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Abstract

From 3-manifolds to modular data

by

Yang Qiu

The progress of TQFT has revealed connections between the algebraic world of ten-

sor categories and the topological world of 3-manifolds, such as Reshetikhin-Turaev and

Turaev-Viro theories. Motivated by M-theory in physics, Cho-Gang-Kim recently pro-

posed another relation by outlining a program to construct modular data from certain

classes of closed oriented 3-manifolds. In this thesis, we will talk about our mathematical

exploration of this program. The main results in this thesis is based on the joint works:

• [10] Shawn X Cui, Yang Qiu, and Zhenghan Wang. From three dimensional mani-

folds to modular tensor categories. arXiv preprint arXiv:2101.01674, 2021.

• [9] Shawn X Cui, Paul Gustafson, Yang Qiu, and Qing Zhang. From torus bundles

to particle-hole equivariantization. Letters in Mathematical Physics, 112(15), 2022.
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Chapter 1

Introduction

Quantum topology emerged from the discovery of the Jones polynomial [19] and the

formulation of topological quantum field theory (TQFT) [2, 34] in the 1980s. Since

then, rapid progress of the subject has revealed deep connections between the alge-

braic/quantum world of tensor categories and the topological/classical world of 3-manifolds.

One bridge connecting these two worlds is given by TQFTs. More precisely, quantum

invariants of 3-manifolds and (2 + 1)-dimensional TQFTs can be constructed from mod-

ular tensor categories, a special class of tensor categories. Two fundamental families in

(2+1)-dimensions are the Reshetikhin-Turaev [26] and Turaev-Viro [31] TQFTs, both of

which are based on certain tensor categories. Both families serve as vast generalizations

of the Jones polynomial to knots in arbitrary 3-manifolds. Quantum invariants induced

by TQFTs provide insights to understand 3-manifolds. For example, they can distinguish

some homotopically equivalent but non-homeomorphic manifolds.

Recently M-theory in physics suggests another surprising different connection: clas-

sical topological invariants such as Chern-Simons invariants of SL(2,C)-flat connections

and SL(2,C)-adjoint Reidemeister torsions of a 3-manifold X can be packaged together

to produce a (2 + 1)-topological quantum field theory (TQFT) [8], which is essentially

1



Introduction Chapter 1

equivalent to a modular tensor category [30]. It is further conjectured in [8] that every

modular tensor category can be obtained from a 3-manifold and a semi-simple Lie group.

In this thesis, we study this program mathematically, and provide strong support for

such a program. The program as outlined in [8] produces an algorithm to generate the

potential modular T -matrix and the quantum dimensions of a candidate modular data.

The modular S-matrix follows from essentially a trial-and-error procedure. Our main

result is a mathematical construction of the modular data of a premodular category from

each Seifert fiber space over S2 with three singular fibers and torus bundle over the circle

with Sol geometry. The modular data constructed from Seifert fiber spaces are related to

Temperley-Lieb-Jones categories and SU(2)k categories, and the ones from torus bundles

can be realized by Z2-equivariantization of certain pointed categories [10, 9]. A resulting

premodular category is modular if and only if the three manifold is a Z2-homology sphere.

The program from 3-manifolds to modular tensor categories is a far-reaching progeny

of the mysterious six-dimensional super-symmetric conformal field theories (SCFTs)

spawned by M-theory. Our strong support for the program indirectly provides evidence

for these 6d SCFTs. The dimension reduction or compactification of these 6d SCFTs

to 3d depends on a 3-manifold X, and in general the resulting theory T (X) is a super-

conformal field theory. When X is non-hyperbolic, it is argued in [8] that T (X) flows

to a TQFT in the infrared limit and super-symmetry is decoupled, thus we obtain a

(2+1)-TQFT labeled by X, hence a MTC CX . The program outlined in [8] centers on an

algorithm to produce the quantum dimensions and topological twists of a MTC, and a

trial-and-error algorithm for the modular S-matrix. The assumption on the three mani-

folds X in [8] includes that X is non-hyperbolic and the SL(2,C) representation variety

of the fundamental group π1(X) consists of finitely many conjugacy classes that all could

be conjugated into either SU(2) or SL(2,R) subgroups of SL(2,C). Our examples show

that all but the non-hyperbolic assumption can be dropped. One subtlety is that we

2



Introduction Chapter 1

need to use indecomposable reducible representations in our torus bundle over the circle

examples and certain Seifert fiber spaces examples.

The efforts in [8] and [10, 9] suggest a far-reaching connection between 3-manifolds and

(pre)modular tensor categories. However, this program is still at its infancy, and there

remain many questions to be resolved. First and foremost, the program currently only

provides an algorithm to compute the modular S- and T -matrices. Other data such as

the F -symbols and R-symbols, which specify the associators and braidings, respectively

[32], are still missing. Secondly, even for the modular data, the computation for the

S-matrix essentially follows a trial-and-error procedure. A definite algorithm to achieve

that is in demand. Thirdly, there are also a number of subtleties in choosing the correct

set of characters as simple objects, determining the proper unit object, etc. We hope the

insights obtained will lead to an intrinsic understanding of how and why this program

works.

The content of the thesis is as follows. In Chapter 2, we review the ingredients

about 3-manifolds contained in the program. In Chapter 3, we recall the notions about

premodular tensor categories. In Chapter 4, we outline our version of the program and

show its application on Seifert fiber spaces and torus bundles as mentioned before. In

chapter 5, we discuss the related future questions that we will work on in the future.
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Chapter 2

Aspects about 3-manifolds

2.1 Non-hyperbolic 3-manifolds

In this thesis, we mainly consider oriented closed compact 3-manifolds with 6 of 8

Thurston’s geometries including E3, S2 × R, H2 × R, ˜SL(2,R), Nil, and Sol. Especially,

we focus on Seifert fiber spaces over S2 with three singular fibers which refer to the first

5 geometries, and torus bundles over S1 with Sol geometry.

2.1.1 Seifert fiber spaces

We will recall some basics about Seifert fiber spaces from [28].

Definition 2.1.1. A Seifert fiber space (SFS) M is a closed 3-manifold together with a

decomposition into a disjoint union of circles (called fibers) such that each fiber has a

tubular neighborhood that forms a standard fibered torus.

We can denote the SFSs by the notation

M = {b; (o, g); (p1, q1), (p2, q2), · · · , (pn, qn)}

4
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as explained below. The quotient space of a SFS M , called the base orbifold B, by

sending each circle, called a fiber, to a point is a topological surface. The symbol (o, g)

means that the base topological surface B is an orientable closed surface of genus g.

Remark 2.1.2. Here we only consider the orientable Seifert fiber spaces M with an

orientable base surface B. Generally, neither of M and B is necessarily orientable.

Each fiber has a product neighbourhoodD2×S1 in the SFSM except n singular fibers

labeled by (pi, qi), i = 1, · · · , n. The neighborhood of the i-th singular fiber is obtained

from D2× [0, 1] by identifying the point (x, 0), x ∈ D2 with the point (rai,pi(x), 1), where

rai,pi is the rotation of the disk D2 by the angle 2πai/pi, where ai ∈ Z satisfies aiqi = 1

mod pi. The pair of coprime integers (pi, qi) are the corresponding surgery coefficient.

The fundamental group of M fits into a short exact sequence

1 → π1(F ) → π1(M) → πorb
1 (B) → 1,

where π1(F ) ∼= Z for a regular fiber F ∼= S1 and πorb
1 (B) is the orbifold fundamental

group of B (not the same as the fundamental group π1(B) of the topological surface B

in general). The integer b in the notation is the obstruction class, which is also the order

of the generator of π1(F ) in πorb
1 (B).

The fundamental group of M = {b; (o, g); (p1, q1), (p2, q2), · · · , (pn, qn)} has a presen-

tation

π1(M) = ⟨aj, bj, xi, h, j = 1, · · · , g, i = 1, · · · , n |

[aj, h] = [bj, h] = [xi, h] = xpi
i h

qi = 1, x1 · · · xn[a1, b1] · · · [ag, bg] = hb⟩. (2.1)

In particular, the fundamental group of M = {0; (o, 0); (p1, q1), (p2, q2), (p3, q3)} over base

S2 and with three singular fibers, denoted simply as {(p1, q1), (p2, q2), (p3, q3)} sometimes,

5
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is

π1(M) = ⟨x1, x2, x3, h|xpi
i h

qi = 1, xih = hxi, x1x2x3 = 1⟩. (2.2)

The following changes for the symbol will not change the homeomorphism type of M .

