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Superalkali Coated Rydberg
Molecules
Nikolay V. Tkachenko1, Pavel Rublev1, Alexander I. Boldyrev1* and Jean-Marie Lehn2

1Department of Chemistry and Biochemistry, Utah State University, Logan, UT, United States, 2Laboratoire de Chimie
Supramoléculaire, Institut de Science et d’Ingénierie, Supramoléculaires Université de Strasbourg, Strasbourg, France

A series of complexes of Na, K, NH4, and H3O with [bpy.bpy.bpy]cryptand, [2.2.2]
cryptand, and spherical cryptand were investigated via DFT and ab initio methods. We
found that by coating Rydberg molecules with the “organic skin” one could further
decrease their ionization potential energy, reaching the values of ~1.5 eV and a new
low record of 1.3 eV. The neutral cryptand complexes in this sense possess a weakly
bounded electron and may be considered as very strong reducing agents. Moreover, the
presence of an organic cage increases the thermodynamic stability of Rydberg molecules
making them stable toward the proton detachment.

Keywords: cryptands, cryptatium, superalkalis, Rydberg molecules, ionization potential (IP)

INTRODUCTION

The [2.2.2]cryptand and spherical cryptand (Scheme 1A, B) invented by Lehn (Lehn, 1977), have
been a subject of both theoretical (Elroby et al., 2006; Elroby, 2009; Puchta et al., 2019; Isaeva et al.,
2021; Ćoćić et al., 2021; Ariyarathna, 2022) and experimental (Lehn, 1977; Lehn, 1978; Lehn, 1979;
Lehn, 1980; Echegoyen et al., 1991; Arnaud-Neu et al., 2002; Cram et al., 2002; Izatt et al., 2002;
Miyamoto et al., 2002; Badjić et al., 2011; Chung et al., 2020) studies for decades. The discovery of
those fascinating compounds opened a huge field of supramolecular chemistry. Their unique guest
particle selectivity and extremely low ionization potentials of neutral alkali-metal complexes (Cram
and Lein, 1985; Huang et al., 1988; Kim et al., 1999) found an application in synthetic organic and
inorganic chemistry. In particular, a huge number of multiply-charged Zintl anions with unusual
structures have been synthesized using the popular [K⊂[2.2.2]cryptand] complex (Sun et al., 2018;
Tkachenko et al., 2020; Wang et al., 2020).

Firstly, introduced by Gutsev and Boldyrev (Gutsev and Boldyrev, 1982), the family of
superalkalis has been growing significantly. Despite the initially proposed Mk+1L family, where
M is an alkali atom and L is an electronegative atom of valence k, other superalkalis have been
proposed and synthesized. Along with other inorganic binuclear superalkali (Tong et al., 2009), the
definition of superalkalis was extended to polynuclear species such as polynuclear aromatic
superalkalis (Sun et al., 2013; Parida et al., 2018), superalkali cations (Tong et al., 2011; Tong
et al., 2012a; Tong et al., 2012b; Hou et al., 2013), organo-Zintl clusters (Giri et al., 2016; Reddy and
Giri, 2016). Another family of compounds with low ionization potential is Rydberg molecules. Vivid
examples of Rydberg molecules are NH4 andH3O neutral species, whose unpa`ired electron occupies
a diffuse orbital around the molecule. It has been shown that such Rydberg molecules are not long-
living particles. Although the Td structure of NH4 radical is a local minimum, it is only a metastable
molecule and undergoes a dissociation into NH3 and H* radical species (Herzberg, 1981; Signorell
et al., 1997). Similar behavior is found for H3O neutral species (Luo and Jungen, 1999; Melin et al.,
2005). It has been shown before that cryptand compounds can bind both NH4

+ and H3O
+ cations

with a great selectivity (Cram et al., 1985; Behr et al., 2002; Junk, 2008). Thus, it will be interesting to
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investigate the electronic properties of neutral [R⊂cryptand] (R =
NH4, H3O) complexes, since the organic coating could stabilize
the Rydberg molecules and decrease their ionization potential as
it was observed for alkali metal complexes (Cram and Lein, 1985;
Huang et al., 1988; Kim et al., 1999). In this work, we investigate
the electronic properties of coated Rydberg molecules via DFT
and ab initio methods and compare their properties with alkali-
metal cryptand complexes.

