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Abstract

Germ cell tumors (GCTs) are a heterogeneous group of tumors occurring in gonadal and 

extragonadal locations. GCTs are hypothesized to arise from primordial germ cells (PGCs), which 

fail to differentiate. One recently identified susceptibility loci for human GCT is PR (PRDI-BF1 

and RIZ) domain proteins 14 (PRDM14). PRDM14 is expressed in early primate PGCs and is 

repressed as PGCs differentiate. To examine PRDM14 in human GCTs we profiled human GCT 

cell lines and patient samples and discovered that PRDM14 is expressed in embryonal carcinoma 

cell lines, embryonal carcinomas, seminomas, intracranial germinomas and yolk sac tumors, but is 

not expressed in teratomas. To model constitutive overexpression in human PGCs, we generated 

PGC-like cells (PGCLCs) from human pluripotent stem cells (PSCs) and discovered that elevated 

expression of PRDM14 does not block early PGC formation. Instead, we show that elevated 

PRDM14 in PGCLCs causes proliferation and differentiation defects in the germline.
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1. Introduction

Germ cell tumors (GCTs) make up a heterogeneous group of tumors, encompassing five 

histologic subtypes. These are, germinomas, embryonal carcinoma, yolks sac, 

choriocarcinoma and teratomas. GCTS occur in gonadal and extragonadal locations, with 

extragonadal occurring primarily along the midline in the sacrum, mediastinum and pineal 

and/or suprasellar region of the brain. GCTs occur in a bimodal fashion with pediatric 

patients being most affected from birth to 3 years of age, and then again in adolescences into 

young adulthood. Although considered rare, GCTs account for 15% of malignancies in the 

adolescent to young adult population (15–40 years), with testicular GCTs being the most 

common malignancy of males in this age group (Calaminus and Joffe, 2016).

GCTs are hypothesized to arise from a common cell of origin, the embryonic progenitors of 

gametes called primordial germ cells (PGCs). Extragonadal GCTs are hypothesized to arise 

from PGCs that migrated inappropriately (Schmoll, 2002). PGCs are specified very early in 

the peri-implantation human embryo, between 2 and 3 weeks post-fertilization (De Felici, 

2013). After specification, PGCs migrate through the hindgut, into the dorsal mesentery and 

begin colonizing the genital ridges starting at week 4–5 post-fertilization (De Felici, 2013). 

Specified human PGCs that are negative for the gonadal-stage germline markers VASA and 

deleted in azoospermia like (DAZL) are referred to as “early PGCs”, whereas DAZL and 

VASA positive PGCs that have migrated into the dorsal mesentery and genital ridges are 

called “late PGCs” (Gkountela et al., 2015; Gkountela et al., 2013; Guo et al., 2015; Irie et 

al., 2015; Chen et al., 2017a). PGCs in the gonads are classically referred to as gonocytes. In 

humans, the PGC stage of germline development ends at around 8–10 weeks post-

fertilization (De Felici, 2013). After this, PGCs in the gonad start to advance in 

differentiation, and transition into oogonia or pro-spermatogonia which ultimately become 

female and male gametes, respectively.

Much of what is known about mammalian PGC development comes from work in mouse 

models. However, recent studies revealed critical species-specific differences between 

mouse and human PGC development, including differences in the transcription factor 

network (Irie et al., 2015; Tang et al., 2016), and most importantly many of the GCT types 

found in humans, such as seminomas, yolk sac tumors, and intracranial germ cell tumors, do 

not occur in mouse models of the disease (Heaney et al., 2012; Irie et al., 2014). Therefore, 

understanding the cell and molecular origins of GCTs in humans requires developing new 

human cell-based models. Given that PGCs are embryonic progenitors that differentiate into 

more mature germline cell types at the end of the first trimester, it is not possible to isolate 

these cells from children or young adults at risk for GCT formation. Instead, we hypothesize 

that the use of pluripotent stem cells (PSC), and the generation of human PGC-like cells 

(PGCLCs), will allow for further investigation into the mechanisms of GCT formation in 

humans.

In a recent genome-wide association study of testicular and intracranial GCTs, the 

transcription factor PRDM14 was identified as being a susceptibility locus for this disease 

(Ruark et al., 2013; Terashima et al., 2014). In mice, Prdm14 is critical for PGC formation, 

being highly expressed from the time of specification until the end of the PGC period, which 
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is embryonic (E) day E13.5 in the mouse (Nakaki and Saitou, 2014; Yamaji et al., 2008; 

Kurimoto et al., 2008). A homozygous null mutation in Prdm14 in mice causes loss of PGCs 

by E12.5 due to a failure of Prdm14 mutant PGCs to undergo germline reprogramming 

(Yamaji et al., 2008). In humans, the function of PRDM14 in PGCs is unclear. RNA-

Sequencing and immunofluorescence studies have found that human PGCs express low 

levels of PRDM14 (Gkountela et al., 2015; Guo et al., 2015; Irie et al., 2015; Tang et al., 

2015), and a knockdown of PRDM14 has no effect on human PGCLC differentiation 

(Sugawa et al., 2015). Combined, these results suggest that the role of PRDM14 in human 

PGCs may be different from mice, with one hypothesis being the repression of PRDM14 is 

required for PGC differentiation.

In the current study, we used human GCT tissue samples, and the differentiation of PGCLCs 

from human PSC to address the hypothesis that PRDM14 is expressed in human GCTs, and 

that over expression of PRDM14 alters PGC differentiation.