(1) Change the sign of both pi, qi.

(2) Add 1 to b and subtract pi from qi.

(3) Add a fiber of type (1, 0).

Since we consider SFSs as 3-manifolds up to homeomorphism rather than as fibered

spaces, we may always set b to 0.

Given M = {b; (o, g); (p1, q1), (p2, q2), · · · , (pn, qn)}, define the Euler number e(M) of

M and the Euler characteristic χ(B) of its base orbifold B by

e(M) = b+
n∑

i=1

qi
pi
,

χ(B) = χ(B0)−
n∑

i=1

(1− 1

pi
),

where χ(B0) is the usual Euler characteristic of the underlying topological surface B0 of

the orbifold B. The behavior of M depends on the sign of e(M) and χ(B).

We can give a surgery diagram for {0; (o, 0); (p1, q1), (p2, q2), · · · , (pn, qn)} as shown in

Fig. 2.1. Here we remove the regular neighbourhood of each component of the link and

reattach a solid torus with the corresponding coefficient besides it. For the presentation

of π1(M) in (2.2), xi corresponds to the meridian of i-th vertical circle and h corresponds

to the meridian of the horizontal circle.
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p1
q1

p2
q2

pn
qn

0

· · ·

Figure 2.1

2.1.2 Torus bundles with Sol geometry

Definition 2.1.3. A torus bundle M over S1 is a mapping torus of 2-torus with a gluing

map A =

a b

c d

 ∈ SL(2,Z).

The fundamental group of M has the presentation,

π1(M) = ⟨x, y, h | xayc = h−1xh, xbyd = h−1yh, xyx−1y−1 = 1⟩, (2.3)

where x and y are the meridian and longitude, respectively, on the torus, and h corre-

sponds to a loop around the base S1.

In this thesis, we pay attention to the torus bundles with Sol geometry, i.e. |a+d| > 2.

We will briefly recall Thurston’s geometries in next subsection.

2.1.3 Thurston’s 8 geometries

Let X be a simply connected smooth manifold and G be a Lie group. A model

geometry is a pair (X,G) together with a transitive action of G on X with compact

stabilizers. A model geometry is called maximal if G is maximal among groups acting

smoothly and transitively on X with compact stabilizers.
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A geometric structure on a manifold M is a diffeomorphism from M to X/Γ for some

model geometry (X,G), where Γ is a discrete subgroup of G acting freely on X. If a given

manifold admits a geometric structure, then it admits one whose model is maximal.

Thurston has classified 3-dimensional geometries and there are 8 geometries as the

following theorem shows.

Theorem 2.1.4 (Thurston). Any maximal, simply connected, 3-dimensional geometry

which admits a compact quotient is equivalent to one of the 8 geometries: H3, S3, E3,

S2 × R, H2 × R, ˜SL(2,R), Nil, and Sol.

Scott [27] has proved the uniqueness of the geometric structure on a closed 3-manifold.

Theorem 2.1.5 (Scott). If M is a closed 3-manifold which admits a geometric structure

modelled on one of the eight geometries, then the geometry involved is unique.

Moreover, Scott classified the closed 3-manifolds which admit a non-hyperbolic geo-

metric structure.

Theorem 2.1.6 (Scott). Let M be an oriented closed 3-manifold.

(1) M admits a geometric structure modelled on Sol if and only if M is finitely covered

by a torus bundle over S1 with an Anosov gluing map which is an automorphism of the

2-torus given by an invertible 2 by 2 matrix whose eigenvalues are real and distinct.

(2) M admits a geometric structure modelled on one of S3, E3, S2 × R, H2 × R,

˜SL(2,R), or Nil if and only if M is a Seifert fiber space. Furthermore the geometry for

M is determined by χ(B) and e(M) as follows:

Remark 2.1.7. Seifert fiber spaces account for all oriented closed manifolds in 6 of 8

Thurston geometries including S3, E3, S2 ×R, H2 ×R, ˜SL(2,R) and Nil geometry. Since

fundamental groups of manifolds with S3 geometry are Abelian and we focus on non-

Abelian SL(2,C) representations of fundamental groups in this paper, our examples refer

to all nonhyperbolic geometries except S3 geometry.

8
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χ > 0 χ = 0 χ < 0

e = 0

e ̸= 0

S2 × R E3 H2 × R

S3 Nil ˜SL(2,R)

2.2 SL(2,C) character

2.2.1 Non-Abelian character

We recall some algebraic sets of SL(2,C) characters of 3-manifolds. Suppose M is

an orientable connected closed compact 3-manifold. Then π1(M) is a finitely generated

group.

Definition 2.2.1. A SL(2,C) representation of M is a homomorphism ρ : π1(M) −→

SL(2,C). A SL(2,C) character is the function χρ : π1(M) −→ SL(2,C) by χρ(a) =

Tr(ρ(a)).

Set G = SL(2,C). Denote by R(M,G) the set of SL(2,C) representations, by

χ(M,G)) the set of SL(2,C) characters. There is a natural map t : R(M,G) −→ χ(M,G).

Both R(M,G) and χ(M,G) admit the structure of a affine algebraic variety such that

χ(M,G) is an algebro-geometric quotient of R(M,G). In this thesis, we do not consider

this structure.

There are three obvious nontrivial automorhphisms of SL(2,C) by sending an element

g ∈ SL(2,C) to its complex conjuagte g∗, its transpose followed by inverse (gt)−1, and

the composition (g†)−1 of the previous two operations. For each representation of π1(M)

to SL(2,C), post-composing with one of the three automorhphisms of SL(2,C) gives rise

to another representation, hence representations in R(M,G) come in group of four in

general. Another obvious way to change a representation ρ in R(M,G) is to tensor ρ

with a representation of π1(M) to the center Z(G) of G. Representations of π1(M) to the

9
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center Z(G) are in one-to-one correspondence with cohomology classes in the cohomology

group H1(M,Z(G)).

For our purpose, we consider the non-Abelian characters as follows.

Definition 2.2.2. Let χ ∈ χ(M,G) be an SL(2,C)-character of a 3-manifold M . We

say χ is non-Abelian if at least one representation ρ : π1(M) → SL(2,C) with character

χ is non-Abelian, i.e. ρ has non-Abelian image in SL(2,C). The set of all non-Abelian

characters of M is denoted by χnab(M).

Remark 2.2.3. Irreducible representations do not share their characters with reducible

ones, and the characters of irreducible representations one-to-one correspond to the con-

jugacy classes of irreducible representations [11]. Thus the set of non-Abelian characters

is the union of two disjoint parts: irreducible characters and reducible ones. For a re-

ducible character, there can exist two representations within the same character, but

different conjagacy classes.

2.2.2 Computation

We compute the non-Abelian characters of the examples we will consider.

Let M = {0; (o, 0); (p1, q1), (p2, q2), (p3, q3)} be a Seifert fiber space over S1 with sin-

gular fibers, and its fundamental group has the following presentation,

π1(M) = ⟨x1, x2, x3, h |xpk
k hqk = 1, xkh = hxk, x1x2x3 = 1, k = 1, 2, 3 ⟩

Let ρ : π1(M) → G be a non-Abelian representation. Since h is in the center of π1(M)

and ρ is non-Abelian, ρ(h) must be ±I. It follows that each ρ(xk) has finite order, and is

diagonalizable in particular. Moreover, any ρ(xk) does not commute with another ρ(xj).

This implies neither ρ(xk) can be ±I. Up to conjugation, we assume ρ(xk) take the

10



Aspects about 3-manifolds Chapter 2

following form (writing ρ(xk) simply as xk),

x1 =

eiα1 0

0 e−iα1

 , x2 =

a b

c d

 ∼

eiα2 0

0 e−iα2

 , x3 ∼

eiα3 0

0 e−iα3

 (2.4)

where 0 < αk < π, ad − bc = 1, and b and c are not simultaneously zero. We have the

following linear equations for a and d.

