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Integration and Inference: Cross-situational Word Learning Involves More than 

Simple Co-occurrences 
 

Alexa R. Romberg and Chen Yu 

{aromberg, chenyu}@indiana.edu 
Department of Psychological and Brain Sciences, 1101 E. 10th Street 

Bloomington, IN 47405 USA 

 

Abstract 

Statistical word learning involves forming and aggregating 
associations between words and objects that co-occur across 
contexts (e.g., Vouloumanos & Werker, 2009; Smith & Yu, 
2008; Yu & Smith, 2007). However, the mechanisms that 
support such learning are currently under debate, including 
the extent to which learners carry forward multiple 
ambiguous associations (e.g., Trueswell et al., 2013). The 
current study presented adults with a set of statistical word 
learning tasks designed to measure the statistical 
computations learners employ to build label-object mappings 
and to probe what information from past contexts is available 
to further process and integrate with new information. Results 
reveal that learners use the co-occurrence of label-object 
pairings to make inferences both about objects and labels 
currently present and those presented on previous trials. 
Further, the strength of learners’ memory for past contexts 
moderated their inferences, suggesting a role for a rich 
information structure in cross-situational word learning. 

Keywords: word learning; statistical learning; language 
acquisition; cross-situational learning 

Introduction 

Imagine an infant on a walk with his father. The father, 

like many parents, comments on the things they see 

together: “There’s a doggie and a kitty in the window!” and 

a few moments later: “Look, the man is walking the 

doggie!”. How might the father’s comments help the infant 

learn the meanings of words like doggie, kitty and man? 

Recent research has demonstrated that learners readily form 

label-object mappings by gathering co-occurrence statistics. 

Human infants (Smith & Yu, 2008; Vouloumanos & 

Werker, 2009), children (Scott & Fisher, 2011) and adults 

(Kachergis, Yu & Shiffrin, 2012; Suanda & Namy, 2012; 

Yu & Smith, 2007) are all capable of converting multiple 

individually ambiguous learning instances into specific 

knowledge as demonstrated by above-chance performance 

on a post-learning test or by an improvement in selection of 

the correct referent in a combined training and test 

procedure (Trueswell, Medina, Hafri & Gleitman, 2013). 

However, the precise ways in which learners resolve the 

local ambiguities have been relatively unexplored.  

Specifying how exactly learners use the information 

available is an important step to understanding the 

mechanisms contributing to success. When learners perform 

some computations but not others, this offers important 

constraints to any model of their learning and can inform 

discussion about the nature of the information stored. In the 

context of cross-situational word learning, two primary 

mechanisms, associative learning and hypothesis testing, 

have been proposed for how learners accrue information 

over time. These mechanisms differ largely in the amount of 

information stored and, consequently, in how prior 

information influences later learning (Yu & Smith, 2012). In 

particular, associative learning proposes that learners form 

multiple associations between the objects and labels present 

during each learning instance, storing a relatively rich 

information network. Hypothesis testing proposes that 

learners store only a single link between a label and possible 

referent, discarding other co-occurrence information. 

Distinguishing these possible mechanisms has been 

challenging thus far because of a lack of data regarding how 

learners process information on a trial-by-trial basis. 

Details about what information learners store and how 

they use it during cross-situational word learning is vital for 

advancing theories of this process. The typical cross-

situational word learning experiment uses a fairly large 

novel vocabulary (up to 18 to-be-learned label-object 

mappings) and consists of a series of trials that each present 

a subset of the labels and objects. Thus, the learner is faced 

with the difficult task of tracking these many labels and 

objects across trials (typically between 27 and 60 trials) and 

using what co-occurrences they can glean to generate as 

many correct mappings as possible. While this experimental 

design is daunting for the participant, it is also daunting for 

the experimenter, as there are inevitably many possible 

paths to success. One cannot know definitively how 

participants arrived at a particular mapping over the course 

of statistical learning or whether the same types of 

computations were used for all learned mappings. 

The present study sought to alleviate these analytical 

ambiguities for the experimenter while maintaining the 

learning ambiguities for the participants. Rather than have 

participants view many trials across which to learn many 

mappings, learners were presented with a series of 

“miniature” cross-situational word learning tasks. These 

tasks consisted of only 2 or 3 trials and were constructed so 

that some, though not all, label-object mappings could 

(theoretically) be disambiguated, depending on which 

information learners stored and which inferences they made. 

The miniature tasks were constrained so that there was only 

one pathway to disambiguation, allowing us to infer the 

computations successful learners employed. 

