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Ultrahigh-sensitive optical coherence elastography
Yan Li 1,2, Sucbei Moon1,3, Jason J. Chen 1,2, Zhikai Zhu1,2 and Zhongping Chen1,2

Abstract
The phase stability of an optical coherence elastography (OCE) system is the key determining factor for achieving a
precise elasticity measurement, and it can be affected by the signal-to-noise ratio (SNR), timing jitters in the signal
acquisition process, and fluctuations in the optical path difference (OPD) between the sample and reference arms. In
this study, we developed an OCE system based on swept-source optical coherence tomography (SS-OCT) with a
common-path configuration (SS-OCECP). Our system has a phase stability of 4.2 mrad without external stabilization or
extensive post-processing, such as averaging. This phase stability allows us to detect a displacement as small as
~300 pm. A common-path interferometer was incorporated by integrating a 3-mm wedged window into the SS-OCT
system to provide intrinsic compensation for polarization and dispersion mismatch, as well as to minimize phase
fluctuations caused by the OPD variation. The wedged window generates two reference signals that produce two OCT
images, allowing for averaging to improve the SNR. Furthermore, the electrical components are optimized to minimize
the timing jitters and prevent edge collisions by adjusting the delays between the trigger, k-clock, and signal, utilizing
a high-speed waveform digitizer, and incorporating a high-bandwidth balanced photodetector. We validated the SS-
OCECP performance in a tissue-mimicking phantom and an in vivo rabbit model, and the results demonstrated a
significantly improved phase stability compared to that of the conventional SS-OCE. To the best of our knowledge, we
demonstrated the first SS-OCECP system, which possesses high-phase stability and can be utilized to significantly
improve the sensitivity of elastography.

Introduction
Optical coherence elastography (OCE) is an emerging

functional imaging technique that quantifies the elasticity
of biological tissue by using Doppler optical coherence
tomography (OCT) to measure the local tissue displace-
ment as a function of the applied stress1,2. Compared with
conventional elastography (e.g., magnetic resonance
elastography, ultrasound elastography, and Brillouin
microscopy), OCE possesses micron-level resolution and
axial displacement sensitivity on the order of subnano-
metres and therefore has become an attractive research
tool for ophthalmology, dermatology, cardiology, and
oncology3–9.

Since OCE relies on the measuring phase via Doppler
OCT, the phase stability of the imaging system is the key
factor determining its performance10–12. Most OCE sys-
tems utilizing the acoustic radiation force (ARF) as a
tissue excitation method are reported to have the cap-
ability of detecting displacements in the range of hun-
dreds of nanometers. In those cases, a relatively strong
ARF is necessary to accurately reconstruct the elastic
wave propagation, and this force may exceed the oph-
thalmic mechanical index (MI) safety standard of 0.23
approved by the Food and Drug Administration13–15. An
OCE system with ultrahigh displacement sensitivity will
be able to scale down the applied ARF by at least 1 order
of magnitude while maintaining a sufficient signal-to-
noise ratio (SNR), which will reduce the required ARF
such that it is within the range of the MI safety standard
to facilitate the clinical translation of OCE in ophthal-
mology. The common-path configuration, as an optical
method, addresses the phase instability caused by
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environmental vibration that leads to a fluctuating optical
path difference (OPD) between the reference and sample
arms. Additionally, the common-path configuration pro-
vides intrinsic compensation for polarization mismatch
and dispersion mismatch between the sample and refer-
ence arms16–18. In 2017, Lan et al. reported a high-phase-
stability OCE system using a common-path spectral-
domain OCT (SD-OCT) to achieve a subnanometre dis-
placement sensitivity, demonstrating the feasibility of
common-path OCE; however, only phantom experiments
were performed19. In addition, SD-OCT-based OCE sys-
tems are based on a static operation principle that pro-
vides phase-stable detection15,20–24, but their performance
is limited by the groove density of the diffraction grating,
the center wavelength of the light source, and the reso-
lution of the line-scan camera, hence the inherent dis-
advantages of phase washout, low imaging speed, shallow
penetration depth, and short imaging range25,26.
In contrast, swept-source optical coherence tomography