2. Materials and methods

2.1. Cell lines and cell culture

Primed hESC lines were cultured on mitomycin C-inactivated mouse embryonic fibroblasts 

(MEFs) in hESC media, per Pastor et al. (2016) with the addition of 50 ng/mL primocin 

(InvivoGen, ant-pm-2). All hESC lines were split every 7 days with Collagenase type IV 

(GIBCO, 17104-019). All hESC lines used in this study are registered with the National 

Institute of Health Human Embryonic Stem Cell Registry and are available for research use 

with NIH funds. Specifically, the following hESC lines were used in this study: UCLA2 

(46XY), UCLA6 (46XY). The derivation and basic characterization of UCLA2 and 6 were 

previously reported (Diaz Perez et al., 2012). Experiments were performed between passage 

15–25, two passages were performed between thaw and use in experiments. Human 

embryonal carcinoma cell (ECC) lines, GCT27 and NTERA2 were cultured in media 

containing 10% fetal bovine serum (FBS) (EDM Millipore, TMS-013-B), 1× Penicillin-

Streptomycin-Glutamine (PSG) (Gibco, 10378-016), 1× Non-essential amino acids (NEAA) 

(Gibco, 11140-050), 50 ng/mL primocin (IvivoGen, ant-pm-2) in DMEM High Glucose 

(Gibco, 11960-069). GCT27 cell line was donated from Dr. Martin Pera (derivation 

described in (Pera et al., 1987)), NTERA2 cl.D1 (NT2) line was obtained from America 

Type Culture Collection (ATCC) (ATCC CRL-1973). All ECC lines were grown to 80–90% 

confluence prior to split with 0.05% Trypsin-EDTA (Gibson, 25300-054). Experiments were 

performed between passages 20–30, one passage was used between thaw and use in 

experiments. Human embryonic kidney (HEK) 293T cells were cultured in 10% FBS 

(ThermoFisher, SH3007003), 1× PSG (Gibco, 10378-016), 1× NEAA (Gibco, 11140-050), 

55 μM Sodium Pyruvate (Gibco, 21985-023), and 50 ng/mL primocin (InvivoGen, ant-

pm-2) in KnockOut DMEM (Gibco, 10829-018). Cells were cultured to 80–90% confluency 

prior to split with 0.05% Trypsin-EDTA. Experiments were performed between passage 8–

15, one passage was used between thaw and use in experiments. All cell lines used in these 

experiments were Mycoplasma negative. Mycoplasma testing was performed every 6–9 

weeks, using MycoAlert Detection Kit (Lonza, LT07-418).
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2.2. Induction of PGCLCs though iMeLCs from primed hESCs

PGCLCs were induced from primed hESCs as described in Sasaki et al. (2015), with some 

modifications (Chen et al., 2017b). Day 7 hESCs were dissociated into single cells with 

0.05% Trypsin-EDTA and plated onto Human Plasma Fibronectin (Invitrogen, 33016-015)-

coated 12-well-plate at the density of 200,000 cells/well in 2 mL/well of iMeLC media, 

which is composed of 15% KSR, 1× NEAA, 0.1 mM 2-Mercaptoethanol, 1× PSG (Gibco, 

10378-016), 1 mM sodium pyruvate (Gibco, 11360-070), 50 ng/mL Activin A (Peprotech, 

AF-120-14E), 3 μM CHIR99021 (Stemgent, 04-0004), 10 μM of ROCKi (Y27632, 

Stemgent, 04-0012-10), and 50 ng/mL primocin in Glasgow’s MEM (GMEM) (Gibco, 

11710-035). iMeLCs were dissociated into single cells with 0.05% Trypsin-EDTA after 24 h 

of incubation and plated into ultra-low cell attachment U-bottom 96-well plates (Corning, 

7007) at the density of 3000 cells/well in 200 μL/well of PGCLC media, which is composed 

of 15% KSR, 1× NEAA, 0.1 mM 2-Mercaptoethanol, 1× PSG (Gibco, 10378-016), 1 mM 

sodium pyruvate (Gibco, 11360-070), 10 ng/mL human LIF (Millipore, LIF1005), 200 

ng/mL human BMP4 (R&D systems, 314-BP), 50 ng/mL human EGF (R&D systems, 236-

EG) 10 μM of ROCKi (Y27632, Stemgent, 04-0012-10), and 50 ng/mL primocin in 

Glasgow’s MEM (GMEM) (Gibco, 11710-035).

2.3. Fluorescence activated cell sorting

Day 4 aggregates were dissociated with 0.05% Trypsin-EDTA for 10 min at 37 °C. The 

dissociated cells were stained with conjugated antibodies, washed with FACS buffer (1% 

BSA in PBS) and resuspended in FACS buffer accompanying with 7-AAD (BD Pharmingen, 

559925). The conjugated antibodies used in this study are: INTEGRINa6 conjugated with 

BV421 (BioLegend, 313624), EPCAM conjugated with 488 (BioLegend, 324210). PGCLCs 

were either sorted 1000 cells in RLT buffer (QIAGEN) for RNA extraction or media for 

culture.

2.4. PGCLC culture on transwell membrane

Sorted day 4 PGCLCs were cultured in primed hESC media (Pastor et al., 2016), naïve 

hESC media (Pastor et al., 2016; Theunissen et al., 2014) or 7-factor media. 7-factor media 

was based on the formulation of Farini et al. (2005), without the addition of retinoic acid. 

Therefore, 7-factor medium contains the following: 15% Hyclone FBS (ThermoFisher, 

SH3007003), DMEM high glucose (Gibco, 11960-069), 1× NEAA (Gibco, 11140-050), 0.1 

mM 2-mercaptoethanol (Gibco, 21985-023), 0.25 mM sodium pyruvate (Gibco, 11360070), 

1× PSG (Gibco, 10378-016), 50 ng/mL SCF (PeproTech, 250-03), 10 ng/mL bFGF (R&D 

System, 233-FB), 10 ng/mL SDF1 (R&D Systems, 350-NS), 25 ng/mL human BMP4 (R&D 

Systems, 314-BP), 500 U/mL LIF (Millipore, LIF1005), 5 μM forskolin (Sigma, D6886), 

and 1 mg/mL N-acetyl-L-cysteine (Sigma, A9165). 1000 sorted PGCLCs were plated 

directly on 0.4 μM PET membranes (BD Falcon) in 24-well plates and cultured at 37 °C 

with 5% CO2 with daily medium changes. For some downstream experiments, cultured 

PGCLCs were detached from the membrane with 0.05% trypsin for 5 min at 37 °C. 

Following trypsin cell numbers were counted with hemocytometer and trypan blue (Gibco, 

15250061) for viability or placed in RLT buffer for RNA extraction (see below). For each 
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experiment, three independent experiments were performed for each cell line UCLA2 and 

UCLA6.