We focused on three fundamental processes that could 

serve as building blocks for sophisticated statistical 

learning. The first was the tracking of co-occurrence 

information – noticing that some labels and some objects 

appear together across multiple trials. The simplest of 
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statistical learning models, such as the “dumb associative 

model” outlined by Yu & Smith (2012) do only this co-

occurrence tracking to fill an association matrix. The second 

process was “forward integration”, by which learners use 

information that they carry forward across trials about some 

objects and labels to make an inference about another 

object-label mapping. Mutual exclusivity (Markman, 1990) 

would be a strong form of forward integration, when one 

rules out objects with known labels as possible referents for 

a novel label. Recent evidence indicates that learners do 

employ mutual exclusivity during cross-situational word 

learning and that this type of inference could arise through 

basic attentional processes (Kachergis, Yu & Shiffrin, 

2012). The third process was “backward inference,” by 

which learners use information on the current trial to infer 

something about an object/label experienced on a previous 

trial (but not on the present trial). This last process can be 

thought of as learning from negative evidence, as it entails 

noting the absence of particular objects and labels. 

We compare performance on three different “miniature” 

cross-situational word learning tasks to assess learners’ 

ability to use the available information in the three processes 

of co-occurrence tracking, forward integration and 

backward inference. The tasks were designed to look 

specifically at how trial-by-trial information is retained and 

processed. We also relate performance on the miniature 

tasks to a “full” cross-situational word learning task, to 

investigate whether these fundamental processes are also 

employed in larger-scale statistical word learning.  

Method 

Participants 

Participants were 38 undergraduates (20 females) at 

Indiana University who earned course credit for their 

participation. The mean age was 20.9 years. 

Materials 

The auditory stimuli consisted of 108 nonce words 

synthesized with the Ivona voice Jennifer using the 

TextSpeaker program. Nonce words consisted of one or two 

syllables (264 ms to 795 ms in duration) and followed 

English phonotactics. The visual stimuli were 123 color 

photographs of real objects or 3D models either of novel 

objects or objects that were not readily nameable. Images 

were displayed in the 4 corners of a 17” monitor, on a white 

background at a size of approximately 3” square. 

Experimental Design 

There were 3 types of “mini-tasks” (see Figure 1), each 

made up of 2-3 training trials and then 3-4 test trials. Each 

mini-task was independent of the others and no stimuli were 

repeated across tasks. When objects and labels were 

repeated on multiple trials they were always presented in 

different spatial or temporal positions. 

Across all parts of the experiment, each trial consisted of 

viewing 4 objects on a screen and listening to 4 nonce 

words. Each trial began with the objects displayed in silence 

for 3 seconds. The onsets of the words were 3 seconds apart 

and the total trial length was 15 seconds. Every time an 

object was on screen the corresponding label was provided. 

The training trial structure of each of the 3 types of mini-

tasks is given in Figure 1. For all tasks, the R items refer to  

the object-label pairs R1, R2 and R3, which were presented 

on Trials 1 and 2. T1 refers to the object-label pair presented 

on Trial 1 but not Trial 2. T2 refers to the object-label pair 

presented on Trial 2 but not Trial 1. The Base and Familiar 

Context tasks each consisted of a total of 5 word-object 

pairings: R1-3, T1 and T2. The Novel Context task consisted 

of a total of 8 word-object pairings: R1-3, T1 and T2 and the 

3 novel, label-object pairs presented only on Trial 3 (N1-3).  

 
Figure 1. Schematic representing the training trial structure 

for the 3 mini-tasks, with letters representing objects filling 

different roles in the design.  

 

For each of the mini-tasks, the training trials were 

followed immediately by a series of test trials. On each test 

trial one word was presented auditorally and participants 

were instructed to click on the object the word most likely 

referred to out of all objects presented on the task plus a 

novel distracter object. For the Base and Familiar Context 

tasks, participants selected from 6 objects and for the Novel 

Context task participants selected from 9 objects. The tested 

words came from the different categories of items in the 

task (R, T1, T2 and, for Novel Context only, N). While the 

tested items aligned structurally across tasks, the 

information available to participants differed, enabling us to 

test hypotheses about what information participants track 

and what inferences they make. 