COMPUTATIONAL METHODS

All structures were optimized using Perdew–Burke-Ernzerhof
(PBE0) (Perdew et al., 1996) and Tao-Perdew-Staroverov-
Scuseria (TPSSh) (Staroverov et al., 2003) hybrid functionals
using def2-SVP basis set (Weigend and Ahlrichs, 2005). The
frequency calculations were performed at the same level of theory.
No imaginary frequencies were present, showing that the
optimized structures are at local minima on the given PES.
Ionization potentials were calculated at three different levels of
theory. In particular, the single-point calculations at optimized
geometry using DFT functionals (PBE0 and TPSSh) and a
moderately large basis set def2-TZVPPD (Weigend and
Ahlrichs, 2005) were carried out. In addition, single-point
calculations using MP2 level of theory with cc-pvdz (C, N,
O atoms) and aug-cc-pvdz (H, K, Na atoms) basis sets
(Dunning, 1989; Kendall et al., 1992; Hill and Peterson,
2017) were performed. For convenience, we will denote this
combination of basis functions as Basis-1. Due to the large
values of spin contamination, the [bpy.bpy.bpy]cryptand
complexes were calculated using ROHF-MBPT2 formalism
(Lauderdale et al., 1991; Lauderdale et al., 1992). The vertical
ionization potential (VIP) was calculated as the energy
difference between the optimized neutral complex and the
cation in the geometry of the neutral complex. The adiabatic
ionization potential (AIP) was calculated as the energy
differences between an optimized neutral cluster and an
optimized cation. The natural charge distribution was
calculated via NBO method as implemented in NBO7

software (Glendening et al., 2019). The topology analysis
of electron localization function (ELF) (Silvi and Savin,
1994) was performed with the Multiwfn program (Lu and
Chen, 2012). All calculations were performed with Gaussian
16 program (Frisch et al., 2016). The visualization of SOMO
orbitals and geometries of the investigated species were
performed using IboView software (Knizia, 2013; Knizia
and Klein, 2015).

RESULTS AND DISCUSSION

The neutral [Na⊂[bpy.bpy.bpy]cryptand] was firstly
synthesized in 1991 by Lehn and coworkers (Echegoyen
et al., 1991) through the electrochemical reduction of
[Na+⊂[bpy.bpy.bpy]cryptand] cation. This approach
potentially can be used for the synthesis of superalkali
cryptand complexes with Rydberg molecules. To investigate
the electronic properties of such species, we chose three
different organic cages ([2.2.2]cryptand, [bpy.bpy.bpy]
cryptand, and spherical cryptand) that are very promising
candidates for the capturing of NH4 and H3O species. The
structures of those cages are given in Scheme 1. For the
comparison of ionization potentials, two alkali metal
complexes were also considered. In particular [Na⊂
[bpy.bpy.bpy]cryptand] was chosen as the first synthesized
cryptand-superalkali species, and [K⊂[2.2.2]cryptand] was
chosen as one of the most popular examples of alkali metal
macrocyclic complex.

The geometries of neutral and cationic complexes were
optimized with two different DFT hybrid functionals. It was
shown before that PBE0 and TPSSh functionals can provide
accurate geometries for macrocyclic and cryptand complexes
(Tkachenko et al., 2019). The optimized geometries are
consistent within two methods, showing the functional
independence of the results. The geometries of neutral
species are only slightly distorted from the geometries of
cationic species, showing that the additional electron of
neutral complexes does not participate in a significant

SCHEME 1 | The structures of organic cages considered in this work. [2.2.2]cryptand (A), spherical cryptand (B), and [bpy.bpy.bpy]cryptand (C) are shown.
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bonding formation process. The optimized structures of
selected neutral species are given in Figure 1. Cartesian
coordinates of all optimized structures are provided in the
Supporting Information file (Supplementary Table S1). The
natural charge distribution of neutral species showed that the
negative charge is mainly distributed over the oxygen and
nitrogen atoms of the organic ligand, while the central unit
(either H3O or NH4 species) formally possesses a +1 positive
charge. In particular 0.757–0.806 and 0.794–0.876 positive
natural charges on H3O and NH4 molecules, respectively,
were found in investigated complexes. This might be one of
the key reasons for the stabilization of those Rydberg
molecules, which are thermodynamically unstable toward
dissociation of a proton in their naked form.