(SS-OCT), which can be operated with a much narrower
instantaneous linewidth, longer center wavelength, higher
repetition rate, and balanced detection, has the capability
of providing a long imaging range, deep penetration
depth, high imaging speed, and reduced fringe washout.
Nevertheless, the phase stability of SS-OCT suffers from
fluctuations in the mechanical movement of the sweeping
laser; thus, a proper synchronization between the data
acquisition and laser sweep is crucial in achieving a high-
phase stability in a swept-source system27. A lambda (λ)
trigger using a fiber Bragg grating (FBG) as well as a k-
clock generated by a Mach-Zehnder interferometer (MZI)
have been introduced to improve the phase stability,
making SS-OCT a more attractive setup in OCE appli-
cations28. In recent years, several OCE systems based on
conventional SS-OCT (SS-OCECOV) have been pro-
posed14,29–35, and their feasibilities have been validated
through ex vivo and in vivo experiments, demonstrating
great potential towards clinical translation. Although
these studies have reported subnanometre displacement
sensitivities, this is achieved only in system charateriza-
tion where a simple common-path configuration is used.
The system performance of SS-OCECOV is degraded when
performing measurements because the phase fluctuation
between the sample and reference arms is not negligible
in conventional OCE. Furthermore, the reported SNR and
phase stability are usually from the averages of several
measurements36. Despite current advancements in SS-
OCT, achieving a phase sensitivity on the order of sub-
nanometres from actual experiments using SS-OCE
remains challenging.
In our study, we designed and implemented a high-

phase-stable OCE system using a common-path SS-OCT
(SS-OCECP). A 3-mm thick, 30-arcmin wedged glass
window (WW10530, Thorlabs, Inc., NJ) was incorporated

distal to the scan lens to generate two reference signals,
each from one of the surfaces of the window. This setup
allows for the simultaneous generation of two OCT
interference signals in two different frequency domains,
which can be averaged for an enhanced SNR and reduced
speckle. This averaging method is not achievable in SD-
OCT due to the limited imaging range. Furthermore, the
common-path configuration minimizes the differences
between the sample and the reference arm, thereby pro-
viding stable phase information for precision displace-
ment measurement. In addition to the optical method,
data acquisition and synchronization were optimized to
accurately retrieve the phase information. In this report,
we first compared the phase performance of SS-OCECP
with that of SS-OCECOV. Then, a tissue-mimicking
phantom model and an in vivo rabbit model were
imaged to validate the SS-OCECP performance.

Results
Phase stability quantification
To measure the phase stability of our SS-OCECP, a 1.0-

mm microscope slide was placed at the focus of the
objective lens to generate autocorrelation interference by
the back-reflected light from the front and back surfaces
of the slide. In our SS-OCECOV counterpart, a gold
mirror was placed at the focus of the objective lens to
generate an OCT interference signal with the same fre-
quency as that of SS-OCECP. The length of the reference
arm was adjusted by 1.40 mm to offset the zero OPD. In
both cases, 5000 A-lines were acquired sequentially.
Figure 1a, b shows the overlaid interference fringes
(n= 5000) from SS-OCECOV and SS-OCECP, respectively.
Temporal shifting is much more severe in SS-OCECOV,
which implies a better timing stability in SS-OCECP. For
the temporal analysis, the timing information of each
zero-crossing was obtained through linear interpolation
(blue and red dashed boxes in Fig. 1a, b, respectively), and
the standard deviation of the timing variation corre-
sponds to the phase stability of the system. For SS-
OCECOV, the standard deviation was calculated to be
940 ps, whereas that of SS-OCECP was 35 ps. The corre-
sponding histograms are shown in Fig. 1c. In addition,
the phase stabilities of SS-OCECOV and SS-OCECP, which
were 175 mrad (~13-nm displacement) and 4.2 mrad
(~0.3-nm displacement), respectively, were determined
by calculating the standard deviation of the phase angle at
the peak in the frequency domain, demonstrating a >40-
fold phase stability improvement in SS-OCECP compared
to SS-OCECOV.

