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HYPERSURFACES IN HYPERBOLIC POINCARÉ

MANIFOLDS AND CONFORMALLY INVARIANT PDES

VINCENT BONINI JOSÉ M. ESPINAR AND JIE QING

Abstract. We derive a relationship between the eigenvalues of the Weyl-
Schouten tensor of a conformal representative of the conformal infinity of
a hyperbolic Poincaré manifold and the principal curvatures on the level
sets of its uniquely associated defining function with calculations based
on [9] [10]. This relationship generalizes the result for hypersurfaces in
Hn+1 and their connection to the conformal geometry of Sn as exhibited
in [7] and gives a correspondence between Weingarten hypersurfaces in
hyperbolic Poincaré manifolds and conformally invariant equations on the
conformal infinity. In particular, we generalize an equivalence exhibited in
[7] between Christoffel-type problems for hypersurfaces in Hn+1 and scalar
curvature problems on the conformal infinity Sn to hyperbolic Poincaré
manifolds.

1. Introduction

The relationship between the geometry of a conformally compact space
and the geometry of its conformal infinity has been of recent interest in both
physical and mathematical communities. The interest in such association
is motivated primarily by the AdS/CFT correspondence where a conformal
field theory on a compact manifold Mn correlates to the string theory on a
negatively curved conformally compact Einstein manifold Xn+1, which has
M as its conformal infinity. One can view such connections as originating
from the identification between the group of isometries of hyperbolic space
H

n+1 and the group of conformal transformations of the round sphere Sn. In
fact, the study of such connections date back to the 1980’s in the seminal
paper of Fefferman and Graham [9].
Recently, an explicit example connecting the geometry of hyperbolic space

H
n+1 to the conformal geometry of the round sphere Sn was realized in [7] in

the context of the hypersurface geometry of Hn+1 and curvature prescription
problems on Sn in the conformal class of the round metric. The question
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of the existence a hypersurface Σn in hyperbolic space Hn+1 with prescribed
Weingarten functional of the principal curvatures of Σ is a natural extension
of the classical problem in the Euclidean setting. Of particular interest is the
Christoffel problem for hypersurfaces in hyperbolic space Hn+1 where one is
asked to find a hypersurface Σn ⊂ Hn+1 with prescribed mean of the curva-
ture radii. One of the initial difficulties of the Christoffel problem in Hn+1 is
to provide the appropriate formulation of the Gauss map and the principal
curvature radii in the context of hyperbolic space. In [7] the relevant notions
of the hyperbolic Gauss map and the hyperbolic principal curvature radii
are developed using the ambient structure of the hyperboloid model of Hn+1

where hyperbolic space is realized as a hypersurface in Minkowski spacetime.
Moreover, [7] exhibits a strikingly precise relation between Christoffel-type
problems for immersed hypersurfaces in Hn+1 and scalar curvature prescrip-
tion problems of conformal geometry on Sn, viewed as the boundary of Hn+1

at infinity. See also a related work of Mazzeo and Pacard [18].
In this note we take a viewpoint more reflective of conformal geometry and

we generalize the correspondences exhibited in [7] between Christoffel-type
problems and scalar curvature prescription problems of conformal geometry.
For n ≥ 2, let Xn+1 denote the interior of a smooth compact manifold X̄n+1

with boundary ∂X = Mn. A Riemannian metric g on X is then said to be
conformally compact if, for a defining function r forM , the conformal metric
ḡ = r2g extends to a metric on X̄ . The metric ḡ restricted to TM induces a
metric ĝ on M , which rescales by conformal factor upon change in defining
function and therefore defines a conformal structure (M, [ĝ]) onM called the
conformal infinity of (X, g).
A hyperbolic Poincaré manifold is a conformally compact hyperbolic man-

ifold. From the work of [10], given a representative γ ∈ [ĝ] of the conformal
infinity of a hyperbolic Poincaré manifold (Xn+1, g) and its associated geo-
desic defining function r, we may write the metric in the normal form