All participants also completed a “full” cross-situational 

word learning task, based on Yu & Smith, 2007, which 

consisted of 18 label-object pairings. These were presented 

4 at a time across 27 training trials, so that each label co-

occurred with its referent object 6 times. With the 4x4 

design, objects co-occurred with other labels, but such 

“spurious” correlations were limited to no more than 3 times 

across the 27 trials. Training was followed immediately by 

18 test trials. On each test trial all 18 objects were displayed, 

one auditory label was presented and participants selected 

the best referent by mouse click. 
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Procedure 

Participants were given an overview of the experiment 

and informed consent was obtained. All participants first 

completed the Full CSL task. They were told that they there 

were 18 words and 18 objects, that they would see them 4 at 

a time and that the order of the labels on any trial did not 

correspond to the spatial location of the objects. They were 

instructed to learn as many label-object mappings as they 

could. Once participants completed the test for the Full task, 

they moved on immediately to the mini-tasks. There were a 

total of 15 mini-tasks, 5 of each task type. The tasks were 

grouped so that there was one of each type in each block of 

3. The order of the 15 tasks was the same across all 

participants but the order of the test questions within each 

task were randomly determined for each participant. In the 

instructions for the mini-tasks, participants were told they 

would see a series of 15 tasks that were miniature versions 

of what they had just done and that they would be tested 

after just 2 or 3 training trials. They were told that no 

objects or words would be repeated across the mini-tasks. 

Participants were tested one at a time and listened to the 

auditory stimuli over headphones. The entire experiment 

took approximately 30 minutes. 

Predictions 

The Base task provides a baseline measure of each of the 

three processes we are examining: The R items represent the 

co-occurrence tracking process. For each of the tasks, the 

precise object-label mappings within this group remain 

ambiguous. However, successfully tracking the repetition of 

this group of objects and labels theoretically enables 

learners to perform two types of inference to disambiguate 

the T1 and T2 mappings. The T2 items represent forward 

integration: whether participants can use the familiarity of 

the R1, R2 and R3 pairs on Trial 2 to make a mapping 

between the relatively novel T2 label and object. Finally, the 

T1 items represent backward integration: whether 

participants use the absence of T1 on Trial 2 to make a 

mapping between that label and object.  

Backward integration relies on participants remembering 

the T1 pair across multiple ambiguous trials and was 

expected to be difficult. Thus, the other two mini-tasks were 

designed to test participants’ memory for T1 by presenting it 

in either a novel or familiar context. This necessarily 

changes the interpretation of the T1 pair in the Novel and 

Familiar Context tasks, as participants no longer need rely 

solely on backward integration to learn the mapping. 

In the Novel Context task, T1 is presented with 3 new 

objects and labels on the 3rd trial. This task is the only task 

in which the association matrix distinguishes the T1 

mapping, enabling a correct mapping if participants 

recognize T1 from the first trial. It is also possible that 

learners could employ forward integration, mapping the 

familiar-looking object to the familiar-sounding label 

without any memory specifically linking the two. If, 

however, participants do not retain any memory of T1, they 

should choose randomly from T1 and N1, N2 and N3 on both 

the T1 and the N test trials. 

Unlike the Novel Context task, the Familiar Context task 

does not provide any additional statistical certainty relative 

to the Base task. While participants get an additional T1 

pairing, it occurs with the same items on both trials. 

However, participants could infer the T1 mapping by using 

forward integration in the same manner as the T2 item on 

Trial 2. Comparing performance between the Base and 

Familiar Context tasks provides further insight into how 

learners track information. In the most straightforward 

extrapolation from the Base task, accuracy on R and T1 

should improve due to the extra trial and accuracy on T2 

should decrease due to the extra trial between when T2 is 

presented and tested. Further, within the Familiar Context 

task, accuracy on T1 is expected to be higher than T2, as 

participants can use the same process to infer them and T2 is 

presented on the last trial of the experiment. 

Results 

All objects from the ambiguous groups (R1-3 and N1-3) 

were scored as correct. The baseline for chance performance 

varied between test items and between tasks. For the Base 

task and Familiar Context task participants selected from 6 

objects, so chance performance was 50% for R test trials 

and 16.7% for T1 and T2 test trials. For the Novel Context 

task, participants selected from 9 objects, so chance 

performance was 33.3% and 11.1%, respectively. Statistical 

comparisons between trial types and tasks were performed 

with logistic mixed-effects models with random effects of 

subject (other random effect structures were tested but in no 

case improved model fit). 

Forward integration and backward inference 

We first address performance on individual mini-tasks 

before turning to relationships between the mini-task and 

full task and comparisons between mini-tasks. Mean 

accuracy for each type of test item is shown in Figure 2. The 

results from the Base task reveal that learners do engage the 

three processes it was designed to test: co-occurrence 

tracking, forward integration and backward inference. Each 

of the three trial types has accuracy significantly above 

chance performance (see confidence intervals on figure). 