Tr(x2) = eiα2 + e−iα2 = a+ d (2.5)

Tr(x3) = eiα3 + e−iα3 = aeiα1 + de−iα1 (2.6)

Hence, given the α′
ks, or equivalently Tr(xk), a and d are uniquely determined, and a = d̄.

Moreover, when |a| ≠ 1 implying bc ̸= 0, this also determines ρ up to conjugacy. When

|a| = 1 implying bc = 0, there are precisely two conjugacy classes with

x2 =

a 1

0 ā

 or x2 =

a 0

1 ā

 (2.7)

It can be checked that these two representations are complex conjugate to each other

up to conjugacy, and that their characters take real values. They give rise to the same

character. There are two types of non-Abelian representations. One type is irreducible

satisfying b, c ̸= 0. Characters of representations of this type one-to-one correspond to

conjugacy classes of representations [11]. The other type is reducible with exactly one of

b, c zero. Each character of this type corresponds to two conjugacy classes.

To summarize, the triple (α1, α2, α3) and Tr(h) uniquely determine the character.

Next, we find all possible such triples.

If h = I, each eiαk is a pk-th root of 1. If h = −I, then eiαk is a pk-th root of 1

11
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if qk is even, and a pk-th root of −1 if qk is odd. We claim all triples satisfying the

above conditions can be realized by some representations. Indeed, given such a triple

(α1, α2, α3), we define ρ(x1) and ρ(x2) as in Equation 2.4 and let ρ(x3) := (ρ(x1)ρ(x2))
−1.

Equations 2.5, 2.6 determine a and d, and we arbitrarily choose b and c such that ad−bc =

1. Again, Equations 2.5, 2.6 guarantee that ρ(xk) so defined has eigenvalues e±iαk , and

therefore they satisfy all the relations in the presentation of π1(M).

Set αk =
2πnk

pk
and ρ(h) = e2πiλI, λ = 0, 1

2
. If λ = 0 or if λ = 1

2
and qk is even, then nk

is an integer strictly between 0 and pk
2
. If λ = 1

2
and qk is odd, then nk is a proper half

integer strictly between 0 and pk
2
. The quadruple (n1, n2, n3, λ) completely characterizes

a character.

For an integer p > 0, denote by [0 · · · p] the set of integers {0, 1, · · · , p}, and by

[0 · · · p]e (resp. [0 · · · p]o) the subset of even (resp. odd) integers in [0 · · · p]. The non-

Abelian character variety of M is given as follows,

χnab(M) =

{(
j1 + 1

2
,
j2 + 1

2
,
j3 + 1

2
,
1

2

)
| jk ∈ [0 · · · pk − 2]ϵk

}
⊔
{(

j1 + 1

2
,
j2 + 1

2
,
j3 + 1

2
, 0

)
| jk ∈ [0 · · · pk − 2]o

}
,

(2.8)

where ϵk = ‘e’ if qk is odd, and ϵk = ‘o’ otherwise. For (n1, n2, n3, λ) ∈ χnab(M), a

corresponding representation ρ has e
± 2πink

pk as the eigenvalue of ρ(xk) and ρ(h) = e2πiλI.

The size of χnab(M) is

|χnab(M)| = ⌊p1
2
⌋⌊p2

2
⌋⌊p3

2
⌋+ ⌊p1 − 1

2
⌋⌊p2 − 1

2
⌋⌊p3 − 1

2
⌋,

where ⌊x⌋ is the greatest integer less than or equal to x.

12
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For instance, if all the q′ks are odd, then χnab(M) can also be written as,

χnab =

{(j1 + 1

2
,
j2 + 1

2
,
j3 + 1

2
,
(j1 + 1) mod 2

2

)
| jk ∈ [0 · · · pk − 2], j1 = j2 = j3 mod 2

}

Remark 2.2.4. M has reducible characters if and only if the greatest common divisor

of p1, p2, p3 is 1.

Let M be a torus bundle over S1 with monodromy map A =

a b

c d

 ∈ SL(2,Z) such

that |a+ d| > 2. For simplicity, we assume that a, b, c, d > 0 and set N = a+ d+ 2. Its

fundamental group has the presentation

π1(M) = ⟨x, y, h | xayc = h−1xh, xbyd = h−1yh, xyx−1y−1 = 1⟩, (2.9)

Let ρ : π1(M) −→ SL(2,C) be a non-Abelian representation. First, we consider the

case where ρ(x) is diagonalizable. Up to conjugation, assume ρ(x) is diagonal. Since

y commutes with x, ρ(y) is also diagonal, and moreover, ρ(x) and ρ(y) cannot be both

contained in the center {±I}. (Otherwise, the image of ρ would be Abelian.) If ρ(x) ̸=

±I, it follows from the relation xayc = h−1xh that ρ(h), up to conjugation, simply

permutes the two eigenvectors of ρ(x). The same conclusion is obtained if ρ(y) ̸= ±I.

Hence, we may assume ρ takes the following form (abbreviating ρ(x) simply as x),

x =

α 0

0 α−1

 , y =

β 0

0 β−1

 , h =

 0 1

−1 0

 , (2.10)

where Im(α) ≥ 0 and either α ̸= ±1 or β ̸= ±1. The presentation of π1(M) yields the

13
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following equations for ρ,

αa+1βc = αbβd+1 = 1, (2.11)

from which we deduce the relations,

αa+d+2 = βa+d+2 = 1. (2.12)

Let N = |a+d+2|. Hence α and β are both N -th root of unity. Set α = e
2πi k
N , β = e

2πi l
N

such that 0 ≤ k ≤ N
2
, 0 ≤ l < N , and either k ̸= 0, N

2
or l ̸= 0, N

2
. Then, Equation 2.11

can be equivalently written as,

(a+ 1) k + c l = µN

b k + (d+ 1) l = νN

(2.13)

Since the coefficient matrix for Equation 2.13 is nonsingular (its determinant is ±N),

each irreducible representation is determined by the pair (µ, ν) and denoted Y (µ, ν).

Next we consider the case where ρ(x) is not diagonalizable. Then neither is ρ(y)

diagonalizable. Up to conjugation, we may assume that ρ(x) and ρ(y) are both upper

triangular, each have a single eigenvalue +1 or −1 lying on the diagonal, and ρ(h) is

diagonal. Thus, ρ takes the form,

x = (−1)ϵx

1 1

0 1

 , y = (−1)ϵy

1 u

0 1

 , h =

v 0

0 v−1

 , (2.14)

where ϵx, ϵy ∈ {0, 1} and u ̸= 0. From the presentation of π1(M), we deduce the equations

14
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to be satisfied,

(a+ 1) ϵx + c ϵy = 0 mod 2

b ϵx + (d+ 1) ϵy = 0 mod 2

(2.15)

c u2 + (a− d)u− b = 0, v2 =
1

cu+ a
. (2.16)

Equation 2.16 is equivalent to,

(v + v−1)2 = a+ d+ 2, u =
v−2 − a

c
. (2.17)

From Equation 2.17, we see that for each fixed ϵx and ϵy, there are four inequivalent

representations, but only two characters. We choose a representative for each character

by setting,

u =
d− a+

√
(a+ d)2 − 4

2c
, v2 =

1

cu+ a
=

a+ d−
√

(a+ d)2 − 4

2
. (2.18)

The solution set to Equation 2.15 depends on the parity of the entries of the mon-

odromy matrix. Let P be the quadruple that records the parity of the entries (a, d; b, c)

and we use ‘e’ to denote for ‘even’ and ‘o’ for ‘odd’. For instance, P = (e, e; o, e) means

b is odd and the rest are even. The solutions contain the following possible values for ϵx

and ϵy,

• ϵx = 0, ϵy = 0;

• ϵx = 1, ϵy = 1, only if P = (e, e; o, o) or P = (o, o; e, e);

• ϵx = 0, ϵy = 1, only if P = (o, o; o, e) or P = (o, o; e, e);

15
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• ϵx = 1, ϵy = 0, only if P = (o, o; e, o) or P = (o, o; e, e).

We can also refer to pairs (ϵx, ϵy) in (µ, ν)-coordinates using Equation 2.13 and defin-

ing k = ϵx(N/2) and l = ϵy(N/2). From Equation 2.17, we see that for each fixed ϵx and

ϵy, there are four inequivalent representations but only two characters, which we denote

by X±(µ, ν).

