
UC San Diego
UC San Diego Electronic Theses and Dissertations

Title
Surprising Empirical Phenomena of Deep Learning and Kernel Machines

Permalink
https://escholarship.org/uc/item/49t1s6dz

Author
Hui, Like

Publication Date
2023

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/49t1s6dz
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA SAN DIEGO

Surprising Empirical Phenomena of Deep Learning and Kernel Machines

A dissertation submitted in partial satisfaction of the
requirements for the degree

Doctor of Philosophy

in

Computer Science

by

Like Hui

Committee in charge:

Professor Mikhail Belkin, Chair
Professor Yoav Freund
Professor Julian Mcauley
Professor Lily Weng
Professor Stephen Wright

2023

Copyright

Like Hui, 2023

All rights reserved.

The Dissertation of Like Hui is approved, and it is acceptable in quality and form

for publication on microfilm and electronically.

University of California San Diego

2023

iii

DEDICATION

Dedicated to my family for their love and support.

iv

EPIGRAPH

Don’t adventures ever have an end? I suppose not. Someone else always has to carry on the story.

The Fellowship of the Ring

v

TABLE OF CONTENTS

Dissertation Approval Page . iii

Dedication . iv

Epigraph . v

Table of Contents . vi

List of Figures . ix

List of Tables . xi

Acknowledgements . xiii

Vita . xvi

Abstract of the Dissertation . xvii

Chapter 1 Introduction . 1
1.1 Motivation . 2
1.2 Loss function in multi-class classification . 2
1.3 Shallow and deep models . 3

Chapter 2 Square loss vs. Cross-entropy in classification . 5
2.1 Introduction . 6
2.2 Experiments . 10

2.2.1 NLP experiments . 11
2.2.2 Automatic Speech Recognition (ASR) experiments 13
2.2.3 Computer vision experiments . 15

2.3 Performance across different initializations . 16
2.4 Observations during training . 17
2.5 Implementation . 18
2.6 Summary and discussion . 20
2.7 Acknowledgements . 20

Chapter 3 Precise asymptotic of rescaled square loss . 22
3.1 Introduction . 22
3.2 Related work . 24
3.3 Preliminaries . 26

3.3.1 Data . 26
3.3.2 1-layer relu network . 27
3.3.3 Large system limit . 29
3.3.4 Main results . 29
3.3.5 State evolution of 1-relu VAMP and its fixed point solution 30

vi

3.4 Numerical Results . 33
3.4.1 Simulation results on synthetic data . 33
3.4.2 Results on real data . 36

3.5 Acknowledgements . 36

Chapter 4 Cut your Losses with Squentropy . 37
4.1 Introduction . 37
4.2 The squentropy loss function . 39
4.3 Experiments . 42

4.3.1 Empirical results on test performance . 44
4.3.2 Empirical results on calibration . 46
4.3.3 Additional results on 121 Tabular datasets . 49
4.3.4 Robustness to initialization . 52

4.4 Observations . 52
4.4.1 Predicted probabilities and decision boundary . 52
4.4.2 Weight norm . 53

4.5 Rescaled squentropy . 54
4.6 Summary, thoughts, future investigations . 55
4.7 Acknowledgements . 56

Chapter 5 Limitation of Neural Collapse on Understanding Generalization in Deep
Learning . 57

5.1 Introduction . 58
5.1.1 Related Works . 60
5.1.2 Notation . 63

5.2 Defining Neural Collapse . 63
5.2.1 Remarks on Feasibility . 67

5.3 Experiments: Train and Test Collapse . 69
5.3.1 Measuring Collapse . 69
5.3.2 Experimental Results . 70

5.4 Collapsed Features Transfer Worse . 74
5.4.1 Test Collapse implies Bad Representations . 74
5.4.2 Experiments . 76

5.5 Conclusion . 77
5.6 Acknowledgements . 78

Chapter 6 Kernel Machines in Speech Enhancement . 79
6.1 Introduction . 79
6.2 Kernel-Based Speech Enhancement . 81

6.2.1 Kernel Machines . 81
6.2.2 Exponential Power Kernel . 82
6.2.3 Automatic Subbands Adaptive Kernels . 83

6.3 Experimental Results . 85
6.3.1 Regression Task . 85

vii

6.3.2 Classification Task . 85
6.3.3 Single Kernel and Subband Adaptive Kernels . 86
6.3.4 Time Complexity . 87

6.4 Conclusion and Discussion . 88
6.5 Acknowledgements . 88

Chapter 7 Conclusion . 89
7.1 Contributions . 91
7.2 Future work . 92

Appendix A . 93
A.1 Datasets and tasks . 93
A.2 Hyper-parameter settings . 95

A.2.1 Hyper-parameters for NLP tasks . 95
A.2.2 Hyper-parameters for ASR tasks . 95
A.2.3 Hyper-parameters for vision tasks . 96

A.3 Experimental results on validation and training sets . 97
A.4 Our results compared with the original work . 98
A.5 Regularization terms . 100
A.6 Variance of accuracy among different random seeds . 100

Appendix B . 104
B.1 Proof of Lemma 4 . 104
B.2 Stieltjes Transform . 106

Appendix C . 110
C.1 Datasets . 110
C.2 Hyperparameters . 110
C.3 More reliability diagrams . 111
C.4 Results for 121 tabular datasets . 111

Appendix D . 119
D.1 Experimental setup for figure 5.3 . 119
D.2 Experimental setup for transfer learning . 119
D.3 Proof of Lemma 5 . 120

Bibliography . 122

viii

LIST OF FIGURES

Figure 2.1. Difference between accuracy (or error rate) between square loss and CE
for each initialization. (Square loss acc. - CE acc.) is shown for accuracy,
(CE - Square loss) for error rate. 16

Figure 2.2. Training curves . 18

Figure 3.1. Flow of parameter www to model output Y . 31

Figure 3.2. Left: The test accuracy with different rescaling parameter R for dataset
with different class number k. Right: The test accuracy with different
rescaling parameter R for dataset with different sample complexity β = n/d. 34

Figure 3.3. The test accuracy with different rescaling parameter R for dataset with
different level of noise σε is the variance of the noise. Note that when
σε = 0 means no label noise. 34

Figure 3.4. The prediction ẑ of yi j = 1 and yi j = 0 for the i-th sample. 35

Figure 3.5. Optimal R for different class number k . 35

Figure 3.6. The test accuracy of CIFAR-100. Note that for k = 100 case, we choose a
subset with 5000 training samples to speed up. 36

Figure 4.1. Confidence histograms (top) and reliability diagrams (bottom) for a Wide
Resnet on CIFAR-100. 46

Figure 4.2. Test accuracy and model calibration of 121 tabular datasets from [30]
trained with a 3 layer (64-128-64) fully connected network. The results for
each dataset are averaged over 5 runs with different random initializations. 48

Figure 4.3. Decision boundary along different epochs for test samples. 51

Figure 4.4. Weight norm along training. 53

Figure 5.1. Failure of Test Collapse. Neural Collapse for ResNet18 on CIFAR-10.
Collapse appears to occurs on the train set, but not on test. 58

Figure 5.2. Neural Collapse on CIFAR-10. Collapse occurs on the train set, but not on
the test set (neither Strong nor Weak). 71

Figure 5.3. Failure of Test Collapse. Training and test variance vs. SGD iterations, for
various dataset and architecture combinations. All test sets (black line) do
not collapse to negligible variance, and have much less collapse than the
train sets (purple line). 72

ix

Figure 5.4. Train vs. Test Anti-Correlation. 72

Figure 5.5. Collapsed Features Transfer Worse. 76

Figure 6.1. Kernel-based speech enhancement framework . 81

Figure 6.2. MSE along per frequency channel . 87

Figure A.1. Accuracy/error rate variance of results among 5 random seeds 102

Figure C.1. Reliability diagrams for a pretrained BERT on text5 data. Left: squentropy,
middle: cross-entropy, right: square loss. 111

Figure C.2. Reliability diagrams for a pretrained BERT on text20 data. Left: squentropy,
middle: cross-entropy, right: square loss. 112

Figure C.3. Reliability diagrams for a Transformer-XL on enwik8. Left: squentropy,
middle: cross-entropy, right: square loss. 112

Figure C.4. Reliability diagrams for a Transformer-XL on text8. Left: squentropy,
middle: cross-entropy, right: square loss. 112

Figure C.5. Reliability diagrams for a Attention+CTC model on TIMIT. Left: squen-
tropy, middle: cross-entropy, right: square loss. 113

Figure C.6. Reliability diagrams for a VGG+BLSTMP model on WSJ. Left: squentropy,
middle: cross-entropy, right: scaled square loss. 113

Figure C.7. Reliability diagrams for a VGG+BLSTM model on Librispeech. Left:
squentropy, middle: cross-entropy, right: scaled square loss. 113

Figure C.8. Reliability diagrams for a TCN on MNIST. Left: squentropy, middle:
cross-entropy, right: square loss. 114

Figure C.9. Reliability diagrams for a Resnet18 on CIFAR-10.Left: squentropy, middle:
cross-entropy, right: scaled square loss. 114

Figure C.10. Reliability diagrams for a Wide Resnet on CIFAR-100 subset. Left: squen-
tropy, middle: cross-entropy, right: scaled square loss. 114

Figure C.11. Reliability diagrams for a Resnet18 on STL10. Left: squentropy, middle:
cross-entropy, right: square loss. 115

Figure C.12. Reliability diagrams for a VGG on SVHN. Left: squentropy, middle: cross-
entropy, right: square loss. 115

x

LIST OF TABLES

Table 2.1. NLP task statistics and descriptions . 12

Table 2.2. NLP results, accuracy . 12

Table 2.3. NLP results, F1 scores . 13

Table 2.4. ASR task statistics and descriptions . 14

Table 2.5. ASR results, error rate . 14

Table 2.6. Vision task statistics and descriptions . 15

Table 2.7. Vision results, accuracy . 16

Table 2.8. Standard deviation of test accuracy/error. Smaller number is bolded. 17

Table 2.9. Rescaling parameters . 19

Table 4.1. Test performance (perf(%): accuracy for NLP&Vision, error rate for speech
data) and calibration: ECE(%). 45

Table 4.2. Standard deviation of test accuracy/error. Smaller number is bolded. CE is
short for cross-entropy. 50

Table 4.3. Test accuracy/error rate, and scaled sqen is short for rescaled squentropy.
CE is short for cross-entropy. 55

Table 6.1. Kernel & DNN on TIMIT: (MSE: lowest is best, STOI and PESQ: highest
is best. Best results bolded.) . 84

Table 6.2. Kernel & DNN on HINT . 86

Table 6.3. Comparison of kernel machines with 1 subband and 4 subbands 86

Table 6.4. Running time/epochs of Kernel & DNN . 87

Table A.1. Hyper-parameters for NLP tasks . 96

Table A.2. Hyper-parameters for ASR tasks . 96

Table A.3. Hyper-parameters for vision tasks . 97

Table A.4. NLP results on validation set, accuracy . 97

Table A.5. NLP results on validation set, F1 scores . 98

xi

Table A.6. ASR results on validation set, error rate . 98

Table A.7. NLP results on training and test set, accuracy . 99

Table A.8. NLP results on training and test set, F1 scores . 99

Table A.9. ASR results on training and test set, error rate . 100

Table A.10. Vision results on training and test set, accuracy . 100

Table A.11. Training with the cross-entropy loss, our results and the reported ones 101

Table A.12. Regularization term for each task . 103

Table C.1. Hyper-parameters for CIFAR-100, SVHN, and STL-10. 111

Table C.2. Test accuracy (Acc)/ECE for 121 tabular datasets . 116

Table C.3. Test accuracy (Acc)/ECE for 121 tabular datasets . 117

Table C.4. Test accuracy (Acc)/ECE for 121 tabular datasets . 118

xii

ACKNOWLEDGEMENTS

I would like to express my deepest gratitude and appreciation to all those who have

supported and contributed to the completion of this thesis.

First and foremost, I am profoundly grateful to my supervisor, Professor Mikhail Belkin

for his guidance, expertise, and unwavering support throughout this research journey. I am lucky

to work with him, and his valuable insights, constructive feedback, and encouragement have been

instrumental in shaping this thesis and my research during my Ph.D. journey. I learn a lot from

his critical thinking, curiosity to fundamental research questions, and his last-long research taste.

Misha always points me to the right direction and gives valuable suggestions under different

stages of this journey. Mostly importantly, he makes realize what types of research are good and

what kind of research I’d like to do.

I am also thankful to the members of my thesis committee, Yoav Freund, Julian Mcauley,

Lily Weng and special thanks to Stephen Wright, for their time, expertise, and valuable sugges-

tions. Their insightful comments and constructive criticisms have immensely contributed to the

refinement of this work.

I would also like to extend my gratitude to all of my co-authors, including Siyuan Ma,

Preetum Nakkiran, Parthe Pandit, Stephen Wright and Chaoyue Liu. Siyuan guided me to

be familiar with the work of the lab and we collaborated on my first project at the lab. The

discussions with him really helped me to build the initial confidence for the start of my Ph.D..

I am lucky to collaborate with Preetum for the neural collapse project. I learn a lot from his

broad knowledge in machine learning, critical thinking in science and good time management.

Parthe is the one who introduces me a lot detailed theoretical knowledge with great patience,

and I did learn the thinking style of theory people from him. I am also very lucky to be able to

collaborate with Steve for the squentropy paper. I will always remember his rigorous thinking,

great attention to details and hard working, and learn from him. I would also give special thanks

to Chaoyue, who introduces and explains me a lot of theoretical staff and he answers all of my

questions with great patience. He can always give simple answers that I can understand for even

xiii

very hard questions. It is nice to have him as a labmate.

I would like to acknowledge my co-authors participants of this study, without whom this

research would not have been possible. Their willingness to contribute their time, insights, and

data has enriched this thesis and added depth to its findings.

I would also like to thank all other past or current labmates, Libin Zhu, Neil Mallinar,

Amirhesam Abedsoltan, Abhishek Roy, Jonathan Shi, Parsa Mirtaheri, Soumik Mandal, and

Justin Eldridge. The discussion with them on research and life sharing social events made my

Ph.D. life colorful and not lonely. Special thanks to Libin Zhu and Abhishek Roy, as we discuss

much more in personal life and also research projects.

I would like to thank all my mentors during my internships, Yong Xu, Chao Weng,

Jianming Liu, Dong Yu, Mahaveer Jain, Duc Le and Yun Wang. The collaboration with them

made me saw what kinds of projects are like in the industry. Their support, encouragement and

suggestions made my internships successful and enjoyable.

I would like to express my heartfelt appreciation to my parents, Xianfu Hui and Junlian

Hua for their unconditional love and support. Their unwavering believe on me always gives me

courage to pursue what I desire and persist the right thing instead of easy choice under difficult

situations. I am really grateful to my husband, Wuwei Lan, who always understand me well and

provide support and encouragement for me to be better. I am grateful to my grandfather and

great-grandmother who have left us but their optimism and perseverance will always be with me.

Finally, I was lucky to have my little son, who is so cute and makes me experience the miracle of

life. I also thank all other family members from both my father’s side, my mother’s side and my

parents in-law. Their belief in my abilities and constant encouragement have been my driving

force throughout this academic pursuit.

In conclusion, this thesis would not have been possible without the invaluable support

and contributions of the aforementioned individuals and institutions. Although their names may

be listed here, the magnitude of their impact on this research goes far beyond words. I am truly

grateful for their presence in my academic journey.

xiv

Chapter 2, in full, is a reprint of Like Hui, and Mikhail Belkin. “Evaluation of neural

architectures trained with square loss vs cross-entropy in classification tasks.” ICLR 2021. The

dissertation author was the primary investigator and author of this paper.

Chapter 3, in full, is a preprint of Like Hui, Parthe Pandit, Mikhail Belkin, “Precise

asymptotics of Rescaled square loss for Multiclass Classification”. The dissertation author was

the primary investigator and author of this paper.

Chapter 4, in full, is a reprint of Like Hui, Mikhail Belkin, and Stephen Wright. “Cut

your Losses with Squentropy.” ICML, 2023. The dissertation author was the primary investigator

and author of this paper.

Chapter 5, in full, is a reprint of Like Hui, Mikhail Belkin, and Preetum Nakkiran.

“Limitations of neural collapse for under- standing generalization in deep learning.” arXiv

preprint arXiv:2202.08384 (2022). The dissertation author was the primary investigator and

author of this paper.

Chapter 6, in full, is a reprint of Like Hui, Siyuan Ma, and Mikhail Belkin. “Kernel

Machines Beat Deep Neural Networks on Mask-based Single-channel Speech Enhancement”,

Interspeech 2019. The dissertation author was the primary investigator and author of this paper.

xv

VITA

2014 B.S. in Information Science and Engineering, Central South University, Changsha,
Hunan, China

2017 M.S. of Electronic Engineering, Tsinghua University, Beijing, China

2023 Ph.D. in Computer Science, University of California San Diego, La Jolla, Califor-
nia, USA

PUBLICATIONS

Like Hui, Mikhail Belkin, and Stephen Wright. “Cut your Losses with Squentropy.” ICML, 2023.

Like Hui, Mikhail Belkin, and Preetum Nakkiran. “Limitations of neural collapse for under-
standing generalization in deep learning.” arXiv preprint arXiv:2202.08384 (2022).

Like Hui, and Mikhail Belkin. “Evaluation of neural architectures trained with square loss vs
cross-entropy in classification tasks.” ICLR 2021.

Like Hui, Siyuan Ma, and Mikhail Belkin. “Kernel Machines Beat Deep Neural Networks on
Mask-based Single-channel Speech Enhancement”, Interspeech 2019.

Chaoyue Liu, and Like Hui. “ReLU soothes the NTK condition number and accelerates opti-
mization for wide neural networks.” arXiv preprint arXiv:2305.08813 (2023).

Yong Xu, Chao Weng, Like Hui, Jianming Liu, Meng Yu, Dan Su, and DongYu. “Joint Training
of Complex Ratio Mask Based Beamformer and Acoustic Model for Noise Robust ASR”, Pro-
ceedings of The 44th IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP 2019).

xvi

ABSTRACT OF THE DISSERTATION

Surprising Empirical Phenomena of Deep Learning and Kernel Machines

by

Like Hui

Doctor of Philosophy in Computer Science

University of California San Diego, 2023

Professor Mikhail Belkin, Chair

Over the past decade, the field of machine learning has witnessed significant advance-

ments in artificial intelligence, primarily driven by empirical research. Within this context, we

present various surprising empirical phenomena observed in deep learning and kernel machines.

Among the crucial components of a learning system, the training objective holds immense

importance. In the realm of classification tasks, the cross-entropy loss has emerged as the

dominant choice for training modern neural architectures, widely believed to offer empirical

superiority over the square loss. However, limited compelling empirical or theoretical evidence

exists to firmly establish the clear-cut advantage of the cross-entropy loss. In fact, our findings

demonstrate that training with the square loss achieves comparable or even better results than the

xvii

cross-entropy loss, even when computational resources are equalized.

However, it remains unclear how the rescaling hyperparameter R, needs to vary with the

number of classes. We provide an exact analysis for a 1-layer ReLU network in the proportional

asymptotic regime for isotropic Gaussian data. Specifically, we focus on the optimal choice of

R as a function of (i) the number of classes, (ii) the degree of overparameterization, and (iii)

the level of label noise. Also, we provide empirical results on real data, which supports our

theoretical predictions.

Afterwards, to avoid extra parameters brought by the rescaling of the square loss (in

cases when class number is large), later on we propose the “squentropy” loss, which is the

sum of the cross-entropy loss and the average square loss over the incorrect classes. We show

that the squentropy loss outperforms both the pure cross entropy and rescaled square losses in

terms of the classification accuracy and model calibration. Also, squentropy loss is a simple

“plug-and-play” replacement of cross-entropy as it requires no extra hyperparameters and no

extra tuning on optimization parameters.

Also, we investigate the model part of a learning system by applying theoretically well-

understood kernel machines to practical challenging tasks, speech enhancement. We found that

kernel machines actually outperform fully connected networks and require less computation

resources. We investigate the Neural Collapse phenomenon proposed by Papyan, Han, &

Donoho (2020), which gives the precise formulation of the patterns of features and classifiers

during the terminal phase of training. We study the correlation between neural collapse and

generalization in deep learning and we give precise definitions and their corresponding feasibility

on generalization, which clarify neural collapse concepts. Moreover, our empirical evidence

supports our claim that neural collapse is mainly an optimization phenomenon.

xviii

Chapter 1

Introduction

Deep learning has revolutionized the field of artificial intelligence and machine learning,

enabling remarkable advancements in various domains such as computer vision, natural language

processing, and robotics. Modern deep learning systems are at the forefront of cutting-edge

research and real-world applications, pushing the boundaries of what is possible in terms of

pattern recognition, data analysis, and decision-making. Typically, a machine learning system

includes 4 main components, training objectives, model architectures, data preprocessing and

optimizers.

Training objectives play a fundamental role in deep learning systems. These objectives

define the tasks that the models aim to accomplish. For instance, in image classification, the

objective could be to correctly assign a label to an input image, while in natural language

processing, it could involve generating coherent and contextually relevant text. Defining clear

and appropriate training objectives is crucial for guiding the learning process and evaluating the

performance of the models accurately.

In this thesis, I will mainly discuss the selection of training objectives for modern

classification tasks and the phenomenons happened during the terminal phase (training beyond

zero training error to close zero training loss) of training classifiers. Finally we focus on the

model part and compare the kernel machines, which are shallow models to deep fully-connected

networks.

1

1.1 Motivation

It is exciting to see the development of machine learning in recent years, and especially

the big improvement brought by deep learning to many kinds of applications. The come out of

ChatGPT seems to bring us to a new stage in our way to artificial general intelligence. Nowadays,

models that give best performance usually have huge parameters and are trained with a large

amount of data. However, the complexity of machine learning systems brings challenges to

the theoretical analysis of the model. That is, people mostly could not predict the outcome by

changing the parameters in realistic machine learning systems. Then the system can be somewhat

uncontrolled and bring risks to many situations.

On the other hand, in theoretical machine learning, the analysis of optimization and

generalization are mostly for very simple models, such as linear models, quadratic models, or

two-layer ReLU networks. Also, there are some other gaps between theory and practice in

machine learning, such as the loss function used in practice for classification is mostly cross-

entropy, while in theoretical analysis it is mostly based on the square loss, especially in the

interpolation regime.

The motivation of the work of this thesis is to have fundamental understanding of the

important components in modern machine learning and we would like to see whether choices

that are good for theoretical analysis, such as square loss or kernel machines can get good

generalization results in practical tasks.

1.2 Loss function in multi-class classification

The cross-entropy loss function is commonly used for classification, particularly in

practical applications. It is widely adopted by popular toolkits such as Huggingface [135],

Espnet [133], and torchvision [84]. While the literature often analyzes the loss function for

binary classification [31], real-world classification tasks predominantly involve multi-class

scenarios [73]. Our research specifically targets multi-class classification, where we extensively

2

evaluate the performance of various loss functions through systematic empirical studies. These

experiments encompass multiple benchmarks in NLP, speech, and vision, and encompass diverse

modern neural architectures.

In our initial findings, we discovered that the square loss can yield comparable or even

superior results to the widely-used cross-entropy loss in most of our experiments. However,

when the number of classes, denoted as C, is large, it becomes necessary to rescale the square

loss. Subsequently, we present a detailed asymptotic analysis of the rescaled square loss in

multi-class classification. We establish a relationship between the optimal rescaling parameter,

the class number, and the degree of overparameterization.

Moreover, we introduce a novel loss function called ”squentropy.” Notably, our experi-

ments demonstrate that squentropy achieves the highest test accuracy and superior calibration

results in the majority of cases. Compared with the square loss, squentropy eliminates the need

for rescaling.

1.3 Shallow and deep models

DNNs are powerful models that consist of multiple layers of interconnected artificial

neurons. These networks are capable of learning complex patterns and representations from

input data through a process called training. During training, the parameters of the network, such

as weights and biases, are adjusted to minimize a given loss function and improve the model’s

performance on a specific task, such as classification or regression.

On the other hand, Neural Tangent Kernel (NTK) is proposed [56] as mathematical

tools that provide insights into the convergence and generalization behavior of deep neural

networks. Afterwords, a rich literature focus on understanding the properties of different deep

architectures based on the NTK regime. The NTK approach focuses on analyzing the kernel

function associated with a DNN. The kernel function measures the similarity between pairs of

inputs and plays a fundamental role in many machine learning algorithms.

3

The key connection between DNNs and NTKs lies in the observation that as the width

of a DNN with certain activation functions approaches infinity, the dynamics of the network

become governed by the NTK. In this so-called ”neural tangent regime,” the evolution of the

network during training can be described by the NTK, allowing for theoretical analysis and

understanding of DNN behavior.

By studying the NTK, researchers have gained insights into various aspects of DNNs, such

as the initialization, optimization landscape, generalization properties, and learning dynamics.

The NTK framework has been particularly useful for analyzing the behavior of DNNs in the

overparameterized regime, where the number of parameters exceeds the number of training

samples.

Overall, the connection between DNNs and NTKs enables researchers to gain theoretical

understanding and make practical advancements in training and analyzing deep neural networks.

Essentially deep neural networks can be taken as kernel machines under the NTK regime.

Hence, we think understanding deep models requires more understanding of kernel

machines and we compare kernel machines to deep fully-connected networks in a challenging

speech enhancement tasks. The observation is that kernel machines can give even better results

and also requires less computation resources than the deep fully-connected networks. Also with

more recent techniques developed for kernel machines [2] to deal with large datasets and fast

optimization, we believe that understanding kernel machines is the starting point to understand

deep models.

4

Chapter 2

Square loss vs. Cross-entropy in classifica-
tion

Modern neural architectures for classification tasks are trained using the cross-entropy

loss, which is widely believed to be empirically superior to the square loss. In this work we

provide evidence indicating that this belief may not be well-founded. We explore several major

neural architectures and a range of standard benchmark datasets for NLP, automatic speech

recognition (ASR) and computer vision tasks to show that these architectures, with the same

hyper-parameter settings as reported in the literature, perform comparably or better when trained

with the square loss, even after equalizing computational resources. Indeed, we observe that

the square loss produces better results in the dominant majority of NLP and ASR experiments.

Cross-entropy appears to have a slight edge on computer vision tasks.

We argue that there is little compelling empirical or theoretical evidence indicating a

clear-cut advantage to the cross-entropy loss. Indeed, in our experiments, performance on

nearly all non-vision tasks can be improved, sometimes significantly, by switching to the square

loss. Furthermore, training with square loss appears to be less sensitive to the randomness in

initialization. We posit that training using the square loss for classification needs to be a part of

best practices of modern deep learning on equal footing with cross-entropy.

5

2.1 Introduction

Modern deep neural networks are nearly universally trained with cross-entropy loss in

classification tasks. To illustrate, cross-entropy is the only loss function specifically discussed in

connection with training neural networks for classification in popular references [40, 142]. It is

the default for classification in widely used packages such as NLP implementation Hugging Face

Transformers [135], speech classification by ESPnet [133] and image classification implemented

by torchvision [84]. Yet we know of few empirical evaluations or compelling theoretical analyses

to justify the predominance of cross-entropy in practice. In what follows, we use a number of

modern deep learning architectures, including convolutional neural networks and Transformers,

and standard datasets across the range of tasks of natural language processing, speech recognition

and computer vision domains as a basis for a systematic comparison between the cross-entropy

and square losses. The square loss (also known as the Brier score [7] in the classification context)

is a particularly useful basis for comparison since it is nearly universally used for regression tasks

and is available in all major software packages. To ensure a fair evaluation, for the square loss

we use hyper-parameter settings and architectures exactly as reported in the literature for cross-

entropy, with the exception of the learning rate, which needs to be increased in comparison with

cross-entropy and, for problems with a large number of classes (42 or more in our experiments),

loss function rescaling (see Section 2.5).

Our evaluation includes 28 separate learning tasks1 (neural model/dataset combinations)

evaluated in terms of the error rate or, equivalently, accuracy (depending on the prevalent domain

conventions). We also provide some additional domain-specific evaluation metrics – F1 for NLP

tasks, and Top-5 accuracy for ImageNet. Training with the square loss provides accuracy better

or equal to that of cross-entropy in 22 out of 28 tasks.

These results are for averages over multiple random initalizations, results for each

1We note WSJ and Librispeech datasets have two separate classification tasks in terms of the evaluation metrics,
based on the same learned acoustic model. We choose to count them as separate tasks.

6

individual initialization are similar. Furthermore, we find that training with the square loss

has smaller variance with respect to the randomness of the initialization in the majority of our

experiments.

Our results indicate that the models trained using the square loss are not just competitive

with same models trained with cross-entropy across nearly all tasks and settings but, indeed, pro-

vide better classification results in the majority of our experiments. The performance advantage

persists even when we equalize the amount of computation by choosing the number of epochs

for training the square loss to be the same as the optimal (based on validation) number of epochs

for cross-entropy, a setting favorable to cross-entropy.

Note that with the exception of the learning rate, we utilized hyper-parameters reported

in the literature, originally optimized for the cross-entropy loss. This suggests that further

improvements in performance for the square loss can potentially be obtained by hyper-parameter

tuning.

Based on our results, we believe that the performance of modern architectures on a range

of classification tasks may be improved by using the square loss in training. We conclude that

the choice between the cross-entropy and the square loss for training needs to be an important

aspect of model selection, in addition to the standard considerations of optimization methods

and hyper-parameter tuning.

A historical note.

The modern ubiquity of cross-entropy loss is reminiscent of the predominance of the

hinge loss in the era of the Support Vector Machines (SVM). At the time, the prevailing intuition

had been that the hinge loss was preferable to the square loss for training classifiers. Yet, the

empirical evidence had been decidedly mixed. In his remarkable thesis [115], Ryan Rifkin

conducted an extensive empirical evaluation and concluded that “the performance of the RLSC

[square loss] is essentially equivalent to that of the SVM [hinge loss] across a wide range

of problems, and the choice between the two should be based on computational tractability

7

considerations”. More recently, the experimental results in [107] show an advantage to training

with the square loss over the hinge loss across the majority of the tasks, paralleling our results

in this paper. We note that conceptual or historical reasons for the current prevalence of cross-

entropy in training neural networks are not entirely clear.

Theoretical considerations.

The accepted justification of cross-entropy and hinge loss for classification is that they

are better “surrogates” for the 0-1 classification loss than the square loss, e.g. [40], Section

8.1.2. There is little theoretical analysis supporting this point of view. To the contrary, the

recent work [92] proves that in certain over-parameterized regimes, the classifiers obtained by

minimizing the hinge loss and the square loss in fact the same. While the hinge loss is different

from cross-entropy, these losses are closely related in certain settings [60, 122]. See [92] for a

more in-depth theoretical discussion of loss functions and the related literature.

Probability interpretation of neural network output and calibration.

An argument for using the cross-entropy loss function is sometimes based on the idea that

networks trained with cross-entropy are able to output probability of a new data point belonging

to a given class. For linear models in the classical analysis of logistic regression, minimizing

cross-entropy (logistic loss) indeed yields the maximum likelihood estimator for the model

(e.g.,[44], Section 10.5). Yet, the relevance of that analysis to modern highly non-linear and often

over-parameterized neural networks is questionable. For example, in [33] the authors state that

“In classification, predictive probabilities obtained at the end of the pipeline (the softmax output)

are often erroneously interpreted as model confidence”. Similarly, the work [137] asserts that

“for DNNs with conventional (also referred as ‘vanilla’) training to minimize the softmax cross-

entropy loss, the outputs do not contain sufficient information for well-calibrated confidence

estimation”. Thus, accurate class probability estimation cannot be considered an unambiguous

advantage of neural networks trained with cross-entropy. While the analysis of calibration for

different loss functions is beyond the scope of this paper, we note that in many practical settings

8

accurate classification, the primary evaluation metric of this work, takes precedence over the

probability estimation.

Domain applicability.

It is interesting to note that in our experiments the square loss generally performs better

on NLP and ASR tasks, while cross-entropy has a slight edge on computer vision. It is tempting

to infer that the square loss is suitable for NLP and speech, while cross-entropy may be more

appropriate for training vision architectures. Yet we are wary of over-interpreting the evidence.