Enhanced SNR
Since the 3-mm wedged window generates two OCT

images in different frequency domains, these two OCT
images can be averaged to enhance the SNR, further
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improving the phase stability. Figure 2a shows the OCT
images of the phantom obtained via SS-OCECP; the top
and bottom images are the interference signals generated
by the back-reflected light from the back and front win-
dow surfaces, respectively, with the backscattered light
from the phantom. The high-intensity horizontal line
between the two OCT images is the interference signal
from the two surfaces of the window. The two images are
separated by ~3.4 mm. By averaging the two images, the
SNR was improved from 73 and 71 to 76 dB, an
approximately 3-dB improvement (Fig. 2b). The enhanced
SNR through averaging is also reflected on the Doppler
OCT images. Figure 2c shows the pair of Doppler images
obtained via SS-OCECP, and Fig. 2d shows the averaged
result, demonstrating the reduced noise floor and hence
improved SNR.

Phantom experiment
After demonstrating the improved SNR and phase

stability of the SS-OCECP system, the elastograms of the
phantom obtained using both SS-OCECOV and SS-
OCECP were compared. The time-lapse Doppler images

of SS-OCECOV and SS-OCECP are shown in Fig. 3a–d
and Fig. 3e–h, respectively. While an outward propa-
gation of the spherical elastic waves was observed in
both cases, the SS-OCECP result reveals a more pro-
nounced boundary between the upward (yellow) and
downward (blue) displacement, denoted by the white *
in Fig. 3. In addition, this displacement boundary is
better maintained in the deeper region when imaged
using SS-OCECP (same white * in Fig. 3b, f). Since the
deeper region of the image is encoded in the higher-
frequency components of the interference signal, a
higher phase stability is necessary to reveal the detailed
information in those regions. This is further exempli-
fied by the less-phase-stable SS-OCECOV, in which the
displacement boundary is more difficult to demarcate
(Fig. 3a–d). Figure 3i, j shows the spatiotemporal ima-
ges from SS-OCECOV and SS-OCECP at the depths
indicated by the white arrows in Fig. 3a, e, respectively.
The significantly reduced noise floor can be visualized
in the SS-OCECP image (Fig. 3j). The propagation speed
of the elasticity wave and Young’s modulus of the
phantom are shown in Fig. S1.
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In vivo rabbit experiment
We further verified the performance of the proposed

SS-OCECP in a rabbit model. Figure 4a–d and Fig. 4e–h

show the time-lapse Doppler OCT B-scans of rabbit
cornea obtained using SS-OCECOV and SS-OCECP,
respectively. In these figures, an elastic wave that
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Fig. 2 SNR quantification. a, b Original and averaged OCT images, respectively. c, d Original and averaged Doppler OCT images, respectively
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Fig. 3 Elastic wave in the silicone phantom. Time-lapse Doppler OCT B-scans obtained using (a–d) SS-OCECOV and (e–h) SS-OCECP. i, j
Spatiotemporal Doppler OCT at a depth indicated by the white arrows in (a) and (e), respectively
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propagates outwards from the center can be visualized.
Figure 4i, j shows the corresponding spatiotemporal
images and propagation speeds of two OCE systems at the
depths indicated by the white arrows in Fig. 4a, e. The
propagation speed of the elasticity wave and Young’s
modulus of the cornea are shown in Fig. S1. The results
concur with the phantom experiment, demonstrating the
enhanced phase stability of SS-OCECP, which allows for a
more pronounced displacement boundary, an improved
SNR in the deeper region, and reduced background noise.
A highly phase-stable OCE system can detect smaller

displacements with improved accuracy. To investigate the
influence of the generated ARF amplitude on the phase
information retrieval, we applied three different levels of
ARF, from 800 to 400mV, using the same rabbit cornea
model (Fig. 5). In all cases, SS-OCECP provided a better
visualization of elastic wave propagation than did SS-
OCECOV. In the 800-mV SS-OCECOV case, the phase
error can be observed at 0.12 ms in Fig. 5a. When
applying 600-mV ARF to SS-OCECOV, although bidirec-
tional wave propagation can be identified in the center at
0 ms (Fig. 5d), only one direction of displacement was
observed at 0.04 ms (Fig. 5c). A moderately poorer SNR
was also observed in the 400-mV SS-OCECOV (Figs. 5e
versus f). The corresponding spatiotemporal Doppler
OCT images are shown in Fig. 6.
Last, we tested the change in elastic wave velocity in

rabbit corneas in vivo with normal and high intraocular

pressure (IOP) to further verify the capability of SS-
OCECP. A positive correlation between corneal elasticity
and IOP was previously reported, and our results (Sup-
plementary Material, Figs S2 and S3), demonstrating the
same correlation, agree well with those of the previous
study37.