To summarize, the non-Abelian characters of M contain two types, the irreducible

and the reducible ones. The irreducible characters take the form of Equation 2.10 and

are determined by Equation 2.13. The reducible characters take the form of Equation

2.14 and are determined by Equation 2.18 and the possible values of ϵx and ϵy discussed

above.

We consider solutions (k, l) of Equation 2.13 in ZN × ZN . Note that, for now we do

not place any additional restrictions on the solutions. We denote this solution space by

G.

Lemma 2.2.5. G is a subgroup of ZN ×ZN isomorphic to Zr ×ZN
r
, where r = gcd(a+

1, c, b, d+ 1).

Proof: Let f : Z× Z → ZN × ZN be the group homomorphism given by

f

µ

ν

 =

d+ 1 −c

−b a+ 1


µ

ν


The solution space G is the image of f and a subgroup of ZN × ZN .

Define the chain complex Z×Z g−→ Z×Z f−→ ZN ×ZN where g =

a+ 1 c

b d+ 1

.

Then Im(f) ∼= Z × Z/Ker(f) and Ker(f) = Im(g). By considering the Smith normal

form of g, we obtain an isomorphism G ∼= Zr ×ZN/r where r = gcd(a+1, c, b, d+1).

We can use G to characterize non-Abelian characters of M by the following lemma.

16
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Lemma 2.2.6. The irreducible characters Y (µ, ν) ofM are in one-to-one correspondence

with subsets {g,−g} ⊂ G where 2g ̸= 0. In addition, the pairs X±(µ, ν) of reducible

non-Abelian characters are in one-to-one correspondence with elements g ∈ G such that

2g = 0.

Proof: Suppose that (µ, ν) ∈ G corresponds to a representation ρ as in Equation

2.10 which is not necessarily non-Abelian. We first show that ρ is non-Abelian if and

only if 2(µ, ν) ̸= 0. According to the previous subsection, ρ is non-Abelian if and only

if ρ(x), ρ(y) do not both take values in {I,−I}, which is equivalent to the statement

that ρ(x2), ρ(y2) are not both I. Since 2(µ, ν) corresponds to the representation (x 7→

ρ(x2), y 7→ ρ(y2), h 7→ ρ(h)), the claim follows from the fact that the representation

(x 7→ I, y 7→ I, h 7→ ρ(h)) corresponds to 0 ∈ G.

Suppose that (µ1, ν1), (µ2, ν2) ∈ G correspond to the same irreducible character. Let

(k1, l1) and (k2, l2) be the corresponding solutions to Equation 2.13, and ρ1 and ρ2 be the

corresponding representations as defined in Equation 2.10. Then either ρ1(x) = ρ2(x)

and ρ1(y) = ρ2(y), or ρ1(x) = ρ2(x
−1) and ρ1(y) = ρ2(y

−1), which implies that (µ1, ν1) =

±(µ2, ν2). This proves the first part of the lemma.

For the second part, let ρ denote a reducible non-Abelian representation, and let

ϵx, ϵy ∈ {0, 1} be the corresponding sign exponents as defined in Equation 2.14. By

considering the diagonal entries of ρ(x) and ρ(y), such a representation ρ exists if and

only if the following equations are satisfied.

(a+ 1)ϵx
N

2
+ cϵy

N

2
= µN

bϵx
N

2
+ (d+ 1)ϵy

N

2
= νN

The solutions of above equations are in one-to-one correspondence with elements in G of

17
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order 1 or 2. Fixing (ϵx, ϵy), the corresponding characters occur in pairs X±(µ, ν). This

proves the second part of the lemma.

2.3 Adjoint Reidemeister torsion

The Reidemeister torsion (R-torsion) τ(M) of a celluation KM of a manifold M uses

the action of the fundamental group π1(M) on the universal cover K̃M to measure the

complexity of the celluation of M . It is a topological invariant of M from determinants

of matrices obtained from the incidences of the cells of K̃M . The R-torsion makes es-

sential use of the bases in the chain complex of the universal cover, while the homology

and homotopy groups do not see the geometric information encoded in the based chain

complex. For our purpose, we need the non-Abelian generalization of R-torsion twisted

by a representation ρ : π1(X) → G for some semi-simple Lie group G, in particular the

Reidemeister torsion for the adjoint representation of SL(2,C), introduced in [25]. We

recall some basics here, for more details, please refer to [23, 25, 29].

Let

C∗ = (0 −→ Cn
∂n−→ Cn−1

∂n−1−→ · · · ∂1−→ C0 −→ 0)

be a chain complex of finite dimensional vector spaces over the field C. Choose a basis ci

of Ci and a basis hi of the i-th homology group Hi(C∗). The torsion of C∗ with respect

to these choices of bases is defined as follows. For each i, let bi be a set of vectors in Ci

such that ∂i(bi) is a basis of Im(∂i) and let h̃i denote a lift of hi in Ker(∂i). Then the set

of vectors b̃i := ∂i+1(bi+1) ⊔ h̃i ⊔ bi is a basis of Ci. Let Di be the transition matrix from

ci to b̃i. To be specific, each column of Di corresponds to a vector in b̃i being expressed

18
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as a linear combination of vectors in ci. Define the torsion

τ(C∗, c∗, h∗) :=

∣∣∣∣∣
n∏

i=0

det(Di)
(−1)i+1

∣∣∣∣∣
Remark 2.3.1.

(1) The torsion, as it is denoted, does not depend on the choice of bi and the lifting of

hi.

(2) Here we define the torsion as the norm of the usual torsion, thus we do not need

to deal with sign ambiguities.

Let M be a finite CW-complex and (V, ρ) be a homomorphism ρ : π1(M) −→ SL(V ).

The vector space V turns into a left Z[π1(X)]-module. The universal cover M̃ has a

natural CW structure from M , and its chain complex C∗(M̃) is a free left Z[π1(M)]-

module via the action of π1(M) as covering transformations. View C∗(M̃) as a right

Z[π1(M)]-module by σ.g := g−1.σ for σ ∈ C∗(M̃) and g ∈ π1(M). We define the twisted

chain complex C∗(M ; ρ) := C∗(M̃) ⊗Z[π1(M)] V . Let {eiα}α be the set of i-cells of M

ordered in an arbitrary way. Choose a lifting ẽiα of eiα in M̃ . It follows that Ci(M̃) is

generated by {ẽiα}α as a free Z[π1(M)]-module (left or right). Choose a basis of {vγ}γ of

V . Then ci(ρ) := {ẽiα ⊗ vγ} is a C-basis of Ci(M ; ρ).

Definition 2.3.2. Let ρ : π1(M) −→ SL(2,C) be a homomorphism, Adj : SL(2,C) −→

GL(sl2(C)) be the adjoint representation of SL(2,C) on its Lie algebra. We call ρad =

Adj ◦ ρ an adjoint SL(2,C) representation of M . If C∗(M,ρad) is acyclic, we call ρ is

adjoint acyclic. Define the adjoint Reidemeister torsoin of ρ to be

Tor(M,ρ) := τ(M,ρad).
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Remark 2.3.3. In this thesis, we will only deal with the adjoint Reidemeister torsion

of ρ. For that matter, we simply call it the torsion of ρ. When no confusion arises, we

abbreviate Tor(M,ρ) as Tor(ρ).

The following result will be useful in computing torsions.

Multiplicativity Lemma Let 0 −→ C ′
∗ −→ C∗ −→ C ′′

∗ −→ 0 be an exact sequence of

chain complexes. Assume that C∗, C
′
∗, C

′′
∗ are based by c∗, c

′
∗, c

′′
∗, respectively, and their

homology groups based by h∗, h
′
∗, h

′′
∗, respectively. Associated to the short exact sequence

is the long exact sequence H∗ in homology

· · · −→ Hj(C
′
∗) −→ Hj(C∗) −→ Hj(C

′′
∗ ) −→−→ Hj−1(C

′
∗) −→ · · ·

with the reference bases. For each i, identify c′i with its image in Ci and arbitrarily choose

a preimage c̃′′i of c′′i in Ci. If the transition matrix between the bases ci and c′i ⊔ c̃′′i has

determinant ±1, we call c∗, c
′
∗, c

′′
∗ compatible. In this case, we have

τ(C∗, c∗, h∗) = τ(C ′
∗, c

′
∗, h

′
∗) τ(C

′′
∗ , c

′′
∗, h

′′
∗) τ(H∗, {h∗ ⊔ h′

∗ ⊔ h′′
∗}).