2.5. Real time quantitative PCR

PGCLCs sorted or harvested from membranes were placed in 350 μL of RLT buffer 

(QIAGEN) and RNA was extracted using RNeasy micro kit (QIAGEN, 74004). cDNA was 

synthesized using SuperScript® II Reverse Transcriptase (Invitrogen, 18064-014). Real time 

quantitative PCR was performed using TaqMan® Universal PCR Master Mix (Applied 

Biosystems, 4304437) and the expression level of genes-of-interest were normalized to the 

expression of housekeeping gene GAPDH. The TaqMan probes used in this study include: 

GAPDH (Applied Biosystems, Hs99999905_m1), NANOS3 (Applied Biosystems, 

Hs00928455_s1), PRDM1 (Applied Biosystems, hs01068508_m1), TFAP2C (Applied 

Biosystems, Hs00231476_m1), POU5F1 (Applied Biosystems, Hs03005111_g1), SOX2 

(Applied Biosystems, Hs01053049_s1), PRDM14 (Applied Biosystems, Hs01119056_m1).

2.6. Immunofluorescence, immunohistochemistry and microscopy

Immunostaining paraffin sections of aggregates and tumor sections were described 

previously (Gkountela et al., 2013). For cells cultured on chamber slides, cells were fixed in 

4% paraformaldehyde in PBS for 10 min and washed with PBS containing 0.1% Tween 20 

and permeabilized with PBS containing Triton X for 10 min. Slides were blocked with 10% 

donkey serum for 60 min before antibody incubation. The primary antibodies used for 

immunofluorescence in this study include: rabbit-anti-PRDM14 (Abcam, ab187881, 1:100), 

goat-anti-OCT4 (Santa Cruz Biotechnology, sc-8628, 1:100), goat-anti-VASA (R&D 

Systems, AF2030, 1:20), rabbit-anti cKIT (DAKO, A4502, 1:100), mouse-anti-PLAP 

(DAKO, IR779), mouse-anti-5mC (Aviva Bioscience, AMM99021), rabbit-anti-H3K27me3 

(Millipore, 07-449), rabbit-anti-PRDM1 (Cell Signaling, 9115, 1:100), rabbit-anti-TFAP2C 

(Santa Cruz Biotechnology, sc-8977). The secondary antibodies used in this study are 

donkey anti-rabbit-488 (Jackson ImmunoResearch Laboratories, 711-545-152), donkey anti-

goat-594 (Jackson ImmunoResearch Laboratories, 705-586-147), and donkey-anti-

mouse-488 (Jackson ImmunoResearch Laboratories, 715-545-150). DAPI is counterstained 

to indicate nuclei. All slides were imaged with an LSM 780 confocal microscope (Zeiss) 

using ZEN 2011 software. Immunohistochemistry paraffin sections of tumor samples were 

deparafinized and re-hydrated followed by antigen retrieval in 10 mM Sodium Citrate, 

0.05% Tween 20 at 95 °C for 40 min. Sections were washed in 20 mM Tris-HCl pH 7.4, 

0.15 mM NaCl and 0.05% Tween 20, permeablized in 0.1% Triton X-100 in PBS. 

Quenching endogenous peroxidase activity was performed with application of Peroxidase 

Block for 5 min, provided in Dako EnVIsion + System-HRP-DAB, for Rabbit or Mouse 

primaries (Agilent Technologies, K4010 and K4006), and anti-Goat HRP-DAB (R&D 

systems HRP, CTS008). Slides were then blocked in 5% normal donkey serum, 0.05% 

Tween in PBS. Goat primaries were then incubated for 15 min with Avidin blocking reagent 

followed by Biotin blocking agent for 15 min (R&D system HRP, CTS008). Primary 

antibodies against rabbit-anit-PRDM14 (Abcam ab187881, 1:100), rabbit-anti-SOX2 

(Abcam 97959, 1:1000), rabbit-anti-OCT4 (cell signaling 2840S, 1:100), mouse-anti-PLAP 

(DAKO IR779, 1:100), and goat-anti-SOX17 (Neuromics GT15094, 1:100) were incubated 

overnight. Slides were incubated with secondary-peroxidase labelled polymer-HRP (Dako 
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EnVision + System-HRP or R&D systems HRP) per protocol recommendations. Slides were 

then washed for 5 min in PBS, containing 0.1% Tween 20. Substrate –chromogen (Dako 

EnVision + -HRP) was added for 10 min at room temperature. Slides were washed in 

distilled water and counterstained with hematoxylin, and mounted with VectaMount (Vector 

laboratories H-5000). Patient paraffin sections were banked specimens obtained from UCLA 

pathology and laboratory, samples were de-identified, IRB exempt.

2.7. Generation of human PRDM14 overexpression plasmid

Human PRDM14 cDNA (ThermoFisher, MHS6278-202833494) was used for hPRDM14 

overexpression plasmid. The following primers were used: 

FWD-5′GAGCTAGCGAATTCGAATTTATGGCTC TACCCCGGCCAAG-3′, REV-5′-
AGCGGCCGCGGATCCGATTTCGTAGTCTTCATGAAACTTCA-3′, to modify the 

hPRDM14 cDNA to be a compatible insert with 20 bp overhang on each end, for insertion 

into the bidirectional promoter lentivector pCDH-EF1-MCS-T2A-RFP(PGK-Puro) (System 

Biosciences, CD822A-1). 2× Phusion® High-Fidelity PCR master mix (New England 

BioLabs, M0531) was used per the product protocol, to generate the plasmid insert. The 

plasmid was ligated with restriction enzyme SwaI (New England BioLab, R0604), incubated 

at 25 °C for 60 min, followed by addition of Calf Intestine Alkaline Phosphatase (CIP) (New 

England BioLabs, M0290), then continued incubation at 37 °C for 15 min, followed by 

65 °C for 15 min. The ligation product was then run on 1% agarose gel, and the resulting 

bands were extracted per QIAquik® gel extraction kit protocol (Qiagen, 28704). Gibson 

Assembly was utilized to generate the desired plasmid, 300 ng of insert and 100 ng of 

plasmid was added to Gibson Assembly master mix (New England BioLabs, E2611), and 

incubated at 50 °C for 60 min. The resulting product was transformed into One Shot® Stbl3 

Chemically Competent E. coli (ThermoFisher Scientific, C737303), and incubated overnight 

on ampicillin LB agar plate. 5 colonies were selected, plasmid DNA extracted via QIAprep 

spin miniprep kit (Qiagen, 27104), and was sent for sequencing (Laragen, Culver City, CA) 

to verify insertion of hPRDM14. The resulting product was then transfected into HEK 293T 

cells (50,000 cells in a 6-well plate), using Lipofectamine™ 3000 reagent protocol 

(Invitrogen, L3000008) to verify functional protein.