To illustrate the enhanced stability of encapsulated neutral
molecules we performed calculations of dissociation energies
for both naked and coated species. The reaction that was
considered is a dissociation of a proton from the central
unit with a formal reaction: AH• → A +H•. Energies were
calculated using the following expression:
ΔGr � ΔG(A) + ΔG(H•) − ΔG(AH•). The results are shown
in Table 1. As we can observe, the dissociation of naked

H3O and NH4 occurs with a significant release of energy
(21.9 and 13.0 kcal/mol, respectively). While the dissociation
of the same species coated by cryptand complexes is
energetically not favorable for most of the compexes
(Table 1). Such a difference in ΔGr values can lead us to the
conclusion that [R⊂cryptand] complexes are
thermodynamically more stable species, which may open the
possibility of their fabrication.

Interestingly, for both NH4 and H3O, a significant decrease in
ionization potentials was found after encapsulating the
corresponding Rydberg molecules into organic cages.
Particularly, the naked NH4 and H3O molecules possess 4.57
and 5.55 eV VIP, respectively. Whereas the NH4 and H3O
encapsulated in [2.2.2]cryptand and spherical cryptand possess
ionization potentials about 3–4 eV lower than the naked species
(Table 2). Interestingly [bpy.bpy.bpy]cryptand systems show
larger IPs by ~1.1 eV. A similar but not so pronounced
pattern was found for alkali metals encapsulated in the
[bpy.bpy.bpy]cryptand. The nature of such an increase in
IPs is discussed below and related to the presence of a
diffuse SOMO orbital in the system. We note, that the
obtained IPs for NH4 and H3O species are even lower than

FIGURE 1 | Structures of optimized neutral complexes of NH4 and H3O. (A) [H3O⊂[2.2.2]cryptand]; (B) [H3O⊂spherical cryptand]; (C) [H3O⊂[bpy.bpy.bpy]
cryptand]; (D) [NH4⊂[2.2.2]cryptand]; (E) [NH4⊂spherical cryptand]; (F) [NH4⊂[bpy.bpy.bpy]cryptand].

TABLE 1 | Free energies [kcal/mol] for the dissociation reaction of hydrogen radical from the central unit of investigated species calculated at TPSSh/def2-TZVPPD//TPSSh/
def2-SVP level.

Species ΔGr Species ΔGr

NH4 −12.98 H3O −21.94
[NH4⊂spherical cryptand] 24.61 [H3O⊂spherical cryptand] −6.43
[NH4⊂[2.2.2]cryptand] 17.10 [H3O⊂[2.2.2]cryptand] −26.00
[NH4⊂[bpy.bpy.bpy]cryptand] 52.98 [H3O⊂[bpy.bpy.bpy]cryptand] 32.55
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IPs of [K⊂[2.2.2]cryptand] which was shown before to be a
superalkali with record low ionization potential (Tkachenko et
al., 2019).

Similar results were obtained using PBE0 and TPSSh
functionals with def2-TZVPPD basis set. Although the
values of IPs are slightly higher than it was obtained for
the MP2 method, the main trends preserve the same
(Table 3).

To illustrate the diffuse nature of SOMO of investigated
species, we plotted the isosurface graphs of corresponding
orbitals shown in Figure 2 (the orbitals were obtained from
quasi-restricted orbitals formalism). We can see that for [2.2.2]
cryptand and spherical cryptand complexes (Figures
2A,B,D,E), SOMO orbitals have a diffuse nature and
surround the whole molecule entirely. In contrast, the
unpaired electron of [bpy.bpy.bpy]cryptand complexes sit
on the antibonding orbital of a π-conjugated system
(Figures 2C,F). Isosurface plots of SOMO visualized with a
different contour value can be found in the supporting
information file (Supplementary Figure S1). Such an
interesting difference in SOMO can be explained by the fact
that different organic cages form different types of complexes
with Rydberg molecules. Thus [2.2.2]cryptand and spherical

TABLE 2 | Values of VIP and AIP [eV] obtained at MP2/Basis-1 level of theory.