(1) g = r−2(dr2 + gr)

where

(2) gr = γ − r2Pγ +
r4

4
Q(Pγ),

Q(Pγ)ij = γkl(Pγ)ik(Pγ)jl

and for n ≥ 3,

Pγ =
1

n− 2

(

Ricγ −
Rγ

2(n− 1)
γ

)

is the Schouten tensor of γ with Ricγ and Rγ denoting the Ricci and the
scalar curvature of γ, respectively (please refer to §2 for more details). For
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n = 2, Pγ is a symmetric 2-tensor on M satisfying

γij(Pγ)ij =
Rγ

2
and γjk(Pγ)ij,k = (Rγ),i.

We will show that the horospherical metric associated to a horospherical
ovaloid in hyperbolic space Hn+1 can be realized as a representative of the
conformal infinity (Sn, [g0]) of hyperbolic space (Hn+1, g

H
). This is because a

horospherical ovaloid in hyperbolic space Hn+1 determines a geodesic defining
function r for the infinity Sn of Hn+1, where r = e−s and s is the hyperbolic
distance to the horospherical ovaloid. In general, on an asymptotically hy-
perbolic manifold X , one should replace the notion of a horospherical ovaloid
by that of an essential set. As defined in [2], the exponential map from the
normal bundle of an essential set is a diffeomorphism to the outside of the
essential set in X . Hence, an essential set provides a geodesic defining func-
tion r = e−s where s is the distance to the essential set in X . A similar idea
was realized in early works of Epstein [5] [6].
A straightforward calculation based on (2) yields a generalization of the

relation in [7] between the eigenvalues of the Schouten tensor of the horo-
spherical metric and the hyperbolic principal curvature radii of the level sets
of the associated geodesic defining function. To avoid any possible sign con-
fusion of the principal curvature of a hypersurface we recall that, the second
fundamental of a hypersurface Σ in Xn+1 with respect to an orientation in-
duced by a choice a normal direction N is defined to be

(3) II = −
1

2
LNg,

where L is the Lie derivative. In our convention, for instance, the principal
curvature of a unit sphere in Euclidean space with the orientation induced
by the inward normal direction is 1.

Theorem 1.1. Suppose that (Xn+1, g) is a hyperbolic Poincaré manifold and
let γ be a representative of its conformal infinity (Mn, [ĝ]) with associated
geodesic defining function r. Then the eigenvalues λi of the tensor Pγ in the
expansion (2) satisfy

(4) 1−
r2

2
λi =

2

1− κi

where κi = κi(r) denotes the ith outward principal curvature on the level
sets of the geodesic defining function r and 2

1−κi
is considered to be the ith

hyperbolic principal curvature radius.

As studied in [7], when n ≥ 3, the relationship (4) in Theorem 1.1 can
be used to turn questions regarding foliations near the conformal infinity
by particular classes of hypersurfaces in hyperbolic Poincaré manifolds into
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questions regarding the conformal geometry of the conformal infinity and
visa versa. For example, taking the trace of (4), one finds that

(5) Rγ =
4(n− 1)

r2

(

n−
n
∑

i=1

2

1− κi

)

.

Therefore, finding a foliation by hypersurfaces with constant mean of the
hyperbolic curvature radii is equivalent to finding a constant scalar curvature
metric on the conformal infinity. Hence, due to the resolution of the Yamabe
problem we have the following Corollary.

Corollary 1.1. Suppose that (Xn+1, g) is a hyperbolic Poincaré manifold.
Then there always exists a foliation of hypersurfaces of constant mean of the
hyperbolic curvature radii near the infinity. Such foliations are parameterized
by geodesic defining functions r associated with constant scalar curvature
S representatives of the conformal infinity and the mean of the hyperbolic
curvature radii of the foliation is given by

(6)
1

n

n
∑

i=1

2

1− κi
= 1−

r2

4n(n− 1)
S.