2.8. Lentiviral production and transduction of iMeLC

HEK 293T cells were seeded in T175 flask (Corning, 10-126-13) and grown until 85–90% 

confluency. In tube A Opti-MEM I (Gibco, 31985070) and Lipofectamin 3000 (Invitrogen) 

were mixed (volumes per product recommendation), in tube B Opti-MEM I, 13.8 μg of 

expression plasmid, 5 μg pCMV-VSV-G (addgene, 8454), 12.5 μg of pCMV-

dR8.91(addgene, 2221), and P3000 reagent. Contents of tube A was mixed with tube B to 

make DNA-lipid complex, and incubated for 20 min at room temperature. HEK 293T media 

was replaced with packaging medium consisting of Opti-MEM I, reduced serum, 

GlutaMAX (Gibco, 51985034), 5% FBS, 1 mM sodium pyruvate and DNA-lipid complex 

was added for 6 h. Fresh packing media was collected every 24 h for 72 h. The packaging 

media containing the virus was then filtered through 0.45 μm pore, PVDV membrane (EMD 

Millipore, SCHVU01RE). The filtrate was then centrifuged at 22,000 rpm for 90 min, and 

the pellet was resuspended in HEK 293T media. Lentivirus titration was then performed by 

plating 100,000 HEK 293T cells into 6 wells of a 24-well plate. The following day serial 
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dilutions on virus is plated as follows, 4 μL undiluted virus in 400 μL media, 10−1 by adding 

40 μL of undiluted in 360 μL media, this is repeated for 10−2, 10−3, 10−4, and no virus. Cells 

are incubated for 48 h, then detached with 0.05% trypsin for 5 min at 37 °C, neutralized, and 

spun down at 1600 rpm for 5 min. The pellet is then resuspended in 400 μL of FACs buffer 

and 7AAD is added for viability. Flow cytometry was then performed to evaluate percent of 

RFP positive cells. iMeLCs were transduced with the virus following 24 h of culture, as 

described above. iMeLCs were detached with 0.05% Trypsin and neutralized with MEF 

media. Cells were resuspended in 100 μL of PGCLC media. Virus was added, 30 μL of 

empty plasmid virus, 100 μL of hPRDM14 plasmid virus. Total volume was brought up to 

200 μL with PGCLC media. Cells were incubated on the nutator with virus for 2 h. Cells 

were spun down at 1200 rpm following incubation, then resuspended in 500 μL of PGCLC 

media, and plated in 96 well, low adherence plate at 3000 cells per well.

2.9. Western blot analysis

Protein fractions (nuclear and cytoplasmic) were isolated using the QProteome Cell 

Compartment Kit (Qiagen, 37502) according to manufacturer’s instructions. Protein was 

quantified using the Pierce™ BCA Protein Assay Kit (ThermoFisher, 23227), 5 μg of protein 

was analyzed by electrophoreses on 12% NuPAGE Novex Bis-Tris gels (Invitrogen) and 

transferred to Hybond ECL Nitrocellulose Membrane (GE Healthcare) according to standard 

procedures. Membranes were divided to probe same blot with different species antibody. 

ECC western blot was performed as two separate blots from the same protein extracts. One 

blot was used for PRDM14 and beta-actin. Second blot was made for OCT3/4, given the 

proximity in size for OCT4 and beta-actin. One blot was used for PRDM14 and H3, in HEK 

293T cells. Primary antibodies (1:1000) were rabbit-anti-PRDM14 (Abcam, ab187881), 

goat-anti-OCT3/4 (N-19) (Santa Cruz, sc-8628), mouse-anti-ACTIN (Santa Cruz, sc47778) 

and rabbit anti-H3 (Abcam ab1791). Secondary HRP-conjugate antibodies were from 

Abcam anti-rabbit and anti-goat, GE LifeScience anti-mouse, all used at 1: 5000. Blots were 

developed using Pierce ECL Western Blotting Substrate (ThermoFisher, 32106).

2.10. Edu analysis

PGCLCs cultured on membrane were evaluated with Edu Click-IT® EdU Alexa 488 

imaging kit (ThermoFisher, C10337). PGCLCs we cultured on membrane in 7-factor as 

described above. EdU was added at 10 μM for 3 h. Cells were then fixed in 4% PFA, and 

processed per manufactures protocol. Transwell membrane was extracted with Nuclear 

counter staining performed with ProLong® Gold Antifade Mountant with DAPI. Cells were 

imaged with an LSM 780 confocal microscope (Zeiss) using ZEN 2011 software. EdU 

quantification was performed using Imaris microscope imaging analysis software (Bitplane).

2.11. Statistical analysis

qPCR data was analyzed using Prism 7.0 (GraphPad) software. 2way ANOVA tests with 

multiple comparisons were used for aggregates versus membrane comparisons of un-

transduced PGCLCs, significance was denoted with p < 0.05. For PGCLCs transduced with 

hPDM14, ordinary one-way ANOVA, with multiple comparisons was utilized to evaluate 

hPRDM14 fold change between groups. Significance was denoted with p < 0.05. The 

remainder of genes for transduced PGCLCs were analyzed using 2way ANOVA test with 
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multiple comparison, with significance denoted with p < 0.05. EdU analysis was performed 

with Prism 7.0, with unpaired t-test, significance denoted with a p < 0.05.

3. Results

3.1. Intracranial germinomas resemble late stage primordial germ cells

Extragonadal GCTs occur along the midline in the sacrum, mediastinum, and intracranial 

midline structures (pineal gland and suprasellar region). These, extragonadal GCTs 

histologically resemble gonadal GCTs, and are hypothesized to arise from PGCs that missed 

the genital ridge during migration (Schmoll, 2002). Using human fetal tissue consented to 

research and analysis of molecular markers at a single cell level, the molecular program for 

human PGC development is more precisely staged as “early PGCs”, “late PGCs” and 

“advanced PGCs” (Gkountela et al., 2015; Gkountela et al., 2013; Guo et al., 2015; Irie et 

al., 2015; Chen et al., 2017a). With late and advanced PGCs in the gonad referred to as 

gonocytes. We hypothesize that these markers provide an opportunity to determine whether 

extragonadal GCTs correspond to PGCs in one of the stages. Most notably, early PGCs are 

VASA−/5mC−/H3K27me3+, and late PGCs are VASA+/5mC−/H3K27me3+, and advanced 

PGCs are VASA+/5mC−/H3K27m3− (Fig. 1A) (Gkountela et al., 2013).