2.4 Chern-Simons invariant

In this section, we recall some basics about Chern-Simons invariants. Given an ori-

entable connected closed three manifold M , a morphism ρ of its fundamental group

π1(X) to a simply connected semi-simple Lie group G can be identified as the holonomy

representation of a flat connection Aρ on the trivial principal G-bundle over X. There-

fore, in the following we will use the terms a representation ρ and a flat connection Aρ

interchangeably via such an identification.

Definition 2.4.1. Let M be an oriented closed 3-manifold and ρ : π1(M) −→ SL(2,C)
20
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be a SL(2,C) representation. Denote by Aρ the corresponding Lie algebra sl2(C)-valued

1-form on M . The Chern-Simons (CS) invariant of (M,ρ) is defined as

CS(ρ) =
1

8π2

∫
M

Tr(dAρ ∧ Aρ +
2

3
Aρ ∧ Aρ ∧ Aρ) mod 1, (2.19)

where the integral with its coefficient in the front is well-defined up to integers.

Remark 2.4.2.

(1) The CS invariant depends on the orientation on M . To be specific, let M be the

same manifold as M with reverse orientation, then CS(M) = −CS(M) mod 1.

(2) The CS invariant CS(ρ) depends only on the character χ(ρ) of ρ [21], hence it

descends from the representation variety R(M) to the character variety χ(M).

(3) Generally, the CS invariant of a representation can be a complex number, such as

the one of the holonomy representation of the hyperbolic structure on a hyperbolic

manifold. However, the CS invariants of the examples we consider in this thesis are

all rational numbers.

CS invariants can be computed by cutting manifold M into several pieces. For our

purpose, we recall the method proposed by Klassen and Kirk in [21].

Let T be a torus and consider χ(T ), the character variety of T to SL(2,C). It is direct

to see that χ(T ) can be identified with Hom(π1(T ),C∗)/ ∼ where f ∼ g if f(·) = g(·)−1.

We now describe a ‘coordinate-version’ of χ(T ).

Let H be a group with the presentation,

H = ⟨x, y, b | [x, y] = bxbx = byby = b2 = 1⟩,
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and define an action of H on C2 by

x(α, β) = (α + 1, β), y(α, β) = (α, β + 1), b(α, β) = (−α,−β).

Denote the image of (α, β) ∈ C2 in the quotient space C2/H by [α, β]. Let v⃗ = (v1, v2)

be any Z-basis of H1(T ), and define the map,

fv⃗ : C2/H → χ(T ),

such that fv⃗[α, β] ∈ χ(T ) sends

v1 7→ e2πiα, v2 7→ e2πiβ.

It can be checked that fv⃗ is a homeomorphism. A representation of π1(T ) that induces

the character fv⃗[α, β] is given by,

v1 7→

e2πiα 0

0 e−2πiα

 , v2 7→

e2πiβ 0

0 e−2πiβ

 .

Furthermore, the homeomorphism fv⃗ is natural in the following sense. Let w⃗ be another

basis such that w⃗ = v⃗A for some A ∈ GL(2,Z) (viewing w⃗ and v⃗ as row vectors), and

define the map Φv⃗,w⃗ : C2 → C2 by right multiplying (row) vectors of C2 by A on the

right. Then Φv⃗,w⃗ induces a homeomorphism, still denoted by Φv⃗,w⃗, from C2/H to C2/H,

and the following diagram commutes,

C2/H C2/H

χ(T )

Φv⃗,w⃗

fv⃗
fw⃗
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Hence, we think of each C2/H with a choice of basis v⃗ as a coordinate realization of

χ(T ). In fact, χ(T ) is isomorphic to the direct limit1 of {(C2/H)v⃗, Φv⃗,w⃗},

χ(T ) ≃ lim
−→

(C2/H)v⃗,

where (C2/H)v⃗ is a copy of C2/H indexed by v⃗.

Next, we introduce a C∗ bundle over χ(T ). Define an action of H on C2 × C∗ lifting

that on C2 by

x(α, β; z) = (α + 1, β; ze2πiβ),

y(α, β; z) = (α, β + 1; ze−2πiα),

b(α, β; z) = (−α,−β; z).

The canonical projection C2 × C∗ → C2 induces a projection

p : C2 × C∗/H → C2/H,

which makes C2 × C∗/H a C∗ bundle over C2/H. Given two bases v⃗, w⃗ of H1(T ) with

w⃗ = v⃗A, Φv⃗,w⃗ can be covered by a bundle isomorphism. Explicitly, define Φ̃v⃗,w⃗ : C2 ×

C∗/H → C2×C∗/H which maps [α, β; z] to [(α, β)A; zdet(A)]. Then the following diagram

commutes,

(C2 × C∗/H)v⃗ (C2 × C∗/H)w⃗

(C2/H)v⃗ (C2/H)w⃗

p

Φ̃v⃗,w⃗

p

Φv⃗,w⃗

(2.20)

Let Ẽ(T ) be the direct limit of {(C2 × C∗/H)v⃗, Φ̃v⃗,w⃗}. Then Equation 2.20 induces a

1Here all maps involved are isomorphisms, so the notion of direct limit and inverse limit do not make
a difference.
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map p : Ẽ(T ) → χ(T ) which makes Ẽ(T ) a C∗ bundle over χ(T ), and the diagram below

commutes,

Ẽ(T ) (C2 × C∗/H)v⃗

χ(T ) (C2/H)v⃗

p p

fv⃗

We often represent an element of Ẽ(T ) by a ‘coordinate’ [α, β; z]v⃗ with respect to a basis

v⃗. Changing the basis to w⃗ = v⃗A induces the equality

[α, β; z]v⃗ = [(α, β)A; zdet(A)]w⃗,

and when the bases involved are clear from the context, we will omit them.

We also need an ‘orientation-version’ of Ẽ(T ). Now assume T is oriented, and define

E(T ) to be the direct limit of {(C2 × C∗/H)v⃗, Φ̃v⃗,w⃗} where the limit is taken only over

positive bases v⃗ of H1(T ), namely, those v⃗ such that v1∧v2 matches the orientation of T .

Apparently, E(T ) and E(−T ) are both bundles over χ(T ), and are both isomorphic to

Ẽ(T ). However, it will be of conceptual convenience for latter calculations to distinguish

E(T ) from E(−T ).

There is a fiber-wise pairing ⟨ , ⟩ defined on E(T ) × E(−T ) as follows. Given e ∈

E(T ), e′ ∈ E(−T ) such that p(e) = p(e′), choose an arbitrary positive basis v⃗ = (v1, v2)

of H1(T ) and hence v⃗′ := (−v1, v2) is a positive basis of H1(−T ), and write e = [α, β; z]v⃗,

e′ = [−α, β; z′]v⃗′ (or e
′ = [α,−β; z′]−v⃗′). Then ⟨e, e′⟩ := zz′. It can be checked that the

pairing is well defined.

Lastly, the above notions can be generalized to multiple tori in a natural way. Let

S = ⊔k
i=1Ti be a disjoint union of k oriented tori. Then χ(S) = χ(T1) × · · · × χ(Tk).

The group Hk acts on (C2)k component-wise and the quotient is a ‘coordinate-version’ of

χ(S). The action of Hk can also be lifted to (C2)k ×C∗ where the i-th component Hi in
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Hk acts on the i-th copy of C2 in (C2)k times C∗, and E(T ) is the quotient of (C2)k ×C∗

by this action. For n ≤ k, similar to the pairing above, there is a generalized ‘pairing’:

E(T1 ⊔ · · · ⊔ Tk)× E(−T1 ⊔ · · · ⊔ −Tm) → E(Tm+1 ⊔ · · · ⊔ Tk).

With the above notations, we recall several theorems in [21]. Let M be an oriented

compact 3-manifold with toral boundaries ∂M = ⊔k
i=1Ti and ρ : π1(M) → SL(2,C) be a

holonomy representation. It is well-known that CS(ρ) in Equation 2.19 is not well defined

since M has boundary. Let

cM(ρ) = e2πiCS(ρ).