While forward integration accuracy was quite high, our 

prediction that backward inference would be relatively 

challenging was confirmed, with participants performing 

significantly better on T2 items than T1 items on the Base 

task (b=1.898, z=7.88, p < 0.001).  

Results from the Novel Context and Familiar Context 

tasks point to the robustness of co-occurrence tracking and 

forward integration. In the Novel Context task, neither R 

items nor T2 were presented in the final trial, so learners 

must maintain that information while concurrently learning 

about additional objects and labels. Despite this challenge,  

participants were significantly above chance on both R and 

T2 items for the Novel Context task (see Figure 2). In the 

Familiar Context task, T2 information must be maintained 
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while familiar objects and labels from Trial 1 are repeated in 

Trial 3. Again, learners were quite successful, performing 

significantly above chance. Surprisingly, there was no 

decrement in performance for T2 from the Base to the 

Familiar Context task (see further discussion below). 

While accuracy was significantly above chance for 

backward integration T1 items on the Base task, it was not 

very high. Backward integration relies on memory for the 

T1 pair, as the inference must be made in the absence of the 

object and label. Remembering the T1 label and object may 

pose a particular challenge since the mapping between them 

is ambiguous when they are first presented; it is possible 

that rapid decay of this information is responsible for the 

relatively low performance on backwards inference.  

However, results from the Novel Context task 

demonstrate that participants recognized the T1 pair as 

familiar on Trial 3 and distinguished it from N1-3. Indeed, 

accuracy on T1 is numerically much higher than the Base 

and Familiar Context tasks even though the chance baseline 

is lower. The error pattern also suggests that participants 

were not likely to confuse T1 and N1-3. On N trials, 

participants selected T1 only 4.7% of the time, less than 

they selected T2 (10%), which did not co-occur with the N 

group. On T1 trials, participants selected one of N1-3 18.4% 

of the time, less than is expected for random guessing 

(33.3%) and much less than they selected T1 (65.3%). 

 
Figure 2. Mean percentage correct for each of the three 

mini-tasks. The error bars are 95% confidence intervals of 

the mean. The horizontal lines within each bar represent 

chance performance for that test item. 

 

Are forward integration and backward inference relevant 

for statistical word learning beyond the mini-tasks? While 

the mini-tasks used in our experiment are structured 

similarly to the design of the larger cross-situational word 

learning paradigm employed in previous research (e.g., Yu 

& Smith, 2007; Yu, Zhong & Fricker, 2012) the mini-tasks 

had much more trial-to-trial overlap than other cross-

situational learning paradigms. Thus, it is possible that 

learners don’t rely on these inferential computations in the 

larger task, but simply accumulate co-occurrence statistics.  

In order to verify that forward integration and backward 

inference were relevant for cross-situational word learning 

in a larger set, we correlated participants’ scores on the Base 

task with their scores on the Full CSL task (see Figure 3). 

The proportion of correct object-label mappings  was 

positively correlated for the Base mini-task and Full CSL 

task (r=0.485, p=0.002), suggesting that these tasks tapped 

similar skills. We also tested correlations between 

participants’ accuracy on the Full CSL and on each of the 

individual trial types in the Base task to investigate the role 

of the individual computations. Positive correlations were 

found for both backward inference (T1) items (r=0.407, 

p=0.011) and forward integration (T2) items (r=0.387, 

p=0.016). The relationship between accuracy on the co-

occurrence tracking (R) items and Full CSL accuracy was 

marginally significant (r=0.303, p=0.065). Accuracy on R 

items was in general quite high and this measure of co-

occurrence tracking may not have been sensitive enough to 

detect a significant relationship. However, as described 

above, the tracking of co-occurrence information is 

necessary for the other two computations. Together, these 

results strongly suggest that forward integration and 

backward inference are processes integral to cross-

situational learning. 

 
Figure 3. Scatterplot depicting the correlation between 

percentage correct on the Base Mini-Task (horizontal axis) 

and the Full Task (vertical axis). Values have been jittered 

so that all data may be seen. Overall performance on the 

Base Task is shown in the top left panel, R test trials in top 

right, T1 test trials in bottom left and T2 test trials in bottom 

right. Lines represent linear best fit. 