Moreover, if the conformal infinity (M, [ĝ]) of (Xn+1, g) has negative Yamabe
invariant, then such foliations are unique.

More generally, the relationship (4) can similarly be applied to the gener-
alized Yamabe or σk curvature problem to give foliations of certain hyper-
bolic Poincaré manifolds by hypersurfaces with constant linear combinations
or rational functions of generalized mean curvatures. For 1 ≤ k ≤ n and
λ = (λ1, . . . , λn) ∈ Rn, let

σk(λ) :=
∑

i1<···<ik

λi1 · · ·λik

denote the kth elementary symmetric function on Rn. Let Γk denote the
connected component of

{λ ∈ R
n | σk(λ) > 0}

containing the positive cone {λ ∈ Rn | λ1, . . . , λn > 0}. Given a representa-
tive g0 of the conformal infinity (Mn, [ĝ]) of a hyperbolic Poincaré manifold
(Xn+1, g), we denote the eigenvalues λ = (λ1, . . . , λn) of the the Schouten
tensor Pg0 by λ(Pg0) and the kth elementary symmetric function of the eigen-
values of the Schouten tensor Pg0 by σk(Pg0). Moreover, if g̃0 = e2φ0g0 is a
conformally related metric onM , then we denote the kth elementary symmet-
ric function of the eigenvalues of the Schouten tensor Pg̃0 corresponding to g̃0
by σk(Pg̃0). Applying the works of [14] [13] [16], it follows from that fact that
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M is compact and locally conformally flat, that for n ≥ 3, if λ(Pg0) ∈ Γk,
then there exists a smooth positive function φ0 on M such that g̃0 = e2φ0g0
with

(7) λ(Pg̃0) ∈ Γk and σk(Pg̃0) = 1.

In light of (4), (7) and the observations above, we have the following Corol-
lary.

Corollary 1.2. For n ≥ 3, let (Xn+1, g) be a hyperbolic Poincaré manifold
with conformal infinity (Mn, [ĝ]). Suppose that there exists a metric g0 ∈ [ĝ]
with λ(Pg0) ∈ Γk for some 1 ≤ k ≤ n. Then there exists a foliation near
M parameterized by a geodesic defining function r associated to a conformal
metric g̃0 ∈ [g0] with constant σk curvature σk(Pg̃0) = 1 such that the level
sets of r have outward principal curvatures κi = κi(r) satisfying

(8)
∑

i1<···<ik

1 + κi1
1− κi1

·
1 + κi2
1− κi2

· · ·
1 + κik
1− κik

=

(

r2

2

)k

.

This paper is organized as follows. In Section 2 we introduce hyperbolic
Poincaré manifolds and we recall several related geometric preliminaries and
concepts. In addition, we recall an application of the ambient metric con-
struction of Fefferman and Graham [10], which gives the asymptotic ex-
pansion (2) for the tangential component of hyperbolic Poincaré metrics in
normal form (1). In Section 3 we introduce the notion of the horospheri-
cal metric associated to a horospherical ovaloid in H

n+1 and we relate such
horospherical metrics to representatives of the conformal infinity. This ob-
servation allows us to put the two constructions in [7] and [9] [10] in the same
light. Finally, in Section 4 we prove Theorem 1.1.

2. Hyperbolic Poincaré Manifolds

In this section we introduce hyperbolic Poincaré manifolds and their prop-
erties mostly adopted from [10]. Readers are referred to [10] for details. Let
Xn+1 denote the interior of a smooth compact manifold X̄n+1 with boundary
∂X = Mn. A smooth function r : X̄ → R is said to be a defining function
for M if

(1) r > 0 in X ;
(2) r = 0 on M ; and
(3) dr 6= 0 on M .