We began by examining intracranial germinomas for VASA, cKIT, 5mC and H3K27me3 

together with two well-known GCT markers, OCT4 and PLAP. We discovered that OCT4 

and PLAP positive germinoma cells, are positive for cKIT and VASA respectively (Fig. 1B). 

Indicating that the intracranial germinomas most likely originated from late PGCs during the 

4–10th week of life. To confirm this, we stained for 5mC and H3K27me3 in the OCT4 

positive germinomas (Fig. 1C). Our results show that intracranial germinomas are depleted 

of 5 mC and are enriched in H3K27me3 which rules out progression to advanced PGCs. 

Taken together, this data suggests that intracranial germ cell tumors most likely originate 

from late PGCs, equivalent to 4–10 weeks of development post-fertilization, that were 

unable to complete further differentiation, yet did not die in their extragonadal locations. 

Critically, this is the time when PRDM14 is normally repressed in primate PGCs (Sasaki et 

al., 2016).

3.2. PRDM14 is a novel marker of malignant germ cell tumors

Recently, two genome-wide association studies identified PRDM14 as a susceptibility locus 

for GCTs. However, it is not known whether PRDM14 is expressed in GCT cells. To address 

this, we first performed, a western blot analysis to examine PRDM14 expression in two 

human GCT embryonal carcinoma cell (ECC) lines, Ntera2 (NT2) and GCT27. NT2 cells 

differentiate into teratomas when transplanted into immunocompromised mice (Andrews et 

al., 1984), and GCT27 generates undifferentiated embryonal carcinomas and yolk sac 

tumors following transplant (Pera et al., 1987). In both ECC lines, we discovered that 

PRDM14 protein is enriched in the nucleus (Fig. 2A).

To examine expression of PRDM14 in testicular GCT tissue samples from patients, we 

performed immunofluorescence and immunocytochemistry on testicular germ cell neoplasm 

in situ (GCNIS), seminomas and testicular mixed GCTs. We chose these GCT types because 
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like ECCs, these tumors express the pluripotency factor OCT4, however unlike ECCs, the 

seminomas and GCNIS express PGC markers including cKIT, VASA, and SOX17 (Rajpert-

De Meyts et al., 2015; Leroy et al., 2002; Gillis et al., 2011). Using immunofluorescence, we 

confirmed that PRDM14 was expressed in ECC lines, demonstrating co-localization with the 

OCT4 positive cells (Fig. 2B). Likewise, PRDM14 was found to co-localize with the OCT4 

positive cells in seminoma (Fig. 2B). We next evaluated GCNIS cells associated with 

seminomas. GCNIS is characterized by expression of PGC markers such as PLAP and 

OCT4 within tubules. Here we demonstrate that PRDM14 is also expressed in GCNIS cells 

as indicated by positive staining in serial sections to tubules containing OCT4 and PLAP 

positive GCNIS cells (Fig. 2C). In contrast, mixed GCTs were not uniformly positive for 

PRDM14. Specifically, in the mixed GCTs embryonal carcinoma, seminoma, and yolk sac, 

all showed positive nuclear staining, however, the non-malignant teratoma areas were 

negative for PRDM14 (quantified in Table 1). Fig. 2D represents an embryonal carcinoma 

component of a mixed GCT, in which we identified PRDM14 positive cells corresponding to 

SOX2 positive cells, a marker of embryonal carcinoma. We did not identify SOX17 positive 

cells in this mixed GCT section, which is a marker of seminomas, therefore PRDM14 in this 

case is specifically expressed in the embryonal carcinoma cells. Taken together, PRDM14 is 

expressed in ECC lines with a pluripotent identity, as well as testicular GCT tissue samples 

that exhibit both a PGC and pluripotent identity.

To determine whether PRDM14 is expressed in intracranial germ cell tumors (demographics 

in Table 2), we performed immunohistochemistry to detect PRDM14, and discovered 

positive nuclear staining in germinoma cells, as well as cells in the cells of the intracranial 

yolk sac tumors (Fig. 2E and quantified in Table 3). In contrast, intracranial teratomas had 

undetectable levels of PRDM14 protein (Fig. 2E and quantified in Table 3). Taken together, 

we show that PRDM14 is expressed in gonadal and extragonadal GCTs with a late PGC 

identity, as well as ECCs with a pluripotent identity. Therefore, we hypothesize that failure 

to repress PRDM14 during embryo development affects PGC differentiation.

3.3. Using human pluripotent stem cells to model human PGC differentiation in vitro

Given that PRDM14 positive intracranial GCTs (germinomas) express a signature that is 

reminiscent of human PGCs between 4 and 10 weeks of development, we were interested in 

addressing the hypothesis that elevated PRDM14 expression alters PGC differentiation. 

Given that PGCs do not exist in adult tissues, and PGCs cannot be maintained in culture as 

cell lines, we chose to address this hypothesis by differentiating PGCLCs from human PSCs.

Using the directed differentiation approach published by Sasaki et al. (2015) and modified 

by (Chen et al., 2017b) (Fig. 3A), we differentiated a male human embryonic stem cell 

(hESC) line called UCLA6 into incipient mesoderm-like cells (iMeLCs), and used the 

iMeLC to generate three-dimensional aggregates (Fig. 3B). Using immunofluorescence, we 

discovered that the aggregates contained putative PGCLCs that were OCT4/PRDM1 and 

OCT4/TFAP2C double positive (Fig. 3C). Using Fluorescence activated cell sorting (FACS) 

we detected a population of Integrin alpha 6 (ITGA6) and Epithelial cell adhesion molecule 

(EPCAM) double positive PGCLCs at day 4 (Fig. 3D). Based upon the results of Sasaki et 
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al., (2015) and Chen et al., (2017b), the ITGA6/EPCAM positive cells are the putative 

OCT4, PRDM1, TFAP2C positive PGCLCs.