In particular, we observe that the cross-entropy has a significant performance advantage on just a

single vision architecture (EfficientNet [124] trained on ImageNet). The rest of the vision results

are quite similar between square loss and cross-entropy and are likely to be sensitive to the

specifics of optimization and parameter tuning. Understanding whether specific loss functions

are better suited for certain domain will require more in-depth experimental work.

Related work.

The choice of a loss function is an integral and essential aspect of training neural networks.

Yet we are aware of few comparative analyses of loss functions and no other systematic studies

of modern architectures across a range of datasets.

[63] compared the effectiveness of squared-error versus cross-entropy in estimating

posterior probabilities with small neural networks, five or less nodes in each layer, and argued

that cross-entropy had a performance advantage. [39] provided a comparison of cross-entropy

and squared error training for a hybrid HMM/neural net model for one ASR and one handwriting

recognition datasets. The authors observed that with a good initialization by pre-training,

training with the squared error had better performance than the cross-entropy. [118] analyzed

the convergence of mean squared error (MSE) and cross-entropy under the normalized logistic

regression model (Soft-Max) setting, and indicated the MSE loss function is robust to the true

model parameter values and can converge to the same parameter estimation variance of the

cross-entropy loss function with half the number of gradient descent iterations. [57] compared

9

several different loss functions on MNIST and CIFAR-10 datasets concluding that “depending

on the application of the deep model – losses other than log loss [cross-entropy] are preferable”.

A recent work [16] provided a theoretical comparison of square and cross-entropy losses for

training mixture models. The authors argued that the cross-entropy loss has more favorable

optimization landscapes in multiclass settings. To alleviate that issue, they proposed rescaling of

the loss function equivalent to choosing parameter k in Section 2.5. The authors showed that

rescaling allowed the square loss to become competitive with cross-entropy on CIFAR-100, a

finding that aligns with the results in our paper.

2.2 Experiments

We conducted experiments on a number of benchmark datasets for NLP, ASR and

computer vision, following the standard recipes given in recent papers of each domain. The NLP

datasets are MRPC, SST-2, QNLI, QQP, text-c5, text-c20, text8 and enwik8. TIMIT, WSJ and

Librispeech are three standard datasets used for training ASR systems. For vision experiments,

we choose MNIST, CIFAR-10 and ImageNet. To the best of our knowledge, we are the first to

experimentally compare the square loss and the cross-entropy on a wide range of datasets with

different size, dimensionality (number of features) and the number of classes (up to 1000 class

numbers). See Appendix A.1 for references and description.

Architectures.

In what follows we explore several widely used modern neural architectures. For

NLP tasks, we implement classifiers with a fine-tuned BERT [17], Transformer-XL [14], a

LSTM+Attention model [10], and a LSTM+CNN model [45]. Joint CTC-Attention based model

[62], triggered attention model with VGG and BLSTM modules [88], and Transformer are used

for ASR tasks. Note that for the CTC-Attention based model, the original loss function is a

weighted sum of the cross-entropy and the CTC loss. When training with the square loss, we

only replace the cross-entropy to be the square loss, and keep the CTC loss untouched. For

10

vision tasks, we use TCNN [3], Wide ResNet [141], Visual transformer [64], ResNet [46] and

EfficientNet [124] architectures.

Experimental protocols.

For training with the cross-entropy loss, we use a standard protocol, which is to stop

training after the validation accuracy does not improve for five consecutive epochs. For the square

loss we use two protocols. The first one is the same as for cross-entropy. The second protocol is

to train the square loss using the number of epochs selected when training the cross-entropy loss

with the first protocol. The second protocol is designed to equalize the usage of computational

resources between the square loss and cross-entropy and is favorable to cross-entropy.

Following the hyper-parameter settings of the architectures in the literature, we re-

implement the models trained with the cross-entropy loss keeping the same architecture and

hyper-parameter settings. We train the same models using the square loss, employing our two

experimental protocols. The only alteration to the parameters of the network reported in the

literature is adjustment of the learning rate. For datasets with a large number of labels (42 or

more in our experiments) we apply loss function rescaling (see Section 2.5).

The key points for the implementation are described in Section 2.5. The implementation

details and specific hyper-parameter settings are given in Appendix A.2. See Appendix A.4 for a

summary of comparisons between the original results and our re-implementations. Additionally,

we report the results on validation sets and training sets in Appendix A.3.

The results presented below are average results of 5 runs corresponding to 5 different

random initalizations for each task. The result across initializations are given in Section 2.3.

2.2.1 NLP experiments

We conduct different classification tasks from NLP domain. The datasets information is

summarized in Table 2.1.

As in [127], we report accuracy and F1 scores for MRPC and QQP datasets, and report

11

accuracy for SST-2, QNLI, text-c5 and text-c20. Text8 and enwik8 are classification tasks which

classify each text unit into different characters or subwords.

Table 2.1. NLP task statistics and descriptions

Corpus |Train| |Test| #classes Metric Domain
MRPC [20] 3.7K 1.7K 2 acc./F1 news
SST-2 [121] 67K 1.8K 2 acc. movie reviews
QNLI [110] 105K 5.4K 2 acc. Wikipedia
QQP [55] 364K 391K 2 acc./F1 social QA questions

text-c5 2.1K 0.4K 5 acc. title of conference
text-c20 28K 12K 20 acc. stack overflow

text8 [91] 90M 5M 27 acc. English text
enwik8 [91] 89M 4.9M 204 acc. English Wikipedia

Table 2.2 gives the accuracy and Table 2.3 gives the F1 scores of the neural models on

NLP tasks.

Table 2.2. NLP results, accuracy

Model Task
train with

square loss (%)
train with

cross-entropy (%)
square loss w/ same
epochs as CE (%)

fine-tuned BERT
[17]

MRPC 888333...888 82.1 83.6
SST-2 999444...000 93.9 93.9
QNLI 999000...666 999000...666 999000...666
QQP 888888...999 888888...999 88.8
text5 888000...666 80.5 888000...666

text20 888555...666 85.2 888555...666
Transformer-XL

[14]
text8 777333...222 72.8 73.2

enwik8 76.7 777777...555 76.7

LSTM+Attention
[10]

MRPC 71.7 70.9 71.5
QNLI 79.3 79.0 79.3
QQP 83.4 83.1 83.4

LSTM+CNN
[45]

MRPC 777333...222 69.4 72.5
QNLI 777666...000 777666...000 777666...000
QQP 84.3 888444...444 84.3

As can be seen in Table 2.2, in 12 out of 14 tasks using the square loss has better/equal

accuracy compared with using the cross-entropy, and in terms of F1 score (see Table 2.3), 5 out

of 6 tasks training with the square loss outperform training with the cross-entropy loss. Even with

12

same epochs, i.e. with same computation cost, using the square loss has equal/better accuracy in

11 out of 14 tasks , and has higher F1 score in 5 out of 6 tasks.

Table 2.3. NLP results, F1 scores

Model Task
train with

square loss (%)
train with

cross-entropy (%)
square loss w/ same
epochs as CE (%)

BERT
[17]

MRPC 888888...111 86.7 88.0
QQP 777000...999 70.7 70.7

LSTM+Attention
[10]

MRPC 80.9 80.6 80.7
QQP 62.6 62.3 62.6

LSTM+CNN
[45]

MRPC 888111...000 78.2 81.0
QQP 60.3 666000...555 60.3

We observe the relative improvements brought by training with the square loss vary

with different model architectures, and other than LSTM+CNN model on QQP dataset and

Transformer-XL on enwik8, all architectures trained with the square loss have better/equal

accuracy and F1 score. The performance of loss functions also varies with data size, especially

for MRPC, which is a relatively small dataset, all model architectures trained with the square

loss gives significantly better results than the cross-entropy.

2.2.2 Automatic Speech Recognition (ASR) experiments

We consider three datasets, TIMIT, WSJ and Librispeech, and all are ASR tasks. For

Librispeech, we choose its train-clean-100 as training set, dev-clean and test-clean as validation

and test set. We report phone error rate (PER) and character error rate (CER) for TIMIT, word

error rate (WER) and CER for both WSJ and Librispeech. A brief description of the datasets

used in our ASR experiments is given in Table 2.42. Note that we only alter the training loss of

the acoustic model, while keeping the language model and decoding part the same as described

in the literature. The acoustic model is a classifier with the dictionary size as the class number.

For TIMIT, getting PER and CER needs two different acoustic models, i.e. they are two separate

2We measure the data size in terms of frame numbers, i.e. data samples. As we take frame shift to be 10ms, 1
hour data ∼ 360k frames.

13

Table 2.4. ASR task statistics and descriptions

Corpus | Train| | Test| #classes Metric Domain
TIMIT

[36]
1.15M 54K

42 PER 3.2 hours (training set)
telephone English27 CER

WSJ
[102]

28.8M 252K 52∗
WER 80 hours (training set)

read newspapersCER
Librispeech

[98]
36M 1M 1000∗

WER 100 hours (training set)
audio booksCER

* This is the number of classes used for training the acoustic model.

classification tasks, 42-class classification for PER, and 27-class classification for CER. For WSJ,

the size of dictionary used for acoustic model is 52. WER and CER of WSJ are calculated with

one acoustic model. Hence for WSJ it is a 52-class classification task for both WER and CER.

Acoustic model of Librispeech is a 1000-class classifier for both WER and CER, as we use 1000

unigram [61] based dictionary. The results are in Table 2.5.

Table 2.5. ASR results, error rate

Model Task
train with

square loss (%)
train with

cross-entropy (%)
square loss w/ same
epochs as CE (%)

Attention+CTC
[62]

TIMIT (PER) 20.8 20.8 20.8
TIMIT (CER) 32.5 33.4 32.5

VGG+BLSTMP
[88]

WSJ (WER) 5.1 5.3 5.1
WSJ (CER) 2.4 2.5 2.4

VGG+BLSTM
[88]

Librispeech (WER) 9.8 10.6 10.3
Librispeech (CER) 9.7 10.7 10.2

Transformer
[133]

WSJ (WER) 5.7 5.8 5.7
Librispeech (WER) 9.4 9.2 9.4

We see that the square loss performs better (equal for TIMIT PER result) in 7 out of 8

tasks. It is interesting to observe that the performance advantage of the square loss reported in

Table 2.5 increases with dataset size. In particular, the relative advantage of the square loss (9.3%

relative improvement on CER, and 7.5% on WER, respectively) is largest for the biggest dataset,

Librispeech with VGG+BLSTM architecture. On WSJ with VGG+BLSTMP architecture, using

the square loss has ∼4% relative improvement on both CER and WER, while the results on

TIMIT for the square loss and cross-entropy are very similar. For Transformer architecture, the

square loss slightly outperforms the cross-entropy on WSJ, while the cross-entropy is slightly

14

better on Librispeech. The question of whether this dependence between the data size and the

relative advantage of the square loss over cross-entropy is a coincidence or a recurring pattern

requires further investigation.

For TIMIT and WSJ, we observed that training with both the square loss and the cross-

entropy need same epochs to converge. The two training protocols for training with the square

loss have same performance, and both are comparable/better than training with the cross-entropy.

On Librispeech, the square loss needs more epochs, but provides better performance.

2.2.3 Computer vision experiments

For vision tasks we conduct experiments on MNIST, CIFAR-10 and ImageNet, as in

Table 2.6.

Table 2.6. Vision task statistics and descriptions

Corpus |Train| |Test| #classes Metric Domain
MNIST [72] 60K 10K 10 acc. 28×28

CIFAR-10 [68] 50K 10K 10 acc. 32×32
ImageNet

[117] ∼1.28M 50K3 1000
acc.

Top-5 acc. 224×224

As in Table 2.7, on MNIST and CIFAR-10, training with the square loss and the cross-

entropy have comparable accuracy. On much larger ImageNet, with ResNet-50 architecture, the

accuracy and Top-5 accuracy of using the square loss are comparable with the ones got by using

the cross-entropy loss. While with EfficientNet, using the cross-entropy shows better results.

The performance of different loss functions varies among different architectures. On MNIST

and CIFAR-10, we use exactly the same hyper-parameters well-selected for the cross-entropy

loss. For ImageNet, we adjust the learning rate and add a simple rescaling scheme (see Section

2.5), all other hyper-parameters are the same as for the cross-entropy loss. The performance of

using the square loss can improve with more hyper-parameter tuning.

For all three datasets, training with the square loss converges as fast as training with the

cross-entropy, and our two experimental protocols for the square loss result in same accuracy

15

Table 2.7. Vision results, accuracy

Model Task
train with

square loss (%)
train with

cross-entropy (%)
square loss w/ same
epochs as CE (%)

TCNN [3] MNIST (acc.) 97.7 97.7 97.7
W-Resnet [141] CIFAR-10 (acc.) 95.9 96.3 95.9

Visual transformer [64] CIFAR-10 (acc.) 99.3 99.2 99.3
ResNet-50

[46]
ImageNet (acc.) 76.2 76.1 76.0

ImageNet (Top-5 acc.) 93.0 93.0 92.9
EfficientNet

[124]
ImageNet (acc.) 74.6 77.0 74.6

ImageNet (Top-5 acc.) 92.7 93.3 92.7

performance (except ImageNet with ResNet-50 model).

2.3 Performance across different initializations

MRPC SST-2 QNLI QQP

0.0

0.5

1.0

1.5

2.0

2.5

M
ea

n
of

 th
e

ac
cu

ra
cy

 d
iff

er
en

ce
 ±

 S
E Accuracy difference (Square loss - CE) of BERT

different initialization result
mean ± SE

(a) NLP: BERT

MRPC QNLI QQP

0.5

0.0

0.5

1.0

1.5

2.0

M
ea

n
of

 th
e

ac
cu

ra
cy

 d
iff

er
en

ce
 ±

 S
E Accuracy difference (Square loss - CE) of LSTM+Attention

different initialization result
mean ± SE

(b) NLP: LSTM+Attention

MRPC SST-2 QNLI
1

0

1

2

3

4

M
ea

n
of

 th
e

ac
cu

ra
cy

 d
iff

er
en

ce
 ±

 S
E Accuracy difference (Square loss - CE) of LSTM+CNN

different initialization result
mean ± SE

(c) NLP: LSTM+CNN

text5 text20 text8 enwik8
0.8

0.6

0.4

0.2

0.0

0.2

0.4

0.6

0.8

M
ea

n
of

 th
e

ac
cu

ra
cy

 d
iff

er
en

ce
 ±

 S
E Accuracy difference (Square loss - CE) of Transformer-XL

different initialization result
mean ± SE

(d) NLP

TIMIT: P TIMIT: C WSJ: W WSJ: C Lib: W Lib: C TSF-WSJ TSF-Lib

0.5

0.0

0.5

1.0

1.5

2.0

M
ea

n
of

 th
e

er
ro

r d
iff

er
en

ce
 ±

 S
E

Error difference (CE - Square loss) of ASR tasks

different initialization result
mean ± SE

(e) ASR: Error rate, P: PER, C: CER,
W: WER, TSF: Transformer

TCNN W-ResNetTformer Res: T-1 Res: T-5 Effi: T-1 Effi: T-5

2.5

2.0

1.5

1.0

0.5

0.0

0.5

M
ea

n
of

 th
e

er
ro

r d
iff

er
en

ce
 ±

 S
E

Accuracy difference (Square loss - CE) of vision tasks

different initialization result
mean ± SE

(f) Vision: Accuracy

Figure 2.1. Difference between accuracy (or error rate) between square loss and CE for each
initialization. (Square loss acc. - CE acc.) is shown for accuracy, (CE - Square loss) for error

rate.

To evaluate the stability of the results with respect to the randomness of model initializa-

tion we analyze the results for each random seed initialization.

For each random seed, we calculate the difference between the the accuracy (or the error)

16

of networks trained with the square loss and the cross-entropy respectively. We present the

results with error bars for one standard deviation in Figure 2.1.

Absolute error and accuracy results for each run and the corresponding standard devia-

tions are given in Appendix A.6.
Table 2.8. Standard deviation of test

accuracy/error. Smaller number is bolded.

Model Dataset Square loss CE

BERT

MRPC 0.484 0.766

SST-2 0.279 0.173

QNLI 0.241 0.205

QQP 0.045 0.063

text5 0.147 0.167

text20 0.172 0.08

Transformer-XL
text8 0.174 0.204

enwik8 0.228 0.102

LSTM

+Attention

MRPC 0.484 0.786

QNLI 0.210 0.371

QQP 0.566 0.352

LSTM

+CNN

MRPC 0.322 0.383

QNLI 0.173 0.286

QQP 0.458 0.161

Attention

+CTC

TIMIT (PER) 0.508 0.249

TIMIT (CER) 0.361 0.873

VGG+

BLSTMP

WSJ (WER) 0.184 0.249

WSJ (CER) 0.077 0.118

VGG+

BLSTM

Libri (WER) 0.126 0.257

Libri (CER) 0.148 0.316

Transformer
WSJ (WER) 0.206 0.276

Libri (WER) 0.102 0.232

TCNN MNIST 0.161 0.173

W-ResNet CIFAR-10 0.184 0.481

Visual Transformer CIFAR-10 0.063 0.075

ResNet-50
I-Net (Top-1) 0.032 0.045

I-Net (Top-5) 0.126 0.045

EfficientNet
I-Net (Top-1) 0.138 0.122

I-Net (Top-5) 0.089 0.089

Table 4.2 (Libri is short for Librispeech and

I-Net is short for ImageNet) shows the standard

deviation of test accuracy/error for training with

the square loss and cross-entropy. Square loss has

smaller variance in 21 out of 28 tasks, which indi-

cates that training with the square loss is less sensi-

tive to the randomness in the training process.

2.4 Observations during train-
ing

There are several interesting observations in

terms of the optimization speed comparing train-

ing with the square loss and the cross-entropy loss.

We give the experimental observations for the cases

when the class number is small, as for our NLP

tasks, which are all 2-class classification tasks, and

when the class number is relatively large, as for

Libripseech and ImageNet (both have 1000 classes).

We compare the convergence speed in terms

of accuracy, and find that for 2-class NLP classifi-

cation tasks, the training curves of training with the

square loss and the cross-entropy are quite similar.

17

Figure 2.2 (a) gives the accuracy of three model architectures trained with the square loss

and the cross-entropy along different epochs for QNLI dataset. For all three models, BERT,

LSTM+Attention, and LSTM+CNN, using the square loss converges as fast as cross-entropy

loss, and achieves better/comparable accuracy to training with the cross-entropy.

Convergence speed when class number is large

When the class number becomes large, as on speech dataset Librispeech and vision

dataset ImageNet, training with the square loss may need more epochs to converge. Figure 2.2

(b) gives the classification accuracy of acoustic model along different epochs, and Figure 2.2

(c) gives the accuracy (Top-1) and Top-5 accuracy along different training steps of ResNet on

ImageNet. Training with the square loss converges slower but reaches similar/better accuracy.

(a) NLP tasks (b) ASR tasks (c) Vision tasks

Figure 2.2. Training curves

2.5 Implementation

We summarize the key points of implementation in this section. Full details and the exact

parameters are given in Appendix A.2. Two important pieces of the implementation are (1) no

softmax for training with the square loss and (2) loss rescaling for datasets with large number of

classes.

No softmax. The widely accepted pipeline for modern neural classification tasks trained

with the cross-entropy loss contains the last softmax layer before calculating the loss. When

training with the square loss that layer needs to be removed as it appears to impede optimization.

18

Table 2.9. Rescaling parameters

Dataset #classes k M

MRPC 2 1 1

SST-2 2 1 1

QNLI 2 1 1

QQP 2 1 1

text-c5 5 1 1

text-c20 20 1 1

text8 27 1 1

enwik8 204 1 1

TIMIT (CER) 27 1 1

TIMIT (WER) 42 1 15

WSJ 52 1 15

Librispeech 1000 15 30

MNIST 10 1 1

CIFAR-10 10 1 1

ImageNet 1000 15 30

Loss rescaling mechanism. For datasets with

a small number of classes, we do not use any additional

mechanisms. For datasets with a large number of output

classes (≥ 42 in our experiments) we employ loss rescal-

ing which helps to accelerate training. Let (xxx,yyy) denote

a single labeled point, where xxx∈Rd is the feature vector,

and yyy ∈ RC. Here C is the number of output labels and

yyy = [0, . . . , 1︸︷︷︸
c

,0, . . . ,0] is the corresponding one-hot

encoding vector of the label c. We denote our model by

f : Rd → RC.

The standard square loss for the one-hot encoded

label vector can be written (at a single point) as

l =
1
C

(
(fc(xxx)−1)2 +

C

∑
i=1,i ̸=c

fi(xxx)2

)
(2.1)

For a large number of classes, we use the rescaled square loss defined by two parameters,

k and M, as follows:

ls =
1
C

(
k ∗ (fc(xxx)−M)2 +

C

∑
i=1,i̸=c

fi(xxx)2

)
.

The parameter k rescales the loss value at the true label, while M rescales the one-hot

encoding (the one-hot vector is multiplied by M). Note that when k = M = 1, the rescaled square

loss is same as the standard square loss in Eq. 2.1. The values of k and M for all experiments

are given in Table 2.9. As in [16], the parameter k is used to increase the emphasis on the

correct class in multiclass classification, and this paper proves how adding k can simplify the

optimization landscape. We find that for very large class numbers additional parameter M further

19

improves performance.

2.6 Summary and discussion

In this work we provided an empirical comparison of training with the cross-entropy and

square loss functions for classification tasks in a range of datasets and architectures. We observe

that the square loss outperforms cross-entropy across the majority of datasets and architectures,

sometimes by a significant margin. No additional parameter modification except for adjusting

the learning rate was necessary for most datasets. For datasets with a large number of classes

(42 or more) we used additional loss rescaling to accelerate training. We note that all models

used in our experiments were originally designed and tuned for training with the cross-entropy

loss. We conjecture that if the neural architectures were selected and tuned for the square

loss, performance would be further improved and no extra loss rescaling parameters would be

necessary. Another important observation is that the final softmax layer, commonly used with

cross-entropy, needs to be removed during training with the square loss.

While we could only explore a small sample of modern models and learning tasks, we

believe that the scope of our experiments — ten different neural architectures and ten different

datasets across three major application domains — is broad enough to be indicative of the wide

spectrum of neural models and datasets. Our empirical results suggest amending best practices

of deep learning to include training with square loss for classification problems on equal footing

with cross-entropy or even as a preferred option. They also suggest that new theoretical analyses

and intuitions need to be developed to understand the important question of training loss function

selection.

2.7 Acknowledgements

Chapter 2, in full, is a reprint of Like Hui, and Mikhail Belkin. “Evaluation of neural

architectures trained with square loss vs cross-entropy in classification tasks.” ICLR 2021. The

20

dissertation author was the primary investigator and author of this paper.

21

Chapter 3

Precise asymptotic of rescaled square loss

Multi-class classification is a fundamental problem in modern machine learning, typically

involving cross-entropy minimization. Recently, empirical evidence by [51], showed that the

rescaled square loss is a competitive alternative to the cross-entropy loss. However, it remains

unclear how the rescaling hyperparameter R, needs to vary with the number of classes. In this

paper, we provide an exact analysis for a 1-layer ReLU network in the proportional asymptotic

regime for isotropic Gaussian data. Specifically, we focus on the optimal choice of R as a

function of (i) the number of classes, (ii) the degree of overparameterization, and (iii) the level of

label noise. Finally, we provide empirical results on real data, which supports our theoretical

predictions.

3.1 Introduction

The choice of loss function is important in modern machine learning and for classification

tasks in practice, the cross-entropy is usually the default loss function. However, some works

[57, 51] compare the square loss with the cross-entropy for classification and conclude that

the square loss can be equivalent or even superior to the cross-entropy loss. Specifically, Ryan

Rifkin provided empirical evidence supporting this claim on kernel machines [115, 114]. More

recently, in [51], by a wide range of experiment on various datasets and modern architectures, the

authors show that the square loss achieves comparable or better test performance than the cross

22

entropy. On the other hand, a theoretical line of work prove that the solutions of minimizing

the square loss and the cross-entropy can be equivalent under some setting [92, 129]. However,

as shown in [51], when class number is large, the square loss needs to do rescaling, and there

is no in-depth study, especially, no thorough theoretical analysis on why and how the recaling

mechanism helps. As shown in our experiments Figure 3.6, and in [51] the rescaling makes a

huge difference to the original square loss and enables square loss achieve even better results

compared with the cross-entropy loss. Hence, it is important to understand the correlation

between rescaling parameter R and the generalization error, especially, how to set the optimal R.

Also, in most theoretical analysis of classification problems, most of the works focus on 2-class

classification with the logistic loss, while in practice, a large fraction of the classification learning

problems are more than 2 classes. This work focuses on multi-class classification and provides

precious asymptotics of 1-layer Relu network trained with rescaled square loss. This enables

exact computation of the training loss and generalization error, which are key properties.

Our contribution.

We study the training dynamics and generalization behaviours of training with rescaled

square loss in multi-class classification. Empirical evidence in [51] show that rescaled square

loss can achieve comparable or even better test performance on a wide range of models and

datasets. Here we provide a in-depth study on why and how rescaling helps with the square loss

in classifications. In details:

1. In section 3.3.2, we study a 1-layer Relu network which enables theoretical analysis

and show that this simplified model (no final linear classification layer) captures the

generalization behaviours of scaled square loss found in [51].

2. In section 3.3.4 we give closed-form equations capturing the precious asymptotics of

the generalization error and training error, especially the relation of them to rescaling

parameter R and class number k. These formulations enable exact computation of those key

23

quantities. Our proof method relies on recent advances of approximate message passing

[28].

3. In section 3.4.1 we investigate the performance of scaled square loss with different R and k

in both over-parameterized setting and under-parameterized settings by giving simulation

results on synthetic data.

4. In section 3.4.2, we provide empirical results on real data and observe that the learning

curves and generalization behaviour are similar to the ones given by our formulations.

That shows our theoretical equations are applicable to real datasets.

3.2 Related work

Multiclass classification.

There is a range of work on analyzing the impact of training loss functions for multiclass

classification, including [18, 134, 6, 13, 73] which focus on the algorithms and some of them

provide empirical studies on the comparison among different loss functions, see [115, 114] for

kernel machines and see [48, 32, 70, 51, 16, 5, 138] for deep neural networks. Many of those

work observed that comparing with the cross-entropy loss, training with the square loss achieves

comparable generalization performance. Also, another line of research works on analyzing the

finite sample behaviour of multiclass classification algorithm in under-parameterized setting

[65, 74, 85, 75] or over-parameterized setting [129]. Specifically, Wang et al. [129] study benign

overfitting in multiclass linear classification and find that the multiclass support vector machine

(SVM) solution, the min-norm interpolating (MNI) solution and the one-vs-all SVM classifier

all lead to classifiers that interpolate the training data and have equal accuracy. Frei et. al. [31]

consider the generalization error of a two-layer neural network trained to interpolation with

logistic loss by gradient descent and show under nonlinearity of the model and training dynamic,

this neural networks exhibit benign overfitting. However, they only consider 2-class classification

problems. [125] precisely characterize how the test error varies over different training algorithms,

24

data distributions, problem dimensions as well as number of classes, inter/intra class correlations

and class priors.

Rescaled loss functions.

[16] compared the cross-entropy and the square loss in multi-class classification and

observed that square loss with a scaling parameter to emphasis the loss on the correct class

has competitive performance compared with the cross-entropy. [51] conducted a wide range

of classification experiments with various modern neural architectures and showed training

with the square loss has comparable test performance. However, when the class number is

large, the square loss needs to do a heuristical-scaling. [43] were able to reproduce those

results and further analyzed the neural collapse of models trained with the square loss. They

observed even faster convergence to activation collapse and better robustness than training with

the cross-entropy loss. [49] provide theoretical understanding of square loss in classification

under over-parameterized NTK regime, and concluded that the square loss has comparable

generalization error but noticeable advantages in robustness and model calibration. [145] justify

the usage of the rescaled square loss under unconstrained feature model by visualizing the

optimization loss landscape around the neural collapse solutions. The authors find that tuning

the rescaling hyperparameters can improve the optimization landscape which converges faster to

the simplex ETF solutions. As far as we are aware, our work is the first in-depth study on the

rescaled square loss for multi-class classification with non-linear model.

Approximate Message Passing.

Our key tool for analyzing the behaviour of training with the rescaled square loss is

approximate message passing (AMP). It is originally proposed for the inference of compressed

sensing by [21] and some follow-up works develop vector approximate messesage passing

(VAMP) algorithm [119] and others prove that this algorithem can be Bayes optimal under

certain settings [113]. One recent work by [80] proves exact asymptotics characterising the ERM

estimator in high-dimensions for generalized linear model for multi-class classification built

25

on techniques in approximate message-passing framework. They studied the efficiency of L1

penalty with respect to L2 and the phase transition on the existence of the multi-class logistic

maximum likelihood estimator.

In this work, we apply the VAMP algorithm and adjust it for our 1-layer Relu network for

the minimization of the rescaled square loss. The VAMP algorithm involves a set of deterministic

recursive equations to compute unknown parameters, which is called state evolution. In the large

system limit, i.e. when sample size n and feature dimension d both go to ∞ by a fixed ratio

β = n/d, the VAMP algorithm enables (i) the exact computation of the precise asymtotics, such

as the generalization error, by getting the fixed points of state evolution, and (ii) the estimates of

unknown properties such as parameters, generalization error in each iteration. Specifically, the

state evolution of VAMP and its fixed point solution help us show the correlation of the rescaling

parameter R, class number k and level of label noise to the generalization error.

3.3 Preliminaries

We consider multiclass classification tasks and minimize the rescaled square loss for

training. For generalization error, or say test accuracy, the standard 0-1 loss is used. We study

the 1-layer Relu network with isotropic Gaussian data. The focus of this work is to provide a

rigorous study on how to set the optimal rescaling parameter R and understand the correlation of

R,k, label noise level to the generalization behaviour in both over-parameterized (β = n/d < 1)

and under-parameterized (β = n/d > 1) settings and we call the VAMP algorithm for our 1-layer

relu network with rescaled square loss the 1-relu VAMP.

3.3.1 Data

Let the labeled samples be (xxxi,yyyi)i=1,...,n and xxxi ∈ Rd, i = 1, ...,n are i.i.d and sampled

from a d-dimensional Gaussian distribution with zero mean and covariance ΣΣΣ ∈Rd×d . yyyi ∈Rk is

the one-hot encoding of the real-valued label yi and yi = f ∗(xxxi)+εi. Specifically, in the following,

unless pointed out, we consider the noise-free model by default, and yi = xxxiiiwww∗, where www∗ ∈Rd×k.

26

The data matrix XXX := [xxx1 xxx2 ...xxxn]
T ∈ Rn×d and label matrix YYY := [yyy1 yyy2 ...yyyn]

T ∈ Rn×k.

Following the setting in [25], we assume that covariance matrix ΣΣΣ has an eigenvalue

decomposition,

ΣΣΣ =
1
d

VVV T diag(sss2
tr)VVV (3.1)

where sss2 are the eigenvalues of ΣΣΣ and VVV ∈ Rd×d is the eigenvectors, which is an orthogonal

matrix. With Eq. (3.1), we can write XXX =UUU diag(ssstr)VVV , where UUU ∈ Rn×d are sampled i.i.d from

N (0, 1
d) and its SVD is:

UUU =UUU2SSSUUU1, SSS :=

diag(sss) 0

0 ∗

 (3.2)

where UUU1 ∈ Rn×n and UUU2 ∈ Rd×d are orthogonal and SSS ∈ Rn×d has non-zero entries sss only on

the principal diagonal and sss ∈ Rmin{n,d} are the singular values of UUU . The matrices UUU1 and UUU2

are Harr-distributed on the group of orthogonal matrices.

Test data.

We assume the test data is also Gaussian, and the covariance matrix of test data is:

ΣΣΣts =
1
d

VVV T diag(sss2
ts)VVV . (3.3)

Then for one test sample xxxts,

xxxT
ts = uuudiag(sssts)VVV , (3.4)

where uuu ∈ Rd ∼N (0,1/d). sssts and VVV are the eigenvalues and eigenvectors of the covariance

matrix ΣΣΣts. Note here following the setting in [25] we assume that the eigenvectors of the training

and test samples are the same.