Theorem 2.4.3 (Theorem 3.2 of [21]). The Chern-Simons invariant defines a lifting

cM : χ(M) −→ E(∂M) of the restriction map r from the character variety of M to the

character variety of ∂M ,

E(∂M)

χ(M) χ(∂M)

p
cM

r

Moreover, if Y = M1∪M2 is a closed oriented 3-manifold such that M1 and M2 are glued

along toral boundaries ∂M1 = −∂M2, then for χ ∈ χ(Y ), we have

e2πiCS(χ) = ⟨cM1(χ1), cM2(χ2)⟩,

where χi denotes the restriction of χ on Mi.

The following theorem is also due to [21] which the authors proved for the case

of SU(2) representations (Theorem 2.7), but an almost identical proof also works for

SL(2,C) representations.

Theorem 2.4.4. Let M be an oriented 3-manifold with toral boundaries ∂M = ⊔k
i=1Ti
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and ρ(t) : π1(M) → SL(2,C) be a path of representations. Let (αi(t), βi(t)) be a lift of

χ ◦ ρ(t)|Ti
to C2 with respect to some basis of H1(Ti). Suppose

cX(ρ(t)) = [α1(t), β1(t), · · · , αk(t), βk(t); z(t)]

Then

z(1)z(0)−1 = exp

(
2πi

k∑
j=1

∫ 1

0

(αj
dβj

dt
− βj

dαj

dt
)

)

In particular, if ρ(1) is the trivial representation, then

cX(ρ(0)) =

[
α1(0), β1(0), · · · , αk(0), βk(0); exp

(
−2πi

k∑
j=1

∫ 1

0

(αj
dβj

dt
− βj

dαj

dt
)
)]

The following two facts are proved for SU(2) representations in [21] (Theorems 4.1

and 4.2, respectively). Similar methods combined with Theorems 2.4.3 and 2.4.4 above

show that they also hold for SL(2,C) representations.

Fact 1 Let M be an oriented 3-manifold with toral boundaries ∂M = ⊔n
i=1Ti. Assume

H1(M) is torsion free. Choose a positive basis (µi, λi) for H1(Ti). Let {xj | j = 1, · · · ,m}

be a basis of H1(M) and µi =
∑

aijxj, λi =
∑

bijxj. Suppose that ρ : π1(M) → SL(2,C)

is an Abelian representation and Tr(ρ(xj)) = e2πiγj + e−2πiγj for some γj ∈ C. Then

cM(ρ) =
[ ∑

a1jγj,
∑

b1jγj, · · · ,
∑

anjγj,
∑

bnjγj; 1
]

Fact 2 Let F be a genus g oriented surface with k punctures. The fundamental group

of F has the presentation,

π1(F ) = ⟨a1, b1, · · · , ag, bg, x1, · · · , xk | [a1, b1] · · · [ag, bg]x1 · · ·xk = 1⟩,

26



Aspects about 3-manifolds Chapter 2

where xj corresponds to the oriented boundary (induced from F ) of the j-th puncture.

Let Y = F × S1 be endowed with the product orientation and let h̃ = ∗ × S1 be the

central element of π1(Y ) corresponding to the oriented S1 component. Then ∂Y = ⊔k
j=1Tj

with Tj the torus corresponding to the j-th puncture and (xj, h̃) is a positive basis for

H1(Tj). Suppose ρ : π1(Y ) −→ SL(2,C) is a non-Abelian representation, which implies

Tr(ρ(h̃)) = 2 cos 2πβ for some β ∈ {0, 1
2
}. Suppose Tr(ρ(xj)) = e2πiαj + e−2πiαj for some

αj ∈ C. Then

cY (ρ) =

[
α1, β, · · · , αn, β; exp

(
−2πiβ

k∑
j=1

αj

)]
.

Note that cY (ρ) does not change under the replacement of some αj by −αj.

2.5 Computation about CS invariants and adjoint R-

torsions

For our purpose, we compute the Chern-Simons invariants and adjoint Reidemeister

torsions of Seifert fiber spaces and torus bundles as follows.

2.5.1 R-torsions of Seifert fiber spaces

Freed computed R-torsions of Brieskorn homology spheres for the adjoint representa-

tions of irreducible SU(2) representations in [16]. Kitano computed torsions of SFSs for

standard irreducible SL(2,C) representations in [22]. We need to compute R-torsions of

SFSs for the adjoint representations of nonAbelian SL(2,C) representations containing

both irreducible and reducible ones. This may be known to experts, but we did not find a

reference for explicitly doing so. To make the paper self-contained, we provide a detailed

derivation of these torsions, generalizing the work of [16] and [22].

Let M be the SFS {0; (o, 0); (p1, q1), (p2, q2), (p3, q3)}. Decompose M as ∪3
i=0Ai ∪ B
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along ∪3
i=0 Ti where B = (S2−4pts)×S1, and B0, Bi(i = 1, 2, 3) are solid tori attached to

B by index 1, pi
qi
along T0, Ti, respectively. Let ρ : π1(M) −→ SL(2,C) be a non-Abelian

representation, V = sl(2,C) be the adjoint representation of ρ with the basis

e1 =

0 1

0 0

 , e2 =

1 0

0 −1

 , e3 =

0 0

1 0


From Section 2.2, ρ is parametrized by (n1, n2, n3, h) where 0 < ni < pi

2
, ni ∈ 1

2
Z,

h = 0, 1
2
. Assume that ri, si ∈ Z, such that pisi − riqi = 1.

Proposition 2.5.1. When ρ is nonAbelian, C∗(M)⊗Z[π1(M)] V is acyclic and

Tor(M ; ρ) =
p1p2p3∏3

i=1 4 sin
2 2πrini

pi

Proof: Denote C∗ ⊗Z[π1] V by C∗,ρ, twisted homology by H∗, and the matrix of

element in π1 under ρ by the same letter.

Given CW structure on M , we have the following exact chain sequence

0 −→
3⊕

i=0

C∗,ρ(Ti) −→
3⊕

i=0

C∗,ρ(Ai)⊕ C∗,ρ(B) −→ C∗,ρ(M) −→ 0

and long exact sequence

0 −→ H3(Ti) −→ H3(Ai, B) −→ H3(M) −→ · · ·

−→ H0(Ti) −→ H0(Ai, B) −→ H0(M) −→ 0

Construct cell structure as follows.

C0(B) =< vB >,C0(Ti) =< vTi
>,C0(Ai) =< vAi

>
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C1(B) =< x1, x2, x3, h >,C1(Ti) =< mi, li >,C1(Ai) =< bi >

C2(B) =< u1,B, u2,B, u3,B >,C2(Ti) =< uTi
>

where v∗ are base points of connected spaces, xi generate π1(S
3 − 4pts), h = ∗ × S1 ∈

π1(S
3−4pts×S1),mi, li are meridians and longitudes of Ti respectively, bi are longitudes of

boundary of Ai, ui,B are squares with boundary xihx
−1
i h−1, uTi

are squares with boundary

milim
−1
i l−1

i . Ti(i = 1, 2, 3) are attached to xi × h by identity map and boundary of Ai

by

 si −qi

−ri pi

. T0 is attached to x1x2x3 × h and boundary of A0 by identity map.

x1, x2, x3, h generate π1(M) as follows.

π1(M) =< x1, x2, x3, h|xpihqi = 1, xih = hxi, x1x2x3 = 1 >

For matrix under ρ, we have

xi ∼


ζi 0 0

0 1 0

0 0 ζ−1
i

 , h = I

where ζi is a pi-th root of unity. mi = xi, bi = xri
i , li = h. Here we use 1-cell with ends

points attached as element in π1.

The work of [16] can be generalized to irreducible representations of SL(2,C). Thus

we focus on reducible and nonAbelian representations. According to 2.7, taking upper

triangular ones for example, they have the following form.

x1 =

a1 0

0 a−1
1

 , x2 =

a2 1

0 a−1
2

 , x3 =

a−1
1 a−1

2 −a1

0 a1a2
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where a1, a2, a3 = a−1
1 a−1

2 are roots of 1 or −1.