A Riemannian metric g on X is then said to be conformally compact if
for a defining function r for M , the conformal metric ḡ = r2g extends to a
metric on X̄ . The metric ḡ restricted to TM induces a metric ĝ onM , which
rescales by conformal factor upon change in defining function and therefore
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defines a conformal structure (M, [ĝ]) on M called the conformal infinity of
(X, g). A straightforward computation as in [17] shows that the sectional
curvatures of g approach −|dr|2ḡ near M . Accordingly, we have the following
definition for asymptotically hyperbolic manifolds.

Definition 2.1. A complete Riemannian manifold (Xn+1, g) is said to be
asymptotically hyperbolic if g is conformally compact and |dr|2ḡ = 1 on M

for a defining function r for M in X.

We recall the following lemma from [11] [15] concerning geodesic defining
functions.

Lemma 2.1. Let (X, g) be an asymptotic hyperbolic manifold. Then any
representative g0 in the conformal infinity of g determines a unique defining
function r such that r2g extends to a metric on X̄, r2g|TM = g0 and |dr|2

r2g
≡

1 in a neighborhood U of M in X̄.

We will call such special defining function a geodesic defining function
associated with the representative g0. Given a representative g0 of the con-
formal infinity (Mn, [ĝ]) of an asymptotic hyperbolic manifold (Xn+1, g), the
product structure M× [0, ǫ) in a neighborhood ofM induced by the geodesic
defining function r from Lemma 2.1 yields the normal form

g = r−2(dr2 + gr)

with formal asymptotic expansion

gr = g0 + rg1 + r2g2 + · · ·

where the coefficients gj are symmetric 2-tensors on M . Decomposing the
Einstein tensor Ricg +ng with respect to the product structure M × [0, ǫ) as
in [8] yields differential equations that can be successively differentiated and
inductively solved at r = 0 to derive the expansions for n odd

(9) gr = g0 + r2g2 + (even powers) + rn−1gn−1 + rngn + · · ·

while for n even

(10) gr = g0 + r2g2 + (even powers) + hrn log r + rngn + · · ·

provided sufficient regularity is assumed and Ricg+ng vanishes to sufficiently
high order at infinity.
For 0 ≤ j < n, the terms gj in the expansions (9) and (10) are tensors

on M that are locally determined by the particular representative g0 of the
conformal infinity. For n odd gn is trace-free but formally undetermined and
for n even h is locally determined and trace-free while the trace of gn is locally
determined but the trace-free part of gn is formally undetermined (see [8]).
One can explicitly compute the tensors gj for 0 ≤ j < n in the expansions
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(9) and (10) using the aforementioned differential equation resulting from
the Einstein condition at infinity. Of particular interest, for n ≥ 3 one finds
that g2 = −Pg0 where

Pg0 =
1

n− 2

(

Ricg0 −
Rg0

2(n− 1)
g0

)

is the Schouten tensor of the conformal representative g0. The asymptotic
expansions described above are fundamental in many works concerning the
geometry and topology of conformally compact manifolds as well as in the
exploration of properties of submanifold observables in the AdS/CFT corre-
sponce (see for example [1] [3] [4] [8] [12] [19]) .
In this note we focus on a class of manifolds that serve as the prototypical

models of asymptotically hyperbolic manifolds known as hyperbolic Poincaré
manifolds. Such manifolds are conformally compact hyperbolic manifolds
obtained from quotients of hyperbolic space Hn+1 by discrete groups of
isometries. Similar to [8], given a representative g0 of the conformal in-
finity (Mn, [ĝ]) of a hyperbolic Poincaré manifold (Xn+1, g) one can use the
fact that (X, g) has constant sectional curvature Kg = −1 to decompose the
tensor

Rαβγµ + (gαγgβµ − gαµgβγ) = 0

with respect to the product structure M × [0, ǫ) induced by the geodesic
defining function r to yield the differential equation

(11) 0 = rR
gr

ijkl −
1

2
(gilg

′
jk + g′ilgjk − g′ikgjl − gikg

′
jl) +

r

4
(g′ilg

′
jk − g′ikg

′
jl)

where latin letters denote tangential directions to r level sets, gij = (gr)ij ,
and g′ij = ∂rg

r
ij for simplicity here. Taking successive derivatives of equation

(11) and solving at r = 0 one finds that the tangential metric

(12) gr = g0 − r2Pg0 +
r4

4
Q(Pg0)

where

Q(Pg0)ij = gkl0 (Pg0)ik(Pg0)jl.