3.3.2 1-layer relu network

In this work we consider a network with only one-hidden layer neural network, that is,

the output of relu activation is the prediction of label Y and we directly calculate the loss between

27

the two. Let the parameter of the only layer be www, which is in Rp×k, then our model f : Rd→Rk

(at a single sample point xxx) is formulated as follows:

f (www;xxx) = (xxxwww)+, (3.5)

where (xxxwww)+ is the output of relu activation function. Note that we do not include a linear

classification layer as we find that this one-hidden layer network already capture the optimization

and generalization pattern of training with re-scaled square loss. See empirical evidence in

Section 3.4. Our 1-layer Relu network enables us to provide the most concise results with VAMP

algorithm. Our idea still works for networks with the classification layer and can also extend to

general deep networks.

We first consider the scaled square loss as in [51], which has two scaling parameters, and

its format is:

ls =
1
k

(
M ∗ (fc(www;xxx)−R)2 +

k

∑
j=1, j ̸=c

f j(www;xxx)2

)
, (3.6)

where M re-scales the loss at true class c, while R re-scales the one-hot encoding. Our extensive

empirical results show that only one parameter R is enough to get similar training dynamic and

comparable generalization performance with both M and R. [145] show analysis only with large

R is simple and the global optimization conditions remain the same with both M and R. Also,

the authors show that with large R leads to a “better” optimization landscape similar to that of

the CE loss. Hence, in the following, we consider the scaled square loss with only one scaling

parameter R. It remains to solve the following minimization problem:

l(www) = min
www
∥RYYY − (XXXwww)+∥2 +

λ

2
∥www∥2 (3.7)

Note that the nonlinear Relu activation is essential for the rescaling of YYY to make a

difference, as for linear models such as logistic regression or kernel machines, www is linear to YYY

and R only change www by R times and does not make a difference for the classification error.

28

3.3.3 Large system limit

We consider a setting where the sample number n and feature dimension d go to infinity

with a fixed ratio β , i.e:

lim
n→∞

n
d
= β

and β ∈ (0,∞). This large system limit setting is necessary for the analysis of the AMP based

algorithms [113]. When β > 1, it corresponds to under-parameterized setting, while when β < 1,

it corresponds to over-parameterized setting. Our VAMP based analysis of the generalization

behaviour caused by the rescaling of the square loss holds for both over-parameterized and

under-parameterized settings.

Under the large system limit assumption, the limiting behaviour of the i-th entry of sss

definied in Eq. (3.2) is

lim
n→∞
{sssi} PL(2)

= si (3.8)

where si ≥ 0 is a non-negative random variable given by the SVD of matrix UUU as in Eq. (3.2).

It satisfies the Marcencko-Pastur (MP) law and the exact computation (not bound) of the

generalization behaviour comes from this MP law which considers all eigenvalues distribution of

the matrix.

3.3.4 Main results

Theorem 1. Consider the learning problem give in Eq. 3.7, which minimize the re-scaled square

loss with the 1-layer relu network model. Apply the VAMP algorithm to optimize the parameters

w, then there exists constants κ,τ,γ+,γ−, such that

1. the parameters estimation ŵww empirically converges to the solution of proximal operator

ˆ̃wwwi = h(QQQ,γ−), which is

ˆ̃www =
SSSQQQ

SSS2 +λ/γ−
(3.9)

where QQQ = JJJ∗+N (0,τ). Note that κ,τ,γ+,γ− depends on re-scaling parameter R and

29

class number k.

2. The asymptotic generalization error is a function of k,R,τ,u, and specifically,

εg(k,R,τ,u) = P((uuusssts ˆ̃wwwc)+ < (uuusssts ˆ̃www j ̸=c)+) (3.10)

where c is the true label of sample xxxts.

3.3.5 State evolution of 1-relu VAMP and its fixed point solution

Now we are ready to go to the details of our 1-relu VAMP algorithm for the optimization

of Eq. (3.7).

Recursive iterations of state evolution

Let zzz = xxxwww ∈ Rn×k, and QQQ, ppp be the estimates of www and zzz, correspondingly. Then in each

iteration of the VAMP algorithm, the functions h(·) and g(·) that produce QQQ and ppp are essentially

proximal-type operators which are defined as follows:

h(QQQ,HHH−) = arg min
www

λ

2
∥www∥2 +

1
2
∥www−QQQ∥2

HHH− (3.11)

g(ppp,GGG+) = arg min
z
∥RYYY − (zzz)+∥2 +

1
2
∥zzz− ppp∥2

GGG+ (3.12)

Let GGG+ = γ+I and GGG− = γ−I, HHH+ = η+I, HHH− = η−I, then the VAMP becomes:

h(QQQ,γ−) = arg min
www

λ

2
∥www∥2 +

γ−

2
∥www−QQQ∥2 (3.13)

g(ppp,γ+) = arg min
zzz
∥RYYY − (zzz)+∥2 +

γ+

2
∥zzz− ppp∥2 (3.14)

Lemma 1. Let JJJ = SSSVVV T www, then ZZZ =VVV JJJ, w̃ww =VVV T www ∈ Rd×k. h(QQQ,γ−) = arg min
J

γ−
2 ∥JJJ−QQQ∥2 +

λ

2 ∥w̃ww∥2 s.t.JJJ = SSSw̃ww, and

ˆ̃wi = arg min
w̃i

γ−

2
∥si ˆ̃wi−Qi∥2 +

λ

2
∥w̃i∥2 s.t.Ĵi = si ˆ̃wi (3.15)

30

Figure 3.1. Flow of parameter www to model output Y

then, ˆ̃wi =
γ−siQi

γ−s2
i +λ

, Ĵi =
γ−s2

i Qi

γ−s2
i +λ

.

η− = γ+/ ∂g
∂ p ,η

+ = γ−/ ∂h
∂Q and

ppp =VVV
Ĵη+−Qγ−

η+− γ−
(3.16)

QQQ =VVV⊤
Ẑη−− pγ+

η−− γ+
(3.17)

This makes ppp ≈ ZZZ∗+N (0,κ2) and QQQ ≈ JJJ∗+N (0,τ2) and the VAMP algorithm gives the

following:

η
+ = γ

−/
∂h
∂Q

(3.18a)

γ
+ = η

+− γ
− (3.18b)

η
− = γ

+/
∂g
∂ p

(3.18c)

γ
− = η

−− γ
+ (3.18d)

τ
2 = E∥

ẑ− ∂g
∂ p pi

1− ∂g
∂ p

− z∗i ∥2 (3.18e)

κ
2 = E∥

Ĵi− ∂h
∂QQi

1− ∂h
∂Q

− J∗i ∥2 (3.18f)

Let t denote the iterations of VAMP algorithm and ẑzz be the fix point of zzz. When t→ ∞,

the solution of zzz found by the VAMP state evaluation converge to ẑzz.

31

Lemma 2.

∂g
∂ p i j

=


−erf

(
−p⋆√

2(σ∗+κ2)

)
2k(1+γ) + 2γ+1

2(1+γ) i = j

0 i ̸= j

(3.19)

∂h
∂Q i j

= 1−T (λ/γ
−) (3.20)

The proof is given in Appendix B.2.

Lemma 3. Let u = λ/γ−, w̃∗i = N (0,σ2), p⋆ = R(1−
√

1+1/γ+), the error function is

erf(−p⋆√
2(σ∗2+κ2)

) := ER,k(γ
+,κ), then with fixed known quantities λ ,σ2

⋆ (variance of Z∗), σ2,

β = n
p ,k,R, κ,τ,γ+,γ− are the solutions of following equations.

γ
+ =

T (u)λ/u
1−T (u)

(3.21a)

T (u) =
−ER,k(γ

+,κ)+ k(2γ++1)
2k(1+ γ+)

(3.21b)

κ
2 =

τ2(T4(u)− (1−T (u))2)+σ2u2T2(u)
T (u)2 (3.21c)

τ
2 =

1
2κ2(k2 + kER,k(γ

+,κ)−2ER,k(γ
+,κ))

(2kγ++ k−ER,k(γ+,κ))2 (3.21d)

+
2(1+ER,k(γ

+,κ)2)R2 +2(k+ER,k(γ
+,κ)2)σ2

⋆

(2kγ++ k−ER,k(γ+,κ))2 (3.21e)

where

1. T (u) = −(1−β+u)+
√

(1−β+u)2+4βu
2β

2. T2(u) = T ′(u) = 1
2β
(−1+ 1+β+u√

(1−β+u)2+4βu
)

3. T4(u) = 1−T (u)−uT ′(u) = (1+β)−
√

(1−β+u)2+4βu
2β

− u(1+β+u)
2β

√
(1−β+u)2+4βu

We give the derivation of Eq. (3.21) in the Appendix B.2.

32

Lemma 4. Let ẑc be the prediction of yc and yc = 1, where c is the true class index of a sample

xxx. Let ẑ denote the prediction corresponding to 0 in the one-hot encoding yyy. Then

ẑc =


1

1+γ+
R+ γ+

1+γ+
p p > p⋆

p otherwise
(3.22)

ẑ =


γ+

1+γ+
p p > 0

p otherwise
(3.23)

where p is real valued scalar corresponds to the i-th row (sample index) and j-th (label

index) column entry of ppp and p⋆ = R(1−
√

1+1/γ+).

See Appendix B.1 for the proof.

3.4 Numerical Results

3.4.1 Simulation results on synthetic data

We generate the training samples and test data as described in Section 3.3.1. For each

case of the synthetic data, the test accuracy is the simulation results of Theorem 1. With a given

k,R,β ,λ , we first get the the solution of τ and u by solving Eq. (3.21) using the fsolve package

of Scipy. Then we plug in the value of τ and u into Eq. 3.9 and Eq. 3.10 to get the test accuracy.

We find that large R increases the test accuracy by a large scale in most cases. All results are

taken as the average of 10 runs with different random seeds.

In the left figure of Figure 3.2 we vary the class number k and fix n = 1500,d = 7500

and λ = 10−5 and get the test accuracy as a function of rescaling parameter R. We see that the

test accuracy get large when R increase and becomes flat even with a larger R. This holds for

different class number k. In the right figure od Figure 3.2, we fix k = 60,n = 1500,λ = 10−5 and

vary β , i.e. n/d, which measures the sample complexity, essentially is varying feature dimension

d = n/β . We get the test accuracy as a function of R, and observe that in both over-parameterized

33

0 50 100 150 200 250 300
R

0

5

10

15

20

25

30

35

40
Te

st
 a

cc
ur

ac
y

n = 1500, d = 7500, vary k
k = 30
k = 60
k = 100
k = 150

0 50 100 150 200 250 300
R

0

5

10

15

20

25

30

35

Te
st

 a
cc

ur
ac

y

k = 60, n = 1500, d = n/ , vary k
= 0.2
= 0.4
= 0.8
= 1.2
= 2

Figure 3.2. Left: The test accuracy with different rescaling parameter R for dataset with
different class number k. Right: The test accuracy with different rescaling parameter R for

dataset with different sample complexity β = n/d.

0 100 200 300 400
R

0

5

10

15

20

25

30

35

Te
st

 a
cc

ur
ac

y

k = 60, n = 1500, d = 7500, vary noise level
= 0.1
= 0.5
= 1
= 2
= 0

Figure 3.3. The test accuracy with different rescaling parameter R for dataset with different
level of noise σε is the variance of the noise. Note that when σε = 0 means no label noise.

setting, i.e. β < 1 case and under-parameterized setting β = 1.2 and β = 2, the test accuracy

increases with a larger R until some constant. In results of both Figure 3.2, we see that the

generalization performance increases by a large scale with an optimal R which is larger than 1.

In Figure 3.3 we show the test accuracy as a function of R under the setting with different

level of label noise. That is, for a training sample xxxi, its label yi = arg max
j

(xxxiiiwww∗+ εi) and εi is

randomized from a Gaussian distribution N (0,σε). We observe that increasing R consistently

increases the test accuracy by a large margin under different levels of label noise, compared with

R = 1. Interestingly, the highest test accuracy with an optimal R is larger under label noise case

than the one without label noise.

34

1 2 3 4 5
p

1

2

3

4

5

6

7

8
z

yij = 1: n = 1000, k = 100
R=1, acc=0.48
R=500, acc=0.53
R=1000, acc=0.59
R=5000, acc=0.93
R=10000, acc=1
R=15000, acc=1

Figure 3.4. The prediction ẑ of yi j = 1 and yi j = 0 for the i-th sample.

To visually see how rescaling helps, we plot ẑc and ẑ, which are prediction of corre-

sponding to yc = 1 and yi = 0. In Figure 3.4, the left one plots ẑc (corresponds to yi j = 1)

as a function of p, which is the input of the proximal operator in terms of zzz, i.e. g(ppp,γ+) =

arg min
zzz
∥RYYY − (zzz)+∥2 + γ+

2 ∥zzz− ppp∥2. The right one of Figure 3.4 gives the average of all ẑ j ̸=c

(corresponds to yi j = 0). Here we only consider a single sample, hence ẑ j and the corresponding

p is a scalar. We see that ẑ is linear with p, that is, ẑ j = p+b j for all j = 1, ...,k, while with a

larger R, bc increases while b j ̸=c stays to be 0. That makes ẑc win and increase the accuracy.

25 50 75 100 125 150 175 200
class number k

200

400

600

800

1000

R

Fix n/k = 50, vary k, p = n/ , = 0.2

25 50 75 100 125 150 175 200
class number k

0

10

20

30

40

50

ac
cu

ra
cy

Fix n/k = 50, vary k, p = n/ , = 0.2
optimal R
R=1

Figure 3.5. Optimal R for different class number k

In Figure 3.5, we fix n/k = 50,β = 0.2 and vary class number k. We show the optimal R

for different class number k, and also give the accuracy of the optimal R and when R = 1. We

can see that mostly R > 1 and the optimal R gives much better test accuracy for all class number

cases.

35

3.4.2 Results on real data

In this section, we show how rescaling of the square loss helps increasing the test

performance on real datasets. Inspired by the empirical results in [51] which show the (rescaled)

square loss are competitive to the cross-entropy loss in training modern networks, we do

experiments on real data and see that rescaling mechnism improves the original square loss by a

large scale.

0 10 20 30 40 50 60 70 80
R

30

40

50

60

70

80

90

Te
st

 a
cc

ur
ac

y

CIFAR with Wide Resnet

k = 25
k = 50
k = 75
k = 100

Figure 3.6. The test accuracy of CIFAR-100. Note that for k = 100 case, we choose a subset
with 5000 training samples to speed up.

We do experiments on CIFAR-100, and we randomly select a subset from the full CIFAR-

100 to get different class number k. The results are shown in Figure 3.6, the test accuracy has

more than 15% improvement in all cases with different class numbers. Our simulation results

in Section 3.4.1 captures the correlation of test accuracy and rescaling parameter R observed in

real dataset. As this work aims at providing a theoretical framework to understand the rescaling

mechanism of the square loss, we do not provide a lot of empirical results on real data.

3.5 Acknowledgements

Chapter 3, in full, is a preprint of Like Hui, Parthe Pandit, Mikhail Belkin, “Precise

asymptotics of Rescaled square loss for Multiclass Classification”. The dissertation author was

the primary investigator and author of this paper.

36

Chapter 4

Cut your Losses with Squentropy

Nearly all practical neural models for classification are trained using cross-entropy loss.

Yet this ubiquitous choice is supported by little theoretical or empirical evidence. Recent work

[51] suggests that training using the (rescaled) square loss is often superior in terms of the

classification accuracy. In this paper we propose the “squentropy” loss, which is the sum of

two terms: the cross-entropy loss and the average square loss over the incorrect classes. We

provide an extensive set of experiments on multi-class classification problems showing that the

squentropy loss outperforms both the pure cross entropy and rescaled square losses in terms

of the classification accuracy. We also demonstrate that it provides significantly better model

calibration than either of these alternative losses and, furthermore, has less variance with respect

to the random initialization. Additionally, in contrast to the square loss, squentropy loss can

typically be trained using exactly the same optimization parameters, including the learning rate,

as the standard cross-entropy loss, making it a true “plug-and-play” replacement. Finally, unlike

the rescaled square loss, multiclass squentropy contains no parameters that need to be adjusted.

4.1 Introduction

As with the choice of an optimization algorithm, the choice of loss function is an

indispensable ingredient in training neural network models. Yet, while there is extensive

theoretical and empirical research into optimization and regularization methods for training

37

deep neural networks [123], far less is known about the selection of loss functions. In recent

years, cross-entropy loss has been predominant in training for multi-class classification with

modern neural architectures. There is surprisingly little theoretical or empirical evidence in

support of this choice. To the contrary, an extensive set of experiments with neural architectures

conducted in [51] indicated that training with the (rescaled) square loss produces similar or

better classification accuracy than cross entropy on most classification tasks. Still, the rescaled

square loss proposed in that work requires additional parameters (which must be tuned) when the

number of classes is large. Further, the optimization learning rate for the square loss is typically

different from that of cross entropy, which precludes the use of square loss as an out-of-the-box

replacement.

In this work we propose the “squentropy” loss function for multi-class classification.

Squentropy is the sum of two terms: the standard cross-entropy loss and the average square

loss over the incorrect classes. Unlike the rescaled square loss, squentropy has no adjustable

parameters. Moreover, in most cases, we can simply use the optimal hyperparameters for cross-

entropy loss without any additional tuning, making it a true “plug-and-play” replacement for

cross-entropy loss.

To show the effectiveness of squentropy, we provide comprehensive experimental results

over a broad range of benchmarks with different neural architectures and data from NLP, speech,

and computer vision. In 24 out of 34 tasks, squentropy has the best (or tied for best) classification

accuracy, in comparison with cross entropy and the rescaled square loss. Furthermore, squentropy

has consistently improved calibration, an important measure of how the output values of the

neural network match the underlying probability of the labels [41]. Specifically, in 26 out of

32 tasks for which calibration results can be computed, squentropy is better calibrated than

either alternative. We also show results on 121 tabular datasets from [30]. Compared with cross

entropy, squentropy has better test accuracy on 94 out of 121 tasks, and better calibration on 83

datasets. Finally, we show that squentropy is less sensitive to the randomness of the initialization

than either of the two alternative losses.

38

Our empirical evidence suggests that in most settings, squentropy should be the first

choice of loss function for multi-class classification via neural networks.

4.2 The squentropy loss function

The problem we consider here is supervised multi-class classification. We focus on the

loss functions for training neural classifiers on this task.

Let D = (xxxi,yi)
n
i=1 denote the dataset sampled from a joint distribution D(X ,Y). For

each sample i, xxxi ∈X is the input and yi ∈Y = {1,2, . . . ,C} is the true class label. The one-hot

encoding label used for training is eeeyi = [0, . . . , 1︸︷︷︸
yi

,0, . . . ,0]T ∈ RC. Let f (xxxi) ∈ RC denote

the logits (output of last linear layer) of a neural network of input xxxi, with components f j(xxxi),

j = 1,2, . . . ,C. Let pi, j = e f j(xxxi)/∑
C
j=1 e f j(xxxi) denote the predicted probability of xxxi to be in class

j. Then the squentropy loss function on a single sample xxxi is defined as follows:

lsqen(xxxi,yi) =− log pi,yi(xxxi)+
1

C−1

C

∑
j=1, j ̸=yi

f j(xxxi)
2. (4.1)

The first term − log pi,yi(xxxi) is simply cross-entropy loss. The second term is the square loss

averaged over the incorrect (j ̸= yi) classes.

The cross-entropy loss is minimized when fyi(xxxi)→ ∞ while f j(xxxi)→−∞ or at least

stays finite for j ̸= yi. By encouraging all incorrect logits to go to a specific point, namely 0, it is

possible that squentropy yields a more “stable” set of logits — the potential for the incorrect

logits to behave chaotically is taken away. In other words, the square loss term plays the role of a

regularizer. We discuss this point further in Section 4.4.2.

Dissecting squentropy.

Cross entropy acts as an effective penalty on the prediction error made for the true class

yi, as it has high loss and large gradient when pi,yi is close to zero, leading to effective steps in a

gradient-based optimization scheme. The “signal” coming from the gradient for the incorrect

39

classes is weaker, so such optimization schemes may be less effective in driving the probabilities

for these classes to zero. Squentropy can be viewed as a modification of the rescaled square

loss [51], in which cross entropy replaces the term t(fyi(xxxi)−M)2 corresponding to the true

class, which depends on two parameters t, M that must be tuned. This use of cross entropy

dispenses with the additional parameters yet provides an adequate “signal” for the gradient for a

term that captures loss on the “true” class.

The second term in (4.1) pushes all logits f j(xxxi) corresponds to false classes j ̸= yi to 0.

Cross entropy attains a loss close to zero on term i by sending fyi(xxxi)→ ∞ and/or f j(xxxi)→−∞

for all j ̸= yi. By contrast, squentropy “anchors” the incorrect logits at zero (via the second term)

while driving fyi(xxxi)→∞ (via the first term). Then the predicted probability of true class pi,yi(xxxi)

will be close to e fyi (xxxi)

e fyi (xxxi)+C−1
for squentropy, which possibly approaches 1 more slowly than for

cross entropy. When the training process is terminated, the probabilities pi,yi(xxxi) tend to be less

clustered near 1 for squentropy than for cross entropy. Confidence in the true class thus tends to

be slightly lower in squentropy. We see the same tendency toward lower confidence in the test

data, thus helping calibration.

In calibration literature, various post-processing methods, such as Platt scaling [104]

and temperature scaling [41], also improves calibration by reducing pi,yi below 1, while other

methods such as label smoothing [90, 79] and focal loss [89] achieve similar reduction on the

predicted probability. While all these methods require additional hyperparameters, squentropy

does not. We conjecture that calibration of squentropy can be further improved by combining it

with these techniques.

Relationship to neural collapse.

Another line of work that motivates our choice of loss function is the concept of neural

collapse [100]. Results and observations for neural collapse interpose a linear transformation

between the outputs of the network (the transformed features f j(xxxi)) and the loss function. They

show broadly that the features collapse to a class average and that, under a cross-entropy loss,

40

the final linear transformation maps them to rays that point in the direction of the corners of the

simplex in RC. (A modified version of this claim is proved for square loss in [43].) Our model is

missing the interposing linear transformation, but these observations suggest roughly that cross

entropy should drive the true logits fyi(xxxi) to ∞ while the incorrect logits f j(xxxi) for j ̸= yi tend to

drift toward −∞, as discussed above. As noted earlier, the square loss term in our squentropy

loss function encourages f j(xxxi) for j ̸= yi to be driven to zero instead — a more well defined

limit and one that may be achieved without blowing up the weights in the neural network (or by

increasing them at a slower rate). In this sense, as mentioned above, the squared loss term is a

kind of regularizer.

Confidence calibration.

We use the expected calibration error (ECE) [93] to evaluate confidence calibration

performance. It is defined as Ep[|P(ŷ = y|p)− p|], where p and y correspond to the estimated

probability and true label of a test sample xxx. ŷ is the predicted label given by argmax
j

p j. It

captures the expected difference between the accuracy P(ŷ = y|p) and the estimated model

confidence p.

Because we only have finite samples in practice, and because we do not have access to

the true confidences ptrue for the test set (only the labels y), we need to replace this definition

with an approximate ECE. This quantity is calculated by dividing the interval [0,1] of probability

predictions into K equally-spaced bins with the k-th bin interval to be (k−1
K , k

K]. Let Bk denote

the set of test samples (xxxi, ŷi) for which the confidence pi,yi predicted by the model lies in

bin k. (The probabilities pi, j are obtained from a softmax on the exponentials of the logits

f j(xxxi).) The accuracy of this bin is defined to be acc(Bk) =
1
|Bk|∑i∈Bk

1(ŷi = yi), where yi is the

true label for the test sample xxxi and ŷi is the model prediction for this item (the one for which

pi, j are maximized over j = 1,2, . . . ,C). The confidence for bin k is defined empirically as

41

conf(Bk) =
1
|Bk|∑i∈Bk

pi,yi . We then use the following definition of ECE:

ECE =
K

∑
k=1

|Bk|
n
|acc(Bk)− conf(Bk)| . (4.2)

This quantity is small when the frequency of correct classification over the test set matches the

probability of the predicted label.

4.3 Experiments

In this paper we consider three loss functions, our proposed squentropy, cross entropy

and the (rescaled) square loss from [51]. The latter is formulated as follows:

ls(xxxi,yi) =
1
C

(
t ∗ (fyi(xxxi)−M)2 +

C

∑
j=1, j ̸=yi

f j(xxxi)
2

)
, (4.3)

where t and M are positive parameters. (t = M = 1 yields standard square loss.) We

will point out those entries in which values t > 1 or M > 1 were used; for the others, we set

t = M = 1. Note that following [51], the square loss is directly applied to the logits, with no

softmax layer in training.

We conduct extensive experiments on various datasets. These include a wide range of

well-known benchmarks across NLP, speech, and vision with different neural architectures —

more than 30 tasks altogether. In addition, we evaluate the loss functions on 121 tabular datasets

[30]. In the majority of our experiments, training with squentropy gives best test performance

and also consistently better calibration results.

Training scheme.

In most of experiments we train with squentropy with hyperparameter settings that are

optimal for cross entropy, given in [51]. This choice favors cross entropy. This choice also means

that switching to squentropy requires a change of just one line of code. Additional gains in

performance of squentropy might result from additional tuning, at the cost of more computation

42

in the hyperparameter tuning process.

Datasets.

We test on a wide range of well-known benchmarks from NLP, speech and computer

vision. NLP datasets include MRPC, SST-2, QNLI, QQP, text8, enwik8, text5, and text20.

Speech datasets include TIMIT, WSJ, and Librispeech. MNIST, CIFAR-10, STL-10 [12],

CIFAR-100, SVHN [96], and ImageNet are vision tasks. See Appendix A of [51] for details of

most of those datasets. (The exceptions are SVHN, STL-10, and CIFAR-100, which we describe

in Appendix C.1 of this paper). The 121 tabular datasets are from [30] and they are mostly small

datasets — 90 of them have ≤ 5000 samples. The feature dimension is small (mostly < 50) and

most datasets are class-imbalanced.

Architectures and hyperparameter settings.

We choose various modern neural architectures, including simple fully-connected net-

works, convolutional networks (TCNN[3], Resnet-18, VGG, Resnet-50 [46], EfficientNet[124]),

LSTM-based networks [11] (LSTM+CNN, LSTM+Attention, BLSTM), and Transformers [126]

(fine-tuned BERT, Transformer-XL, Transformer, Visual transformer). See Table 4.1 for de-

tailed references. We follow the hyperparameter settings given in Appendix C.2 of [51] for the

cross-entropy loss and the square loss (other than SVHN, STL-10, and CIFAR-100), and use the

algorithmic parameters settings of the cross entropy for squentropy in most cases. The exceptions

are SVHN and STL-10, where squentropy and square loss have a smaller learning rate (0.1 for

cross entropy while 0.02 for squentropy and square loss). More details about hyperparameter

settings of SVHN, STL-10, CIFAR-100 are in Appendix C.2.

Metrics.

For NLP, vision and 121 tabular datasets, we report accuracy as the metric for test

performance. For speech dataset, we conduct the automatic speech recognition (ASR) tasks and

report test set error rates which are standard metrics for ASR. Precisely, for TIMIT, we report

phone error rate (PER) and character error rate (CER). For WSJ and Librispeech, we report CER

43

and word error rate (WER). ECE is the metric to measure the calibration results for all datasets.

For speech datasets, we report calibration results for the acoustic modeling part. See Table 4.1

shows the results of NLP, speech and vision datasets. Figure 4.2 show results of 121 tabular

datasets. In addition, we provide reliability diagrams [15, 97] to visualize the confidence and

accuracy of each interval and see details in Section 4.3.2.

Remarks on Table 4.1.

For the results of square loss, we use rescaled square loss with t > 1 or M > 1 for

TIMIT(PER) (t = 1,M = 15), WSJ (t = 1,M = 15), Librispeech (t = 15,M = 30), CIFAR-10

and CIFAR-100 (t = 1,M = 10), and ImageNet (t = 15,M = 30). All others are the standard

square loss. Note that WSJ (WER) and WSJ (CER) share the same ECE number as they share

one acoustic model. (Similarly for Librispeech.) Additionally, since ECE numbers are not

available for Top-5 accuracy, the corresponding entries (ImageNet, Top-5 acc.) are marked as

“N/A”.

For the empirical results reported in Table 4.1, we discuss generalization / test perfor-

mance in Section 4.3.1 and calibration results in Section 4.3.2. Results for 121 tabular datasets

are reported in Section 4.3.3. We report the average accuracy/error rate (for test performance)

and average ECE (for model calibration) of 5 runs with different random initializations for all

experiments. We report the standard derivation of this collection of runs in Section 4.3.4.

4.3.1 Empirical results on test performance

See Table 4.1 for its test accuracy. In Figure 4.1, the Confidence histogram gives the

portion of samples in each confidence interval, and the reliability diagrams show the accuracy as

a function of the confidence. The ECE numbers are percentages as in Table 4.1. In the left of

Figure 4.1 is for Squentropy, and in the middle left is cross entropy. While in the middle right is

for rescaled square loss, and in the right of Figure 4.1 is standard square loss. We see that models

trained with squentropy are better calibrated, while cross entropy suffers from overconfidence

44

Table 4.1. Test performance (perf(%): accuracy for NLP&Vision, error rate for speech data) and
calibration: ECE(%).

Domain Model Task
Squentropy Cross-entropy Square loss
perf ECE perf ECE perf ECE

NLP

fine-tuned BERT
[17]

MRPC 84.0 7.9 82.1 13.1 83.8 14.0
SST-2 94.2 7.0 93.9 6.7 94.0 19.8
QNLI 91.0 7.3 90.6 7.4 90.6 4.2
QQP 89.0 2.2 88.9 5.8 88.9 2.8
text5 85.2 12.4 84.5 14.9 84.6 46.7

text20 81.2 10.5 80.8 16.2 80.8 69.2

Transformer-XL
[14]

text8 71.5 3.9 72.8 5.8 73.2 57.6
enwik8 77.0 4.8 77.5 9.3 76.7 64.5

enwik8 (subset) 48.9 10.7 48.6 18.9 47.3 70.6

LSTM+Attention
[11]

MRPC 71.4 3.2 70.9 7.1 71.7 3.5
QNLI 79.3 7.2 79.0 7.6 79.3 13.0
QQP 83.5 2.4 83.1 3.2 83.4 16.5

LSTM+CNN
[45]

MRPC 70.5 5.2 69.4 6.3 73.2 16.3
QNLI 76.0 4.1 76.0 2.3 76.0 20.5
QQP 84.5 5.1 84.4 7.2 84.3 24.6

Speech

Attention+CTC
[62]

TIMIT (PER) 19.6 0.7 20.0 3.1 20.0 2.8
TIMIT (CER) 32.1 1.6 33.4 3.3 32.5 4.3

VGG+BLSTMP
[88]

WSJ (WER) 5.5 3.2 5.3 5.0 5.1 5.3
WSJ (CER) 2.9 3.2 2.5 5.0 2.4 5.3

VGG+BLSTM
[88]

Librispeech (WER) 7.6 7.1 8.2 2.7 8.0 7.9
Librispeech (CER) 9.7 7.1 10.6 2.7 9.7 7.9

Transformer
[133]

WSJ (WER) 3.9 2.1 4.2 4.3 4.0 4.4
Librispeech (WER) 9.1 4.2 9.2 4.9 9.4 5.1

Vision

TCNN [3] MNIST 97.8 1.4 97.7 1.6 97.7 75.0
Resnet-18

[46]
CIFAR-10 85.5 8.9 84.7 10.0 84.6 13.4

STL-10 67.7 21.2 68.9 26.1 65.4 40.3
W-Resnet

[141]
CIFAR-100 77.5 10.9 76.7 17.9 76.5 12.7

CIFAR-100 (subset) 43.5 18.8 41.5 40.3 41.0 23.8
Visual transformer CIFAR-10 99.3 1.9 99.2 3.8 99.3 7.2

VGG SVHN 93.0 4.8 93.7 5.7 92.5 65.4
Resnet-50

[46]
ImageNet (acc.) 76.3 6.3 76.1 6.7 76.2 8.2

ImageNet (Top-5 acc.) 93.2 N/A 93.0 N/A 93.0 N/A
EfficientNet

[124]
ImageNet (acc.) 76.4 6.8 77.0 5.6 74.6 7.9

ImageNet (Top-5 acc.) 93.0 N/A 93.3 N/A 92.7 N/A

and the standard square loss is highly underconfident.