For joint representation, we have

x1 =


a−2
1 0 0

0 1 0

0 0 a21

 , x2 =


a−2
2 2a−1

2 −1

0 1 −a2

0 0 a22



x3 =


a21a

2
2 −2a2 −a−2

1

0 1 a−2
1 a−1

2

0 0 a−2
1 a−2

2

 (2.21)

Let w±
i be the eigenvectors of xi for eigenvalue ζi = a−2

i = e
4πini
pi , ζ−1

i = e
− 4πini

pi

respectively and w0
i be the eigenvector of xi for eigenvalue 1. Then w±

i are the eigenvectors

of xr
i for ζ

ri
i and w0

i be the eigenvector of xri
i for 1. By scaling, assume that |[w±

i w
0
i ]| = 1

in V . According to 2.21 , w±
1 , w

−
2 is a basis of V . Similarly, for lower triangular ones in

2.7, w±
1 , w

+
2 is a basis of V .

For Ti(i = 1, 2, 3), we have

0 −→ C2,ρ(Ti)
∂2−→ C1,ρ(Ti)

∂1−→ C0,ρ(Ti) −→ 0

where

∂2 =

 O

xi − I

 , ∂1 =

(
xi − I O

)
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We have

H2(Ti) =< ũTi
⊗ w0

i >

H1(Ti) =< m̃i ⊗ w0
i , l̃i ⊗ w0

i >

H0(Ti) =< ṽTi
⊗ w0

i >

Choose preference basis h∗ for H∗(Ti) as above and similarly with others. Without

confusion, we omit h∗ in the expression as c∗.

τ(C∗,ρ(Ti)) = | [l̃i ⊗ (xi − I)w±
i , m̃i ⊗ w0

i , l̃i ⊗ w0
i , m̃i ⊗ w±

i ]

[ũTi
⊗ w0

i , ũTi
⊗ w±

i ][ṽTi
⊗ w0

i , ṽTi
⊗ (xi − I)w±

i ]
|

= | [l̃i ⊗ (ζ±1
i − 1)w±

i , m̃i ⊗ w0
i , l̃i ⊗ w0

i , m̃i ⊗ w±
i ]

[ũTi
⊗ w0

i , ũTi
⊗ w±

i ][ṽTi
⊗ w0

i , ṽTi
⊗ (ζ±1

i − 1)w±
i ]
|

= 1 (2.22)

For T0, we have ∂2 = 0, ∂1 = 0.

H2(T0) =< ũT0 ⊗ ei > (i = 1, 2, 3)

H1(T0) =< m̃0 ⊗ ei, l̃0 ⊗ ei >

H0(T0) =< ṽT0 ⊗ ei >

τ(C∗ρ(T0)) = 1 (2.23)

For Ai(i = 1, 2, 3), we have

0 −→ C1,ρ(Ai) −→ C0,ρ(Ai) −→ 0
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where ∂1 = xri
i − I.

We have

H1(Ai) =< b̃i ⊗ w0
i >

H0(Ai) =< ṽAi
⊗ w0

i >

τ(C∗,ρ(Ai)) = | [b̃i ⊗ w0
i , b̃i ⊗ w±

i ]

[ṽAi
⊗ (xri

i − I)w±
i , ṽAi

⊗ w0
i ]
|

= | [b̃i ⊗ w0
i , b̃i ⊗ w±

i ]

[ṽAi
⊗ (ζ±ri

i − 1)w±
i , ṽAi

⊗ w0
i ]
|

=
1

|ζrii − 1||ζ−ri
i − 1|

(2.24)

For A0, we have ∂1 = 0.

H1(A0) =< b̃0 ⊗ ei > (i = 1, 2, 3)

H0(A0) =< ṽA0 ⊗ ei >

τ(C∗ρ(A0)) = 1 (2.25)

For B, we have

0 −→ C2,ρ(B)
∂2−→ C1,ρ(B)

∂1−→ C0,ρ(B) −→ 0
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where

∂2 =



O O O

O O O

O O O

x1 − I x2 − I x3 − I


, ∂1 =

(
x1 − I x2 − I x3 − I O

)

We have

H2(B) =< ũi,B ⊗ w0
i , (ũ1,B + ũ2,Bx1 + ũ3,Bx2x1)⊗ ei > (i = 1, 2, 3)

H1(B) =< x̃i ⊗ w0
i , (x̃1 + x̃2x1 + x̃3x2x1)⊗ ei >

τ(C∗,ρ(B))

= |[ũi,B ⊗ w0
i , ũ⊗ ei, ũ1,B ⊗ w±

1 , ũ2,B ⊗ w−
2 ]

−1

[ṽB ⊗ (x1 − I)w±
1 , , ṽB ⊗ (x2 − I)w−

2 ]
−1

[x̃i ⊗ w0
i , x̃⊗ ei, h̃⊗ (x1 − I)w±

1 , h̃⊗ (x2 − I)w−
2 , x̃1 ⊗ w±

1 , x̃2 ⊗ w−
2 ]|

= |[ũi,B ⊗ w0
i , ũ⊗ ei, ũ1,B ⊗ w±

1 , , ũ2,B ⊗ w−
2 ]

−1

[ṽB ⊗ (ζ±1
1 − 1)w±

1 , ṽB ⊗ (ζ−1
2 − 1)w−

2 ]
−1

[x̃i ⊗ w0
i , x̃⊗ ei, h̃⊗ (ζ±1

1 − 1)w±
1 , h̃⊗ (ζ−1

2 − 1)w−
2 , x̃1 ⊗ w±

1 , x̃2 ⊗ w−
2 ]|

= |[ũi,B ⊗ w0
i , ũ⊗ ei, ũ1,B ⊗ w±

1 , , ũ2,B ⊗ w−
2 ]

−1[ṽB ⊗ w±
1 , ṽB ⊗ w−

2 ]
−1

[x̃i ⊗ w0
i , x̃⊗ ei, h̃⊗ w±

1 , h̃⊗ w−
2 , x̃1 ⊗ w±

1 , x̃2 ⊗ w−
2 ]|

= 1 (2.26)

where x̃ = x̃1 + x̃2x1 + x̃3x2x1, ũ = ũ1,B + ũ2,Bx1 + ũ3,Bx2x1.
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In the long exact sequence for twisted homology group, we have isomorphisms

0 −→ H∗(Ti) −→ H∗(Ai, B) −→ 0

Then C∗,ρ(M) is acyclic as follows.

We have

0 −→
3⊕

i=0

H0(Ti) −→
3⊕

i=0

H0(Ai) −→ 0

where ∂(ṽTi
⊗ w0

i ) = ṽAi
⊗ w0

i , ∂(ṽT0 ⊗ ei) = ṽA0 ⊗ ei, det(∂) = 1.

0 −→
3⊕

i=0

H1(Ti) −→
3⊕

i=0

H1(Ai)⊕H1(B) −→ 0

where ∂(m̃i ⊗w0
i ) = (x̃i − b̃iQi)⊗w0

i , ∂(l̃i ⊗w0
i ) = b̃iPi ⊗w0

i , ∂(m̃0 ⊗ ei) = (x̃1 + x̃2x1 +

x̃3x1x2)⊗ ei, ∂(l̃0 ⊗ ei) = b̃0 ⊗ ei, Qi =
∑qi

j=1 x
−jri , Pj =

∑pi−1
j=0 xjri , det(∂) = p1p2p3.

0 −→
3⊕

i=0

H2(Ti) −→ H2(B) −→ 0

where ∂(ũTi
⊗ w0

i ) = ũi,B ⊗ w0
i , ∂(ũ0 ⊗ ei) = (ũ1,B + ũ2,Bx1 + ũ3,Bx2x1)⊗ ei, det(∂) = 1.

According to Multiplicativity lemma, Equations 2.22, 2.23, 2.24, 2.25, 2.26 and the

calculations about homology above, we have

Tor(C∗,ρ(M)) =
p1p2p3∏3

i=1 4 sin
2 2πrini

pi

2.5.2 CS invariants of SFSs

Auckly computed the CS invariant of SFSs for SU(2) representations in [3]. The CS

invariant of SFSs for SL(2,C) representations may be known to experts. However, to

make the paper self-contained, we provide a proof to compute that using method from
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[21].