The asymptotic expansion (12) for a hyperbolic Poincaré metric is perhaps
easier to recognize using the ambient metric construction of Fefferman and
Graham [10]. We summarize the application of the work [10] to derive the
expansion (12) for a hyperbolic Poincaré metric below.
Let g0 be a representative of the conformal infinity (Mn, [ĝ]) of a hyper-

bolic Poincaré manifold (Xn+1, g) and let r be the geodesic defining function
associated to g0 so that g has the normal form

g = r−2(dr2 + gr)
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in a neighborhood M × [0, ǫ) of M . Consider the ambient metric

(13) g̃ = s2g − ds2

on M × [0, ǫ) × R+. Then (X, g) is isometrically identified with {s = 1}
in the ambient spacetime and a straightforward calculation shows that the
curvature tensor of the ambient metric g̃ satisfies

Riemg̃ = s2[Riemg + g ∧ g]

where (g ∧ g)αβγµ = gαγgβµ − gαµgβγ. Hence, it follows that the ambient
metric (13) of a hyperbolic Poincaré metric is necessarily flat. Under the
change of variables

−2ρ = r2, s = rt for ρ ≤ 0

the ambient metric (13) takes the normal form

g̃ = 2ρdt2 + 2tdtdρ+ t2gρ

where gρ is a 1-parameter family of metrics on M . Straightforward compu-
tations give the equations

R̃ijkl = t2[R
gρ
ijkl +

1

2
(gilg

′
jk + gjkg

′
il − gikg

′
jl − gjlg

′
ik) +

ρ

2
(g′ikg

′
il − g′ilg

′
jk)]

and

R̃ρikρ =
1

2
t2[g′′ik −

1

2
gjlg′ijg

′
kl]

where gij = (gρ)ij , g
′
ij = ∂ρ(gρ)ij and g′′ij = ∂ρ∂ρ(gρ)ij for simplicity. There-

fore, we may derive as in the proof of Theorem 7.4 in [10] that

g′ik
∣

∣

ρ=0
= 2P g0

ik

and

g′′ik
∣

∣

ρ=0
= 2gjl0 P

g0
ij P

g0
kl

and g′′′ij = 0.
To illustrate the above notions and definitions, we consider the hyperboloid

model of hyperbolic space (Hn+1, g
H
). Here

H
n+1 = {(x, t) ∈ R

n+1,1 | |x|2 − t2 = −1, t > 0}

is realized as a hypersurface in Minkowski spacetime R
n+1,1 equipped with

the Lorentz metric

g
L
= −dt2 + |dx|2.

The hyperbolic metric is then given by

g
H
=

1

1 + |x|2
(d|x|)2 + |x|2g0,
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where g0 is the standard round metric on Sn. Letting dg
H
denote the hyper-

bolic geodesic distance from the vertex en+2 ∈ Hn+1 ⊂ Rn+1,1, the function

r := 2e−dg
H =

2

|x|+
√

1 + |x|2

determines the geodesic defining function associated with the standard round
metric as a representative of the conformal infinity (Sn, [g0]) of hyperbolic
space (Hn+1, g

H
). We then have the metric expansion

g
H
= r−2

(

dr2 +

(

1−
r2

4

)2

g0

)

.

Notice that Pg0 = 1

2
g0 for the standard round sphere so that the expansion

above is of the form (12).