Our results show that squentropy has better test performance than cross entropy and

square loss in the majority of our experiments. The perf(%) numbers in Table 4.1 show the

test accuracy of benchmarks of the NLP and vision tasks, and error rate for the speech tasks.

45

0.00 0.25 0.50 0.75 1.000.0

0.2

0.4

0.6

0.8

1.0

%
 o

f s
am

pl
es

Ac
cu

ra
cy

Av
g

of
 c

on
fid

en
ce

Squentropy

0.00 0.25 0.50 0.75 1.000.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

Av
g

of
 c

on
fid

en
ce

Cross-entropy

0.00 0.25 0.50 0.75 1.000.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

Av

g
of

 c
on

fid
en

ce

Rescaled square loss

0.00 0.25 0.50 0.75 1.000.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

Av
g

of
 c

on
fid

en
ce

Standard square loss

0.00 0.25 0.50 0.75 1.000.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy ECE: 10.9

Outputs
Gap

0.00 0.25 0.50 0.75 1.000.0

0.2

0.4

0.6

0.8

1.0

ECE: 17.9

Outputs
Gap

0.00 0.25 0.50 0.75 1.000.0

0.2

0.4

0.6

0.8

1.0

ECE: 12.7

Outputs
Gap

0.00 0.25 0.50 0.75 1.000.0

0.2

0.4

0.6

0.8

1.0

ECE: 52.1

Outputs
Gap

Confidence

Figure 4.1. Confidence histograms (top) and reliability diagrams (bottom) for a Wide Resnet on
CIFAR-100.

Squentropy behaves the best in 24 out of 34 tasks. We also report the numbers for subsets of

enwik8 and CIFAR-100. Compared with full datasets of these collections, squentropy seems to

gain more when the datasets are small.

Applicability and significance.

Table 4.1 shows improvements for squentropy across a wide range distributions from the

NLP, speech, and vision domains. On the other hand, the improvement on one single task often

is not significant, and for some datasets, squentropy’s performance is worse. One reason may be

our choice to use the optimal hyperparameter values for cross entropy in squentropy. Further

tuning of these hyperparameters may yield significant improvements.

4.3.2 Empirical results on calibration

In this section we show model calibration results, measured with ECE of the models

given in Table 4.1. The ECE numbers for NLP, speech, and vision tasks are also shown in Table

4.1.

46

Squentropy consistently improves calibration.

As can be seen in and Table 4.1, in 26 out of 32 tasks, the calibration error (ECE) of

models trained with squentropy is smaller than for cross entropy and square loss, even in those

cases in which squentropy had slightly worse test performance, such as WSJ, STL10, and SVHN.

Besides using ECE to measure model calibration, we also provide a popular form of

visual representation of model calibration: reliability diagrams [15, 97], which show accuracy as

a function of confidence as a bar chart. If the model is perfectly calibrated, i.e. P(ŷi = yi|pi) = pi,

the diagram should show all bars aligning with the identity function. If most of the bars lie

below the identity function, the model is overconfident as the confidence is mostly larger than

corresponding accuracy. When most bars lie above the identity function that means the model is

underconfident as confidence is smaller than accuracy. For a given bin k, the difference between

acc(Bk) and conf(Bk) represents the calibration gap (orange bars in reliability diagrams – e.g.

the bottom row of Figure 4.1).

In Figure 4.1 we plot the confidence histogram (top) and the reliability diagrams (bottom)

of Wide Resnets on CIFAR-100, trained with four different loss functions: squentropy, cross

entropy, rescaled square loss (with t = 1,M = 10), and standard square loss (t = 1,M = 1). The

confidence histogram gives the percentage of samples in each confidence interval, while the

reliability diagrams show the test accuracy as a function of confidence.

In the reliability diagrams of Figure 4.1 bottom, the orange bars, which represent the

confidence gap, start from the top of the blue (accuracy) bar. We show conf(Bk)− acc(Bk) for

all intervals in all reliability diagram plots. Note that for intervals where confidence is smaller

than accuracy, the orange bars go down from the top of the blue bars, such as the one in the right

bottom of Figure 4.1. More reliability diagrams for other tasks are given in Appendix C.3.

Squentropy vs. cross entropy.

If we compare the diagrams of squentropy and cross entropy, the bars for squentropy are

closer to the identity function; cross entropy apparently yields more overconfident models. The

47

gap for squentropy is also smaller than cross entropy in most confidence intervals.

40 50 60 70 80 90 100
Test accuracy of cross-entropy (%)

40

50

60

70

80

90

100
Te

st
 a

cc
ur

ac
y

of
 sq

ue
nt

ro
py

 (%
) Squentropy is better

Cross-entropy is better

121 tabular datasets

0 10 20 30 40 50 60
Calibration error (ECE) of squentropy (%)

0

10

20

30

40

50

60

EC
E

of
 c

ro
ss

-e
nt

ro
py

 (%
)

Squentropy is better

Cross-entropy is better

121 tabular datasets

30 40 50 60 70 80 90 100
Test accuracy of square loss (%)

30

40

50

60

70

80

90

100

Te
st

 a
cc

ur
ac

y
of

 sq
ue

nt
ro

py
 (%

) Squentropy is better

Square loss is better

121 tabular datasets

0 10 20 30 40 50 60
Calibration error (ECE) of squentropy (%)

0

10

20

30

40

50

60
EC

E
of

 sq
ua

re
 lo

ss
 (%

)
Squentropy is better

Square loss is better

121 tabular datasets

Loss functions Squentropy Cross entropy Square loss
Avg accuracy 82.5% 82.1% 81.0%

Avg ECE 10.9% 11.8% 17.5%

Figure 4.2. Test accuracy and model calibration of 121 tabular datasets from [30] trained with a
3 layer (64-128-64) fully connected network. The results for each dataset are averaged over 5

runs with different random initializations.

Standard square loss leads to underconfidence.

We also plot the reliability diagrams for training with the standard square loss on the

right ones of Figure 4.1. We see that it is highly underconfident as the confidence is smaller

than 0.1 (exact number is 0.017) for all samples. Note that the square loss is directly applied

to the logits f j(xi), and the logits are driven to the one-hot vector eeeyi , then the probabilities pi, j

formed from these logits are not going to be close to the one-hot vector. The “max” probability

48

(confidence) will instead be close to e
e+(C−1) , which is small when C is large.

Rescaling helps with calibration.

The second-from-right bottom diagram in Figure 4.1 shows the results of training with

the rescaled square loss (t = 1,M = 10) on CIFAR-100. This minimization problem drives the

logits of true class closer to M, making the max probability approach eM

eM+(C−1) - a much larger

value than for standard square loss, leading to better calibration. However, squentropy can avoid

extra rescaling hyperparameters while achieving even smaller values of ECE.

4.3.3 Additional results on 121 Tabular datasets

Additional results for 121 small, low dimensional, and class-imbalanced tabular dataset,

obtained with 3-layer fully-connected networks, are shown in Figure 4.2. For all these cases, we

use SGD optimizer with weight decay parameter 5∗10−4 and run 400 epochs with learning rate

0.01. The “square loss” function used here is in fact rescaled version with parameters t = 1 and

M = 5.

Figure 4.2 shows that for most datasets, in the left of Figure 4.2 shows test accuracy and

larger is better. In the right of Figure 4.2 shows the calibration error ECE and smaller is better.

The top figures plot the results of squentropy and cross entropy, while the bottom figures plot

the results of squentropy and the (rescaled) square loss. Test accuracy/ECE for each dataset are

tabulated in Appendix C.4. squentropy has slightly better test accuracy and significantly smaller

ECE than cross entropy or square loss. Squentropy has the best test accuracy in 71 out of 121

tasks and best calibration in 60 tasks. If only compare with cross entropy, squentropy is better in

94 tasks on accuracy, and is better on calibration in 83 tasks. Test accuracy and ECE for each

dataset in this collection are tabulated in Appendix C.4.

In the results of Figure 4.3, we fix all random seeds to be the same for all cases and hence

the test set is exactly the same. (Thus, we display legends only in the bottom-row figures). Color

coding indicates the calculated probability of class label to be 1, according to the scale on th

49

Table 4.2. Standard deviation of test accuracy/error. Smaller number is bolded. CE is short for
cross-entropy.

Model Dataset Squentropy CE Square loss

fine-tuned BERT

MRPC 0.285 0.766 0.484
SST-2 0.144 0.173 0.279
QNLI 0.189 0.205 0.241
QQP 0.050 0.063 0.045
text5 0.132 0.167 0.147

text20 0.131 0.08 0.172

Transformer-XL text8 0.149 0.204 0.174
enwik8 0.156 0.102 0.228

LSTM
+Attention

MRPC 0.315 0.786 0.484
QNLI 0.198 0.371 0.210
QQP 0.408 0.352 0.566

LSTM
+CNN

MRPC 0.289 0.383 0.322
QNLI 0.154 0.286 0.173
QQP 0.279 0.161 0.458

Attention
+CTC

TIMIT (PER) 0.332 0.249 0.508
TIMIT (CER) 0.232 0.873 0.361

VGG+
BLSTMP

WSJ (WER) 0.147 0.249 0.184
WSJ (CER) 0.082 0.118 0.077

VGG+
BLSTM

Libri (WER) 0.117 0.257 0.126
Libri (CER) 0.125 0.316 0.148

Transformer WSJ (WER) 0.186 0.276 0.206
Libri (WER) 0.168 0.232 0.102

TCNN MNIST 0.151 0.173 0.161

Resnet-18 CIFAR-10 0.147 0.452 0.174
STL-10 0.413 0.376 0.230

W-ResNet CIFAR-100 0.164 0.433 0.181
Visual Transformer CIFAR-10 0.070 0.075 0.063

VGG SVHN 0.283 0.246 0.307

Resnet-50
I-Net (Top-1) 0.029 0.045 0.032
I-Net (Top-5) 0.098 0.045 0.126

EfficientNet
I-Net (Top-1) 0.099 0.122 0.138
I-Net (Top-5) 0.092 0.089 0.089

50

−10 −5 0 5 10

−10

−5

0

5

10

x
2

Squentropy: epoch=100

−10 −5 0 5 10

Squentropy: epoch=500

−10 −5 0 5 10

Squentropy: epoch=1000

0.00

0.15

0.30

0.45

0.60

0.75

0.90

1.05

p
ro
b
a
b
il
it
y
o
f
c
la
s
s
la
b
e
l
=

1

−10 −5 0 5 10

−10

−5

0

5

10

x
2

Cross-entropy: epoch=100

−10 −5 0 5 10

Cross-entropy: epoch=500

−10 −5 0 5 10

Cross-entropy: epoch=1000

0.00

0.15

0.30

0.45

0.60

0.75

0.90

1.05

p
ro
b
a
b
il
it
y
o
f
c
la
s
s
la
b
e
l
=

1

−10 −5 0 5 10

−10

−5

0

5

10

x
2

Square loss: epoch=100

class 1

class 2

−10 −5 0 5 10

x1

Square loss: epoch=500

class 1

class 2

−10 −5 0 5 10

Square loss: epoch=1000

class 1

class 2

0.00

0.15

0.30

0.45

0.60

0.75

0.90

1.05

p
ro
b
a
b
il
it
y
o
f
c
la
s
s
la
b
e
l
=

1
Figure 4.3. Decision boundary along different epochs for test samples.

eright. The white line between red and blue areas indicates the decision boundary. We train a

3-layer fully connected network with 12 units in each layer, for a 2-class spiral data set in R2.

There are 1000 samples for training and 500 samples for test, and we train for 1000 epochs,

yielding a training accuracy of 100% for all loss functions. Test accuracies are squentropy:

99.9%, cross entropy: 99.7%, square loss: 99.8%. Top: squentropy. Middle: cross entropy.

Bottom: square loss. Columns show results after 100, 500, and 1000 epochs, respectively.

51

4.3.4 Robustness to initialization

To evaluate the stability of the model trained with the loss functions considered in this

paper, we report the standard deviation of the accuracy/error rate with respect to the randomness

in initialization of weights for NLP, speech, and vision tasks. Standard deviation is over 5

runs with different random initializations; see Table 4.2 for results. The standard derivation

of squentropy is smaller in the majority of the tasks considered, so results are comparatively

insensitive to model initialization.

4.4 Observations

As mentioned previously, we conjecture that the square term of squentropy acts as an

implicit regularizer and in this section we provide some observations in support of this conjecture.

We discuss the decision boundary learnt by a fully-connected network on a 2-class spiral data

problem (the “Swiss roll”) in Section 4.4.1, and remark on the weight norm of the last linear

layer of several networks in Section 4.4.2.

4.4.1 Predicted probabilities and decision boundary

Using a simple synthetic setting, we observe that the decision boundary learned with

squentropy appears to be smoother than that for cross entropy and the square loss. We illustrate

this point with a 2-class classification task with spiral data and a 3-layer fully-connected network

with parameter θ . This setup enables visual observations. Given a sample xxxi ∈ R2 and labels

yi ∈ {1,2}, and the one hot encoding yyyi = [0,1] or yyyi = [1,0], we solve for weights θ to define

functions f1(xxxi) and f2(xxxi) corresponding to the two classes. For any xxxi, we then predict a

probability of xxxi being classified as class 1 as follows: p(xxxi) := e f1(xxxi)/(e f1(xxxi)+e f2(xxxi)). Samples

are assigned to class 1 if fi,1 > fi,2 and to class 2 otherwise. The decision boundary is the set of

points for which {xxx | f1(xxx) = f2(xxx)} or {xxx|p(xxxi) = 1/2}.

We see from Figure 4.3 that the decision boundary obtained with squentropy is smoother

52

than those learnt with both cross entropy and square loss. This appears to be true throughout

the training process, on this simple example. Meanwhile, the margin (distance from training

points to the decision boundary) is also larger for squentropy in many regions. Together, the

large margin and smooth decision boundary imply immunity to perturbations and could be one

of the reasons for the improved generalization resulting from the use of squentropy [24].

0 250 500 750 1000 1250 1500 1750
SGD iterations

10

20

W
ei

gh
t n

or
m

CIFAR-10, Resnet-18

Cross-entropy
Squentropy

0 500 1000 1500 2000 2500 3000
SGD iterations

25

50

W
ei

gh
t n

or
m

CIFAR-100, Wide Resnet

Cross-entropy
Squentropy

0 200 400 600 800 1000 1200
SGD iterations

5

10

W
ei

gh
t n

or
m

STL-10, Resnet-18
Cross-entropy
Squentropy

Figure 4.4. Weight norm along training.

4.4.2 Weight norm

Neural classifiers trained with cross-entropy loss suffer from overconfidence, causing

miscalibration of the model [41]. Our calibration results in Figure 4.1 and Section C.3 show

evidence of this phenomenon. As can be seen in the confidence histogram of cross entropy —

the (1,2) figure in Figure 4.1 — the average confidence pyi(xxxi) for the predicted label in cross

entropy is close to 1. This fact suggests that the logits fyi(xxxi) of true class are close to ∞, while

the logits of the incorrect classes approach −∞. Such limits are possible only when the weights

of last linear layer have large norm. To quote [89], “cross-entropy loss thus inherently induces

this tendency of weight magnification in neural network optimisation.”

53

[41] comment that weight decay, which corresponds to adding a penalty term to the loss

consisting of the sum of squares of the weights, can produce appreciably better calibration while

having a minimal effect on test error; see the rightmost diagram in Figure 2 of [41]. In [89, 79],

the authors point out how focal loss proposed in [77] improves calibration by encouraging the

predicted distribution to have higher entropy, thus implicitly regularizing the weights. Figure C.1

of [89] compares weight norm and final logit values between cross entropy and the focal loss,

showing that the latter are significantly smaller.

We perform a similar experiment, showing in Figure 4.4. We train a Resnet-18 on

CIFAR-10 (calibration error, ECE: Squentropy: 8.9%, cross entropy: 10.0%) and STL-10 (ECE:

Squentropy: 21.2%, cross entropy: 26.1%), a wide Resnet on CIFAR-100 (ECE: Squentropy:

10.9%, cross entropy: 17.9%), and show the norm of the last linear layer’s weights. These are

the same experiments as given in Table 4.1. The weight norm of the final-layer weights for three

examples from Table 4.1 as a function of training steps. We observe that the weight norm for the

model trained with squentropy is much smaller than the norms for the same set of weights in the

model trained with cross entropy, along the whole training process.

4.5 Rescaled squentropy

Consider the following rescaled version of squentropy:

lsqen(xxxi,yi) =− log pi,yi(xxxi)+
α

C−1

C

∑
j=1, j ̸=yi

f j(xxxi)
2, (4.4)

which introduces a positive factor α into the second term of (4.1). Here α = 0 corresponds to

standard cross-entropy loss while α = 1 yields the squentropy loss (4.1). Limited computational

experiments show that α < 1 the squentropy gives even better results for some tasks in Table 4.3,

with significant improvements for such examples as TIMIT (CER), STL-10 and CIFAR-100.

Mostly α = 0.1 for the scaled squentropy results in Table 4.3.

54

Table 4.3. Test accuracy/error rate, and scaled sqen is short for rescaled squentropy. CE is short
for cross-entropy.

Task Scaled sqen Squentropy CE Square loss
text5 85.3 85.2 84.5 84.6

text20 81.5 81.2 80.8 80.8
TIMIT(PER) 19.0 19.6 20.0 20.0
TIMIT(CER) 29.6 32.1 33.4 32.5
WSJ(WER) 5.3 5.5 5.3 5.1
WSJ(CER) 2.6 2.9 2.5 2.4

Librispeech(WER) 7.8 7.6 8.2 8.0
Librispeech(CER) 10.0 9.7 10.6 9.7

CIFAR-10 86.0 85.5 84.7 84.6
STL-10 69.5 67.7 68.9 65.4

CIFAR-100 78.7 77.5 76.7 76.5
SVHN 93.8 93.0 93.7 92.5

ImageNet (Resnet-50) 76.2 76.3 76.1 76.2
ImageNet (EfficientNet) 76.5 76.4 77.0 74.6

4.6 Summary, thoughts, future investigations

As with the selection of an optimization procedure, the choice of the loss function

is an ineluctable aspect of training all modern neural networks. Yet the machine learning

community has paid little attention to understanding the properties of loss functions. There is

little justification, theoretical or empirical, for the predominance of cross-entropy loss in practice.

Recent work by Hui & Belkin [51] showed that the square loss, which is universally used in

regression, can perform at least as well as cross entropy in classification. Other works have made

similar observations: [115, 118, 108, 16]. While several alternative loss functions, such as the

focal loss [77], have been considered in the literature with good results, none have been adopted

widely. Even the hinge loss, the former leader in the popularity contest for classification losses,

is barely used outside the context of Support Vector Machines.

In this work we demonstrate that a simple hybrid loss function can achieve better accuracy

and better calibration than the standard cross entropy on a significant majority of a broad range

of classification tasks. Our squentropy loss function has no tunable parameters. Moreover,

most of our experiments were conducted in a true “plug-and-play” setting using the same

algorithmic parameters in the optimization process as for training with the standard cross-

entropy loss. Performance of squentropy can undoubtedly be further improved by tuning the

55

optimization parameters. Furthermore, various calibration techniques can potentially be applied

with squentropy in the same way they are used with cross entropy.

Thus, from a practical point of view, squentropy currently appears to be the natural first

choice to train neural models.

By no means does it imply that we know of fundamental reasons or compelling intuition

indicating that squentropy is the last word on the choice of loss functions for classification. One

of the main goals of this work is to encourage both practitioners and theoreticians to investigate

the properties of loss functions, an important but largely overlooked aspect of modern Machine

Learning.

4.7 Acknowledgements

Chapter 4, in full, is a reprint of Like Hui, Mikhail Belkin, and Stephen Wright. “Cut

your Losses with Squentropy.” ICML, 2023. The dissertation author was the primary investigator

and author of this paper.

56

Chapter 5

Limitation of Neural Collapse on Under-
standing Generalization in Deep Learning

The recent work of [101] presented an intriguing “Neural Collapse” phenomenon, show-

ing a structural property of interpolating classifiers in the late stage of training. This opened a rich

area of exploration studying this phenomenon. Our motivation is to study how far understanding

Neural Collapse can take us in understanding deep learning. First, we investigate its role in

generalization. We refine the Neural Collapse conjecture into two separate conjectures: collapse

on the train set (an optimization property) and collapse on the test distribution (a generalization

property). We find that while Neural Collapse often occurs on the train set, it does not occur on

the test set. We thus conclude that Neural Collapse is primarily an optimization phenomenon,

with as-yet-unclear connections to generalization. Second, we investigate the role of Neural

Collapse in representation learning. We show simple, realistic experiments where more collapse

leads to worse last-layer features, as measured by transfer-performance on a downstream task.

This suggests that Neural Collapse is not always desirable for representation learning, as previ-

ously claimed. Our work thus clarifies the phenomenon of Neural Collapse, via more precise

definitions that motivate controlled experiments.

57

5.1 Introduction

In science, and in deep learning, novel empirical observations often catalyze deeper

scientific understanding [69]. When faced with a new or surprising experiment, we can then try

to understand the phenomenon more precisely: How universal is the behavior? In what settings

does it hold? Can we describe it quantitatively?

0 20K 40K 60K 80K
Training step

10−2

10−1

100

Fe
at

ur
e

V
ar

ia
nc

e

Neural Collapse on CIFAR-10

Test
Train

Figure 5.1. Failure of Test Collapse.
Neural Collapse for ResNet18 on

CIFAR-10. Collapse appears to occurs
on the train set, but not on test.

What does it teach us more generally? This

overall roadmap for understanding —from observations

to quantitative conjectures & laws— has a long history

of success in the natural sciences, and has also enjoyed

recent successes in deep learning.

The recent “Neural Collapse” work of [101] ini-

tiated another instance of such a research program in un-

derstanding deep learning. Their work presented a new

experimental observation, along with a partial charac-

terization. At a high level, Neural Collapse conjectures

several structural properties of deep neural networks when trained past the point of 0 classifi-

cation error on the train set. Their most relevant conjecture to generalization— is “variability

collapse (NC1).” Variability collapse proposes, informally, that when a deep network is trained

on a k-way classification task, the last-layer representations converge to k discrete points. This

is apriori surprising, since this internal structure is in no way required to achieve low train loss

and high test performance: there exist networks with identical decision boundaries which do

not satisfy collapse. However, our standard training methods (Stochastic Gradient Descent and

variants) on standard architectures and datasets empirically seem to satisfy some form of collapse,

as demonstrated in [101]. This work has since inspired many follow-up works investigating this

phenomenon, both theoretically and empirically.

A motivating factor in this research program is the belief that Neural Collapse is not an

58

isolated phenomenon, but rather is deeply connected to other important and unsolved aspects of

deep learning— in particular generalization. The problem of generalization, informally, is the

study of why a model trained on a finite set of samples has good performance on out-of-sample

inputs. Although this is not apriori related to Neural Collapse, the original work proposes

that collapse “confers important benefits, including better generalization performance, better

robustness, and better interpretability.” And it is stated as a hypothesis that “the benefits of the

interpolatory regime of overparametrized networks are directly related to Neural Collapse” [101].

This postulated connection between Neural Collapse and generalization is implicit in many of

the follow-up works as well, and motivates studying collapse as a phenomenon.

However, the nature of the connection between Neural Collapse and generalization

remains muddled. Some works argue they are closely related [101], while others cast some

doubt [23, 146, 4]. There are at least two reasons for this confusion in the literature: First,

it is often not clear whether Neural Collapse refers to a phenomenon on the train set, or on

the test set. The behaviors most relevant to generalization occur on the test set, and yet most

experiments and theorems consider only the train set. Second, the Neural Collapse conjectures

do not precisely specify the role of the sample size, and thus it is not always clear how to connect

to generalization— where sample size is fundamental. This ambiguity is especially problematic

because some natural ways to extend the Neural Collapse conjecture to the test set turn out to be

impossible to satisfy, as we will describe.

Our Contributions.

We clarify ambiguities in the original Neural Collapse (NC) conjectures, which allows

us to investigate which forms of NC are possible to achieve, both in theory and in practice.

Specifically:

1. We propose more precise versions of the Neural Collapse conjectures (“variability col-

lapse”), stating different versions for the train set and the test set, with both “strong” and

“weak” forms. (section 5.2)

59

2. We discuss the theoretical feasibility of these different conjectures. As we will see, strong

test collapse is extremely unlikely, while weak test collapse is in principle possible but

does not occur in practice. (section 5.2.1)

3. We empirically confirm the finding of [101], that train-collapse occurs in many realistic

settings. However, we find that test-collapse does not occur. (section 5.3)

4. We show several settings where increasing train-collapse is anti-correlated with test per-

formance, in both on-distribution and transfer-learning settings. This demonstrates that

train-time neural collapse is not always desirable— and indeed, can be counterproductive—

for some kinds of generalization. (section 5.4).

We thus conclude that Neural Collapse is primarily an optimization phenomenon, and its

connections to generalization require further investigation.

5.1.1 Related Works

The Neural Collapse phenomenon was originally presented in [101], and led to a series of

follow-up works investigating and extending it. Many of the subsequent works develop simplified

models in which Neural Collapse on the train set can be theoretically proven and understood.

For example, [27] develops a “layer-peeled” model of training, and explores neural collapse in

class-imbalanced settings. [86] proposes an alternate simplification, an “unconstrained features”

model, in which train collapse also occurs. [22] and [146] also investigate the train collapse

under unconstrained features model. Several works [105, 106, 112, 42] examine the Neural

collapse with the square loss under different settings. Specifically, [105, 106] give theory which

predicts the properties of neural collapse for homogeneous, weight-normalized networks. [112]

proves that quasi-interpolating solutions obtained by gradient descent in the presence of weight

decay have Neural collapse properties. [42] proposes a generic decomposition of the MSE loss

which, under certain assumptions, results in a simplified dynamical description (the “central

path”) which exhibits neural collapse on the train set. [81] extend theoretical analysis of neural

60

collapse to the cross-entropy loss (while previous works mainly considered MSE loss). They

prove neural collapse on the train set in the “unconstrained features” setting. [26] reformulate

the last-layers of networks to convex formulations and give an explanation of Neural Collapse

properties. [59, 58] proposes unconstrained layer-peeled model which captures the properties of

Neural Collapse and prove that gradient flow on this model converges to critical points exhibiting

neural collapse in its global minimizer. [140] and [103] observe that fixing the parameters (i.e.

no back-propagation) in the final classifier as a simplex Equiangular Tight Frame (ETF) does not

basically reduce the performance on the test set.

[78] investigate the impact of a margin parameter added to softmax/cosine softmax loss

in the setting of few-shot learning and they show that this margin parameter controls the degree

of NC. They also show that a higher margin parameter (larger intra-class variance) leads to

higher accuracy on the validation set, but lower accuracy on unseen classes at training time.

[38] study NC in the context of meta-learning, and the authors find that higher NC is better.

They add a regularizer to the loss to increase NC appears to improve transfer learning results.

[19] state that supervision collapse is an obstacle to learning good representations for few-shot

learning. The definition of supervision collapse is the representations “represent only an image’s

(training-set) class, and discard information that might help with out-of-distribution classes”,

which is similar with the NC1 (feature collapse) definition. [116] propose a strategy to reduce

NC, and show that doing so improves the performance of deep metric learning. [67] examine a

variety of loss functions and find that loss functions that produce greater NC on the ImageNet

training set sometimes get higher validation accuracy but transfer worse.

However, all the above papers present results for Neural Collapse on the train set, with

an exception of [42], which gives a preliminary experiment on the test set collapse (see Figure

12 on page 20). They observe that “the rate of collapse is much slower on the test data compared

to that on the train data”, which agrees with our observations. [112] has a discussion on neural

collapse and generalization and argues that neural collapse is not related to good generalization

as “Neural Collapse is a property of the dynamics independently of the size of the margin which

61

provides an upper bound on the expected error”. However, there has been no in-depth study on

test data collapse and generalization.

One of the few papers focusing on collapse at test time is [35]. Their work focuses on

neural collapse for transfer learning, under a particular assumption: classes in the source and

target tasks are selected randomly from the same class distributions. In contrast to their work,

our transfer-learning experiment does not obey the assumptions on source/target task required by

[35], since we consider a source task which is a “class-superset” of the target task. Another key

difference is that [35] use a notion of “collapse” which only requires collapse to occur in the

limit of infinite train size. However, we consider “collapse” to occur if it occurs at finite train

size. This finite-sample definition follows the original framework of [101], and is essential to a

meaningful definition of collapse. We elaborate on this important point in Section 5.2. At first

glance, the conclusion in the transfer learning setting arrived at by [35] contradicts to ours results.

One reason for this can be the class number in their pretraining is larger than the downstream

tasks, while we are considering a “super-class” setting where the downstream task has finer

labels and larger class number. We pre-train on large datasets while fine-tune on tasks with

limited data. This is a standard transfer learning setting where transfer learning is particularly

useful in practice.

[146] and [87] provide empirical evidence that neural collapse can happen for training

data with random labels. However, the presence of neural collapse on training data cannot indicate

whether the network generalizes or not. [29] points out that negligence of valuable intra-class

semantic difference is the reason for worse transferability of existing supervised pre-training

methods, compared with the powerful transferability of self-supervised pre-training. They

propose a new supervised pre-training method based on Leave-One-Out K-Nearest-Neighbor

to preserve part of intra-class difference, i.e. to have less neural collapse. Extensive empirical

studies show their method leads to better transferring to downstream tasks. Their conclusion

agrees with ours. Inspired by the property of nearest-class center decision rule, [34] proposes

“minimal NCC-depth” to capture the relationship of neural collapse and generalization, as they

62

also observe no clear relation between training data collapse and generalization. Note that the

class-distance normalized variance (CNDV) definition used in this paper comes from [34] is

from [35] and it is essentially the same as the definition in [101]. In contrast, our NC1 definitions

explicitly consider the dependency on train set size, which is more precise than the CNDV

definition and the original definition of [101]. Also, we extend the NC1 definition to the test set,

with both “strong” and “weak” forms. For the empirical findings, on the difference between train

set and test set collapse, the observations in Figure 1 of [34] is similar to ours, i.e. test-collapse

seems to occur to a much less extent than train-collapse. Our main contribution is making this

observation mathematically precise, by considering the asymptotic limit as a function of train

samples (which has not been done in prior work as far as we are aware).

5.1.2 Notation

Let X be the input space, and Y be the label space. We consider multi-class classification

problems, where Y = [k] for some k ∈N. Let D be the target distribution over X ×Y . Training

procedures1 are functions which map a train set S ∈ (X ×Y)n and an iteration count t ∈ N and

to a model f . In this work, we will always consider Stochastic-Gradient-Descent (SGD)-based

training procedures, where t is the number of SGD steps. For a fixed train set S of size n, let f t
S

denote the model output by the training procedure after t iterations. So Train : (S, t) 7→ f t
S, where

Train denotes the training procedure. For a given model f t
S, let the last-hidden-layer feature map

be denoted ht
S : X → Rd . This is the feature-map induced by the trained model, as a map from

inputs into Rd .

5.2 Defining Neural Collapse

We first define two kinds of Neural Collapse: on the train set, and on the test set. Our

definitions naturally extend the definitions in [101], but are more precise since we explicitly

1We can consider randomized training procedures by allowing an additional random string as input. We omit
this randomness throughout, for notational clarity.

63

include the train/test distinction, and the dependency on training iterations t and train samples n.

This is essential to describe the relevant asymptotic limits in the “collapse”.

Throughout this work, we focus only on the first conjecture from [101]: “NC1 (Vari-

ability Collapse).” NC1 captures the within-class variance and it is the most relevant one to

generalization. Also, the subsequent Simplex ETF conjecture is particularly meaningful only if

NC1 is true, that is features cannot collapse to a simplex ETF if the variability does not “collapse”

at all. When we refer to “neural collapse” in this work, we specifically are referring to “variability

collapse.” We first define collapse on the train set, which follows closely the definition in [101].