Species AIP VIP Species AIP VIP

Na N/A 4.961 [NH4⊂spherical cryptand] 1.358 1.389
K N/A 4.072 [NH4⊂[2.2.2]cryptand] 1.308 1.381
NH4 4.429 4.566 [NH4⊂[bpy.bpy.bpy]cryptand] 2.385 2.582
H3O 5.310 5.552 [H3O⊂spherical cryptand] 1.379 1.696
[Na⊂[bpy.bpy.bpy]cryptand] 2.440 2.729 [H3O⊂[2.2.2]cryptand] 1.362 1.676
[K⊂[2.2.2]cryptand] 1.387 1.612 [H3O⊂[bpy.bpy.bpy]cryptand] 2.501 2.729

TABLE 3 | Values of VIP and AIP [eV] obtained using PBE0 and TPSSh functionals
with def2-TZVPPD basis set.

Species PBE0 TPSSh

AIP VIP AIP VIP

K N/A 4.370 N/A 4.233
Na N/A 5.280 N/A 5.152
NH4 4.417 4.584 4.313 4.462
H3O 5.384 5.964 5.343 5.606
[NH4⊂spherical cryptand] 1.440 1.519 1.400 1.479
[NH4⊂[2.2.2]cryptand] 1.445 1.537 1.403 1.504
[NH4⊂[bpy.bpy.bpy]cryptand] 3.060 3.220 3.214 3.359
[H3O⊂ spherical cryptand] 1.457 1.780 1.388 1.704
[H3O⊂[2.2.2]cryptand] 1.387 1.821 1.492 1.638
[H3O⊂[bpy.bpy.bpy]cryptand] 3.162 3.323 3.307 3.452
[Na⊂[bpy.bpy.bpy]cryptand] 3.157 3.335 3.298 3.407
[K⊂[2.2.2]cryptand] 1.811 1.830 1.784 1.803

FIGURE 2 | Isosurface plots of singly occupied molecular orbitals of NH4 and H3O complexes. (A) [H3O⊂[2.2.2]cryptand]; (B) [H3O⊂spherical cryptand]; (C) [H3O⊂
[bpy.bpy.bpy]cryptand]; (D) [NH4⊂[2.2.2]cryptand]; (E) [NH4⊂spherical cryptand]; (F) [NH4⊂[bpy.bpy.bpy]cryptand]. A threshold of 100% was used for A, B, D, E to
illustrate the diffuse nature of those orbitals. For C and F a lower 80% threshold was used for visualization.
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cryptand complexes behave as electrides, possessing an
electron density outside of the molecule, whereas
[bpy.bpy.bpy]cryptand complexes form an ionic molecular
compound bearing a negative charge entirely on the organic
ligand. Such behavior can also be explained by the possibility
of bipyridine molecules to form stable anionic species, that
were experimentally isolated before (Bock et al., 1999; Gore-
Randall et al., 2009). To further show the differences between
the two types of complexes we performed an ELF basins
analysis. The basins laying outside of the molecule were
found for [2.2.2]cryptand and spherical cryptand complexes
(Supplementary Figure S2). The integration of the electron
density within the volume of the found ELF basins resulted in
0.3–0.6 |e| basins occupancy. In turn, no outside lying ELF
basins were found for [bpy.bpy.bpy]cryptand complexes. Thus
[2.2.2]cryptand and spherical cryptand complexes
demonstrate an electride nature which is the reason for
their lower IP values in comparison to [bpy.bpy.bpy]
cryptand complexes.

CONCLUSION

In this work we investigated the electronic properties of Rydberg
molecules coated with cryptand organic cages. We showed that it
is possible to significantly decrease the values of the ionization
potentials by covering Rydberg molecules with an “organic skin.”
In particular, we found that the IP could be decreased, reaching
the values of ~1.5 eV and a new low record of 1.3 eV (at MP2/
Basis-1 level). In addition, the coating ligand can increase the
thermodynamic stability of a Rydberg molecule, opening an
opportunity to obtain such strong reducing agents in the
experiment.
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