Given that our goal was to determine the outcome of overexpressing PRDM14 in PGCLCs, 

we next determined whether ITGA6/EPCAM positive PGCLCs could be cultured on 

transwell membranes (Fig. 3E). In pilot tests, we cultured the ITGA6/EPCAM sorted 

PGCLCs in three types of media; primed hESC media (Amit et al., 2000), naïve hESC 

media (also called 5-inhibitor, LIF, ACTIVIN, FGF2 or 5iLAF) (Pastor et al., 2016; 

Theunissen et al., 2014) and 7-Factor media (Farini et al., 2005; Oliveros-Etter et al., 2015), 

and assayed PGCLC number four days later (Fig. 3F). After four days on the transwell 

membranes, the PGCLCs remained round, and well separated from each other (Fig. 3E). We 

also discovered that the media used for transwell culture did not have an affect PGCLC 

number (Fig. 3F), therefore we chose to use 7-Factor media for all future experiments given 

that 7-Factor media has been used to support the differentiation of PGCs sorted from mouse 

embryos (Oliveros-Etter et al., 2015).

To determine whether culturing PGCLCs on the transwell membranes leads to a change in 

PGCLC identity, we performed real time Polymerase Chain Reaction (RT-PCR) for PGC 

genes (OCT4, NANOS3, TFAP2C, PRDM1), as well as the pluripotency genes SOX2 and 

PRDM14. Our results show that OCT4 and PRDM1 are expressed in PGCLCs sorted from 

the aggregate at day 4 of differentiation, and expression of these genes does not change 

following an additional four days of transwell membrane culture (8 days total). Similarly, 

SOX2 RNA is not expressed in PGCLCs isolated from the aggregates at day 4, and SOX2 

expression remains repressed after an additional 4 days of transwell culture. Interestingly, 

we discovered that the PGC genes NANOS3 and TFAP2C are further enriched with 

additional days on the transwell membrane, whereas PRDM14 expression levels are reduced 

(Fig. 3G). Taken together, this data shows that PGCLCs can be cultured in vitro on transwell 

membranes, and during this time the PGCLCs do not lose germline identity or revert to a 

pluripotent stem cell (they do not reactivate SOX2). Instead, we discovered that the PGCLCs 

significantly up-regulate the PGC genes, NANOS3 and TFAP2C, and repress PRDM14.

3.4. Constitutive overexpression of PRDM14 in PGCLCs does not affect PGCLC identity

Using the model described above, we then sought to evaluate the effect of constitutive 

overexpression of PRDM14 on PGCLC differentiation, and proliferation using two different 

male hESC lines (UCLA2 and UCLA6). To achieve this, we generated a plasmid construct 

in which human PRDM14 (hPRDM14) was transcribed under the control of the elongation 

factor 1-alpha promoter with a T2A-RFP tag (pCDH-hPRDM14-RFP). The empty pCDH 

plasmid, called pCDH-RFP was used as a negative control. We first tested the constructs in 

HEK 293T cells by transfection and discovered that only cells transfected with pCDH-RFP 

plasmids express RFP (Fig. 4A), and using Western blot analysis, we discovered that only 

the pCDH-hPRDM14-RFP transduced cells expressed PRDM14 protein (Fig. 4A).

Next, we used the plasmids to generate lentiviruses, and transduced the iMeLCs with 

pCDH-RFP (control) or pCDH-hPRDM14-RFP (PRDM14) lentivirus prior to aggregate 

formation (Fig. 4B). In our first experiment, we evaluated whether constitutive PRDM14 

expression caused a change in the percentage of ITGA6/EPCAM PGCLCs sorted from the 
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aggregates (Fig. 4C). Our results show that constitutive PRDM14 expression had no effect 

on the percentage of ITGA6/EPCAM PGCLCs sorted from the aggregates relative to 

control.

To determine whether constitutive overexpression of PRDM14 alters PGCLC identity, we 

examined PGC and pluripotency gene expression by Real-time PCR in RFP positive 

PGCLCs sorted directly from the aggregate by FACS. We also evaluated gene expression in 

the PGCLCs harvested from the transwell membrane after 4 additional days of culture. Our 

results show that PRDM14 levels are 15 to 30-fold higher in cells transduced with the 

PRDM14 expressing lentivirus compared to the control, and remain significantly elevated 

after 4 additional days of culture on the transwell membrane (Fig. 4D). Next, we evaluated 

germ cell identity using real time PCR to examine expression of TFAP2C, PRDM1, 

NANOS3 and OCT4 (Fig. 4E, F). Our results demonstrate that constitutive overexpression 

of PRDM14 does not alter PGC gene expression of TFAP2C, PRDM1, and OCT4. However, 

we did observe a significant decrease in NANOS3.

One of the hallmarks of human PGCs in the embryo, and PGCLC differentiation in vitro is 

the rapid and specific repression of SOX2 (Perrett et al., 2008). In mouse, Prdm14 promotes 

the expression of sox2 during PGC development (Yamaji et al., 2008). Therefore, it could be 

hypothesized that overexpression of PRDM14 in human PGCs results in maintenance of 

SOX2 expression. Instead, our data shows that SOX2 remains repressed in PGCLCs with 

constitutive PRDM14 (Fig. 4F). Therefore, PRDM14 does not cause reinstatement of 

pluripotency in PGCLCs.

Finally, we addressed whether constitutive overexpression of PRDM14 caused an increase in 

proliferation by monitoring uptake of 5-ethynyl-2′-deoxyuridine (EdU). PRDM14 has 

previously shown to increase proliferation in breast cancer cell lines overexpressing 

PRDM14 (Nishikawa et al., 2007). PGCLCs were cultured on membrane for 4 days, at 

which point PGCLCs were incubated with EdU for 3 h. Here we show that constitutive 

overexpression of PRDM14 in PGCLCs leads to a significant increase the percent of EdU 

positive cells (Fig. 4G), indicating that more PGCLCs are proliferating relative to control.