Definition 1 (Train-Collapse). For a particular train set S, we say a training procedure T exhibits

Train-Collapse on S if there exists some distinct µ1,µ2, . . . ,µk ∈ RRRd such that

∀(xi,yi) ∈ S : lim
t→∞

ht
S(xi) = µyi

That is, the trained network converges to representations such that all train points of class

k get embedded to a single point µk (called the “class means” in [101]). The conjecture below

then states conditions under which Train-Collapse occurs. This conjecture is meant to capture

the original NC1 conjecture of [101], which was demonstrated empirically across many settings.

Conjecture 1 (Train-Collapse Conjecture, informal). For all train sets S containing at least two

distinct labels, and all training procedures T corresponding to SGD on “natural” sufficiently-deep

and sufficiently-large neural network architectures: T exhibits Train-Collapse on S.

Crucially, we state Conjecture 1 for train sets of all sizes. This dependency on train

set size is implicit, but omitted from [101] — it will become especially important when we

discuss generalization, and this makes the biggest difference from the CDNV definition given by

[35], which assume infinite train size. This behavior is called a “collapse” because regardless

of the train set size, any big-enough network that enables neural collapse converge to this

discrete limiting structure. We replicated this finding in most of our experiments. However, for

64

completeness we acknowledge that this conjecture does not hold fully universally, and there are

subtleties in practice2. Nevertheless, we believe the NC1 conjecture captures the right qualitative

behavior in many realistic settings.

We also acknowledge that Conjecture 1, while more precise than the conjectures in

[101], is still not fully formal. For example, it only applies to “natural” architectures and not

all architectures, and does not quantify what “sufficiently large” means. In our experiments, we

also apply weight decay, batch normalization (BN), tune different learning rates for each model.

[111] shows that neural collapse does not necessarily happen when training without weight decay

and without biases. [26] study the connection between NC and BN. Also, [34] shows that depth

also matters for NC to happen. This restriction to “natural” architectures is a known obstacle to

formalism in deep learning theory (e.g. [94]) and is necessary to avoid pathologies such as [1].

Nevertheless, our definitions take a step towards greater formalism, and this precision will be

useful in understanding connections to generalization. Refining our definitions and conjectures

further is an area for future work.

The notion of train-collapse described above (and in [101]) is an optimization notion: it

involves only behavior of a model on its train set, and not behavior at test time. Thus, it is a

priori unclear whether this notion is related to generalization aspects of models. To explore this,

we first extend the definition of Neural Collapse to the test set, and then investigate whether this

test-collapse occurs in practice. The most immediate way to formulate test collapse is to use the

exact same formulation and quantifier on sample size n with Train-Collapse. We call this similar

formulation with Train-Collapse Strong Test-collapse.

Definition 2 (Strong Test-Collapse). A training procedure T exhibits Strong Test-Collapse on

distribution D if for all sample sizes n ∈N, the following holds with probability 1 over sampling

2For example, we found in some settings training variability does not collapse to negligible value, such as
CIFAR-10 and STL-10 dataset with VGG architectures (see Figure 5.3) . In some preliminary experiments we
also found that adding stochasticity (such as dropout noise) often accelerated collapse, which is consistent with the
theoretical model in [101].

65

S∼Dn: there exists some distinct µ1,µ2, . . . ,µk ∈ Rd such that

with prob 1 over (x,y)∼D : lim
t→∞

ht
S(x) = µy∗(x)

where y∗(x) := argmax
y

pD(y | x) is the Bayes-optimal classification under distribution D .

Strong Test-Collapse requires that test points x map to their “correct” embedding point

µi, where i is the Bayes-optimal class for x. However, unless n is large enough that we are able

to learn the Bayes-optimal classifier exactly, Strong Test-Collapse will not occur. Since this

natural extension from Train-Collapse is hard to happen, we define a “weak” version of test set

collapse which is likely to happen. It requires only that test points embed as one of k discrete

points µ1,µ2, . . .µk, without requiring that all points of class i map to µi.

Definition 3 (Weak Test-Collapse). A training procedure T exhibits Weak Test-Collapse on

distribution D if for all sample sizes n ∈N, the following holds with probability 1 over sampling

S∼Dn: there exists some distinct µ1,µ2, . . . ,µk ∈ Rd such that

with prob 1 over (x,y)∼D : lim
t→∞

ht
S(x) ∈ {µi}i∈[k]

There are several important differences between the notions of test-collapse and train-

collapse. First, for test-collapse we require that the train set S is not arbitrary, but sampled from

some distribution D . And we check for limiting behavior with respect to new samples from D ,

as opposed to train samples from S. However, both train and test collapse require the collapse to

occur for all finite sample sizes n, letting only time t→ ∞. This is the meaningful asymptotic,

since taking limit of samples n→ ∞ would obscure almost all aspects of learning, which is most

interesting at finite-sample sizes.

With the dependency on train set size, which is crucial when discussing generalization,

our definitions are a natural extension of definitions given in [101] and [35], and they are a step

forward to evaluate the correlation of neural collapse and generalization.

66

5.2.1 Remarks on Feasibility

With the above definitions, we can see that strong test-collapse is too strong a property

to apply in realistic settings. We discuss this infeasibility here, and then corroborate this with

experiments in the following section.

Infeasibility of Strong Test-Collapse.

First, note that both train-collapse and test-collapse definitions require that collapse

occurs for all train set sizes n ∈ N. This property is easy to satisfy for train-collapse, but is

an extremely strong property for test-collapse. In particular, the “strong” form of test collapse

(Definition 2) is too strong to hold in practice: it implies that a Bayes-optimal classifier can

be extracted from the trained model features, even if the model is trained on only e.g. n = 10

samples. Even with large but finite n, it’s hard to learn Bayes-optimal classifier exactly (and it

is unlikely to happen in most realistic settings). This is because, according to Definition 2, the

representation must map test inputs to their “correct” cluster, and thus the correct label can be

extracted from the cluster identity.

However, the “weak” form of NC1-test (Definition 3) still has hope of holding, since it

does not imply learning a Bayes-optimal classifier. Nevertheless, note that even the “weak” form

is a fairly strong condition for neural networks: it implies that trained networks (on any size train

set) learn feature-maps h such that the push-forward h∗(D) is a discrete measure. Mapping the

continuous measure D to a discrete measure is a strong property, and one that is unlikely to hold

for standard neural networks.

Feasibility of Weak-Collapse.

While weak-collapse is unlikely to hold for neural networks trained with SGD, the defini-

tion itself is non-vacuous: there exist learning methods which are “reasonable” (asymptotically

consistent) and exhibit weak test-collapse. To see this, consider the following modified training

procedure: first, train a neural network as usual to get a network f : X → Y . Then, construct

another network f ′ such that the last-layer representation of f ′ is a one-hot encoding of the

67

classification decision of f . That is, the representation h′(x) ∈ Rk satisfies h′(x) := e⃗ f (x) where

{⃗ei} are standard basis vectors. This can be constructed by, for example, adding post-processing

layers to f . Now, the training procedure which outputs f ′ will satisfy weak test-collapse of

its representations, since its representations are always one of the k standard basis vectors by

construction.

Desirability of Neural Collapse for Generalization.

Armed with these definitions, we can now consider whether train or test collapse are

necessary or sufficient for on-distribution generalization. First, neither train nor test collapse are

strictly necessary for good generalization: As discussed, it is possible to construct models with

identically good generalization performance, but which satisfy neither train nor test collapse.

There are even natural, non-contrived examples of this: models trained for less than one epoch

(the “Ideal World” in the terminology of [95]) will not exhibit train collapse, because they are not

trained to fit their train set. And yet, as demonstrated in [95], they can match the performance

of interpolating models. This “one epoch” regime is also relevant in practice, where models

are trained on massive data sources such as internet scrapes, often for less than one epoch

[8, 109, 66].

Further, neither train collapse (definition 1) nor weak test-collapse (definition 3) are

sufficient for generalization. It is possible to construct models which satisfy train collapse

perfectly, but which are random functions at test time. Likewise, it is possible to construct

models which satisfy weak test-collapse, but have random classification decisions.

Strong test-collapse (definition 2) is sufficient for good test performance, since it implies

that test inputs map to the “correct” cluster in representation-space. However, as we discussed,

strong test-collapse is infeasible, and impossible in practice.

68

5.3 Experiments: Train and Test Collapse

Here we complement our theoretical discussion by measuring both train and test collapse

in realistic settings, following the experiments of [101]. We find that train-collapse occurs in

many settings, while test-collapse (both strong and weak) does not. We also show the dependency

on the train set size: larger train sets lead to stronger test collapse, but weaker train collapse.

Note that we say stronger collapse or more collapse when the feature variance is smaller. This

further highlights the importance of distinguishing between the two forms of collapse, since

they can be anti-correlated. Also, stronger train set collapse can lead to worse test performance,

which means that stronger collapse on train set itself is not correlated with better generalization.

5.3.1 Measuring Collapse

It is not possible to measure collapse strictly according to definitions 1 to 3, since they

involve a t → ∞ limit. Instead, we follow exactly the experimental procedure of [101], and

measure approximations which capture the “degree of collapse.” We restate their procedure

here for convenience. Measuring collapse require finding the vectors µ1,µ2, . . .µk ∈ Rd , which

embeddings collapse to. The choice of these vectors depends on the setting, as below.

Train Collapse. For the train set, µi is defined as the train class-means:

µ̂i := E
(x,y)∈S

[hT
S (x) | y = i]

where T is the maximum train time in the experiment. Define the global mean as µ̂ := ∑i µ̂i/|Y |.

Then, the “degree of train collapse” is measured as:

TrainVariance(t) :=
E(x,y)∈S[||ht

S(x)− µ̂y||2]
Ei[||µ̂i− µ̂||2]

Smaller values of this quantity indicate more “collapse.” The numerator here is the “within-class

variance” and it is normalized by the “between-class variance”, in the terminology of [101]. This

69

definition follows the experimental measurements in [101].

Strong Test Collapse. For test collapse, µi is defined as the test class-means:

µ i := E
(x,y)∼D

[hT
S (x) | y = i]

The global mean is µ := ∑i µ i/|Y |. Then, the “degree of strong test collapse” is measured as:

StrongTestVariance(t) :=
E(x,y)∼D [||ht

S(x)−µy||2]
Ei[||µ i−µ||2]

Weak Test Collapse. For weak test-collapse (definition 3), we do not require that representations

collapse to their class means, but simply to some µi. Thus, we define {µ̃i} as the result of k-means

clustering on the following set of vectors: {hT
S (x)}x∈TestSet. The global mean is µ̃ := ∑i µ̃i/|Y |.

And the “degree of weak test collapse” is measured as:

WeakTestVariance(t) :=

E(x,y)∼D [argmin
i∈[k]

||ht
S(x)− µ̃i||2]

Ei[||µ̃i− µ̃||2]

5.3.2 Experimental Results

Setup. We consider image classification tasks with MNIST, FashionMNIST, CIFAR-10,

SVHN and STL-10 datasets. We train Resnet, DenseNet and VGG networks with stochastic

gradient descent (SGD) to minimize the cross-entropy loss. All tasks were trained on a single

GPU with batch size 128 and 80000 SGD iterations. See Appendix D.1 for more details and

references about the datasets, architectures and training mechanisms.

In the following of this section we show that the test collapse does not occur with

experiments on a wide range of datasets and model architecture combinations. We show that

train collapse and test collapse can be anti-correlated and more train collapse can lead to worse

test performance. Considering the dependency on train set size is fundamental to generalization.

70

Failure of Test Collapse.

0 20K 40K 60K 80K
Training step

10−2

10−1

100

Fe
at

ur
e

V
ar

ia
nc

e

Neural Collapse on CIFAR-10

StrongTest
WeakTest
Train

Figure 5.2. Neural Collapse on
CIFAR-10. Collapse occurs on the

train set, but not on the test set
(neither Strong nor Weak).

In figure 5.2, we train a single model (ResNet-18

on CIFAR-10) and measure TrainVariance, WeakTest-

Variance, and StrongTestVariance as a function of train

time t. That is, we measure the degree of train and

test collapse over increasing time. We see that train

collapse appears to occur, while test variance does not

decrease to negligible value. In particular, there is a

“generalization gap” in the Train vs. Test Variances: the

TrainVariance appears to converge to 0 as t→ ∞, while

TestVariance (both weak and strong) do not. For the

remainder of the experimental results, we plot only “strong” test collapse, since we generally

observe that both strong and weak collapse have similar behavior.

In figure 5.3, we train different models on various datasets and measure TrainVariance

and StrongTestVariance as a function of train time t. We train all models to get 0 training error

and continue training to achieve close to 0 training loss3. We see Strong Test-Collapse does

not occur on all settings, and has a large gap with Train Collapse. Again, the results show that

Neural Collapse is mainly an optimization phenomenon and not a generalization one: test set

does not collapse to negligible value in any setting, together with our theoretical argument of

infeasibility of Strong Test-Collapse in 5.2.1, we claim a failure of test collapse.

The numbers up the dots are corresponding test accuracy of different train set size (N).

We observe that train and test collapse are anti-correlated and small train variance has worse test

accuracy. That is neural collapse can hurt generalization. Left of Figure 5.4 is ResNet18 trained

on subsets of CIFAR-10. Right of Figure 5.4 is for VGG11 trained on subsets of FashionMNIST.

3We use “close to 0” to mean when the loss is below 10−5.

71

2−5M
N

IS
T 0 Error

ResNet

2−5

VGG

2−5

DenseNet

StrongTest

Train

2−7

2−4

2−1

F
as

hi
on

M
N

IS
T

2−5
2−4
2−3
2−2

2−3

2−2

2−6

2−3

20

C
IF

A
R

-1
0

2−4

2−3

2−2

2−1

2−2

20

2−3

2−2

S
V

H
N

2−4

2−3

2−3

2−2

0 20K 40K 60K 80K
SGD iterations

2−2

20

S
T

L
-1

0

0 20K 40K 60K 80K
SGD iterations

2−3

2−2

2−1

0 20K 40K 60K 80K
SGD iterations

2−3

2−2

2−1

20

Figure 5.3. Failure of Test Collapse. Training and test variance vs. SGD iterations, for various
dataset and architecture combinations. All test sets (black line) do not collapse to negligible

variance, and have much less collapse than the train sets (purple line).

0.0075 0.0100 0.0125 0.0150 0.0175 0.0200
TrainVariance

0.10

0.12

0.14

0.16

0.18

0.20

St
ro

ng
Te

st
V

ar
ia

nc
e

88.6

92.3

94.4

95.0

95.8

CIFAR-10 (varying train size) with ResNet18

N =12500
N =25000
N =30000
N =40000
N =50000

0.060 0.065 0.070 0.075 0.080
TrainVariance

0.200

0.225

0.250

0.275

0.300

0.325

0.350

0.375

St
ro

ng
Te

st
V

ar
ia

nc
e

90.1

91.5

92.2
93.4 93.5

FashionMNIST (varying train size) with VGG

N =10000
N =20000
N =30000
N =40000
N =50000

Figure 5.4. Train vs. Test Anti-Correlation.

72

Train vs. Test Anti-Correlation.

In figure 5.4 we train a ResNet18 on CIFAR-10, and vary the size of the train set from

N = 12500,25000,30000,40000 to N = 50000. We also report results on training a VGG11

network with batch normalization on different subsets of FashionMNIST. For each train set size

N, we have 5 runs with different random seeds (the subset of each run is different because of

random selection), and report the average of the variance and plot the error bar.

We train all models past the point of 0 training loss and stop training when the training

loss decreases to 10−6 in each run. figure 5.4 plots the train collapse (TrainVariance) compared

to the test collapse (StrongTestVaraince) at the end of training, for different train set sizes. We

also report the corresponding test accuracy right up the dots in figure 5.4. We find that as the train

set size increases, the train variation increases (less train collapse), however, the test accuracy

gets higher and the test variation decreases (more test collapse). This illustrates that test and

train collapse are not always correlated, and thus it is important to distinguish between the two:

“better” optimization behavior (train set collapse) accompanies worse generalization behavior.

Also, by considering the dependency on train set size, we see that stronger train set collapse itself

does not imply good generalization. If you look at the train variance in x-axis and the accuracies

up in the dots in Figure 5.4, it shown that solutions that does not exhibit train collapse (larger

train variance) actually have good generalization (better test accuracy). Also, this observation

matches the claim in [95] which say “1-epoch” CIFAR models have similar performance as

multi-epoch models but the “1-epoch” models do not exhibit train collapse.

One limitation of this experiment is that we evaluate collapse at finite train time, and not

at t = ∞. Indeed, at t = ∞ we expect the train variation to be identically 0 for all data sizes (by

the definition of collapse), but the test variation to decay with larger data sizes. This situation is

analogous to measuring train/test error itself for overparameterized models: for large enough

models, train error will always be 0, but test error will decay with the data size. This experiment

thus highlights the importance of measuring both train & test quantities, and the subtlety involved

in measuring collapse at finite time.

73

We also acknowledge that in this experiment, increasing the size of the train set is

correlated with both better test collapse, and better generalization. However, we caution that

this should not be seen as evidence that test collapse is mechanistically related to generalization.

First, because the test variance does not truly “collapse”, it just reduces, as already discussed.

And second, because this reduction in test variance is in some sense necessary for any model with

improved test error— since high test variance would produce noisy classification decisions. Thus,

the correlation of test variance and generalization in this experiment should not be surprising.

We are cautious to make the claim on the correlation of test set collapse and generalization, and

we think this needs more careful study. We think it’s better to leave this question in a separate

work, as this work mainly focuses on the correlation of train set collapse and generalization and

most previous works on neural collapse focus on the train set.

5.4 Collapsed Features Transfer Worse

In the previous section, we showed that train-time collapse can be anti-correlated with

generalization performance, when measuring generalization on-distribution. We now explore

generalization on other distributions, by considering transfer learning. We consider the standard

transfer-learning setting, where models are usually pre-trained on massive datasets and then

fine-tuned for tasks on small datasets. Now we investigate generalization on downstream tasks,

to understand the role of Neural Collapse in transfer-learning and representation learning.

5.4.1 Test Collapse implies Bad Representations

We first observe that, using our definition of test collapse, a model which has fully

test-collapsed will have representations that are bad for most downstream tasks. To see this,

consider the following example. Suppose we have a distribution D with ten types of images (as

in CIFAR-10), but we group them into two superclasses, such as “animals” and “objects.” We

then train a classifier on this binary problem (e.g. CIFAR-10 images with these binary labels).

Let the feature map of the fully-trained model (that is, the limiting model as t→ ∞) be denoted

74

h. If this model exhibits even weak test collapse, then there exist vectors {µ1,µ2} such that the

representations satisfy:

Pr
x∼D

[h(x) ∈ {µ1,µ2}] = 1. (5.1)

That is, the representations will by definition “collapse”: every input x∼D will map to exactly

one of two points µ1,µ2. This property is clearly undesirable for representation learning. For

example, suppose we use these representations for learning on a related task: the original 10-way

classification problem. It is clear that no classifier using the fixed representations (linear probing

scheme) from h can achieve more than 20% test accuracy on the original 10-way task: each

group of 5 classes will collapse to a single point after passing through h (by equation (5.1)), and

will become impossible to disambiguate among these 5 classes. This example is formalized in

the lemma below.

Lemma 5. Let (x,y)∼D be any target distribution defining a balanced 2k-wise classification

task. Let D2 be the pretraining distribution, defined by super-classing D into a balanced binary

classification task. That is, the distribution of D2 is given by (x,F(y)) for (x,y)∼D and some

balanced partition F : [2k]→{0,1}.

Now let h : X → Rd be pretrained representations that are fully test-collapsed with

respect to D2, with WeakTestVariance exactly 0.

Then, all classifiers that input only representations h(x) have test accuracy at most 1/k

on D . Formally, for all functions f : Rd →{0,1, ..,2k−1}, the test accuracy

Pr
(x,y)∼D

[f (h(x)) = y]≤ 1
k
.

As Weak Test-collapse is a weaker condition than Strong Test-collapse, Lemma 5 also

holds for Strong Test-Collapse. The proof of Lemma 5 is straightfoward, and included for

completeness in Appendix D.3. In our experimental results below, we show the variance of

Strong Test-collapse. Even if we do not fix the pre-trained representations and fine-tune all the

75

parameters (fine-tuning scheme), as shown in our experimental results 5.4.2, fully collapsed

features (less within-class variance) lead to worse down-stream task performance. The results

in [29] show similar observations with ours and their proposed method to enlarge within-class

variance actually improves test performance. This shows that test collapse is undesirable for

even an extremely simple transfer learning task (where we transfer to the same distribution, with

finer label structure). In the following sections, we will demonstrate this result experimentally,

even for classifiers which have not fully collapsed.

0.090 0.095
StrongTestVariance (pre-training)

94.25

94.50

94.75

95.00

95.25

Te
st

ac
cu

ra
cy

(d
ow

ns
tr

ea
m

fin
e-

tu
ni

ng
) MNIST

pre-training iterations= 90k
pre-training iterations= 80k
pre-training iterations= 70k
pre-training iterations= 40k
pre-training iterations= 20k

0.0325 0.0350 0.0375 0.0400
StrongTestVariance (pre-training)

89.0

89.2

89.4

89.6

89.8

90.0

Te
st

ac
cu

ra
cy

(d
ow

ns
tr

ea
m

fin
e-

tu
ni

ng
) CIFAR-10

pre-training iterations= 90k
pre-training iterations= 70k
pre-training iterations= 60k
pre-training iterations= 40k
pre-training iterations= 20k

Figure 5.5. Collapsed Features Transfer Worse.

We save different checkpoints during pre-training, and use them to initialize the down-

stream models. We fine-tune all the parameters of the model. In Figure 5.5 the x-axis shows the

StrongTestVariance of those checkpoints on the pre-training test set, and y-axis shows the test

accuracy after fine-tuning on downstream tasks. We find that stronger test collapse (i.e. lower

variance) is correlated with lower downstream test accuracy. Left of Figure 5.5 is for MNIST

with a 3 hidden layer fully-connected network. Right of of Figure 5.5 is for CIFAR-10 with a

standard Resnet18.

5.4.2 Experiments

There are many relevant settings in transfer learning, especially in practice. For example,

in practice, we often pre-train on a “generic” task with massive datasets, and then fine-tune on a

76

specific task with limited data. This specific task may involve finer-grained labels than the generic

task, which parallels our experimental setup. We train a 3 hidden layer fully-connected networks

with 1024 units per layer on MNIST, and a standard Resnet18 on CIFAR-10. For pre-training, we

use a subset of the train set and perform 2-class classification (via super-classing). For fine-tuning,

we use the weights pre-trained as initialization of the weights other than the last classification

layer, and do standard (10-class for MNIST, and 8-class for CIFAR-10) classification with a

much smaller held-out subset. We do not report results with linear probing, as it gives much

worse transfer-performance than fine-tuning scheme. See more details in Appendix D.2.

Here we show transfer learning results on MNIST and CIFAR-10. To see the correlation

between neural collapse (on test set) and generalization, we plot the degree of test set collapse

during pre-training and test performance in down-stream tasks. We report the average of 5

runs with different random seeds, and give the error bars, as illustrated in figure 5.5. We see

that for both MNIST and CIFAR-10, the checkpoints with more Test Collapse gives worse

transfer-performance on downstream tasks. That is, in these settings more Test Collapse actually

leads to learning worse features. This demonstrates that neural collapse does not always lead to

good representation learning— when the class number in pre-training is less than the number of

downstream tasks. collapse actually harms representation quality.

5.5 Conclusion

We show that Neural Collapse is primarily an optimization phenomenon, and does not

always correlate with better generalization. We propose more precise definitions— “strong” and

“weak” Neural Collapse for both the train set and the test set— which disentangle generalization

and optimization behaviors. We believe these more precise definitions aid in clarifying the

literature around neural collapse, and will help guide further study. By investigating the train

and test collapse on various dataset and architectures, we show that while train collapse reliably

occurs in many settings, test collapse does not. Our theoretical formulations and empirical

77

observations suggest that while neural collapse continues to be an intriguing phenomenon and a

promising optimization research program, its relevance to generalization requires further study.

5.6 Acknowledgements

Chapter 5, in full, is a reprint of Like Hui, Mikhail Belkin, and Preetum Nakkiran.

“Limitations of neural collapse for under- standing generalization in deep learning.” arXiv

preprint arXiv:2202.08384 (2022). The dissertation author was the primary investigator and

author of this paper.

78

Chapter 6

Kernel Machines in Speech Enhancement

We apply a fast kernel method for mask-based single-channel speech enhancement.

Specifically, our method solves a kernel regression problem associated to a non-smooth kernel

function (exponential power kernel) with a highly efficient iterative method (EigenPro). Due to

the simplicity of this method, its hyper-parameters such as kernel bandwidth can be automatically

and efficiently selected using line search with subsamples of training data. We observe an

empirical correlation between the regression loss (mean square error) and regular metrics for

speech enhancement. This observation justifies our training target and motivates us to achieve

lower regression loss by training separate kernel model per frequency subband. We compare

our method with the state-of-the-art deep neural networks on mask-based HINT and TIMIT.

Experimental results show that our kernel method consistently outperforms deep neural networks

while requiring less training time.

6.1 Introduction

Speech enhancement aims at reducing noise from speech and the challenging problem

of this task has received significant attention in research and applications. In recent years the

dominant methodology for addressing single-channel speech enhancement has been based on

neural networks of different architectures [128, 144]. Deep Neural Networks (DNNs) present an

attractive learning paradigm due to their empirical success on a range of problems and efficient

79

optimization.

In this paper, we demonstrate that modern large-scale kernel machines are a powerful

alternative to DNNs, capable of matching and surpassing their performance while utilizing less

computational resources in training. Specifically, we take the approach to speech enhancement

based on the Ideal Binary Mask (IBM) and Ideal Ratio Mask (IRM) methodology. The first

application of DNNs to this problem was presented in [131], which used a DNN-SVM (support

vector machine) system to solve the classification problem corresponding to estimating the

IBM. [130] compared different training targets including IRM. [139] proposed a regression-

based approach to estimate speech log power spectrum. Recently, [132] applies recurrent

neural networks to similar mask-based tasks and [99] applies convolutional networks to the

spectrum-based tasks.

Kernel-based shallow models (which can be interpreted as two-layer neural networks

with a fixed first layer), were also proposed to deal with speech tasks. In particular, [50] gave

a kernel ridge regression method, which matched DNN on TIMIT. Inspired by this work, [9]

applied an efficient one-vs-one kernel ridge regression for speech recognition. [82] developed

kernel acoustic models for speech recognition.

Notably, these approaches require large computational resources to achieve performance

comparable to neural networks.

In our opinion, the computational cost of scaling to larger data has been a major factor

limiting the success of these methods. In this work we apply a recently developed highly

efficient kernel optimization method EigenPro [83], which allows kernel machines to handle

large datasets.

We conduct experiments on standard datasets using mask-based training target. Our

results show that, with EigenPro iteration, kernel methods can consistently outperform the

performance of DNN in terms of the target mean square error (MSE) as well as the commonly

used speech quality evaluation metrics including perceptual evaluation of speech quality (PESQ)

and short-time objective intelligibility (STOI).

80

Figure 6.1. Kernel-based speech enhancement framework

The contributions of our paper are as follows:

1. Using modern kernel algorithms we show performance on mask-based speech enhancement

surpassing that of neural networks and requiring less training time.

2. To achieve the best performance, we use exponential power kernel, which, to the best of

our knowledge, has not been used for regression or classification tasks.

3. The simplicity of our approach allows us to develop a nearly automatic hyper-parameter

selection procedure based on target speech frequency channels.

The rest of the paper is organized as follows. Section 6.2 introduces our proposed kernel-

based speech enhancement system: kernel machines, exponential power kernel, automatic hyper-

parameter selection for subband adaptive kernels. Experimental results and time complexity

comparisons are discussed in Section 6.3. Section 6.4 gives the conclusion.

6.2 Kernel-Based Speech Enhancement

6.2.1 Kernel Machines

The standard kernel methods for classification/regression denote a function f that mini-

mizes the discrepancy between f (xxx j) and y j, given labeled samples (xxx j,y j) j=1,...,n where xxx j ∈Rd

is a feature vector and y j ∈ R is its label.

Specifically, the space of f is a Reproducing Kernel Hilbert Space H associated to a

positive-definite kernel function k : Rd×Rd → R. We typically seek a function f ∗ ∈H for the

81

following optimization problem:

f ⋆ = argmin f (xxx j) = y j, j = 1,2, ...,n∥ f∥H , (6.1)

According to the Representer Theorem [120], f ∗ has the form

f (xxx) =
n

∑
j=1

α jk(xxx,xxx j), (6.2)

To compute f ∗ is equivalent to solve the linear system,

Kααα = (y1, · · · ,yn)
T , (6.3)

where the kernel matrix K has entry [K]i j = k(xxxi,xxx j) and ααα ≜ (α1, · · · ,αn)
T is the representation

of f under basis {k(·,xxx1), · · · ,k(·,xxxn)}.

6.2.2 Exponential Power Kernel

We use an exponential power kernel of the form

kγ,σ (xxx,zzz) = exp(−∥xxx− zzz∥γ

σ
) (6.4)

for our kernel machine, where σ is the kernel bandwidth and γ is often called shape parameter.

[37] shows that the exponential power kernel is pos-

itive definite, hence a valid reproducing kernel. This kernel

also covers a large family of reproducing kernels including

Gaussian kernel (γ = 2) and Laplacian kernel (γ = 1).

We observe that in many noise settings of speech

enhancement, the best performance is achieved using this

kernel with shape parameter γ ≤ 1, which is highly non-

82

smooth. In the right side figure, we plot this kernel function with parameters that we use in our

experiments. We have not seen any application of this kernel (with γ < 1) in supervised learning

literature.

6.2.3 Automatic Subbands Adaptive Kernels

Algorithm 1. Automatic hyper-parameter selection1

Input: DDDtrain,DDDval: training and validation data, Γ: a set of γ for the exponential power kernel,
σl,σh: smallest and largest bandwidth
Output: selected kernel parameters γopt ,sopt for Dtrain
procedure autotune(DDDtrain,DDDval,Γ,σl,σh)

define subprocedure cross-validate(γ,σ) as: train one kernel model with kγ,σ on DDDtrain
using EigenPro iteration, return its loss on Dval .

for γ in Γ do
σγ = search(cross-validate(γ, ·),σl,σh)

γopt ,σopt ← argminγ∈Γ,σγ
cross-validate(γ,σγ)

return γopt ,σopt

procedure search(f ,σl,σh)
if (σh−σl ≤ 2) then

return σl
select σm1,σm2 ∈ (σl,σh)
compute f (σl), f (σm1), f (σm2), f (σh)
min{ f (σl), f (σm1), f (σm2), f (σh)} f (σl): return search(f ,σl,σm1) f (σm1): return

search(f ,σl,σm2) f (σm2): return search(f ,σm1,σh) f (σh): return search(f ,σm2,σh)

As empirically shown in Section 6.3.3, we see that models with lower MSE at every

frequency channel consistently outperform other models in STOI. This motivates us to achieve

lower MSE for all frequency channels by tuning kernel parameters for each of them. In practice,

we split the band of frequency channels into several blocks , which we call subbands.

We propose a simple kernel-based framework as depicted in Fig. 6.1 to achieve automatic

parameter selection and fast training for each subband. For i-th subband, the framework learns

one model f (i) related to an exponential power kernel k(i) with parameters automatically tuned

1We apply memoization technique for computing cross-validate(·, ·). We first attempt to set σm1, σm2 as a value
that is already used in (σl ,σh), then we choose them to split (σl ,σh) into three parts as equal as possible.

83

Table 6.1. Kernel & DNN on TIMIT: (MSE: lowest is best, STOI and PESQ: highest is best.
Best results bolded.)