3. Horospherical Metrics

In this section we introduce the horospherical metric on the space of all
horospheres as a parametrization of a neighborhood of the infinity of hyper-
bolic space and we present the induced horospherical metrics on horospherial
ovaloids in H

n+1. Readers are referred to the paper [7] for more details. Our
goal is to relate horospherical metrics to representatives of the conformal
infinity and to put the two constructions in [7] and [9] [10] in the same light.
Consider the hyperboloid model of hyperbolic space

H
n+1 = {(x, t) ∈ R

n+1,1 | |x|2 − t2 = −1, t > 0},

where Rn+1,1 denotes Minkowski spacetime equipped with the Lorentz metric
g
L
= −|dt|2 + |dx|2. Horospheres in Hn+1 are intersections of degenerate

affine hyperplanes of Rn+1,1 with Hn+1 and can be uniquely characterized
by their points at infinity x ∈ Sn, which are the null directions inside the
hyperplanes, and the signed hyperbolic distance α from the horosphere to the
vertex en+2 ∈ Hn+1, where α is positive if en+2 is inside a given horosphere and
negative otherwise. Accordingly, one can identify the space of horospheres
in Hn+1 with Sn × R and endow the space of horospheres with a natural
degenerate metric 〈· , ·〉∞ = e2αg0 in the conformal class of the round metric
g0 on Sn.
Now suppose

φ : Σn → H
n+1

is an immersed oriented hypersurface and let

η : Σn → S
n+1
1

denote the Lorentzian unit normal map taking values in de-Sitter spacetime

S
n+1

1 = {(x, t) ∈ R
n+1,1 | |x|2 − t2 = 1}.
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From the map

(14) ψ := φ+ η : Σn → N
n+1

+

taking values in the positive light-cone

N
n+1

+ = {(x, t) ∈ R
n+1,1 | |x|2 − t2 = 0, t > 0},

one defines the hyperbolic Gauss map as the direction of the light-cone map
(14) in S

n. One finds that the light-cone map of horospheres is constant for
the inward orientation and that parallel horospheres correspond to collinear
vectors in N

n+1
+ . Hence, one also can identify the space of horospheres in

Hn+1 with N
n+1
+ . Moreover, it is easily seen that the horospherical metric on

the space of all horospheres is exactly the same as the induced metric on the
light-cone from the Lorentz metric g

L
of Minkowski spacetime.

One therefore can realize the horospherical metric associated to a horo-
spherical ovaloid in Hn+1, that is a compact hypersurface Σn ⊆ Hn+1 for
which the Gauss map is regular, as the pull-back by the light-cone map ψ of
the induced metric on the hypersurface as viewed in the positive light-cone
N

n+1
+ . We recall from [7] that a compact immersed hypersurface is said to

be a horospherical ovaloid in Hn+1 if it can be oriented so that it is horo-
spherically convex at every point and that an oriented hypersurface in Hn+1

is horospherically convex at a point if and only if all the principal curvatures
of at the point verify simultaneously less than 1 or greater than 1.
Alternatively, one can define the horospherical metric as in [20] by

(15) h := IΣ − 2IIΣ + IIIΣ

where IΣ, IIΣ and IIIΣ are respectively the first, second and third funda-
mental forms of Σ in Hn+1. In [7] Espinar, Gálvez and Mira view the image
of the light cone map (14) as a co-dimension 2 hypersurface in Minkowoski
spacetime and derive a relation between the principal curvatures of an im-
mersed hypersurface in Hn+1 and the eigenvalues of the Schouten tensor of
its associated horospherical metric. In order to connect the work of [7] with
ours in the context of conformal geometry, we compute the horospherical
metric as defined in (15). Given a hyperbolic Poincaré manifold (Xn+1, g)
and a respresentative γ of its conformal infinity (Mn, [ĝ]) we first compute the
third fundamental form on level sets determined by the associated geodesic



11

defining function r. A straightforward computation gives

IIIr(∂i, ∂j) = Ir(∇∂iNr,∇∂jNr) = Ir(∇∂ir∂r,∇∂jr∂r)

= r−2grij − r−1∂rg
r
ij +

1

4
gpqr ∂rg

r
ip∂rg

r
jq

=

(

r−2γij − P
γ
ij +

r2

4
γklP

γ
ikP

γ
jl

)

+
(

2P γ
ij − r2γklP

γ
ikP

γ
jl

)

+
1

4
gpqr
(

−2rP γ
ip + r3γklP

γ
ikP

γ
pl

) (

−2rP γ
jq + r3γklP

γ
jkP

γ
ql

)

.