4. Discussion

In this study, we evaluated the expression of PRDM14 in human GCT ECC lines, as well as 

tissue samples of testicular and intracranial GCTs from patients. PRDM14 is expressed in 

early embryo and fetal development in humans while not being expressed in somatic cells 

after birth making it a desirable therapeutic target. We discovered that PRDM14 is expressed 

in OCT4 positive ECCs, testicular embryonal carcinoma, seminoma and GCNIS as well as 

intracranial germinomas and yolk sac tumors. Notably, we discovered that PRDM14 is not 

expressed in differentiated teratomas. This is in agreement with work in human pluripotent 

stem cells revealing that PRDM14 is a component of the core human pluripotency network 

together with OCT4, SOX2 and NANOG (Chia et al., 2010), and that loss of PRDM14 in 

human PSCs is associated with stem cell differentiation (Chia et al., 2010; Tsuneyoshi et al., 

2008). Conversely, overexpression of PRDM14 prevents PSC differentiation (Tsuneyoshi et 

al., 2008). Therefore, PRDM14 may function in GCT cells to block differentiation.
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In previous studies we, and others discovered that PRDM14 is repressed in late and 

advanced stage human PGCs (Gkountela et al., 2015; Irie et al., 2015), suggesting that 

PRDM14 repression may be required for PGC differentiation. To address this, in the current 

study we re-examined intracranial germinomas, which have a PGC identity, and a globally 

hypomethylated genome (Fukushima et al., 2017). Therefore, intracranial germinomas are 

consistent with the hypothesis that they originate from PGCs that survive and proliferate in 

an abnormal niche, yet fail to advance in differentiation. Our data is consistent with 

Fukushima et al. (2017), showing that intracranial germinomas are hypomethylated. 

However, we also discovered that the chromatin of intracranial germinomas is enriched in 

histone H3K27me3 indicating that intracranial germinomas most likely correspond to 

transformed PGCs that have not progressed on to the advanced stage where H3K27me3 is 

lost. Notably, PRDM14 is repressed in late PGCs in the embryo, whereas intracranial 

germinomas are positive for PRDM14.

Given that PGCs do not exist in adult tissues, and PGCs cannot be maintained in culture as 

cell lines, analysis of PGC transformation requires the differentiation of PGCLCs in vitro 

from PSCs together with the ability to maintain in culture. There are three alternate 

approaches for generating PGCLCs in vitro from PSCs. These include, spontaneous 

differentiation as embryoid bodies (Clark et al., 2004), directed differentiation from PSCs 

cultured in 4i media (Irie et al., 2015) and a two-step differentiation approach starting from 

PSCs cultured in primed media followed by differentiation through incipient mesoderm like 

cells (iMeLCs) prior to the differentiation of PGCLCs (Sugawa et al., 2015; Sasaki et al., 

2015; Chen et al., 2017b). We chose to use the two-step PGCLC method of Sasaki et al., 

(2015), given that PGCLCs can be sorted from any PSC line following differentiation and 

FACS for ITGA6/EPCAM. We did not use the spontaneous differentiation method as it 

yields too few PGCLCs for analysis. PGCLCs generated by the two-step method creates 

PGCLCs in vitro that are equivalent to early PGCs found in the human embryo. Given that 

PGCLCs cannot be maintained in the aggregates for extended period, we invented a third 

step in the differentiation protocol by culturing the PGCLCs on transwell membranes for an 

additional four days leading to increased levels of the PGC-specific genes NANOS3 and 

TFAP2C. Notably this did not result in the reprogramming of PGCLCs to embryonic germ 

cells which are equivalent to PSCs that express SOX2 (Pashai et al., 2012). We discovered 

that constitutive expression of PRDM14 in PGCLCs leads to a significant decrease in 

NANOS3 expression after culture on the transwell membrane which may suggest 

complications with PGCLC differentiation. Previous studies using short hairpin RNA 

knockdown of NANOS3 in human PSCs leads to a reduction in germ cell numbers, and a 

decrease in the expression of germline genes (cKIT, PRDM1, and VASA) and meiotic 

initiation (STRA8, SCP3) (Julaton and Reijo Pera, 2011). Therefore, we speculate that 

constitutive PRDM14 expression alters PGCLC differentiation by first altering the levels of 

NANOS3 mRNA. However, our results do not favor the hypothesis that PRDM14 causes 

reprogramming of PGCs to a pluripotent state given that SOX2 remains repressed in 

PGCLCs with elevated PRDM14, and the PGCLCs do not form colonies on the transwell 

membranes.

Although PRDM14 is not expressed in adult cells in the human body, PRDM14 is also up-

regulated in several somatic cancers, including lung, breast, and lymphoblastic leukemia 
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(Nishikawa et al., 2007; Dettman et al., 2011; Zhang et al., 2013). In breast cancer, PRDM14 

enhances cell growth, and reduce sensitivity to chemotherapy (Nishikawa et al., 2007). 

Similar to studies with breast cancer cell lines, we showed that constitutive overexpression 

of PRDM14, leads to a significant increase in the proportion of Edu positive PGCLCs 

suggestive of an increased proliferation rate.

5. Conclusions

In this study, we demonstrated that intracranial germinomas have a signature resembling late 

PGCs, a time point in human PGC development in which PRDM14 is normally repressed. 

By examining patient tumor samples, we found that PRDM14 is a marker of malignant 

GCTs, including those of testicular and intracranial origin. Utilizing a PSC model of 

generating human PGCLCs, we showed that constitutive over-expression of PRDM14 in 

PGCs leads to delayed differentiation and increased proliferation, as evident by the inability 

to upregulated NANOS3 and increased EdU positivity. Taken together, our work leads to a 

new model for GCT formation, particularly intracranial germinomas, in which constitutive 

overexpression of PRDM14 leads to increased PGC proliferation and alterations in PGC 

differentiation.
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Fig. 1. Intracranial germinomas resemble late PGCs
A. Timeline of germ cell development with expression patterns of germ line markers and 

epigenetic markers. *Early PGC expression pattern extrapolated from non-human primate 

data (Sasaki et al., 2016).

B. Immunofluorescence staining of intracranial germinomas for germ line markers, top 

panel: OCT4/cKIT/DAPI(merge), bottom panel: VASA/PLAP/DAPI(merge). Scale bars, 8 

μm.

C. Immunofluorescence staining of intracranial germinomas for epigenetic markers, top 

panel: OCT4/5mC/DAPI (merge), bottom panel: OCT4/H3K27me3/DAPI(merge). Scale 

bars, 8 μm.
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Fig. 2. PRDM14 expression in testicular and intracranial germ cell tumors
A. Western blot of nuclear (5 μg) and cytoplasmic (5 μg) extracts from embryonal carcinoma 

cell (ECC) lines, Ntera2 (NT) and GCT27. Blots probed for PRDM14 (64 kD), OCT4 (45 

kD), and beta-actin (42 kD).

B. Immunofluorescence of ECC line, GCT27, showing staining for PRDM14/OCT4, top 

panel. Immunofluorescence of paraffin section of a seminoma tumor sample, showing 

staining for PRDM14/OCT4, bottom panel. Scale bars, 15 μm.