Noise
Metrics

5 dB 0 dB -5 dB
Type Kernel DNN Noisy Kernel DNN Noisy Kernel DNN Noisy

Engine
MSE (·10−2) 1.10 1.41 - 1.34 1.86 - 1.17 1.82 -
STOI 0.91 0.90 0.80 0.86 0.85 0.68 0.80 0.77 0.57
PESQ 2.77 2.77 1.97 2.51 2.45 1.66 2.19 2.16 1.41

Babble
MSE (·10−2) 3.34 3.49 - 4.18 4.37 - 4.94 5.43 -
STOI 0.86 0.86 0.77 0.77 0.77 0.66 0.64 0.64 0.55
PESQ 2.54 2.52 2.08 2.12 2.10 1.73 1.70 1.61 1.42

SSN
MSE (·10−2) 1.35 1.53 - 1.48 1.67 - 1.60 1.76 -
STOI 0.88 0.88 0.81 0.82 0.82 0.69 0.74 0.74 0.57
PESQ 2.68 2.66 2.05 2.36 2.32 1.75 2.03 2.00 1.48

Oproom
MSE (·10−2) 1.44 1.85 - 1.34 1.86 - 1.17 1.82 -
STOI 0.88 0.88 0.79 0.84 0.83 0.70 0.79 0.76 0.59
PESQ 2.80 2.79 2.16 2.50 2.47 1.78 2.23 2.12 1.40

Factory1
MSE (·10−2) 2.51 2.53 - 2.52 2.55 - 2.71 2.77 -
STOI 0.86 0.86 0.77 0.78 0.79 0.65 0.68 0.68 0.54
PESQ 2.56 2.51 1.99 2.20 2.23 1.62 1.79 1.77 1.29

for this subband,

f (i)(xxx) =
n

∑
j=1

α
(i)
j k(i)(xxx,xxx j). (6.5)

Our framework starts by splitting the training targets Ytrain into subband targets Y (1), · · · ,Y (b).

For training data related to the i-th subband (Xtrain,Y (i)), we perform fast and automatic kernel

parameter selection using autotune (Algorithm 1) on its subsamples, which selects one exponen-

tial power kernel k(i) for this subband. We then train a kernel model on (Xtrain,Y (i)) with kernel

k(i) using EigenPro iteration proposed in [83]. It learns an approximate solution α(i) (or f (i)) for

the optimization problem (6.1). Our final kernel machine is then formed by { f (1), · · · , f (b)}.

For any unseen data xxx, our kernel machine first computes estimated mask f (i)(xxx) for each

subband. Then it combines the results of { f (1)(xxx), · · · , f (b)(xxx)} to obtain the estimated mask for

all frequency channels. Applying this mask to the noisy speech produces the estimated clean

speech.

84

6.3 Experimental Results

We use kernel machines with 4 subbands (block of frequencies) for speech enhancement.

For fair comparison, we train both kernel machines and DNNs from scratch using the same

features and targets. We halt the training for any model when error on validation set stops

decreasing. Experiments are run on a server with 128GB main memory, two Intel Xeon(R)

E5-2620 CPUs, and one GTX Titan Xp (Pascal) GPU.

6.3.1 Regression Task

We compare kernel machines and DNNs on a speech enhancement task described in [130]

which is based on TIMIT corpus [36] and uses real-valued masks (IRM). We follow the descrip-

tion in [130] for data preprocessing and DNN construction/training. We consider five background

noises: SSN, babble, a factory noise (factory1), a destroyer engine room (engine), and an oper-

ation room noise (oproom). Every noise is mixed to speech at −5,0,5dB Signal-Noise-Ratio

(SNR).

Table 6.1 reports the MSE, STOI, and PESQ on test set for kernel machines and DNNs.

We also present the STOI and PESQ of the noisy speech without enhancement. For all noise

settings, we see that kernel machines consistently produce better MSE, in many cases significantly

lower than that from DNNs, which is also the training objective for both models. We also see

that STOI and PESQ of kernel machines are consistently better than or comparable to that from

DNNs with only one exception (Factory1 0dB).

6.3.2 Classification Task

We train kernel machines and DNNs for a speech enhancement task in [47] which is

based on HINT dataset and adopts binary masks (IBM) as targets. We follow the same procedure

described in [47] to preprocess the data and construct/train DNNs. Specifically, we use two

background noises, SSN and multi-talker babble. SSN is mixed to speech at -2, -5, -8dB SNR,

85

and babble is mixed to speech at 0,−2,−5dB SNR. As our kernel machine is designed for

regression task, we use a threshold 0.5 to map its real-value prediction to binary target {0,1}.

Table 6.2. Kernel & DNN on HINT

Metrics Model
Babble SSN

0dB -2dB -5dB -2dB -5dB -8dB

Acc
DNN 0.90 0.91 0.90 0.91 0.91 0.92
Kernel 0.92 0.92 0.91 0.92 0.90 0.89

STOI
DNN 0.83 0.80 0.76 0.79 0.76 0.74
Kernel 0.86 0.83 0.78 0.81 0.75 0.71

In Table 6.2, we compare the classification accuracy (Acc) and STOI of kernel machine

and DNNs under different noise settings. We see that our kernel machines outperform DNNs on

noise settings with babble and perform worse than DNN on noise settings with SSN. In all, the

proposed kernel machines match the performance of DNNs on this classification task.

6.3.3 Single Kernel and Subband Adaptive Kernels

We start by analyzing the performance of kernel machines that use a single kernel for

all frequency channels on the regression task in Section 6.3.1. The training of such kernel

machine (1 subband) is significantly faster than that of our default kernel machine (4 subbands).

Remarkably, its performance is also quite competitive. It consistently outperforms DNNs in

MSE in all noise settings. In 8 out of 15 noise settings, it produces STOI the same as that from

the kernel machine with 4 subbands (it also produces nearly same PESQ).

Table 6.3. Comparison of kernel machines with 1 subband and 4 subbands

Noise
setting Metrics

Kernel
(1 subband)

Kernel
(4 subbands) DNN

SSN
0dB

MSE 1.60 1.48 1.67
STOI 0.81 0.82 0.82
PESQ 2.35 2.36 2.32

SSN
-5dB

MSE 1.67 1.60 1.76
STOI 0.73 0.74 0.74
PESQ 2.01 2.03 2.00

Factory1
-5dB

MSE 2.76 2.71 2.77
STOI 0.67 0.68 0.68
PESQ 1.78 1.79 1.77

86

However, in other noise settings, kernel (1 subband) has smaller training loss (MSE) than

DNNs, but no better STOI (we show three cases in Table 6.3) [76, 143]. To improve desired

metrics (STOI/PESQ), we first compare the MSE of every frequency channel of DNNs and

kernel machines.

Figure 6.2. MSE along per frequency channel

As shown in the right figure of Fig. 6.2, which is for engine -5dB, for cases that kernels

have much smaller overall MSE and smaller MSE on each frequency channel, kernels also

achieve better STOI. For cases like SSN 0dB, as shown in the left figure of Fig. 6.2, even though

single kernel (1 subband) has smaller overall MSE, its STOI is not as good as DNNs. Multiple

kernels (4 subbands) decrease MSE further and also achieve better STOI. This shows that having

smaller MSE along all frequency channels leads to better STOI. This reveals a correlation

between MSE and STOI/PESQ associated with frequency channels.

6.3.4 Time Complexity

Table 6.4. Running time/epochs of Kernel & DNN

Dataset
Time (minutes) Epochs
Kernel

DNN Kernel DNN
1 subband 4 subbands

HINT 0.8 3.2 6.6 10 50
TIMIT 18 65 124 5 93

In Table 6.4, we compare the training time of DNNs and kernel machine on both HINT

87

and TIMIT. Note that the training of kernel machines in all experiments typically completes

in no more than 10 epochs, significantly less than the number of epochs required for DNNs.

Furthermore, the training time of kernel machines is also less than that of DNNs. Notably,

training kernel machine with 1 subband takes much less time than DNNs.

6.4 Conclusion and Discussion

In this paper, we have shown that kernel machines using exponential power kernels show

strong performance on speech enhancement problems. Notably, our method needs no parameter

tuning for optimization and employs nearly automatic tuning for kernel hyper-parameter selection.

Moreover, we show that the training time and computational requirement of our method are

comparable or less than those needed to train neural networks. We expect that this highly efficient

kernel method will be useful for other problems in speech and signal processing.

6.5 Acknowledgements

Chapter 6, in full, is a reprint of Like Hui, Siyuan Ma, and Mikhail Belkin. “Kernel

Machines Beat Deep Neural Networks on Mask-based Single-channel Speech Enhancement”,

Interspeech 2019. The dissertation author was the primary investigator and author of this paper.

88

Chapter 7

Conclusion

Training objective is one key component in machine learning systems. The primary

objective of machine learning is to optimize the model’s parameters to minimize the loss function.

The loss function quantifies the discrepancy between the predicted outputs of the model and the

true targets. By minimizing the loss function, the model learns to make more accurate predictions

and improve its performance. During the training phase, the loss function guides the learning

process by measuring the model’s performance. By backpropagating the gradients of the loss

function, the model’s parameters are updated through techniques like gradient descent. The loss

function acts as a feedback signal, indicating how the model should adjust its internal parameters

to reduce prediction errors.

In terms of evaluation and comparison, the loss function provides a quantitative measure

of how well the model is performing. It allows for the comparison of different models or

variations of a model by assessing their respective loss values. Models with lower loss values

generally indicate better performance. Thus, the choice of an appropriate loss function is critical

for evaluating and selecting the most suitable model for a given task. The loss function also

provides feedback on model performance, helping identify areas where the model struggles

or makes frequent errors. By analyzing the loss function and its gradients, researchers and

practitioners can gain insights into the model’s weaknesses and make targeted improvements,

such as adjusting the architecture, modifying the training process, or collecting additional data.

89

In summary, the loss function is a fundamental component of machine learning systems.

It drives the optimization process, guides the learning of the model, enables evaluation and

comparison, supports regularization, aligns with task-specific objectives, and provides feedback

for continuous model improvement.

Other than the training objective, model selection is another important component of

machine learning systems, and understanding kernel machines is important for understanding

deep models. Kernel machines, such as support vector machines (SVMs) with nonlinear kernels,

allow for nonlinear transformations of the input data. Deep models also incorporate nonlinear

transformations through activation functions. Understanding kernel machines helps grasp the

concept of mapping data to higher-dimensional feature spaces, which is a fundamental aspect of

deep models.

Kernel machines offer flexibility in capturing complex patterns and relationships in the

data. Deep models, with their multiple layers and non-linear activations, are designed to learn

hierarchical representations of data. Understanding kernel machines helps appreciate the ability

of deep models to learn intricate structures and extract high-level features from raw data.

Kernel machines provide interpretable representations through support vectors, which

are data points influencing the decision boundary. Deep models, while not as interpretable, can

learn high-level representations that capture important patterns in the data. Understanding kernel

machines helps grasp the notion of learning meaningful representations, which is a central aspect

of deep models.

In summary, understanding kernel machines is valuable in understanding deep models

as it provides insights into nonlinear transformations, flexibility in capturing complex patterns,

regularization strategies, interpretable representations, architectural choices, and model selection.

It enhances the overall comprehension of how deep models operate and can aid in effectively

designing and analyzing deep learning architectures.

90

7.1 Contributions

In this thesis we give several surprising empirical phenomenon in deep learning and

kernel machines. First, in [51] we do a systematic evaluation of the square loss on training

modern deep classifiers and find that the square loss actually gives even better results than the

widely used cross-entropy loss in the majority of our experiments. We also provide precise

asymptotics of the rescaled square loss in multi-class classification.

Secondly, we propose a new loss function, which we call squentropy for multi-class

classification [53]. With a wide range of experiments across NLP, speech, vision and also 121

tabular datasets, we show that the proposed squentropy loss gives better generalization and also

significantly better calibration results.

The neural collapse phenomenon proposed in [101] leads to a hot research area and we

also dive into it, specifically we investigate the correlation of neural collapse to generalization

[52]. We provide precise definitions of training set collapse and test set collapse with both a

strong and a weak version. More importantly, we show that more neural collapse does not always

give better generalization in both on-distribution setting and also transfer learning setting. The

conclusion is keeping some variance in the features learnt by the neural networks actually gives

best test performance.

Finally, we introduce the work on kernel machines [54], where we show kernel machines

with exponential power kernel and fast iteration method can achieve better test performance

in speech enhancement tasks. Also, kernel machines require less computation resources and

consume less time in training.

We believe our plenty empirical results would provide evidence for the effectiveness of

the square loss and squentropy loss in classification. Also for the relation of neural collapse to

generalization and the kernel machines in applications. Meanwhile, the empirical protocols and

methodology used in those projects can also be applied to many other empirical works.

91

7.2 Future work

The training objective and also the model selection are fundamental questions in machine

learning, and there are many interesting directions that can be done in those directions for future

work.

In theory, it is important to comprehend the underlying reasons behind the improved

generalization and calibration results achieved by squentropy. Several conjectures have been

proposed in [53] to shed light on this matter, such as the presence of a smoother decision

boundary with a wider margin and a reduction in weight norm. However, there is a lack of

rigorous theoretical analysis to support these ideas. Furthermore, the correlation between neural

collapse and generalization is primarily confirmed through experiments [52], and in depth

theoretical analysis in this aspect is in need as well.

In practice, there is a desire to integrate squentropy into commonly used toolkits like

PyTorch and scikit-learn. This integration would facilitate the adoption and implementation of

squentropy, making it more accessible for individuals to experiment with.

92

Appendix A

A.1 Datasets and tasks

Below we provide a summary of datasets used in the experiments.

NLP tasks

• MRPC (Microsoft Research Paraphrase Corpus) [20] is a corpus of sentence pairs extracted

from online news sources. Human annotation indicates whether the sentences in the pair

are semantically equivalent. We report accuracy and F1 score.

• SST-2 (The Stanford Sentiment Treebank) [121] is a task to determine the sentiment of a

given sentence. This corpus contains sentences from movie reviews and their sentiment

given by human annotations. We use only sentence-level labels, and predict positive or

negative sentiment.

• QNLI is a converted dataset from the Stanford Question Answering Dataset [110] which

consists of question-paragraph pairs. As in [127], this task is to predict whether the context

sentence selected from the paragraph contains the answer to the question.

• QQP (Quora Question Pairs dataset) [55] contains question pairs from the question-

answering website Quora. Similar to MRPC, this task is to determine whether a pair of

questions are semantically equivalent. We report accuracy and F1 score.

93

• text-c5 categorizes research papers to the most suitable conference. The dataset consists

of 2507 short research paper titles, largely technology related and there are 5 categorizes.

• text-c20 is the stack-overflow-data which can be found at https://www.kaggle.com/

stackoverflow/stackoverflow. It is a 20-class classification task, which classifies stack

overflow questions into one of the 20 tags.

• text8 [91] originally is a language modeling task. We consider it as a classification task

with the goal to classify each token of the input sentence into one of the 27 different

characters.

• enwik8 [91] is also interpreted as a classification task.

ASR tasks

• TIMIT [36] consists of speech from American English speakers, along with the corre-

sponding phonemical and lexical transcription. It is widely used for acoustic-phonetic

classification and ASR tasks. Its training set, validation set and test set are 3.2 hours, 0.15

hours, 0.15 hours long, respectively.

• WSJ (Wall Street Journal corpus) [102] contains read articles from the Wall Street Journal

newspaper. Its training, validation and test set are 80 hours, 1.1 hours and 0.7 hours long,

respectively.

• Librispeech [98] is a large-scale (1000 hours in total) corpus of 16 kHz English speech

derived from audiobooks. We choose the subset train-clean-100 (100 hours) as our training

data, dev-clean (2.8 hours) as our validation set and test-clean (2.8 hours) as our test set.

Vision tasks

• MNIST [72] contains 60,000 training images and 10,000 testing 28×28 pixel images of

hand-written digits. It is a 10-class image classification task.

94

https://www.kaggle.com/stackoverflow/stackoverflow
https://www.kaggle.com/stackoverflow/stackoverflow

• CIFAR-10 [68] consists of 50,000 32× 32 pixel training images and 10,000 32× 32

pixel test images in 10 different classes. It is a balanced dataset with 6,000 images of each

class.

• ImageNet [117] is an image dataset with 1000 classes, and about 1.28 million images as

training set. The sizes of its validation and test set are 50,000 and 10,000, respectively.

All images we use are in 224×224 pixels.

A.2 Hyper-parameter settings

We give the implementation toolkits and specific hyper-parameter settings to help repro-

duce our results, and list the epochs needed for training with the square loss and the cross-entropy

(CE) loss. The data processing is following the standard methods. For NLP tasks, it is the same

as in [127], and for ASR tasks, it is the same as in [133]. For vision tasks, we are following the

default ones given in the implementation of the corresponding papers.

A.2.1 Hyper-parameters for NLP tasks

The implementation of BERT is based on the PyTorch toolkit [135]. The specific script

we run is https://github.com/huggingface/transformers/blob/master/examples/text-classification/

run glue.py, and we use the bert-base-cased model for fine-tuning. LSTM+Attention and

LSTM+CNN are implemented based on the toolkit released by [71]. The specific hyper-

parameters used in the experiments are in Table A.1. As there are many hyper-parameters,

we only list the key ones, and all other parameters are the default in the scripts.

A.2.2 Hyper-parameters for ASR tasks

The implementation of ASR tasks is based on the ESPnet [133] toolkit, and the specific

code we use is the run.sh script under the base folder of each task, which is https://github.com/

espnet/espnet/tree/master/egs/?/asr1, where ’?’ can be ’timit’, ’wsj’, and ’librispeech’. The

specific hyper-parameters are following the ones in the configuration file of each task, which

95

https://github.com/huggingface/transformers/blob/master/examples/text-classification/run_glue.py
https://github.com/huggingface/transformers/blob/master/examples/text-classification/run_glue.py
https://github.com/espnet/espnet/tree/master/egs/?/asr1
https://github.com/espnet/espnet/tree/master/egs/?/asr1

Table A.1. Hyper-parameters for NLP tasks

Model Task
Batch
size

max seq
length

Learning rate w/ Epochs training w/
square loss CE square loss CE

BERT

MRPC 32 128 5e-5 2e-5 5 3
SST-2 32 128 2e-5 2e-5 3 3
QNLI 32 128 2e-5 2e-5 3 3
QQP 32 128 2e-5 2e-5 3 3
text5 32 128 2e-5 2e-5 3 3

text20 32 128 2e-5 2e-5 3 3

Transformer-XL
text8 8 70 2.5e-4 2.5e-4 400000♮ 400000♮

enwik8 8 70 2.5e-5 2.5e-4 400000♮ 400000♮

LSTM+Attention
MRPC 64 80 2e-4 1e-4 25 20
QNLI 32 sent len∗ 1e-4 1e-4 20 20
QQP 64 120 1e-4 1e-4 30 30

LSTM+CNN
MRPC 64 80 2e-4 1e-4 20 20
QNLI 32 sent len∗ 8e-5 1e-4 20 20
QQP 32 120 1e-3 1e-3 20 20

* The max sequence length equals the max sentence length of the training set. ♮ training steps.

is under the base folder. We list the files which give the hyper-parameter settings for acoustic

model training in Table A.2.

Table A.2. Hyper-parameters for ASR tasks

Model Task Hyper-parameters
Epochs training w/
square loss CE

Attention+CTC TIMIT conf/train.yaml♮ 20 20
VGG+BLSTMP WSJ∗ conf/tuning/train rnn.yaml 15 15
VGG+BLSTM Librispeech conf/tuning/train rnn.yaml♢ 30 20

Transformer WSJ conf/tuning/train pytorch transformer.yaml 100 100
Transformer Librispeech conf/tuning/train pytorch transformer.yaml 120 100

* For WSJ, we use the language model given by https://drive.google.com/open?id=
1Az-4H25uwnEFa4lENc-EKiPaWXaijcJp. ♮ We set mtlalpha=0.3, batch-size=30. ♢We
set elayers=4, as we use 100 hours training data.

A.2.3 Hyper-parameters for vision tasks

The implementation of these models are based on the open source toolkits. For TCNN

and EfficientNet, we use the open source implementation given by [3] and [124], respectively.

For Wide ResNet, we are based on the open source PyTorch implementation https://github.com/

xternalz/WideResNet-pytorch (W-ResNet). For ResNet-50, our experiments are based on the

96

https://drive.google.com/open?id=1Az-4H25uwnEFa4lENc-EKiPaWXaijcJp
https://drive.google.com/open?id=1Az-4H25uwnEFa4lENc-EKiPaWXaijcJp
https://github.com/xternalz/WideResNet-pytorch
https://github.com/xternalz/WideResNet-pytorch

Tensorflow toolkit https://github.com/tensorflow/tpu/tree/master/models/official/resnet (ResNet)

implemented on TPU. The hyper-parameter settings for our vision experiments are in Table C.1.

Table A.3. Hyper-parameters for vision tasks

Model Task Hyper-parameters
Epochs training w/

square loss CE
TCNN MNIST♮ the default in [3] 20 20

Wide-ResNet CIFAR-10
the default in W-ResNet,
except wide-factor=20 200 200

Visual Transformer CIFAR-10 the default in [64] 200 200

ResNet-50 ImageNet
the default in ResNet,

for square loss, learning rate=0.3 168885∗ 112590∗

EfficientNet ImageNet
the default in EfficientNet-B0

of [124] 218949∗ 218949∗

♮ We are doing the permuted MNIST task as in [3].
* We give the training steps as in the original implementations.

A.3 Experimental results on validation and training sets

Table A.4. NLP results on validation set, accuracy

Model Task
train with

square loss (%)
train with

cross-entropy (%)
square loss w/ same
epochs as CE (%)

BERT
[17]

MRPC 888555...333 85.0 888555...333
SST-2 91.2 999111...555 91.2
QNLI 999000...888 90.7 999000...888
QQP 999000...888 90.7 90.6
text5 888000...888 80.6 888000...888

text20 888555...999 85.4 888555...999
Transformer-XL

[14]
text8 777333...444 72.9 777333...444

enwik8 77.0 777777...888 77.0

LSTM+Attention
[10]

MRPC 777666...555 74.8 75.3
QNLI 777999...777 777999...777 777999...777
QQP 888666...000 85.5 888666...000

LSTM+CNN
[45]

MRPC 777666...000 73.3 777666...000
QNLI 777666...888 777666...888 777666...888
QQP 84.0 888555...333 84.0

We report the results for validation set of NLP tasks in Table A.4 for accuracy and Table

A.5 for F1 scores.

97

https://github.com/tensorflow/tpu/tree/master/models/official/resnet

Table A.5. NLP results on validation set, F1 scores

Model Task
train with

square loss (%)
train with

cross-entropy (%)
square loss w/ same
epochs as CE (%)

BERT
[17]

MRPC 89.5 888999...666 89.5
QQP 888777...555 87.4 87.4

LSTM+Attention
[10]

MRPC 888333...777 83.3 83.5
QQP 888222...111 81.7 888222...111

LSTM+CNN
[45]

MRPC 888222...666 81.4 888222...666
QQP 77.4 888000...222 77.4

The validation set results of the ASR tasks are in Table A.6.

Table A.6. ASR results on validation set, error rate

Model Task
train with

square loss (%)
train with

cross-entropy (%)
square loss w/ same
epochs as CE (%)

Attention+CTC
[62]

TIMIT (PER) 111888...111 18.3 111888...111
TIMIT (CER) 333000...444 31.4 333000...444

VGG+BLSTMP
[88]

WSJ (WER) 888...555 8.8 888...555
WSJ (CER) 333...999 4.0 333...999

VGG+BLSTM
[88]

Librispeech (WER) 999...333 10.7 9.9
Librispeech (CER) 999...444 11.1 10.2

Transformer
[133]

WSJ (WER) 999...111 9.3 999...111
Librispeech (WER) 9.7 999...111 9.7

We report the training result for NLP tasks in Table A.7 for accuracy and F1 score in

Table A.8. The training results for ASR tasks and vision tasks are in Table A.9 and Table A.10,

respectively.

A.4 Our results compared with the original work

We list our results for the models trained with the cross-entropy (CE) loss and compare

them to the results reported in the literature or the toolkits in Table A.11. As we observe, our

results are comparable to the original reported results.

The models marked with ’N/A’ in Table A.11 do not have comparable results reported

in the literature. Specifically, LSTM+Attention and LSTM+CNN models for NLP tasks are

implemented based on the toolkit released by [71], where they did not show results on MRPC

98

Table A.7. NLP results on training and test set, accuracy

Model Task
train with

square loss (%)
train with

cross-entropy (%)
square loss w/ same
epochs as CE (%)

Train Test Train Test Train Test

BERT
[17]

MRPC 99.7 83.8 99.9 82.1 99.6 83.6
SST-2 98.6 94.0 99.2 93.9 98.6 93.9
QNLI 98.0 90.6 97.5 90.6 98.0 90.6
QQP 96.2 88.9 98.0 88.9 96.2 88.8
text5 96.7 80.6 96.3 80.5 96.7 80.6

text20 95.6 85.6 94.9 85.2 95.6 85.6
Transformer-XL

[14]
text8 90.5 73.2 90.1 72.8 90.5 73.2

enwik8 90.7 76.7 91.8 77.5 90.7 76.7

LSTM+Attention
[10]

MRPC 94.6 71.7 84.9 70.9 93.2 71.5
QNLI 87.7 79.3 90.8 79.0 87.7 79.3
QQP 93.7 83.4 91.5 83.1 93.7 83.4

LSTM+CNN
[45]

MRPC 98.3 73.2 92.5 69.4 98.3 72.5
QNLI 92.8 76.0 90.7 76.0 92.8 76.0
QQP 91.3 84.3 95.7 84.4 91.3 84.3

Table A.8. NLP results on training and test set, F1 scores

Model Task
train with

square loss (%)
train with

cross-entropy (%)
square loss w/ same
epochs as CE (%)

Train Test Train Test Train Test
BERT
[17]

MRPC 99.8 88.1 99.9 86.7 99.7 88.0
QQP 94.5 70.9 97.2 70.7 94.5 70.7

LSTM+Attention
[10]

MRPC 96.1 80.9 89.5 80.6 94.7 80.7
QQP 91.9 62.6 89.2 62.3 91.9 62.6

LSTM+CNN
[45]

MRPC 98.8 81.0 94.5 78.2 98.8 81.0
QQP 88.0 60.3 94.2 60.5 88.0 60.3

and QNLI. The QQP results are not comparable with ours as they were using a different test

set, while we are using the standard test set same as in [127]. The VGG+BLSTM model for

Librispeech dataset is based on ESPnet toolkit [133]. Due to computational resources limitations,

we only use train-clean-100 (100 hours) as training data and 1000 unigram based dictionary for

acoustic model training, while they use 1000 hours of training data with at least 2000 unigram

dictionary.

99

Table A.9. ASR results on training and test set, error rate

Model Task
train with

square loss (%)
train with

cross-entropy (%)
square loss w/ same
epochs as CE (%)

Train Test Train Test Train Test
Attention+CTC

[62]
TIMIT (PER) 0.9 20.8 4.8 20.8 0.9 20.8
TIMIT (CER) 4.5 32.5 11.6 33.4 4.5 32.5

VGG+BLSTMP
[88]

WSJ (WER)∗ 0.7 5.1 0.3 5.3 0.7 5.1
WSJ (CER)∗ 0.3 2.4 0.1 2.5 0.3 2.4

VGG+BLSTM
[88]

Librispeech (WER)∗ 0.8 9.8 0.4 10.6 0.8 10.3
Librispeech (CER)∗ 0.6 9.7 0.3 10.7 0.6 10.2

Transformer
[133]

WSJ (WER)∗ 0.7 5.7 0.5 5.8 0.7 5.7
Librispeech (WER)∗ 0.9 9.4 1.2 9.2 0.9 9.4

* For WSJ and Librispeech, we take 10% of the training set for the evaluation of the training error rate.

Table A.10. Vision results on training and test set, accuracy

Model Task
train with

square loss (%)
train with

cross-entropy (%)
square loss w/ same
epochs as CE (%)

Train Test Train Test Train Test
TCNN [3] MNIST (acc.) 98.3 97.7 99.5 97.7 98.3 97.7

W-Resnet [141] CIFAR-10 (acc.) 100.0 95.9 100.0 96.3 100.0 95.9
Visual Transformer [64] CIFAR-10 (acc.) 100.0 99.3 100.0 99.2 100.0 99.3

ResNet-50
[46]

ImageNet (acc.) 77.7 76.2 80.5 76.1 77.7 76.0
ImageNet (Top-5 acc.) 93.2 93.0 93.4 93.0 93.2 92.9

EfficientNet
[124]

ImageNet (acc.) 75.1 74.6 81.4 77.0 75.1 74.6
ImageNet (Top-5 acc.) 93.0 92.7 94.0 93.3 93.0 92.7

A.5 Regularization terms

We give the regularization term of each task in Table A.12. 0 means we didn’t add

regularization term. For WSJ, check the details at line 306 of https://github.com/espnet/espnet/

blob/master/espnet/nets/pytorch backend/rnn/decoders.py.

A.6 Variance of accuracy among different random seeds

Figure A.1 gives the error bar of 5 runs corresponding to 5 different random seeds, along

with the results for each inidividual run. In the left of each subfigure is the result of training with

the square loss, while in the right is result of the cross-entropy. As can be seen in Figure A.1,

using the square loss has better accuray/error rate and smaller variance in NLP and ASR tasks,

100

https://github.com/espnet/espnet/blob/master/espnet/nets/pytorch_backend/rnn/decoders.py
https://github.com/espnet/espnet/blob/master/espnet/nets/pytorch_backend/rnn/decoders.py

Table A.11. Training with the cross-entropy loss, our results and the reported ones

Model Task Our CE result CE result in the literature

BERT∗

MRPC (acc./F1) 85.0/89.6 85.29/89.47 [135]
SST-2 (acc.) 91.5 91.97 [135]
QNLI (acc.) 90.7 87.46 [135]

QQP (acc./F1) 90.7/87.4 88.40/84.31 [135]
text5 (acc.) 80.5 N/A
text20 (acc.) 85.2 N/A

Transformer-XL N/A
LSTM+Attention N/A

LSTM+CNN N/A

Attention+CTC
TIMIT (PER) 20.7 20.5 [133]
TIMIT (CER) 32.7 33.7 [133]

VGG+BLSTMP
WSJ (WER) 5.4 5.3 [133]
WSJ (CER) 2.6 2.4 [133]

VGG+BLSTM
Librispeech (WER) 10.8 N/A
Librispeech (CER) 11.0 N/A

Transformer
WSJ (WER) 5.8 5.6

Librispeech (WER) 9.2 N/A
TCNN MNIST (acc.) 98.0 97.2 [3]

Wide-ResNet CIFAR-10 (acc.) 96.5 96.11 [141]
Visual Transformer CIFAR-10 (acc.) 99.2 99.16 [64]

ResNet-50 ImageNet (acc./Top-5 acc.) 76.1/93.0 76.0/93.0 [124]
EfficientNet ImageNet (acc./Top-5 acc.) 77.2/93.4 77.3/93.5 [124]

* The implementation in [135] is using bert-base-uncased model, we are using bert-base-cased,
which will result in a little difference. Also, as they didn’t give test set results, here for BERT, we
give the results of validation set.

which indicates that training with the square loss for those classification tasks is statistically

better.