Discussion
OCE benefits from OCT, providing the ability to mea-

sure biological tissue with micrometer spatial resolution
and subnanometre displacement sensitivity. The static
operation principle of SD-OCT contributes to its wide use
in OCE. However, recent advancements in SS-OCT have
proven its utility in OCE, especially with the advantages of
enhanced imaging range, depth, and speed, increased
SNR, and reduced phase washout. The phase stability of
SS-OCT can be improved through optical and electrical
optimization, but reducing the phase fluctuation in a
conventional SS-OCT setup is fundamentally challenging,
as the reference and sample signals travel through dif-
ferent optical paths. We have previously demonstrated a
method to optimize the electrical components in an
SS-OCT system to achieve high-phase stability38, and in
this study, we employed a common-path configuration to
further attain the peak performance of SS-OCE. This was
accomplished by enhancing the SNR through averaging,
minimizing the timing jitter by adjusting the electrical
delay, and reducing the fluctuation of the OPD via the
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common-path configuration. The resulting SS-OCECP
demonstrated a phase stability of 4.2 mrad, which was not
only obtained in the system characterization but also
achieved during the experiments. In addition to the 40-
fold improvement in the phase stability compared to that
of SS-OCECOV, SS-OCECP showed a 3-dB improvement
in the imaging SNR, all without the need for external
stabilization or extravagant post-processing.
The phase performance of our SS-OCECP was first

validated using a tissue-mimicking silicone phantom. The
improved phase stability was reflected by the more pro-
nounced displacement boundary of the elastic wave than
that of SS-OCECOV. We repeated the experiment using an
in vivo rabbit corneal model to further demonstrate the
improved capability of SS-OCECP to retrieve precise phase
information for elasticity quantification. The results of the
IOP experiment are also supported by reported studies37.
Additionally, the improved displacement sensitivity pro-
vided by SS-OCECP can reduce the minimum ARF
required to induce a detectable tissue displacement, which
is essential for future clinical translation.

Although we have demonstrated the superior perfor-
mance of SS-OCECP, there are a few design improvements
that can be implemented. First, in the proposed optical
configuration, the reference signals are generated by the
front and back surfaces of the 3-mm wedged window. To
achieve the optimal SNR, the travel distance of the
detection beam from the scan lens to the first surface of
the window must be constant to provide a uniform back-
reflected signal; even a slight deviation will cause a var-
iation in the OPD and back-reflected power during
scanning, resulting in a reduced SNR. For applications
that require scanning of a larger area, a scan lens that
provides a larger field of view should be used. Further-
more, for three-dimensional OCE, a 4 F optical corrector
can be incorporated into the scanning design to ensure a
constant entrance pupil and OPD.
In addition, we previously demonstrated a confocal

alignment between the OCT detection beam and the
excitation via a coaxial configuration for high excitation
efficiency15,32. A confocal/coaxial setup can improve the
ease of use and reduce the form factor of the sample arm,
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further facilitating the translation of this technology to
clinical use. In our current SS-OCECP design, the wedged
window prevents this confocal setup, as the ARF will be
attenuated by the window. Alternatively, the wedged
window can be fabricated using an optically and acous-
tically transparent material, such as Pebax® and low-
density polyethylene39,40. With this window, a ring-shaped
ultrasound transducer can be inserted between the scan
lens and the window for excitation, allowing the OCT
detection beam to travel through the center of the
transducer for imaging.
Finally, the light source of the SS-OCECP is a vertical-

cavity surface-emitting laser with an internal MZI that
provides a k-clock signal at ~400 MHz, allowing for an
imaging range of ~11 mm in standard OCT or ~5.5 mm
when utilizing the proposed averaging method that
enhances the SNR by 3 dB. While a 5.5-mm imaging
range may be sufficient in many applications, a long
imaging range can be achieved through doubling the k-
clock frequency by building an external circuit or
through the dual edge sampling provided by certain
waveform digitizers. A custom-built external k-clock
can also be considered. Alternatively, an acousto-optic
modulator can be incorporated to shift the frequency of
the interferometer signal to take advantage of the full
bandwidth of the frequency41. With respect to achieving
a better penetration depth, swept-source lasers with a
longer center wavelength, such as 1.7 μm, can be
utilized42.
In summary, we have reported the first OCE system

based on SS-OCT with a common-path configuration. A

phase stability of 4.2 mrad was obtained, and the feasi-
bility and performance of our SS-OCECP were tested and
validated using a phantom and in vivo rabbit model. This
highly phase-stable system can quantify displacement in
the subnanometre range, and we believe that it has great
potential in other applications that require precision
phase measurement, such as flowmetry11, vibrometry43,
and molecular imaging44.