C. Immunohistochemistry of paraffin section of tumor sample containing corresponding 

GCNIS portion of the tumor, staining for PRDM14, and GCNIS markers OCT4 and PLAP. 

Scale bars, 15 μm.

D. Immunohistochemistry of paraffin section of mixed germ cell tumor, corresponding to 

embryonal carcinoma, staining for PRDM14, SOX2 and SOX17, top panel. Magnified 

images of cells demarked in yellow box in top panel. Scale bars, 15 μm (top panel). 5 μm 

(bottom panel).

E. Immunohistochemistry staining of intracranial germinoma, yolk sac and teratoma, for 

PRDM14. Scale bars, 20 μm.
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Fig. 3. PGCLCs can be cultured on transwell membranes for at least four days
A. Two-step differentiation model to generation PGCLCs from hESCs.

B. Bright filed images of hESCs, iMeLCs, and an aggregate generated through the two-step 

differentiation model.

C. IF of UCLA6 day 4 aggregates containing OCT4/PRDM1 (top) and OCT4/TFAP2C 

(bottom) positive PGCLCs. Scale bars, 15 μm.

D. FACS analysis of day 4 aggregates, red circle represents ITGA6/EPCAM double positive 

PGCLCs.

E. Bright field image of PGCLCs sorted according to D, followed by four additional days of 

culture on transwell membranes. Triangles denote individual PGCLCs. Scale bar, 20 μm.

F. Cell counts of PGCLCs isolated from UCLA6 day 4 aggregates by FACS according to D, 

followed by 4 days of additional culture on transwell membrane in medias indicated. Primed 

hESC media, naïve hESC, and 7-factor media, respectively. N.S. = not significant. Three 

independent experiments were performed.

G. Gene expression of PGCLCs sorted from UCLA6 aggregates at day 4 (blue) according to 

D, and after 4 days of additional culture on transwell membrane in 7-factor media (red). 

Three independent experiments were performed. **p < 0.0001, *p < 0.001.
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Fig. 4. PGCLCs constitutively overexpressing PRDM14 fail to increase NANOS3 and are more 
proliferative
A. HEK 293T cells transfected with plasmid constructed to constitutively overexpress 

PRDM14. Images portraying no RFP signal in Lipofectamine control, positive RFP signal in 

pCDH-RFP (empty plasmid), pCDH-hPRDM14-RFP. Protein expression of PRDM14 in 

pCHD-hPRDM14-RFP confirmed with western blot. PRDM14 ~ 64 kD, H3 (loading 

control) ~ 17 kD. Two independent experiments were performed.

B. Experiment design for constitutive overexpression of PRDM14, using the two-step 

method of differentiation, day 4 PGCLCs were sorted by FACS by ITGA6/EPCAM and 

cultured for an additional 4 days on transwell membranes prior to analysis.

C. Percent of PGCLCs sorted from control and PRDM14 overexpressing aggregates, for 

both UCLA2 and UCLA6 hESC cell lines. Three independent experiments were performed 

for each cell line UCLA2 and UCLA6.

D. Gene expression level of PRDM14 in control (blue) and PRDM14 constitutive 

overexpression (red). Aggregate = PGCLCs isolated by FACS at day 4 for ITGA6/EPCAM. 

Membrane = ITGA6/EPCAM sorted PGCLCs cultured for four additional days on transwell 

membranes. ** = significance between control and PRDM14, p < 0.0001. Three 

independent experiments were performed for each cell line UCLA2 and UCLA6.
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E. Gene expression levels of germ line genes, TFAP2C, PRDM1, NANOS3. Control (blue). 

PRDM14 overexpression (red). * = significance between aggregate and membrane, p < 

0.0001. ** = significance between control and PRDM14 on membrane, p < 0.001. 

Aggregate = PGCLCs isolated by FACS at day 4 for ITGA6/EPCAM. Membrane = ITGA6/

EPCAM sorted PGCLCs cultured for four more days on a transwell membrane. Three 

independent experiments were performed for each cell line UCLA2 and UCLA6.

F. Gene expression levels of pluripotency genes, OCT4 and SOX2 in control (blue) and 

PRDM14 overexpression (red). N.D. = none detected. Aggregate = PGCLCs isolated by 

FACS at day 4 for ITGA6/EPCAM. Membrane = ITGA6/EPCAM sorted PGCLCs cultured 

for four additional days on transwell membranes. Three independent experiments were 

performed for each cell line UCLA 2 and UCLA 6.

G. Percent of Edu positive PGCLCs on transwell membrane. * = significance between 

control and PRDM14, p < 0.05. PGCLCs for this experiment were differentiated for 4 days 

in aggregates before FACS using ITGA6/EPCAM to isolate PGCLCs. The sorted PGCLCs 

were cultured for an additional four days on transwell membranes. Three independent 

experiments were performed for each cell line UCLA2 and UCLA6.
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Table 1

Testicular germ cell tumors histologic types evaluated with immunohistochemistry staining result for 

PRDM14. N = 12 seminomas, with N = 7 having GCNIS components. N = 5 mixed GCTs.

Histology PRDM14 present PRDM14 absent

Testicular ITGCN 7/7 0/7

Testicular seminoma 12/12 0/12

Testicular mixed GCTa

Embryonal carcinoma 4/4 0/4

Yolk sac 2/2 0/2

Teratoma 0/3 3/3

Seminoma 1/1 0/1

a
Denotes the various components present in tumor samples.
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Table 2

Demographics by tissue histology types of intracranial germ cell tumors evaluated.

Intracranial germ cell tumor demographics

Tumor type (N) Mean age (age range) Sex distribution

Germinoma (12) 23 yo (9 yo–40 yo) Male = 12, Female = 0

Yolk sac (2) 23 yo (20 yo–26 yo) Male = 2, Female = 0

Teratoma (3) 22 yo (3 mo–25 yo) Male = 2, Female = 1
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Table 3

Intracranial germ cell tumors histologic types evaluated with immunohistochemistry staining results for 

PRDM14. N = 12 germinomas, 2 yolk sacs and 3 teratomas.

Histology PRDM14 present PRDM14 absent

Intracranial germinoma 12/12 0/12

Intracranial yolk sac 2/2 0/2

Intracranial teratoma 0/3 3/3
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