101

MRPC

82

84

square
 loss CE

SST-2

94.0

94.5
square
 loss CE

QNLI

90.5

91.0

square
 loss CE

QQP

88.8

88.9

89.0

89.1square
 loss CE

Accuracy among results of 5 random seeds

(a) NLP: BERT

text5

80.25

80.50

80.75

81.00square
 loss

CE

text20

85.25

85.50

85.75

86.00square
 loss

CE

text8

72.5

73.0

73.5square
 loss CE

enwik8
76.5

77.0

77.5
square
 loss CE

Accuracy among results of 5 random seeds

(b) NLP

Attention: MRPC
70

71

72

73
square
 loss CE

Attention: QNLI

79

80
square
 loss

CE

Attention: QQP

83

84

85
square
 loss CE

CNN: MRPC

70

72

74
square
 loss CE

CNN: QNLI
75.5

76.0

76.5
square
 loss CE

CNN: QQP

84

85

square
 loss

CE

Accuracy among results of 5 random seeds

(c) NLP: LSTM+Attention & LSTM+CNN

TIMIT: CER
32

33

34

35
square
 loss CE

TIMIT: PER
20.0

20.5

21.0

21.5
square
 loss CE

WSJ: WER
5.00

5.25

5.50

5.75
square
 loss CE

WSJ: CER

2.4

2.6

square
 loss CE

Lib: WER
9.5

10.0

10.5

11.0
square
 loss

CE

Lib: CER

10

11

square
 loss

CE

Lib: WER
5.00

5.25

5.50

5.75

6.00

Lib: WER
9.00

9.25

9.50

9.75

10.00

Error rate among results of 5 random seeds

(d) ASR

TCN

97.6

97.8

98.0

square
 loss CE

Wid-ResNet

96

97
square
 loss CE

Transformer

99.0

99.2

square
 loss CE

ResNet: Top-1

76.1

76.2

76.3
square
 loss

CE

ResNet: Top-5
92.8

93.0

93.2

93.4
square
 loss CE

Effi: Top-1
74

75

76

77
square
 loss CE

Effi: Top-5
92.5

93.0

93.5
square
 loss CE

(e) Vision

Figure A.1. Accuracy/error rate variance of results among 5 random seeds

102

Table A.12. Regularization term for each task

Model Task dropout∗ batch norm Regularization Term

BERT
MRPC/SST-2/QNLI/QQP

text5/text20 0.1 N 0

Transformer-XL text8/enwik8 0.1 N 0
LSTM+Attention MRPC/QNLI/QQP 0.5 N 0

LSTM+CNN MRPC/QNLI/QQP 0.0 N 0
Attention+CTC TIMIT 0.0 N 0
VGG+BLSTMP WSJ 0.0 N label smoothing based
VGG+BLSTM Librispeech 0.2 N 0

Transformer WSJ/Librispeech 0.1 N 0
TCN MNIST 0.05 N 0

Wide-ResNet CIFAR-10 0.0 N 0
Visual Transformer CIFAR-10 0.0 N 0

ResNet-50 ImageNet 0.0 Y 10−4

2 ∑
n
i=1 www2

iii
EfficientNet ImageNet 0.0 Y 10−5

2 ∑
n
i=1 www2

iii
∗ For dropout, 0.0 means have not apply dropout.

103

Appendix B

B.1 Proof of Lemma 4

Proof. To be concise in notation, in the proof, we denote pi j = p and γ+ = γ

Case 1 yi j = 1

min
z

f (z) = ∥R− (z)+∥2 + γ ∥z− p∥2 =


(R− z)2 + γ(z− p)2 if z > 0

R2 + γ(z− p)2 if z < 0

There are two local minima at z1 =
R+γ p
1+γ

and z2 = p. Then

min
z1

f (z1) =


γ

1+γ
(R− p)2 if p >−R

γ

R2 + γ

(1+γ)2 (R− p)2 if p <−R
γ

min
z2

f (z2) =


(R− p)2 if p > 0

R2 if p < 0

When −R
γ
< p < 0, need to compare R2 and γ

1+γ
(R− p)2 and see which one is smaller. With

104

some calculation, when p = p⋆, the two is equal. Then

min
z

f (z) =



(R− p)2 if p > 0

R2 if p⋆ < p < 0

γ

1+γ
(R− p)2 if − R

γ
< p < p⋆

R2 + γ

(1+γ)2 (R− p)2 if p <−R
γ

Hence,

g(p,γ) = arg min
z

f (z) =


R+γ p
1+γ

p > p⋆

p otherwise

Case 2 yi j = 0, similarly,

min
z

f (z) = ∥(z)+∥2 + γ ∥z− p∥2 =


z2 + γ(z− p)2 if z > 0

γ(z− p)2 if z < 0

There are two local minima at z3 =
γ p

1+γ
and z4 = p. Then

min
z3

f (z3) =


γ p2

1+γ
if p > 0

γ p2

(1+γ)2 if p < 0

min
z4

f (z4) =


p2 if p > 0

0 if p < 0

105

min
z

f (z) =


γ p2

1+γ
if p > 0

0 if p < 0

Hence,

g(p,γ) = arg min
z

f (z) =


γ p

1+γ
if p > 0

p if p < 0

□

B.2 Stieltjes Transform

For a non-negative random variable S2, define the Stieltjes transform as the function

T1(u) = T (u) := E
u

S2 +u
u > 0 (B.1)

We state a few quantities related to this transform are given below.

If XXX ∈ Rn×p and xi j ∼N (0,σ2
tr) i.i.d., and XXX = UUUSSSVVV⊤ with β = limn→∞

n
p . S2 obeys

the M-P law and the Stieltjes transform of the M-P law is

S(−z,β) =
−(1−β + z)+

√
(1−β + z)2 +4β z

2β z
(B.2)

E
u

S2 +u
= uE

1
S2 +u

= u
∫ b

a

1
S2 +u

dMP(S2) = uS(−u,β) (B.3)

1. T (u) = −(1−β+u)+
√

(1−β+u)2+4βu
2β

2. T2(u) = T ′(u) = 1
2β
(−1+ 1+β+u√

(1−β+u)2+4βu
)

3. T ′′ =− 2
[(1−β+u)2+4βu]3/2

106

4. T3(u) = T (u)−uT ′(u) = −(1−β+2u)+
√

(1−β+u)2+4βu
2β

+ u(1+β+u)
2β

√
(1−β+u)2+4βu

5. T4(u) = 1−T (u)−uT ′(u) = (1+β)−
√

(1−β+u)2+4βu
2β

− u(1+β+u)
2β

√
(1−β+u)2+4βu

When u→ 0,

lim
u→0+

T (u) =


0 β < 1

β−1
β

β > 1
(B.4a)

lim
u→0+

T ′(u) =


1

1−β
β < 1

1
β (β−1) β > 1

(B.4b)

lim
u→0+

T ′′(u) =


− 2

(1−β)3 β < 1

− 2
(β−1)3 β > 1

(B.4c)

lim
u→0+

T3(u) =


0 β < 1

β−1
β

β > 1
(B.4d)

lim
u→0+

T4(u) =


1 β < 1

1
β

β > 1
(B.4e)

When u is small and β < 1,

T (u) =
1

1−β
u− 1

(1−β)3 u2 +o(u3) (B.5a)

T ′(u) =
1

1−β
− 2u

(1−β)3 +o(u2) (B.5b)

T3(u) =
u2

(1−β)3 +o(u3) (B.5c)

T4(u) = 1− 2
1−β

u+
3u2

(1−β)3 +o(u3) (B.5d)

107

similarly when u is small and β > 1,

T (u) =
β −1

β
+

1
β (β −1)

u− 1
(β −1)3 u2 +o(u3) (B.6a)

T ′(u) =
1

β (β −1)
− 2u

(β −1)3 +o(u2) (B.6b)

T3(u) =
β −1

β
+

u2

(β −1)3 +o(u3) (B.6c)

T4(u) =
1
β
− 2

β (β −1)
u+

3u2

(β −1)3 +o(u3) (B.6d)

When β = 1, i.e. p = n and σ2 = 1, S(z) =−1
2 +

1
2

√
1− 4

z , then

T (u) := E
u

S2 +u
= uS(−u) = u(−1

2
+

1
2

√
1+

4
u
) =

u
2
(

√
1+

4
u
−1) (B.7)

T2(u) := T ′(u) =
1
2
(

√
1+

4
u
−1)− 1√

u2 +4u
(B.8)

Lemma 6. For u > 0 we have

1. T2(u) := E S
S2+u

2
= T ′(u)

2. T3(u) := E u
S2+u

2 = T (u)−uT ′(u)

3. T4(u) := E S2

S2+u

2
= 1−T (u)−uT ′(u)

Proof. 1. Observe that

T ′(u) = E
(S2 +u) ·1−1 ·u

(S2 +u)2 = E
S2

(S2 +u)2

108

2. Consider the following equalities

T (u)+T ′(u) = E
(

u
S2 +u

+
S2

(S2 +u)2

)
= E

uS2 +u2

(S2 +u)2 +E
S2

(S2 +u)2

= (u+1)E
S2

(S2 +u)2 +E
u2

(S2 +u)2 = (u+1)T ′(u)+LHS

3. Observe that

E
S2

S2 +u

2

= 1−2E
u

S2 +u
+E

u
S2 +u

2
= 1−2T (u)+(T (u)−uT ′(u))

This concludes the proof. □

109

Appendix C

C.1 Datasets

Datasets used in our tests include the following.

• CIFAR-100: [68] consists of 50, 000 32×32 pixel training images and 10, 000 32 × 32

pixel test images in 100 different classes. It is a balanced dataset with 6, 00 images of each

class.

• SVHN: [96] is a real-world image dataset obtained from house numbers in Google Street

View images and it incorporates over 600,000 digit images with labeles. It is a good

choice for developing machine learning and object recognition algorithms with minimal

requirement on data preprocessing and formatting.

• STL-10: [12] is an image recognition dataset mainly for developing unsupervised feature

learning as it contains many images without labels. The resolution of this dataset is 96x96

and this makes it a challenging benchmark.

See Appendix A of [51] for details of other datasets.

C.2 Hyperparameters

Detailed hyperparameter settings for CIFAR-100, SVHN, and STL-10 are shown in Table

C.1. For the other tasks, we follow the exact same settings as provided in Appendix B of [51].

110

Table C.1. Hyper-parameters for CIFAR-100, SVHN, and STL-10.

Model Task Hyper-parameters
Epochs training w/

squentropy square loss CE

Wide-ResNet CIFAR-100
lr=0.1, layer=28

wide-factor=20, batch size: 128 200 200 200

VGG SVHN
lr=0.1 for cross-entropy

lr=0.0.02 for squentropy and square loss 200 200 200

Resnet-18 STL-10
lr=0.1 for cross-entropy

for squentropy and square loss lr=0.02 200 200 200

C.3 More reliability diagrams

We provide the reliability diagrams for more tasks. Note that the values given for ECE

(Expected calibration error as defined in (4.2) and the smaller the better) in these plots are

percentages as in Table 4.1.

0.0 0.2 0.4 0.6 0.8 1.00.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

ECE: 12.4

Squentropy: text5
Outputs
Gap

0.0 0.2 0.4 0.6 0.8 1.00.0

0.2

0.4

0.6

0.8

1.0

ECE: 14.9

Cross-entropy: text5
Outputs
Gap

0.0 0.2 0.4 0.6 0.8 1.00.0

0.2

0.4

0.6

0.8

1.0

ECE: 46.7

Square loss: text5
Outputs
Gap

Confidence

Figure C.1. Reliability diagrams for a pretrained BERT on text5 data. Left: squentropy, middle:
cross-entropy, right: square loss.

C.4 Results for 121 tabular datasets

We list the test accuracy and calibration results (ECE) of each tabular dataset in Tables C.2,

C.3 and C.4. Note that the square loss of in those tables are all rescaled square loss defined in

Equation (4.3). with t = 1,M = 5.

111

0.0 0.2 0.4 0.6 0.8 1.00.0

0.2

0.4

0.6

0.8

1.0
Ac

cu
ra

cy

ECE: 10.5

Squentropy: text20
Outputs
Gap

0.0 0.2 0.4 0.6 0.8 1.00.0

0.2

0.4

0.6

0.8

1.0

ECE: 16.2

Cross-entropy: text20
Outputs
Gap

0.0 0.2 0.4 0.6 0.8 1.00.0

0.2

0.4

0.6

0.8

1.0

ECE: 69.3

Square loss: text20

Outputs
Gap

Confidence

Figure C.2. Reliability diagrams for a pretrained BERT on text20 data. Left: squentropy,
middle: cross-entropy, right: square loss.

0.0 0.2 0.4 0.6 0.8 1.00.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

ECE: 4.8

Squentropy: enwik8
Outputs
Gap

0.0 0.2 0.4 0.6 0.8 1.00.0

0.2

0.4

0.6

0.8

1.0

ECE: 9.3

Cross-entropy: enwik8
Outputs
Gap

0.0 0.2 0.4 0.6 0.8 1.00.0

0.2

0.4

0.6

0.8

1.0

ECE: 64.5

Square loss: enwik8
Outputs
Gap

Confidence

Figure C.3. Reliability diagrams for a Transformer-XL on enwik8. Left: squentropy, middle:
cross-entropy, right: square loss.

0.0 0.2 0.4 0.6 0.8 1.00.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

ECE: 3.9

Squentropy: text8
Outputs
Gap

0.0 0.2 0.4 0.6 0.8 1.00.0

0.2

0.4

0.6

0.8

1.0

ECE: 5.8

Cross-entropy: text8
Outputs
Gap

0.0 0.2 0.4 0.6 0.8 1.00.0

0.2

0.4

0.6

0.8

1.0

ECE: 57.6

Square loss: text8
Outputs
Gap

Confidence

Figure C.4. Reliability diagrams for a Transformer-XL on text8. Left: squentropy, middle:
cross-entropy, right: square loss.

112

0.0 0.2 0.4 0.6 0.8 1.00.0

0.2

0.4

0.6

0.8

1.0
Ac

cu
ra

cy

ECE: 0.7

Squentropy: TIMIT
Outputs
Gap

0.0 0.2 0.4 0.6 0.8 1.00.0

0.2

0.4

0.6

0.8

1.0

ECE: 3.1

Cross-entropy: TIMIT
Outputs
Gap

0.0 0.2 0.4 0.6 0.8 1.00.0

0.2

0.4

0.6

0.8

1.0

ECE: 2.8

Square loss: TIMIT
Outputs
Gap

Confidence

Figure C.5. Reliability diagrams for a Attention+CTC model on TIMIT. Left: squentropy,
middle: cross-entropy, right: square loss.

0.0 0.2 0.4 0.6 0.8 1.00.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

ECE: 3.2

Squentropy: WSJ
Outputs
Gap

0.0 0.2 0.4 0.6 0.8 1.00.0

0.2

0.4

0.6

0.8

1.0

ECE: 5.0

Cross-entropy: WSJ
Outputs
Gap

0.0 0.2 0.4 0.6 0.8 1.00.0

0.2

0.4

0.6

0.8

1.0

ECE: 5.3

Rescaled square loss: WSJ
Outputs
Gap

Confidence

Figure C.6. Reliability diagrams for a VGG+BLSTMP model on WSJ. Left: squentropy,
middle: cross-entropy, right: scaled square loss.

0.0 0.2 0.4 0.6 0.8 1.00.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

ECE: 7.1

Squentropy: Librispeech
Outputs
Gap

0.0 0.2 0.4 0.6 0.8 1.00.0

0.2

0.4

0.6

0.8

1.0

ECE: 2.7

Cross-entropy: Librispeech
Outputs
Gap

0.0 0.2 0.4 0.6 0.8 1.00.0

0.2

0.4

0.6

0.8

1.0

ECE: 7.9

Rescaled square loss: Librispeech
Outputs
Gap

Confidence

Figure C.7. Reliability diagrams for a VGG+BLSTM model on Librispeech. Left: squentropy,
middle: cross-entropy, right: scaled square loss.

113

0.0 0.2 0.4 0.6 0.8 1.00.0

0.2

0.4

0.6

0.8

1.0
Ac

cu
ra

cy

ECE: 1.4

Squentropy: MNIST
Outputs
Gap

0.0 0.2 0.4 0.6 0.8 1.00.0

0.2

0.4

0.6

0.8

1.0

ECE: 1.6

Cross-entropy: MNIST
Outputs
Gap

0.0 0.2 0.4 0.6 0.8 1.00.0

0.2

0.4

0.6

0.8

1.0

ECE: 74.8

Square loss: MNIST

Outputs
Gap

Confidence

Figure C.8. Reliability diagrams for a TCN on MNIST. Left: squentropy, middle: cross-entropy,
right: square loss.

0.0 0.2 0.4 0.6 0.8 1.00.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

ECE: 8.9

Squentropy: CIFAR-10
Outputs
Gap

0.0 0.2 0.4 0.6 0.8 1.00.0

0.2

0.4

0.6

0.8

1.0

ECE: 9.9

Cross-entropy: CIFAR-10
Outputs
Gap

0.0 0.2 0.4 0.6 0.8 1.00.0

0.2

0.4

0.6

0.8

1.0

ECE: 12.9

Rescaled square loss: CIFAR-10
Outputs
Gap

Confidence

Figure C.9. Reliability diagrams for a Resnet18 on CIFAR-10.Left: squentropy, middle:
cross-entropy, right: scaled square loss.

0.0 0.2 0.4 0.6 0.8 1.00.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

ECE: 19.6

Squentropy: CIFAR-100 subset
Outputs
Gap

0.0 0.2 0.4 0.6 0.8 1.00.0

0.2

0.4

0.6

0.8

1.0

ECE: 40.3

Cross-entropy: CIFAR-100 subset
Outputs
Gap

0.0 0.2 0.4 0.6 0.8 1.00.0

0.2

0.4

0.6

0.8

1.0

ECE: 23.8

Rescaled square loss: CIFAR-100 subset
Outputs
Gap

Confidence

Figure C.10. Reliability diagrams for a Wide Resnet on CIFAR-100 subset. Left: squentropy,
middle: cross-entropy, right: scaled square loss.

114

0.0 0.2 0.4 0.6 0.8 1.00.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

ECE: 21.2

Squentropy: STL-10
Outputs
Gap

0.0 0.2 0.4 0.6 0.8 1.00.0

0.2

0.4

0.6

0.8

1.0

ECE: 26.1

Cross-entropy: STL-10
Outputs
Gap

0.0 0.2 0.4 0.6 0.8 1.00.0

0.2

0.4

0.6

0.8

1.0

ECE: 40.3

Square loss: STL-10

Outputs
Gap

Confidence

Figure C.11. Reliability diagrams for a Resnet18 on STL10. Left: squentropy, middle:
cross-entropy, right: square loss.

0.0 0.2 0.4 0.6 0.8 1.00.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

ECE: 4.8

Squentropy: SVHN
Outputs
Gap

0.0 0.2 0.4 0.6 0.8 1.00.0

0.2

0.4

0.6

0.8

1.0

ECE: 5.7

Cross-entropy: SVHN
Outputs
Gap

0.0 0.2 0.4 0.6 0.8 1.00.0

0.2

0.4

0.6

0.8

1.0

ECE: 65.4

Square loss: SVHN

Outputs
Gap

Confidence

Figure C.12. Reliability diagrams for a VGG on SVHN. Left: squentropy, middle:
cross-entropy, right: square loss.

115

Table C.2. Test accuracy (Acc)/ECE for 121 tabular datasets

Dataset
Squentropy Cross-entropy Rescaled square
Acc ECE Acc ECE Acc ECE

abalone 66.0 3.9 67.9 14.1 68.3 13.8
acute-inflammation 96.4 3.8 91.3 4.7 95.8 4.3

acute-nephritis 100.0 1.7 100.0 3.0 100.0 4.8
adult 84.0 4.7 85.1 5.7 85.1 10.7

annealing 94.3 3.6 93.3 3.9 94.4 4.1
arrhythmia 68.1 21.4 67.0 24.5 68.4 17.3

audiology-std 72.6 26.3 73.0 26.0 70.3 29.7
balance-scale 97.2 5.0 96.3 3.8 96.5 4.0

balloons 95.6 23.7 95.4 21.4 90.0 25.8
bank 89.9 4.1 89.8 7.7 89.2 10.6
blood 81.6 11.7 81.9 7.0 81.7 16.6

breast-cancer 76.8 26.6 75.6 24.5 75.5 27.5
breast-cancer-wisc 98.0 4.8 97.6 4.9 97.1 4.5

breast-cancer-wisc-diag 99.5 3.5 99.2 3.4 98.8 2.2
breast-cancer-wisc-prog 89.6 16.3 87.9 15.7 89.0 19.3

breast-tissue 83.3 17.9 84.1 17.1 83.6 19.2
car 100.0 0.4 100.0 0.4 100.0 2.3

cardiotocography-10clases 87.7 6.3 87.8 7.3 87.2 3.9
cardiotocography-3clases 94.8 4.0 94.9 5.5 94.7 4.6

chess-krvk 86.6 3.7 87.8 1.8 86.1 16.0
chess-krvkp 99.8 0.4 99.7 0.5 99.8 0.7

congressional-voting 65.9 9.7 65.7 9.2 65.1 18.3
conn-bench-sonar-mines-rocks 90.6 11.7 91.4 10.2 91.4 13.1
conn-bench-vowel-deterding 99.6 2.7 99.1 1.9 98.9 9.3

connect-4 89.4 3.3 89.0 5.1 89.7 6.6
contrac 57.7 13.6 58.6 30.4 58.0 35.3

credit-approval 89.1 9.4 88.4 11.7 88.6 14.3
cylinder-bands 81.9 13.1 84.1 14.8 83.9 17.8
dermatology 97.6 4.7 97.2 4.4 97.3 3.5

echocardiogram 85.0 17.6 84.9 17.8 84.4 19.3
ecoli 88.2 12.4 88.1 7.8 88.2 9.8

energy-y1 97.3 4.2 97.5 4.2 97.3 3.0
energy-y2 97.2 4.4 96.7 5.3 96.4 4.0

fertility 94.6 23.3 93.4 26.3 90.0 19.4
flags 60.1 27.1 58.4 31.3 57.4 20.6
glass 78.7 18.7 78.1 25.4 78.1 20.8

haberman-survival 80.3 12.2 79.8 17.9 79.7 22.9
hayes-roth 85.8 5.4 84.1 11.4 83.7 13.6

heart-cleveland 62.5 32.0 62.1 32.5 64.6 25.7
heart-hungarian 85.3 17.6 84.8 16.0 85.4 19.2

116

Table C.3. Test accuracy (Acc)/ECE for 121 tabular datasets

Dataset
Squentropy Cross-entropy Rescaled square
Acc ECE Acc ECE Acc ECE

heart-switzerland 43.8 50.4 43.6 47.7 46.4 44.4
heart-va 42.1 46.0 46.4 54.1 42.0 47.9
hepatitis 77.4 18.1 75.3 20.6 84.5 14.8

hill-valley 66.0 14.2 71.9 36.3 71.1 40.2
horse-colic 85.9 13.3 84.4 13.9 86.0 14.2

ilpd-indian-liver 77.2 12.7 75.3 22.9 75.9 25.7
image-segmentation 96.8 5.4 94.7 6.5 94.8 6.9

ionosphere 98.3 7.0 98.2 5.5 97.2 6.2
iris 97.2 3.9 97.1 4.3 98.0 2.9

led-display 75.2 10.7 75.3 5.2 74.9 8.3
lenses 76.6 20.8 68.4 21.5 80.0 17.8
letter 98.8 1.1 98.6 1.2 98.4 16.6
libras 93.1 4.9 92.9 5.7 92.5 12.9

low-res-spect 95.9 4.0 95.2 5.0 94.2 7.7
lung-cancer 60.6 27.1 54.7 40.4 62.9 40.4

lymphography 89.2 6.4 87.1 7.1 91.3 8.0
magic 88.3 5.5 89.1 5.3 89.2 8.3

mammographic 81.9 9.4 83.3 8.0 83.4 14.6
miniboone 81.7 20.3 81.5 20.3 77.9 27.2

molec-biol-promoter 87.9 11.4 78.6 9.9 85.5 14.8
molec-biol-splice 87.9 7.1 84.2 10.8 87.2 8.2

monks-1 85.4 14.0 83.6 13.5 87.2 14.6
monks-2 72.9 6.9 89.9 12.8 95.9 14.5
monks-3 93.4 6.7 91.6 7.6 92.0 9.4

mushroom 100.0 0.0 100.0 0.0 100.0 0.7
musk-1 95.2 3.3 94.6 6.3 95.6 4.9
musk-2 100.0 1.1 100.0 0.2 100.0 0.7
nursery 100.0 0.1 100.0 0.0 100.0 2.7

oocytes merluccius nucleus 4d 85.1 3.5 86.6 10.4 87.1 14.4
oocytes merluccius states 2f 95.4 3.2 95.2 6.3 95.2 4.6

oocytes trisopterus nucleus 2f 89.0 5.4 89.7 9.2 89.0 10.7
oocytes trisopterus states 5b 97.1 4.3 97.1 4.6 97.3 3.7

optical 99.6 0.9 99.3 1.2 99.0 6.6
ozone 97.7 4.5 97.5 3.9 97.1 3.1

page-blocks 97.7 2.2 97.5 2.3 97.1 1.8
parkinsons 97.0 2.9 97.9 5.8 97.4 4.2
pendigits 99.8 0.2 99.8 0.3 99.9 6.1

pima 79.9 20.8 78.0 22.4 77.4 24.6
pittsburg-bridges-MATERIAL 79.7 15.4 80.4 15.8 89.1 14.0

pittsburg-bridges-REL-L 68.2 30.2 66.2 28.3 73.3 36.5

117

Table C.4. Test accuracy (Acc)/ECE for 121 tabular datasets

Dataset
Squentropy Cross-entropy Rescaled square
Acc ECE Acc ECE Acc ECE

pittsburg-bridges-SPAN 73.2 31.0 69.9 30.8 73.7 34.6
pittsburg-bridges-T-OR-D 90.1 19.3 90.0 24.5 89.5 17.9
pittsburg-bridges-TYPE 63.4 34.8 63.3 33.0 66.7 39.7

planning 77.9 23.4 75.6 33.5 76.8 31.7
plant-margin 85.1 4.4 84.0 5.9 82.9 55.7
plant-shape 74.3 7.8 73.9 13.9 70.6 49.1
plant-texture 85.3 3.1 84.3 6.2 82.6 52.8

post-operative 73.9 35.2 70.4 34.7 62.2 35.3
primary-tumor 50.0 27.7 49.8 38.5 48.5 24.0

ringnorm 98.6 1.7 98.5 2.1 98.1 1.5
seeds 100.0 4.0 99.0 6.3 98.6 5.9

semeion 95.4 2.3 94.9 3.5 94.8 10.7
soybean 92.2 3.4 90.8 3.9 91.3 17.5

spambase 95.6 4.1 95.4 4.6 95.0 4.9
spect 76.8 37.3 75.4 41.7 76.2 42.2
spectf 79.3 18.2 82.9 17.1 83.8 21.8

statlog-australian-credit 61.2 24.1 64.5 34.0 66.4 34.1
statlog-german-credit 80.3 15.7 79.1 21.2 79.6 23.1

statlog-heart 86.9 18.0 86.4 15.4 85.9 18.8
statlog-image 99.3 1.4 99.1 1.4 98.8 4.1
statlog-landsat 93.3 5.8 93.0 6.8 92.7 2.7
statlog-shuttle 99.8 0.5 99.8 0.5 99.8 3.7
statlog-vehicle 87.5 7.8 86.9 9.7 86.8 11.9

steel-plates 78.8 9.7 78.5 14.4 78.7 10.2
synthetic-control 99.1 2.1 99.1 2.0 98.7 4.9

teaching 65.1 29.9 63.0 30.5 63.9 37.2
thyroid 98.5 2.0 97.6 2.6 97.9 1.4

tic-tac-toe 99.8 0.3 99.8 0.2 99.8 0.6
titanic 78.6 12.6 78.4 4.2 78.9 13.6
trains 100.0 34.1 90.4 27.2 80.0 53.0

twonorm 98.2 2.0 98.1 2.6 97.7 2.0
vertebral-column-2clases 91.2 8.5 91.1 8.6 91.3 13.1
vertebral-column-3clases 88.0 15.4 86.6 15.1 87.1 16.1

wall-following 96.1 2.2 95.8 3.2 95.7 1.7
waveform 86.5 9.0 86.8 11.2 86.9 12.0

waveform-noise 85.4 9.4 85.4 11.9 86.1 14.1
wine 100.0 3.3 100.0 3.0 100.0 2.9

wine-quality-red 68.8 23.2 68.9 26.6 69.3 19.7
wine-quality-white 65.0 19.9 65.9 25.3 65.5 17.2

yeast 63.3 21.4 63.1 29.9 63.5 18.8
zoo 92.0 4.8 91.9 3.9 91.4 9.1

118

Appendix D

D.1 Experimental setup for figure 5.3

Datasets. We consider image classification tasks with MNIST [72], FashionMNIST

[136], CIFAR-10 [68], SVHN [96] and STL-10 datasets [12]. SVHN was sub-sampled to

N = 4600 samples per class as training set and N = 1500 samples per class for test set. Other

datasets are following the standard setup. No data argumentation was done and we pre-process

the images pixel-wise by subtracting the mean and dividing by the standard deviation.

Models. We train standard Resnet18 and DenseNet201 for MNIST, FashionMNIST,

CIFAR10 and SVHN. Resnet50 and DenseNet201 were trained for STL10. For all datasets we

also train VGG11 with batch normalization. All models were trained from scratch with open

source code from torchvision models.

Optimization mechenism. We use stochastic gradient descent (SGD) with momentum

0.9 and minimize the cross-entropy loss. All tasks were trained on a single GPU with batch size

128 and 80000 SGD iterations. Initial learning rate is 0.1 for Resnet18 and Resnet50 and 0.01 for

DenseNet201 and VGG architectures. We decay the learning rate with cosine annealing scheme.

D.2 Experimental setup for transfer learning

Super-class pre-training. For MNIST, we set all odd numbers as one class and all even

numbers as the other class. We train the model with the first N = 1000 training samples as

119

train set and the first N = 200 test samples as test set. For CIFAR-10, we combine samples of

‘airplane, automobile, ship, truck’ as one (objects) class and ‘bird, cat, frog, horse’ as the other

(animals) class. The two classes are balanced and have 40000 training samples, and 8000 test

samples. We use a subset with N = 20000 training samples (to keep each class balanced, we

randomly choose 2500 samples from each original class) and N = 4000 (500 samples from each

original class) test samples for pre-training. The learning rate for MNIST with fully-connected

networks is 0.001 while for CIFAR-10 with ResNet18 is 0.1. We decay learning rate with cosine

annealing scheme. The models were trained minimizing the cross-entropy loss using SGD with

momentum 0.9 for 100000 SGD iterations.

Fine-tuning. We initialize the weights (other than the last classification layer) of the

downstream task with the pre-trained weights and fine-tune the whole network. For MNIST,

we do the standard 10-class classification, while we sample another 500 samples from training

set for training and 100 samples from the test set for inference. For CIFAR-10 we implement

a 8-class classification (‘airplane, automobile, ship, truck, bird, cat, frog, horse’) with another

10000 training samples as train set and another 2000 test samples as test set. The optimization

methodology is the same as in pre-training, other than the learning rate. We search over 0.0005

to 0.25 in fine-tuning for both MNIST and CIFAR-10 and report the best test accuracy of all

swept learning rates.

D.3 Proof of Lemma 5

Proof. As given in Lemma 5, for (x1,0) ∼ D2 and (x2,1) ∼ D2, there have h(x1) = µ1 and

h(x2) = µ2, where x1 and x2 are samples from class 0 and class 1 correspondingly. For a

test sample x ∼ D , which is sampled from the target distribution, the corresponding feature

representation h(x) also maps x to µ1 or µ2, due to the superclass property.

For any function f : Rd → {0,1, ...,2k− 1}, which maps the feature representation

120

h(x) ∈ Rd of a sample x to class index ŷ,

ŷ = f (h(x)) =


f (µ1) = k1 if x is superclassed to class 0

f (µ2) = k2 if x is superclassed to class 1

where k1,k2 are class index from {0,1,.., 2k-1}. As we are considering the class-balanced case,

for each sample x∼D , the probability of its true label y to be k1 or k2 is Pr(y = k1) =
1
2k and

Pr(y = k2) =
1
2k . Then

Pr
(x,y)∼D

[ŷ = y] =


1
k

if y = k1 or y = k2

0 if y ̸= k1 and y ̸= k2

Hence

Pr
(x,y)∼D

[f (h(x)) = y]≤ 1
k

and the equality holds when y = k1 or y = k2. □

121

Bibliography

[1] Emmanuel Abbe and Colin Sandon. On the universality of deep learning. In H. Larochelle,
M. Ranzato, R. Hadsell, M. F. Balcan, and H. Lin, editors, Advances in Neural Information
Processing Systems, volume 33, pages 20061–20072. Curran Associates, Inc., 2020.

[2] Amirhesam Abedsoltan, Mikhail Belkin, and Parthe Pandit. Toward large kernel models.
arXiv preprint arXiv:2302.02605, 2023.

[3] Shaojie Bai, J Zico Kolter, and Vladlen Koltun. An empirical evaluation of generic convo-
lutional and recurrent networks for sequence modeling. arXiv preprint arXiv:1803.01271,
2018.