In terms of an orthonormal basis {e1, . . . , en} with respect to γ that diago-
nalizes the tensor Pγ, it follows

IIIr(ei, ej) =

(

r−2δij − λiδij +
r2

4
λ2i δij

)

+
(

2λiδij − r2λ2i δij
)

+
1

4

(

1−
r2

2
λk

)−2

δkl
(

−2rλiδik + r3λ2i δik
) (

−2rλjδjl + r3λ2jδjl
)

= r−2

(

1 +
r2

2
λi

)2

δij.

Therefore, the horospherical metric associated to a level set of a geodesic
defining function r is

h(ei, ej) = Ir(ei, ej)− 2IIr(ei, ej) + IIIr(ei, ej)

= r−2

(

1−
r2

2
λi

)2

δij + 2r−2

(

1−
r2

2
λi

)(

1 +
r2

2
λi

)

δij

+ r−2

(

1 +
r2

2
λi

)2

δij

= r−2

(

1− r2λi +
r4

4
λ2i + 2−

r4

2
λ2i + 1 + r2λi +

r4

4
λ2i

)

δij

= 4r−2δij .

Thus, given a conformal representative γ of the conformal infinity (Mn, [ĝ]) of
a hyperbolic Poincaré manifold (Xn+1, g) and its associated geodesic defining
function r, the horospherical metrics associated to the level sets of r are
given by h = 4r−2γ. On the other hand, given an outwardly convex smooth
hypersurface Σn ⊂ X , from which the exponential map is a diffeomorphism
from the normal bundle to the outside, we find from the associated geodesic
defining function r̃ = e−dΣ , that the horospherical metric on Σ = {r̃ = 1} is
given by h ∈ [ĝ]. Hence, in the context of conformal geometry one may regard
horospherical metrics associated to the hypersurfaces given in [7] simply as
conformal representatives of the conformal infinity.
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Now we would like to illustrate that the ambient metric construction in [10]
somehow gives a nice extension to the notions of the horospherical metrics in
[7]. As in [10], given a hyperbolic Poincaré manifold (Xn+1, g) with conformal
infinity (M, [ĝ]) we define the metric bundle G overM to be the space of pairs
(h, x) with x ∈M and h = s2ĝ(x) for some s ∈ R+ where G is equipped with
the projection

π : G →M defined by (h, x)
π
7→ x

and dilations

δs : G → G defined by (h, x)
δs7→ (s2h, x)

for s ∈ R+. The metric bundle G assumes the role of the light cone, that
is, the space of all horospheres, and the metric bundle is similarly equipped
with a tautological degenerate metric defined at z = (h, x) ∈ G by g

G
= π∗h,

which is homogeneous of degree 2 with respect to dilations and therefore
depends only on the conformal class [ĝ].
Fixing a representative g0 of the conformal infinity (M, [ĝ]), one obtains a

trivialization of metric bundle G ∼= R+ ×M by identifying

(t, x) ∈ R+ ×M with (t2g0(x), x) ∈ G.