The role of tracking multiple co-occurrences 

We now turn to comparisons between the mini-tasks to 

further explore the computations learners employed to infer 

label-object mappings and participants’ memory for 

ambiguous prior information. The Familiar Context task 

repeated the information from Trial 1 on Trial 3. We 

predicted that this repetition would lead to higher accuracy 
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relative to the Base task for R and T1 items and lower 

accuracy for T2 items (because of the addition of Trial 3 

between training on T2 in Trial 2 and test). Of these 

predictions, only the improvement on T1 is confirmed by 

the data. Accuracy on R items was not significantly 

different between the two tasks (p > 0.29), suggesting that 

the additional co-occurrence information did not lead to 

better mappings.  

Changes in performance on T1 and T2 items were tested 

with a logistic mixed-effect model with Task (Base or 

Familiar Context) and Trial Type (T1 or T2) as fixed effects 

and Subject as a random effect. This revealed a significant 

Task by Trial Type interaction (b=-1.00, z=3.13, p=0.002). 

However, follow-up analyses confirmed that the pattern of 

effects was not as predicted. While accuracy on T1 was 

higher for the Familiar Context task than the Base task 

(b=0.631, z=2.94, p=0.003), accuracy on T2 was not 

different across the two tasks (b=-0.347, z=1.48, p=0.14). 

Accuracy was significantly higher for T2 than T1 for both 

tasks (Base: b=1.898, z=7.88, p<0.001; Familiar Context: 

b=0.785, z=3.64, p<0.001). Surprisingly, even though 

participants could use the same forward integration process 

to infer the T1 and T2 mappings and the T1 object and label 

were presented on the last training trial while T2 had to be 

maintained across this trial, participants were more accurate 

on T2 than T1. 

Why might the results differ so much from our initial 

prediction? One possibility is that, for some participants, 

rather than increasing certainty, the repetition of the Trial 1 

information on Trial 3 actually increased spurious 

correlations, and therefore the confusability, between R1-3 

and T1. The pattern of errors across tasks supports this 

interpretation. On R trials participants were significantly 

more likely to incorrectly select T1 for the Familiar Context 

task than the Base task (b=1.153, z=2.92, p=0.004). 

Selection of an R item on T1 test trials was equivalent 

across the two tasks, despite the improved performance on 

T1 for the Familiar Context task (b=-0.282, z=1.06, p=0.29). 

The participants with the best memory of the first trial 

should be most likely to confuse R1-3 and T1. The nature of 

the backward inference requires memory for T1, as well as 

memory for the context in which T1 occurred (i.e., the other 

objects and labels), since it is the absence of T1 from this 

context on Trial 2 that allows the inference. If memory of 

Trial 1 increases confusability between R1-3 and T1, 

participants who were successful on backward inference in 

the Base task should improve less on T1 items for the 

Familiar Context task than participants who were not 

successful on backward inference. 

Participants were split into two groups at the median for 

backward inference on the Base mini-task (N=19 in each 

group). Participants with 20% or less correct on T1 items for 

the Base task were labeled low-backward inference (low-BI, 

M=0.116, SD=0.322) and those with more than 20% correct 

were labeled high-backward inference (high-BI, M=0.537, 

SD=0.501). A logistic mixed-effect model predicting 

accuracy on T1 test items with Task (Base or Familiar 

Context) and BI (high or low) as fixed factors and Subject 

as a random factor revealed a significant Task by BI 

interaction (b=-2.346, z=4.86, p<.001). The low-BI group 

had significantly higher accuracy on the Familiar Context 

task (M=0.484, SD=0.502) than the Base task (b=1.973, 

z=5.18, p<0.001), while the high-BI group did not 

(M=0.453, SD=0.500; b=-0.349, z=1.19, p=0.23). Thus, 

participants with a weak memory of T1 from the  first trial 

benefitted from the repetition of that information on Trial 3, 

while participants with a strong memory did not. This is 

further confirmed by the pattern of accuracy for R items 

across the two tasks, which was also subject to a Task by 

BI-group interaction (b=-1.122, z=2.01, p=0.044). The low-

BI group improved slightly from the Base task to the 

Familiar Context (Base M=0.768, SD=0.424; FC M=0.80, 

SD=0.402) while the high-BI group actually declined (Base 

M=0.905, SD=0.294; Familiar Context M=0.789, 

SD=0.410), suggesting that the Trial 1 repetition disrupted 

their memory for the R items. 

In contrast to the Familiar Context task, performance on 

the Novel Context task should only be aided by improved 

memory for T1 (and its first-trial context). Both high-BI and 

low-BI participants benefitted from the presentation of T1 in 

a novel context with high accuracy on T1 items (high-BI 

M=0.726, SD=0.448; low-BI M=0.579, SD=0.496). 