Materials and methods
System setup
An SS-OCECP system was designed and constructed.

The swept laser (SL1310V1-10048, Thorlabs, Inc., NJ) has
a repetition rate of 100 kHz, a center wavelength of
1310 nm, and a bandwidth of 100 nm. The system has an
imaging range of 11 mm, which makes the generation of
two OCT images in different frequency domains possible.
The output light from the laser source is split by a 90:10
optical fiber coupler, with 90% of the light propagating to
the sample through a circulator, a collimator, an objective
scan lens (LSM04, Thorlabs, Inc., NJ), and a wedged
window, as shown in Fig. 7. The common-path config-
uration is achieved through the 30-arcmin wedged win-
dow. In contrast to a flat window, the 30-arcmin angle on
the front surface effectively reduces the autocorrelation
fringe patterns generated within the window cavity, as
shown in Fig. 8. In this setup, two interfaces exist: the air-
glass front surface and the glass-gel back surface. The
indices of refraction of the air, glass (the wedged window),
and ultrasound gel are 1.0, 1.5, and 1.34, respectively. The
back surface of the wedged window is perpendicular to

1 mm

1 
m

s

a b

c d

e f

800 mV

600 mV

400 mV

SS-OCECPSS-OCECOV

Fig. 6 Spatiotemporal Doppler OCT of the cornea for different ARFs. a, c, e B-scans from the SS-OCECOV system excited with large, medium, and
small ARFs, respectively. (b), (d), and (f): B-scans from the SS-OCECP system excited with large, medium, and small ARFs, respectively
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the OCT scanning beam, while the front surface is shifted
by 30 arcmin from the normal direction. The differences
in the refractive indices and in the corresponding incident
angles contribute to the discrepancy in reflectance of the
two surfaces, but this can be compensated for by adjusting
the position of the wedged window relative to the scan
lens because the collected power of the focusing back-
reflected light is spatially dependent (Supplementary
Material, Fig. S4). As such, two back-reflected reference
signals of similar power interfere with the backscattered
sample signal to generate two distinct fringes corre-
sponding to the top and bottom images. The two inter-
ferences are then delivered to one channel of the balanced
photodetector. The wedged window has a thickness of
3 mm, which corresponds to a 3.4-mm axial separation of
the generated OCT images calculated based on the
ultrasound gel reflective index of 1.34. Additionally, the

two images can be averaged to enhance the SNR and
minimize speckles. To enable balanced detection, the
remaining 10% of the light propagates through a com-
pensation arm consisting of a circulator, a collimator, an
adjustable slit and a mirror. The back-reflected light from
the compensation arm is detected by the second channel
of the balanced photodetector to offset the DC compo-
nent of the generated interference fringes. A balanced
photodetector with a bandwidth from 30 kHz to 1.6 GHz
was selected to minimize timing jitters to enhance the
phase stability and to enable a long imaging range for
retrieving the two OCT interference fringes from different
frequency domains14.
For the displacement excitation, a custom-built

4.5-MHz ultrasound transducer with a focal length of
35 mm is placed approximately orthogonal to the scan
lens. A function generator is synchronized with the
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Fig. 7 Schematics of the SS-OCECP system
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λ-trigger signal to generate a 4.5-MHz sine wave (dura-
tion: 200 μs) that is then amplified by approximately 42 dB
to drive the ultrasound transducer for tissue excitation.
The space between the wedged window, the ultrasound,
and the sample is filled with ultrasound gel to couple
the ARF.
For comparison, SS-OCECP can be quickly converted to

SS-OCECOV during the experiments while maintaining
the exact location of the sample and the ultrasound
transducer relative to the OCT detection beam (Supple-
mentary Material, Fig. S5).