Given local coordinates (x) = (x1, . . . , xn) on U ⊂ M we obtain local coor-
dinates (t, x) on π−1(U) where

gGij = t2g0ijdx
idxj

so that the representative g0 of the conformal infinity of (X, g) can be con-
sidered as the section of the bundle G ∼= R+ ×M determined by the level
submanifold {t = 1}. On the ambient space (R+ × M) × R with coor-
dinates (t, x, ρ) the ambient or cone metric g̃ = s2g − ds2 from (13) with
(X, g) = {s = 1} takes the normal form

g̃ = 2ρdt2 + 2tdtdρ+ t2gρ

where

−2ρ = r2, s = rt for ρ ≤ 0

and r is the geodesic defining function uniquely associated to g0. Therefore,
given an outwardly convex hypersurface Σn ⊂ Xn+1 and letting α = dΣ
denote the signed geodesic distance from Σ, which is positive outside Σ, one
finds that under the change of variables

t = eα

that the ambient metric restricted to (X, g) = {s = 1} takes the form

g̃
∣

∣

X
= dα2 + e2αgα.
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Hence, one may view the change of variables t = eα with respect to a given
hypersurface as straightening out the hypersurface and giving a new coordi-
nate on the metric bundle, which results in determining a new representative
of the conformal infinity.

4. Principal Curvatures

In this section we carry out a straightforward calculation to prove our
main theorem. Suppose that (Xn+1, g) is a hyperbolic Poincaré manifold and
(Mn, [ĝ]) is its conformal infinity. Let γ be a representative of the conformal
infinity and let r be the geodesic defining function associated to γ so that g
has the normal form

g = r−2(dr2 + gr)

near M with

gr = γ − r2Pγ +
r4

4
Q(Pγ)

where

Q(Pγ)ij = γkl(Pγ)ik(Pγ)jl.

Then the level sets of r give a foliation near M with induced metric

Ir = r−2gr = r−2γ − Pγ +
r2

4
Q(Pγ)

and outward pointing normal Nr = −r∂r where ∂r := ∇ḡr. Hence, the level
sets of r have second fundamental form, according to our definition (3),

IIr =
1

2
r∂r
(

r−2gr
)

= −r−2gr +
1

2
r−1∂rgr

= −r−2γ + Pγ −
r2

4
Q(Pγ)− Pγ +

r2

2
Q(Pγ)

= −r−2γ +
r2

4
Q(Pγ).

Now let {e1, . . . , en} denote an orthonormal basis with respect to γ that
diagonalizes the tensor Pγ . Then

γ(ei, ej) = δij and Pγ(ei, ej) = λiδij
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where λi denotes the i
th eigenvalue of the tensor Pγ . Moreover,

Ir(ei, ej) = r−2γ(ei, ej)− Pγ(ei, ej) +
r2

4
γ−1(ek, el)Pγ(ei, ek)Pγ(ej , el)

= r−2δij − λiδij +
r2

4
δklλiδikλjδjl

= r−2

(

1− r2λi +
r4

4
λ2i

)

δij

= r−2

(

1−
r2

2
λi

)2

δij

and

IIr(ei, ej) = −r−2γ(ei, ej) +
r2

4
γ−1(ek, el)Pγ(ei, ek)Pγ(ej , el)

= −r−2δij +
r2

4
δklλiδikλjδjl

= −r−2

(

1−
r4

4
λ2i

)

δij

= −r−2

(

1−
r2

2
λi

)(

1 +
r2

2
λi

)

δij.

Therefore,
(

I−1
r IIr

)

(ei, ej) = I−1
r (ei, ek)IIr(ek, ej)

= −r2
(

1−
r2

2
λi

)−2

δikr−2

(

1−
r2

2
λk

)(

1 +
r2

2
λk

)

δkj = −
1 + r2

2
λi

1− r2

2
λi
δij .

But the Weingarten matrix I−1
r IIr on the level sets of r satisfies

(

I−1

r IIr
)

(ei, ej) = κri δij

where κri denotes the ith principal curvature of a level set of r with respect
to the outward direction. Hence,

κri = −
1 + r2

2
λi

1− r2

2
λi

= −
2

1 − r2

2
λi

+ 1

so that

1−
r2

2
λi =

2

1− κri
,

which establishes Theorem 1.1.
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