While a better memory for context impeded performance 

on the Familiar Context mini-task, such memory should 

generally improve statistical word learning, as learners 

would have a more complete association matrix on which to 

build. We tested the role of contextual memory in cross-

situational word learning by comparing performance in the 

Full CSL task for the high- and low-BI groups. As 

predicted, high-BI participants were significantly more 

accurate in the Full CSL task than low-BI participants (high-

BI M=0.444, SD=0.192; low=BI M=0.254, SD=0.173, 

t(36)=3.2, p=0.003). 

Discussion 

The present study investigated three fundamental 

processes that may contribute to cross-situational word 

learning. We found that learners readily tracked co-

occurrence information trial by trial and used those co-

occurrence statistics to infer label-object mappings in new 

learning situations, a process we termed forward integration. 

We also found that learners inferred label-object mappings 

when the disambiguating evidence was the absence of the 

label and object on trials on which they would otherwise be 

expected, a process we termed backward inference. Further, 

we found that participants retained multiple co-occurrences 

between objects and labels presented on previous trials. 

Importantly, participants who best remembered multiple 

object-label co-occurrences within a learning trial were most 

successful at cross-situational word learning.  

Our results support the argument that cross-situational 

word learning involves learning a system of label-object 

mappings, in which learning about one set of items 

influences knowledge about other items. From a 
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straightforward co-occurrence information point of view, 

the T1 and T2 objects are not more strongly associated with 

the T1 or T2 labels than the R1, R2 and R3 labels for either 

the Base or Familiar Context task. In order to disambiguate 

these mappings participants must use the information 

available not just about the T1 and T2 pairs but also about 

the R1, R2 and R3 pairs. In this way, participants draw on the 

entire association matrix to make inferences that are 

reasonable given their experience. Our results provide 

empirical evidence of these inferences, but do not tell us 

whether inferences were made by explicit reasoning or 

emerged from the dynamics of attention within and across 

trials (Kachergis, Yu & Shiffrin, 2012; Yu & Smith, 2012; 

Yu, Zhong & Fricker, 2012). If replicated in young word 

learners, these results suggest an important role for the 

contexts in which word learning occurs. 

There has been debate about the nature of information 

selection and information processing by cross-situational 

word learners. The presence of multiple objects and multiple 

labels on an individual learning instance means that learners 

could potentially associate all labels with all objects – the 

multiple association account (e.g., Yurovsky, Smith & Yu, 

2012). While equal attention may not be given to all 

possible mappings, this account predicts that learners will 

have a rich store of statistical information to draw on, so 

that if evidence for one particular mapping is contradicted 

(e.g., the label is given but the object is not present) there 

are other associations already in place that can inform the 

learners’ inferences about the label’s likely referent. 

 Alternatively, in the single-association account learners 

retain a single hypothesis for each object, discarding all 

other associations from a particular learning instance 

(Medina, Snedecker, Trueswell & Gleitman, 2011; 

Trueswell, Medina, Hafri & Gleitman, 2013). This account 

predicts that when a particular hypothesis is contradicted the 

learner must start from scratch, forming a new hypothesis at 

random based on the current learning instance.  

These two accounts make disparate predictions for the 

present study, specifically within the Familiar Context task. 

The single-association account proposes that learners may 

form a hypothesis linking the T1 object and label during 

Trial 1 and that this hypothesis would be confirmed on Trial 

3. However, because choice of hypotheses is random, there 

should not be systematic differences between which learners 

benefit from this extra information from one mini-task to the 

next. In direct contrast to this, our results suggest that for 

some learners, the repetition of information in Trial 3 was 

beneficial, improving accuracy on R and T1 items, and for 

some learners it was not. Crucially, what defined whether 

Trial 3 was beneficial was whether the participant had 

formed a strong memory for the first trial, both the potential 

T1 mapping AND the other objects present, as measured by 

their ability to perform backward inference. These findings 

raise important questions about how memory development 

may influence word learning in toddlers, as we found that 

better in the mini-tasks with high overlap, better memory 

led to potential interference, while in the larger task with 

little trial-by-trial overlap, better memory (i.e., backward 

inference) led to better performance. Our data suggest that 

those learners who are successful in cross-situational 

learning tasks carry multiple possible associations forward. 

These associations are integrated in both the forward and 

backward directions to discover likely object-label pairs. 

Thus, statistical associative learning is a powerful 

mechanism that is within the repertoire of human cognitive 

systems.  
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