Data acquisition, synchronization, and signal processing
Two timing signals produced by the swept-source laser

are utilized for data acquisition and synchronization. The
k-clock signal generated by the internal MZI provides a
timing of equal wavenumber spacings, and the λ-trigger
signal is produced by the internal FBG to give a temporal
mark for each wavelength sweeping. In conventional SS-
OCT or SS-OCE imaging systems, a series of OCT signal
points is digitized starting at the edge of the λ-trigger,
while the signal digitization is clocked by the k-clock
signal for k-linear signal sampling. However, in this mode
of operation, random timing errors of the signal edges can
be magnified to significant timing fluctuations between
the k-clock and λ-trigger through a process termed edge
collision38. To achieve the best stability, the signal delays
are adjusted to the optimal values for the k-clock, λ-
trigger and OCE signals. A previous study on the phase
stability with the same type of swept lasers suggested that
a very high stability could be obtained using this
method38.
The propagation velocity of the elastic wave provides a

direct measurement of the biomechanical property, as
pre-calibration is not necessary to convert the displace-
ment to elasticity. To visualize the elastic wave propaga-
tion, an M-B scanning protocol is utilized to induce and
detect the displacement. At each lateral position, 500 A-
lines are acquired to record the phase change over time
(M-mode). The ultrasound transducer is excited after a
trigger delay of 1 ms to generate an ARF with a duration
of 200 μs for each M-mode acquisition. After one M-
mode acquisition, the galvanometer scanner moves the
detection beam to the next lateral position, and the same
step is repeated. A total of 3000 M-mode images are
acquired for each dataset to convert to B-mode images.
The scanning protocol is summarized in Fig. S6 in the
Supplementary Material. The phase-resolved Doppler
algorithm is applied to extract the temporal phase infor-
mation. With a time interval of 50 μs, inter-A-line analysis
is performed to obtain time-lapse Doppler OCT B-scans
and spatiotemporal Doppler OCT images. Young’s mod-
ulus can then be calculated by determining the propaga-
tion velocity using the spatiotemporal Doppler images.

Because the different boundary conditions yield different
propagation modes of the elastic waves, a specific equa-
tion is used to calculate the elasticity based on the sample
types8,45. In our experiment, Young’s modulus, E, is cal-
culated based on the Rayleigh wave velocity, VR, and
Lamb wave velocity, VL, for the tissue-mimicking phan-
tom and rabbit cornea, respectively. The data processing
steps and key equations for elasticity calculation are
detailed in Fig. S7 in the Supplementary Material.

Phantom preparation
To fabricate the silicone-based phantom that mimics

tissue biomechanical properties, 2 g of titanium dioxide
was added to every 100 g of silicone rubber base (P4—Part
B, Eager Polymers, Inc., IL) and mixed using an ultrasonic
cleaner. Then, 1 part of the silicone rubber base with well-
mixed titanium dioxide was added to 16 parts of silicone
activator (P4—Part A, Eager Polymers, Inc., IL). After the
base was gently mixed with the activator using a stirring
rod, the mixture was placed into a vacuum chamber until
all the air bubbles trapped inside the mixture were
removed. The mixture was then poured into a container
for molding and cured for 24 h. The final phantom had
dimensions of 40 mm × 40mm × 10mm.

In vivo rabbit experiment preparation
To induce the initial anesthesia, the rabbit (New Zeal-

and white rabbit, male, ~3 kg) was administered a
ketamine-xylazine mixture (35mg/kg and 5mg/kg,
respectively) subcutaneously. Two drops of 2.5% propar-
acaine hydrochloride were applied topically for local
anesthesia. After conforming to the proper depth of
anesthesia, the rabbit was placed onto a stage for position
adjustment. The rabbit’s eye was covered with sterile
ultrasound gel to provide a conductive medium between
the eye and the acoustic wave for the IOP experiment. To
obtain a higher IOP, the rabbit eye was carefully prop-
tosed, and a sterile latex drape with an aperture was put
through the globe to maintain proptosis. Eye proptosis in
rabbits typically increases the IOP to ~50mmHg. All
procedures were reviewed and approved by the Institu-
tional Animal Care and Use Committee at the University
of California, Irvine, under protocol #AUP-19-042.
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