or mixed-format cases. (b) The proposed meth-

ods were based on the CRF-based method; other augmentation strategies, such as

adding group Y’s total scores on test form#2 into the data, can be considered in the

equating research studies. (c) Unidimensionality and local independency are the main

assumptions of IRT models. In some psychological or educational tests, unidimen-

sionality may not be fully satisfied, or local dependency usually exists in practice.

Multidimensional equating methods or testlet-based equating methods can be consid-

ered to treat multidimensional measures or address local dependence between items

in future research. (d) Although the evaluation criteria used in most equating research

studies were based on the recovery of the true values, the evaluation criteria of equat-

ing errors have always been a difficulty in equating research studies. Determining or

finding consistent evaluation criteria or ‘‘gold standard’’ in equating research studies

deserves further investigation.
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