[4] Andrzej Banburski, Fernanda De La Torre, Nishka Pant, Ishana Shastri, and Tomaso
Poggio. Distribution of classification margins: Are all data equal? arXiv preprint
arXiv:2107.10199, 2021.

[5] Anna Sergeevna Bosman, Andries Engelbrecht, and Mardé Helbig. Visualising basins
of attraction for the cross-entropy and the squared error neural network loss functions.
Neurocomputing, 400:113–136, 2020.

[6] Erin J Bredensteiner and Kristin P Bennett. Multicategory classification by support vector
machines. In Computational optimization, pages 53–79. Springer, 1999.

[7] Glenn W Brier. Verification of forecasts expressed in terms of probability. Monthly
weather review, 78(1):1–3, 1950.

[8] Tom B Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla
Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini
Agarwal, Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya
Ramesh, Daniel Ziegler M., Jeffrey Wu, Clemens Winter, Christopher Hesse, Mark Chen,
Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner,
Sam McCandlish, Alec Radford, Ilya Sutskever, and Dario Amodei. Language models
are few-shot learners. arXiv preprint arXiv:2005.14165, 2020.

[9] Jie Chen, Lingfei Wu, Kartik Audhkhasi, Brian Kingsbury, and Bhuvana Ramabhadrari.
Efficient one-vs-one kernel ridge regression for speech recognition. In Acoustics, Speech
and Signal Processing (ICASSP), 2016 IEEE International Conference on, pages 2454–
2458. IEEE, 2016.

122

[10] Qian Chen, Xiaodan Zhu, Zhen-Hua Ling, Si Wei, Hui Jiang, and Diana Inkpen. Enhanced
LSTM for natural language inference. In Proceedings of the 55th Annual Meeting of the
Association for Computational Linguistics, pages 1657–1668, 2017.

[11] Qian Chen, Xiaodan Zhu, Zhenhua Ling, Si Wei, Hui Jiang, and Diana Inkpen. Enhanced
lstm for natural language inference. arXiv preprint arXiv:1609.06038, 2016.

[12] Adam Coates, Andrew Ng, and Honglak Lee. An analysis of single-layer networks in
unsupervised feature learning. In Proceedings of the fourteenth international conference
on artificial intelligence and statistics, pages 215–223. JMLR Workshop and Conference
Proceedings, 2011.

[13] Koby Crammer and Yoram Singer. On the algorithmic implementation of multiclass
kernel-based vector machines. Journal of machine learning research, 2(Dec):265–292,
2001.

[14] Zihang Dai, Zhilin Yang, Yiming Yang, Jaime Carbonell, Quoc V Le, and Ruslan Salakhut-
dinov. Transformer-xl: Attentive language models beyond a fixed-length context. In
Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics,
page 2978–2988, 2019.

[15] Morris H DeGroot and Stephen E Fienberg. The comparison and evaluation of forecasters.
Journal of the Royal Statistical Society: Series D (The Statistician), 32(1-2):12–22, 1983.

[16] Ahmet Demirkaya, Jiasi Chen, and Samet Oymak. Exploring the role of loss functions in
multiclass classification. In 2020 54th annual conference on information sciences and
systems (ciss), pages 1–5. IEEE, 2020.

[17] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training
of deep bidirectional transformers for language understanding. In Proceedings of the Con-
ference of the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies (NAACL), 2019.

[18] Thomas G Dietterich and Ghulum Bakiri. Solving multiclass learning problems via
error-correcting output codes. Journal of artificial intelligence research, 2:263–286, 1994.

[19] Carl Doersch, Ankush Gupta, and Andrew Zisserman. Crosstransformers: spatially-aware
few-shot transfer. Advances in Neural Information Processing Systems, 33:21981–21993,
2020.

[20] William B Dolan and Chris Brockett. Automatically constructing a corpus of sentential
paraphrases. In Proceedings of the Third International Workshop on Paraphrasing
(IWP2005), 2005.

[21] David L Donoho, Arian Maleki, and Andrea Montanari. Message-passing algorithms for
compressed sensing. Proceedings of the National Academy of Sciences, 106(45):18914–
18919, 2009.

123

[22] Weinan E and Stephan Wojtowytsch. On the emergence of tetrahedral symmetry in the
final and penultimate layers of neural network classifiers. arXiv preprint arXiv:2012.05420,
2020.

[23] Michael Elad, Dror Simon, and Aviad Aberdam. Another step toward demystifying deep
neural networks. Proceedings of the National Academy of Sciences, 117(44):27070–27072,
2020.

[24] Gamaleldin Elsayed, Dilip Krishnan, Hossein Mobahi, Kevin Regan, and Samy Bengio.
Large margin deep networks for classification. Advances in neural information processing
systems, 31, 2018.

[25] Melikasadat Emami, Mojtaba Sahraee-Ardakan, Parthe Pandit, Sundeep Rangan, and
Alyson Fletcher. Generalization error of generalized linear models in high dimensions. In
International Conference on Machine Learning, pages 2892–2901. PMLR, 2020.

[26] Tolga Ergen and Mert Pilanci. Revealing the structure of deep neural networks via convex
duality. In International Conference on Machine Learning, pages 3004–3014. PMLR,
2021.

[27] Cong Fang, Hangfeng He, Qi Long, and Weijie J Su. Exploring deep neural networks
via layer-peeled model: Minority collapse in imbalanced training. Proceedings of the
National Academy of Sciences, 118(43), 2021.

[28] Oliver Y Feng, Ramji Venkataramanan, Cynthia Rush, and Richard J Samworth. A
unifying tutorial on approximate message passing. Foundations and Trends® in Machine
Learning, 15(4):335–536, 2022.

[29] Yutong Feng, Jianwen Jiang, Mingqian Tang, Rong Jin, and Yue Gao. Rethinking super-
vised pre-training for better downstream transferring. arXiv preprint arXiv:2110.06014,
2021.

[30] Manuel Fernández-Delgado, Eva Cernadas, Senén Barro, and Dinani Amorim. Do we
need hundreds of classifiers to solve real world classification problems? The journal of
machine learning research, 15(1):3133–3181, 2014.

[31] Spencer Frei, Niladri S Chatterji, and Peter Bartlett. Benign overfitting without linearity:
Neural network classifiers trained by gradient descent for noisy linear data. In Conference
on Learning Theory, pages 2668–2703. PMLR, 2022.

[32] Krzysztof Gajowniczek, Leszek J Chmielewski, Arkadiusz Orłowski, and Tomasz
Zabkowski. Generalized entropy cost function in neural networks. In International
Conference on Artificial Neural Networks, pages 128–136. Springer, 2017.

[33] Yarin Gal and Zoubin Ghahramani. Dropout as a bayesian approximation: Representing
model uncertainty in deep learning. In international conference on machine learning,
pages 1050–1059, 2016.

124

[34] Tomer Galanti. A note on the implicit bias towards minimal depth of deep neural networks.
arXiv preprint arXiv:2202.09028, 2022.

[35] Tomer Galanti, András György, and Marcus Hutter. On the role of neural collapse in
transfer learning. arXiv preprint arXiv:2112.15121, 2021.

[36] John S Garofolo, Lori F Lamel, William M Fisher, Jonathan G Fiscus, and David S Pallett.
Darpa timit acoustic-phonetic continous speech corpus cd-rom. nist speech disc 1-1.1.
NASA STI/Recon technical report n, 93, 1993.

[37] BG Giraud and R Peschanski. On positive functions with positive fourier transforms. Acta
Physica Polonica B, 37:331, 2006.

[38] Micah Goldblum, Steven Reich, Liam Fowl, Renkun Ni, Valeriia Cherepanova, and Tom
Goldstein. Unraveling meta-learning: Understanding feature representations for few-shot
tasks. In International Conference on Machine Learning, pages 3607–3616. PMLR, 2020.

[39] Pavel Golik, Patrick Doetsch, and Hermann Ney. Cross-entropy vs. squared error training:
a theoretical and experimental comparison. In Interspeech, volume 13, pages 1756–1760,
2013.

[40] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT Press, 2016.
http://www.deeplearningbook.org.

[41] Chuan Guo, Geoff Pleiss, Yu Sun, and Kilian Q Weinberger. On calibration of modern
neural networks. arXiv preprint arXiv:1706.04599, 2017.

[42] X. Y. Han, Vardan Papyan, and David L. Donoho. Neural collapse under mse loss:
Proximity to and dynamics on the central path. ArXiv, abs/2106.02073, 2021.

[43] XY Han, Vardan Papyan, and David L Donoho. Neural collapse under mse loss: Proximity
to and dynamics on the central path. arXiv preprint arXiv:2106.02073, 2021.

[44] Frank E Harrell Jr. Regression modeling strategies: with applications to linear models,
logistic and ordinal regression, and survival analysis. Springer, 2015.

[45] Hua He and Jimmy Lin. Pairwise word interaction modeling with deep neural networks
for semantic similarity measurement. In Proceedings of the 2016 Conference of the North
American Chapter of the Association for Computational Linguistics: Human Language
Technologies, pages 937–948, 2016.

[46] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for
image recognition. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pages 770–778, 2016.

[47] Eric W Healy, Sarah E Yoho, Yuxuan Wang, and DeLiang Wang. An algorithm to improve
speech recognition in noise for hearing-impaired listeners. The Journal of the Acoustical
Society of America, 134(4):3029–3038, 2013.

125

http://www.deeplearningbook.org

[48] Le Hou, Chen-Ping Yu, and Dimitris Samaras. Squared earth mover’s distance-based loss
for training deep neural networks. arXiv preprint arXiv:1611.05916, 2016.

[49] Tianyang Hu, Jun Wang, Wenjia Wang, and Zhenguo Li. Understanding square loss in
training overparametrized neural network classifiers. arXiv preprint arXiv:2112.03657,
2021.

[50] Po-Sen Huang, Haim Avron, Tara N Sainath, Vikas Sindhwani, and Bhuvana Ramab-
hadran. Kernel methods match deep neural networks on timit. In Acoustics, Speech and
Signal Processing (ICASSP), 2014, pages 205–209, 2014.

[51] Like Hui and Mikhail Belkin. Evaluation of neural architectures trained with square loss
vs cross-entropy in classification tasks. arXiv preprint arXiv:2006.07322, 2020.

[52] Like Hui, Mikhail Belkin, and Preetum Nakkiran. Limitations of neural collapse for
understanding generalization in deep learning. arXiv preprint arXiv:2202.08384, 2022.

[53] Like Hui, Mikhail Belkin, and Stephen Wright. Cut your losses with squentropy. arXiv
preprint arXiv:2302.03952, 2023.

[54] Like Hui, Siyuan Ma, and Mikhail Belkin. Kernel machines beat deep neural networks on
mask-based single-channel speech enhancement. arXiv preprint arXiv:1811.02095, 2018.

[55] Shankar Iyer, Nikhil Dandekar, and Kornél Csernai. First Quora Dataset Release: Question
Pairs. In https://data.quora.com/First-Quora-Dataset-Release-Question-Pairs, 2017.

[56] Arthur Jacot, Franck Gabriel, and Clément Hongler. Neural tangent kernel: Convergence
and generalization in neural networks. Advances in neural information processing systems,
31, 2018.

[57] Katarzyna Janocha and Wojciech Marian Czarnecki. On loss functions for deep neural
networks in classification. arXiv preprint arXiv:1702.05659, 2017.

[58] Wenlong Ji, Yiping Lu, Yiliang Zhang, Zhun Deng, and Weijie J Su. How gradient descent
separates data with neural collapse: A layer-peeled perspective. 2021.

[59] Wenlong Ji, Yiping Lu, Yiliang Zhang, Zhun Deng, and Weijie J Su. An unconstrained
layer-peeled perspective on neural collapse. arXiv preprint arXiv:2110.02796, 2021.

[60] Ziwei Ji and Matus Telgarsky. The implicit bias of gradient descent on nonseparable data.
In Conference on Learning Theory, pages 1772–1798, 2019.

[61] Dan Jurafsky. Speech & language processing. Pearson Education India, 2000.

[62] Suyoun Kim, Takaaki Hori, and Shinji Watanabe. Joint ctc-attention based end-to-end
speech recognition using multi-task learning. In 2017 IEEE international conference on
acoustics, speech and signal processing (ICASSP), pages 4835–4839. IEEE, 2017.

126

[63] Douglas M Kline and Victor L Berardi. Revisiting squared-error and cross-entropy
functions for training neural network classifiers. Neural Computing & Applications,
14(4):310–318, 2005.

[64] Alexander Kolesnikov, Alexey Dosovitskiy, Dirk Weissenborn, Georg Heigold, Jakob
Uszkoreit, Lucas Beyer, Matthias Minderer, Mostafa Dehghani, Neil Houlsby, Sylvain
Gelly, Thomas Unterthiner, and Xiaohua Zhai. An image is worth 16x16 words: Trans-
formers for image recognition at scale. ICLR, 2021.

[65] Vladimir Koltchinskii and Dmitry Panchenko. Empirical margin distributions and bound-
ing the generalization error of combined classifiers. The Annals of Statistics, 30(1):1–50,
2002.

[66] Aran Komatsuzaki. One epoch is all you need. arXiv preprint arXiv:1906.06669, 2019.

[67] Simon Kornblith, Ting Chen, Honglak Lee, and Mohammad Norouzi. Why do better loss
functions lead to less transferable features? Advances in Neural Information Processing
Systems, 34:28648–28662, 2021.

[68] Alex Krizhevsky and Geoffrey Hinton. Learning multiple layers of features from tiny
images. 2009.

[69] Thomas Kuhn. The structure of scientific revolutions. University of Chicago Press, 1962.

[70] Himanshu Kumar and PS Sastry. Robust loss functions for learning multi-class classifiers.
In 2018 IEEE International Conference on Systems, Man, and Cybernetics (SMC), pages
687–692. IEEE, 2018.

[71] Wuwei Lan and Wei Xu. Neural network models for paraphrase identification, semantic
textual similarity, natural language inference, and question answering. In Proceedings of
the 27th International Conference on Computational Linguistics, pages 3890–3902, 2018.

[72] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning
applied to document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

[73] Yoonkyung Lee, Yi Lin, and Grace Wahba. Multicategory support vector machines:
Theory and application to the classification of microarray data and satellite radiance data.
Journal of the American Statistical Association, 99(465):67–81, 2004.

[74] Yunwen Lei, Urun Dogan, Alexander Binder, and Marius Kloft. Multi-class svms: From
tighter data-dependent generalization bounds to novel algorithms. Advances in neural
information processing systems, 28, 2015.

[75] Yunwen Lei, Ürün Dogan, Ding-Xuan Zhou, and Marius Kloft. Data-dependent general-
ization bounds for multi-class classification. IEEE Transactions on Information Theory,
65(5):2995–3021, 2019.

127

[76] Leo Lightburn and Mike Brookes. A weighted stoi intelligibility metric based on mu-
tual information. In Acoustics, Speech and Signal Processing (ICASSP), 2016 IEEE
International Conference on, pages 5365–5369. IEEE, 2016.

[77] Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming He, and Piotr Dollár. Focal loss for
dense object detection. In Proceedings of the IEEE international conference on computer
vision, pages 2980–2988, 2017.

[78] Bin Liu, Yue Cao, Yutong Lin, Qi Li, Zheng Zhang, Mingsheng Long, and Han Hu.
Negative margin matters: Understanding margin in few-shot classification. In European
conference on computer vision, pages 438–455. Springer, 2020.

[79] Bingyuan Liu, Ismail Ben Ayed, Adrian Galdran, and Jose Dolz. The devil is in the
margin: Margin-based label smoothing for network calibration. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 80–88, 2022.

[80] Bruno Loureiro, Gabriele Sicuro, Cédric Gerbelot, Alessandro Pacco, Florent Krzakala,
and Lenka Zdeborová. Learning gaussian mixtures with generalized linear models: Precise
asymptotics in high-dimensions. Advances in Neural Information Processing Systems,
34:10144–10157, 2021.

[81] Jianfeng Lu and Stefan Steinerberger. Neural collapse with cross-entropy loss. ArXiv,
abs/2012.08465, 2020.

[82] Zhiyun Lu, Dong Quo, Alireza Bagheri Garakani, Kuan Liu, Avner May, Aurélien Bellet,
Linxi Fan, Michael Collins, Brian Kingsbury, Michael Picheny, and Fei Sha. A comparison
between deep neural nets and kernel acoustic models for speech recognition. In Acoustics,
Speech and Signal Processing (ICASSP), 2016 IEEE International Conference on, pages
5070–5074. IEEE, 2016.

[83] Siyuan Ma and Mikhail Belkin. Learning kernels that adapt to gpu. arXiv preprint
arXiv:1806.06144, 2018.

[84] Sébastien Marcel and Yann Rodriguez. Torchvision the machine-vision package of
torch. In Proceedings of the 18th ACM international conference on Multimedia, pages
1485–1488, 2010.

[85] Andreas Maurer. A vector-contraction inequality for rademacher complexities. In Interna-
tional Conference on Algorithmic Learning Theory, pages 3–17. Springer, 2016.

[86] Dustin G Mixon, Hans Parshall, and Jianzong Pi. Neural collapse with unconstrained
features. arXiv preprint arXiv:2011.11619, 2020.

[87] Dustin G Mixon, Hans Parshall, and Jianzong Pi. Neural collapse with unconstrained
features. Sampling Theory, Signal Processing, and Data Analysis, 20(2):1–13, 2022.

128

[88] Niko Moritz, Takaaki Hori, and Jonathan Le Roux. Triggered attention for end-to-end
speech recognition. In ICASSP 2019-2019 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), pages 5666–5670. IEEE, 2019.

[89] Jishnu Mukhoti, Viveka Kulharia, Amartya Sanyal, Stuart Golodetz, Philip Torr, and
Puneet Dokania. Calibrating deep neural networks using focal loss. Advances in Neural
Information Processing Systems, 33:15288–15299, 2020.

[90] Rafael Müller, Simon Kornblith, and Geoffrey E Hinton. When does label smoothing
help? Advances in neural information processing systems, 32, 2019.

[91] LLC MultiMedia. Large text compression benchmark. 2009.

[92] Vidya Muthukumar, Adhyyan Narang, Vignesh Subramanian, Mikhail Belkin, Daniel Hsu,
and Anant Sahai. Classification vs regression in overparameterized regimes: Does the loss
function matter? The Journal of Machine Learning Research, 22(1):10104–10172, 2021.

[93] Mahdi Pakdaman Naeini, Gregory Cooper, and Milos Hauskrecht. Obtaining well cali-
brated probabilities using bayesian binning. In Proceedings of the AAAI conference on
artificial intelligence, volume 29, 2015.

[94] Preetum Nakkiran. Towards an Empirical Theory of Deep Learning. Doctoral dissertation,
Harvard University Graduate School of Arts and Sciences, 2021.

[95] Preetum Nakkiran, Behnam Neyshabur, and Hanie Sedghi. The deep bootstrap framework:
Good online learners are good offline generalizers. In International Conference on
Learning Representations, 2020.

[96] Yuval Netzer, Tao Wang, Adam Coates, Alessandro Bissacco, Bo Wu, and Andrew Y Ng.
Reading digits in natural images with unsupervised feature learning. 2011.

[97] Alexandru Niculescu-Mizil and Rich Caruana. Predicting good probabilities with super-
vised learning. In Proceedings of the 22nd international conference on Machine learning,
pages 625–632, 2005.

[98] Vassil Panayotov, Guoguo Chen, Daniel Povey, and Sanjeev Khudanpur. Librispeech: an
asr corpus based on public domain audio books. In 2015 IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP), pages 5206–5210. IEEE, 2015.

[99] Ashutosh Pandey and Deliang Wang. A new framework for supervised speech enhance-
ment in the time domain. Proc. Interspeech 2018, pages 1136–1140, 2018.

[100] Vardan Papyan, X. Y. Han, and David L. Donoho. Prevalence of neural collapse during
the terminal phase of deep learning training. Proceedings of the National Academy of
Sciences, 117(40):24652–24663, 2020.

[101] Vardan Papyan, X. Y. Han, and David L. Donoho. Prevalence of neural collapse during
the terminal phase of deep learning training. Proceedings of the National Academy of
Sciences, 117(40):24652–24663, 2020.

129

[102] Douglas B Paul and Janet M Baker. The design for the wall street journal-based csr
corpus. In Proceedings of the workshop on Speech and Natural Language, pages 357–362.
Association for Computational Linguistics, 1992.

[103] Federico Pernici, Matteo Bruni, Claudio Baecchi, and Alberto Del Bimbo. Regular
polytope networks. IEEE Transactions on Neural Networks and Learning Systems, 2021.

[104] John Platt. Probabilistic outputs for support vector machines and comparisons to regular-
ized likelihood methods. Advances in large margin classifiers, 10(3):61–74, 1999.

[105] Tomaso Poggio and Qianli Liao. Explicit regularization and implicit bias in deep network
classifiers trained with the square loss. arXiv preprint arXiv:2101.00072, 2020.

[106] Tomaso Poggio and Qianli Liao. Implicit dynamic regularization in deep networks.
Technical report, Center for Brains, Minds and Machines (CBMM), 2020.

[107] Qichao Que and Mikhail Belkin. Back to the future: Radial basis function networks
revisited. In Arthur Gretton and Christian C. Robert, editors, Proceedings of the 19th In-
ternational Conference on Artificial Intelligence and Statistics, volume 51 of Proceedings
of Machine Learning Research, pages 1375–1383, Cadiz, Spain, 2016. PMLR.

[108] Qichao Que and Mikhail Belkin. Back to the future: Radial basis function networks
revisited. In Artificial intelligence and statistics, pages 1375–1383. PMLR, 2016.

[109] Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael
Matena, Yanqi Zhou, Wei Li, and Peter J Liu. Exploring the limits of transfer learning with
a unified text-to-text transformer. Journal of Machine Learning Research, 21(140):1–67,
2020.

[110] Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and Percy Liang. Squad: 100,000+
questions for machine comprehension of text. arXiv preprint arXiv:1606.05250, 2016.

[111] Akshay Rangamani and Andrzej Banburski-Fahey. Neural collapse in deep homogeneous
classifiers and the role of weight decay. In ICASSP 2022-2022 IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP), pages 4243–4247.
IEEE, 2022.

[112] Akshay Rangamani, Mengjia Xu, Andrzej Banburski, Qianli Liao, and Tomaso Poggio.
Dynamics and neural collapse in deep classifiers trained with the square loss. 2021.

[113] Sundeep Rangan, Philip Schniter, and Alyson K Fletcher. Vector approximate message
passing. IEEE Transactions on Information Theory, 65(10):6664–6684, 2019.

[114] Ryan Rifkin and Aldebaro Klautau. In defense of one-vs-all classification. The Journal of
Machine Learning Research, 5:101–141, 2004.

[115] Ryan Michael Rifkin. Everything old is new again: a fresh look at historical approaches
in machine learning. PhD thesis, MaSSachuSettS InStitute of Technology, 2002.

130

[116] Karsten Roth, Timo Milbich, Samarth Sinha, Prateek Gupta, Bjorn Ommer, and
Joseph Paul Cohen. Revisiting training strategies and generalization performance in
deep metric learning. In International Conference on Machine Learning, pages 8242–
8252. PMLR, 2020.

[117] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma,
Zhiheng Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, Alexander C. Berg,
and Li Fei-Fei. Imagenet large scale visual recognition challenge. International journal
of computer vision, 115(3):211–252, 2015.

[118] Arash Sangari and William Sethares. Convergence analysis of two loss functions in
soft-max regression. IEEE Transactions on Signal Processing, 64(5):1280–1288, 2015.

[119] Philip Schniter, Sundeep Rangan, and Alyson K Fletcher. Vector approximate message
passing for the generalized linear model. In 2016 50th Asilomar conference on signals,
systems and computers, pages 1525–1529. IEEE, 2016.

[120] Bernhard Schölkopf, Alexander J Smola, and Francis Bach. Learning with kernels:
support vector machines, regularization, optimization, and beyond. MIT press, 2002.

[121] Richard Socher, Alex Perelygin, Jean Wu, Jason Chuang, Christopher D Manning, An-
drew Y Ng, and Christopher Potts. Recursive deep models for semantic compositionality
over a sentiment treebank. In Proceedings of the 2013 conference on empirical methods
in natural language processing, pages 1631–1642, 2013.

[122] Daniel Soudry, Elad Hoffer, Mor Shpigel Nacson, Suriya Gunasekar, and Nathan Srebro.
The implicit bias of gradient descent on separable data. The Journal of Machine Learning
Research, 19(1):2822–2878, 2018.

[123] Ruoyu Sun. Optimization for deep learning: theory and algorithms. arXiv preprint
arXiv:1912.08957, 2019.

[124] Mingxing Tan and Quoc Le. Efficientnet: Rethinking model scaling for convolutional
neural networks. In International Conference on Machine Learning, pages 6105–6114.
PMLR, 2019.

[125] Christos Thrampoulidis, Samet Oymak, and Mahdi Soltanolkotabi. Theoretical insights
into multiclass classification: A high-dimensional asymptotic view. Advances in Neural
Information Processing Systems, 33:8907–8920, 2020.

[126] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N
Gomez, Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in
neural information processing systems, 30, 2017.

[127] Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and Samuel
Bowman. Glue: A multi-task benchmark and analysis platform for natural language
understanding. In Proceedings of the 2018 EMNLP Workshop BlackboxNLP: Analyzing
and Interpreting Neural Networks for NLP, 2018.

131

[128] DeLiang Wang and Jitong Chen. Supervised speech separation based on deep learning:
An overview. IEEE/ACM Transactions on Audio, Speech, and Language Processing,
26(10):1702–1726., 2018.

[129] Ke Wang, Vidya Muthukumar, and Christos Thrampoulidis. Benign overfitting in mul-
ticlass classification: All roads lead to interpolation. Advances in Neural Information
Processing Systems, 34:24164–24179, 2021.

[130] Yuxuan Wang, Arun Narayanan, and DeLiang Wang. On training targets for supervised
speech separation. IEEE/ACM Transactions on Audio, Speech and Language Processing,
22(12):1849–1858, 2014.

[131] Yuxuan Wang and DeLiang Wang. Towards scaling up classification-based speech
separation. IEEE Transactions on Audio, Speech, and Language Processing, 21(7):1381–
1390, 2013.

[132] Zhong-Qiu Wang and DeLiang Wang. Recurrent deep stacking networks for supervised
speech separation. In Acoustics, Speech and Signal Processing (ICASSP), 2017 IEEE
International Conference on, pages 71–75. IEEE, 2017.

[133] Shinji Watanabe, Takaaki Hori, Shigeki Karita, Tomoki Hayashi, Jiro Nishitoba, Yuya
Unno, Nelson Enrique Yalta Soplin, Jahn Heymann, Matthew Wiesner, Nanxin Chen,
Adithya Renduchintala, and Tsubasa Ochiai. Espnet: End-to-end speech processing
toolkit. In Interspeech, pages 2207–2211, 2018.

[134] Jason Weston and Chris Watkins. Multi-class support vector machines. Technical report,
Citeseer, 1998.

[135] Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue,
Anthony Moi, Pierric Cistac, Tim Rault, R’emi Louf, Morgan Funtowicz, and Jamie
Brew. Huggingface’s transformers: State-of-the-art natural language processing. ArXiv,
abs/1910.03771, 2019.

[136] Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-mnist: a novel image dataset for
benchmarking machine learning algorithms. arXiv preprint arXiv:1708.07747, 2017.

[137] Chen Xing, Sercan Arik, Zizhao Zhang, and Tomas Pfister. Distance-based learning from
errors for confidence calibration. ICLR, 2020.

[138] Mengjia Xu, Akshay Rangamani, Andrzej Banburski, Qianli Liao, Tomer Galanti, and
Tomaso Poggio. Deep classifiers trained with the square loss. CBMM Memo No. 117,
2022.

[139] Yong Xu, Jun Du, Li-Rong Dai, and Chin-Hui Lee. A regression approach to speech
enhancement based on deep neural networks. IEEE/ACM Transactions on Audio, Speech
and Language Processing, 23(1):7–19, 2015.

132

[140] Yibo Yang, Liang Xie, Shixiang Chen, Xiangtai Li, Zhouchen Lin, and Dacheng Tao. Do
we really need a learnable classifier at the end of deep neural network? arXiv preprint
arXiv:2203.09081, 2022.

[141] Sergey Zagoruyko and Nikos Komodakis. Wide residual networks. BMVC, 2016.

[142] Aston Zhang, Zachary C. Lipton, Mu Li, and Alexander J. Smola. Dive into Deep
Learning. 2020. https://d2l.ai.

[143] Hui Zhang, Xueliang Zhang, and Guanglai Gao. Training supervised speech separation
system to improve stoi and pesq directly. In Acoustics, Speech and Signal Processing
(ICASSP), 2018, pages 5374–5378, 2018.

[144] Zixing Zhang, Jürgen Geiger, Jouni Pohjalainen, Amr El-Desoky Mousa, Wenyu Jin, and
Björn Schuller. Deep learning for environmentally robust speech recognition: An overview
of recent developments. ACM Transactions on Intelligent Systems and Technology (TIST),
9(5):49, 2018.

[145] Jinxin Zhou, Xiao Li, Tianyu Ding, Chong You, Qing Qu, and Zhihui Zhu. On the
optimization landscape of neural collapse under mse loss: Global optimality with uncon-
strained features. arXiv preprint arXiv:2203.01238, 2022.

[146] Zhihui Zhu, Tianyu Ding, Jinxin Zhou, Xiao Li, Chong You, Jeremias Sulam, and Qing
Qu. A geometric analysis of neural collapse with unconstrained features. arXiv preprint
arXiv:2105.02375, 2021.

133

https://d2l.ai

	Dissertation Approval Page
	Dedication
	Epigraph
	Table of Contents
	List of Figures
	List of Tables
	Acknowledgements
	Vita
	Abstract of the Dissertation
	Introduction
	Motivation
	Loss function in multi-class classification
	Shallow and deep models

	Square loss vs. Cross-entropy in classification
	Introduction
	Experiments
	NLP experiments
	Automatic Speech Recognition (ASR) experiments
	Computer vision experiments

	Performance across different initializations
	Observations during training
	Implementation
	Summary and discussion
	Acknowledgements

	Precise asymptotic of rescaled square loss
	Introduction
	Related work
	Preliminaries
	Data
	1-layer relu network
	Large system limit
	Main results
	State evolution of 1-relu VAMP and its fixed point solution

	Numerical Results
	Simulation results on synthetic data
	Results on real data

	Acknowledgements

	Cut your Losses with Squentropy
	Introduction
	The squentropy loss function
	Experiments
	Empirical results on test performance
	Empirical results on calibration
	Additional results on 121 Tabular datasets
	Robustness to initialization

	Observations
	Predicted probabilities and decision boundary
	Weight norm

	Rescaled squentropy
	Summary, thoughts, future investigations
	Acknowledgements

	Limitation of Neural Collapse on Understanding Generalization in Deep Learning
	Introduction
	Related Works
	Notation

	Defining Neural Collapse
	Remarks on Feasibility

	Experiments: Train and Test Collapse
	Measuring Collapse
	Experimental Results

	Collapsed Features Transfer Worse
	Test Collapse implies Bad Representations
	Experiments

	Conclusion
	Acknowledgements

	Kernel Machines in Speech Enhancement
	Introduction
	Kernel-Based Speech Enhancement
	Kernel Machines
	Exponential Power Kernel
	Automatic Subbands Adaptive Kernels

	Experimental Results
	Regression Task
	Classification Task
	Single Kernel and Subband Adaptive Kernels
	Time Complexity

	Conclusion and Discussion
	Acknowledgements

	Conclusion
	Contributions
	Future work

	
	Datasets and tasks
	Hyper-parameter settings
	Hyper-parameters for NLP tasks
	Hyper-parameters for ASR tasks
	Hyper-parameters for vision tasks

	Experimental results on validation and training sets
	Our results compared with the original work
	Regularization terms
	Variance of accuracy among different random seeds

	
	Proof of Lemma 4
	Stieltjes Transform

	
	Datasets
	Hyperparameters
	More reliability diagrams
	Results for 121 tabular datasets

	
	Experimental setup for fig:trainvstest
	Experimental setup for transfer learning
	Proof of Lemma 5

	Bibliography