Proposition 2.5.2. Let M = {0; (o, g); (p1, q1), (p2, q2), · · · , (pk, qk)} be an SFS with

the presentation of π1(M) given in Equation 2.1 with b = 0. Choose integers sj and

rj such that pjsj − qjrj = 1. Suppose ρ : π1(M) → SL(2,C) is non-Abelian such that

Tr(ρ(xj)) = 2 cos
2πnj

pj
, then

CS(ρ) =



k∑
j=1

rjn
2
j

pj
mod 1, ρ(h) = I

k∑
j=1

(
rjn

2
j

pj
− qjsj

4
) mod 1, ρ(h) = −I

Remark 2.5.3. The formula for the CS invariant in Proposition 2.5.2 differs from that

in [3] with a negative sign. We believe this discrepancy is due to conventions.

Proof: Let Y = F × S1 be as in Fact 2 above with the chosen generators xj and

h̃. Set h = h̃−1. Then M is obtained from Y by gluing k solid tori where the j-th solid

torus Aj is glued along Tj by sending the meridian to x
pj
j hqj . The generators xj and h

match those as presented in Equation 2.1. Choose a meridian-longitude pair (µj, λj) for

Aj such that (µj, λj) is a positive basis of H1(∂Aj). The gluing of Aj to Y provides the

transition of basis,

(µj, λj) = (xj, h)

pj rj

qj sj

 .

Since ρ is non-Abelian, ρ(h) is ±I. By assumption,

Tr(ρ(xj)) = exp(
2πinj

pj
) + exp(−2πinj

pj
), Tr(ρ(h)) = 2 cos(2πm), m = 0,

1

2
.
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Therefore,

cY (ρ) =
[n1

p1
,−m, · · · , nk

pk
,−m; exp(2πim

k∑
j=1

nj

pj
)
]
(x1,−h;··· ;xk,−h)

cAj
(ρ) = [0,

rjnj

pj
+ sjm; 1](µj ,λj)

= [−qj(
rjnj

pj
+ sjm), rjnj + sjpjm; 1](xj ,h)

= [
nj

pj
− sjαj,m+ rjαj; 1], (setting αj = nj + qjm)

=

[
nj

pj
− sjαj,m; exp

(
2πi(rjαj)(

nj

pj
− sjαj)

)]
=

[
nj

pj
,m; exp

(
2πi(rjαj)(

nj

pj
− sjαj) + 2πi(sjαj)m

)]

Note that the relation x
pj
j hqj = 1 implies that αj must be an integer. Applying the

pairing on cY (ρ) and each cAj
(ρ) one by one, we obtain,

CS(ρ) =
k∑

j=1

(rjαj
nj

pj
+ sjαjm+m

nj

pj
)

=
k∑

j=1

(rjn2
j

pj
+ sjm(nj + αj)

)
=

k∑
j=1

(
rjn

2
j

pj
− sjqjm

2).

2.5.3 R-torsions of torus bundles

In this subsection, we compute the adjoint R-torsions for the torus bundle over the

circleM with the monodromy map

a b

c d

 ∈ SL(2,Z) where |a+d| > 2. Its fundamental

group has a presentation given in Equation 2.9.
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xayc

xbyd

Φ =

(
a b
c d

)v x

y

h

Figure 2.2. A cell structure for the torus bundle with monodromy matrix Φ For conve-
nience but no other purposes, mark the vertical edges green, the horizontal on the top
face red, and the 45o-slope edges on the top face blue. Edges of the same color and the
same arrow are identified. The front and back faces are identified by the obvious map,
and so are the left and right side faces. The bottom face is identified to the top via
the monodromy map Φ. Hence, the single-arrow edge and the double-arrow edge at the
bottom face are homotopic to xayc and xbyd, respectively.

Construct a cell structure for M as follows. See Figure 2.2. The cell structure

contains,

• a single 0-cell v;

• three 1-cells corresponding to the generators x, y, and h in the presentation of

π1(M);

• three 2-cells corresponding to the three relations in the presentation of π1(M). Ex-

plicitly, denote them by s1, s2 and s3 such that ∂s1 = yxy−1x−1, ∂s2 = h−1xh(xayc)−1,

and ∂s3 = h(xbyd)h−1y−1. Graphically, s1, s2 and s3 correspond to the top face, the

back face, and the left face, respectively, in Figure 2.2 with the induced orientation

of the cube.

• a single 3-cell t. Think of a 3-cell as a cube. Then the attaching map is determined

by the identification of faces described in Figure 2.2.

Let V be a representation ρ : π1(M) → GL(V ), and let {vj | j = 1, 2, · · · } be an

arbitrary basis of V . We now construct the chain complex. For simplicity, assume that
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a, b, c, d ≥ 0, a ≥ c, b ≥ d. Other cases can be dealt similarly. Fix an arbitrary preimage

ṽ of v. For each other cell σ, fix a lifting σ̃ starting at the base point ṽ. We have the

following chain complex,

0 −→ C3
∂3−→ C2

∂2−→ C1
∂1−→ C0 −→ 0

where Ci = Ci(M̃) ⊗Z[π1(M)] V . As a vector space, Ci has the following basis, C3 =

span{t̃⊗ vj | j = 1, 2, · · · }, C2 = span{s̃i ⊗ vj | i = 1, 2, 3, j = 1, 2, · · · }, C1 = span{σ̃ ⊗

vj | σ = x, y, h, j = 1, 2, · · · }, C0 = span{ṽ⊗vj | j = 1, 2, · · · }. We present the boundary

map ∂i as a block matrix with each entry a dim(V ) × dim(V ) block. Also, denote

S : Z[π1(M)] → Z[π1(M)] the antipode map that sends a group element g ∈ π1(M) to

its inverse g−1 and linearly extends to the whole ring. Lastly, for a matrix A with entries

in Z[π1(M)], ρ ◦ S(A) is meant applying ρ ◦ S to every entry of A. With the above

conventions, the boundary map is given by,

∂3 = ρ ◦ S


1− hw(x, y)

1− y

1− x



∂2 = ρ ◦ S


y − 1 1− h

∑a−1
i=1 x

i h
∑b−1

i=1 x
i

1− x −hxa
∑c−1

i=1 y
i hxb

∑d−1
i=1 y

i − 1

0 x− 1 1− y



∂1 = ρ ◦ S
(
x− 1 y − 1 h− 1

)
where w is a polynomial of x, y with the sum of its coefficients equal to 1.

For each of the non-Abelian characters of π1(M) to SL(2,C), we will compute its
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torsion below and show (implicitly) that the associated chain complex is always acyclic

and the torsion does not depend on the representation chosen in the equivalence class of

a character.

For an irreducible representation ρ given in Equation 2.10 that satisfies Equation

2.13, its adjoint representation has the form,

x =


α2 0 0

0 1 0

0 0 α−2

 , y =


β2 0 0

0 1 0

0 0 β−2

 , h =


0 0 −1

0 −1 0

−1 0 0


Denote by I and O and 3× 3 identity matrix and zero matrix, respectively, and let

A =


1 0 0

0 0 0

0 1 0

 , B =


0 0 0

0 0 1

0 0 0

 .

Define the block matrices,

K1 =


A

O

B

 , K2 =


O A

I O

O B

 , K3 =

(
I

)
.

It can be checked directly that the columns (as vectors in Ci−1) of ∂iKi is a basis of

Im(∂i). Set K4 = K0 to be the empty matrix. Now for i = 0, 1, 2, 3, let

Ai =

(
∂i+1Ki+1 Ki

)
,
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then the columns of Ai give a basis for Ci. By direct calculations, we obtain the torsion,

Tor(ρ) =

∣∣∣∣det(A1) det(A3)

det(A0) det(A2)

∣∣∣∣ =
|a+ d+ 2|

4
.

Now we compute the torsion of the reducible representations ρ given in Equation

2.14. The associated adjoint representation takes the form,

x =


1 −2 −1

0 1 1

0 0 1

 , y =


1 −2u −u2

0 1 u

0 0 1

 , h =


v2 0 0

0 1 0

0 0 1
v2

 ,

which are clearly independent on the sign terms ϵx and ϵy. Let,

A =


0 0 0

1 0 0

0 1 0

 , B =


0 0 0

0 0 1

0 0 0

 , C =


0 0 0

0 0 0

1 0 0

 ,

D =


0 0 0

0 1 0

0 0 1

 , E =


0 0 0

0 0 0

0 0 1

 , F =


1 0 0

0 0 0

0 1 0

 .

Define the block matrices,

K1 =


E

O

F

 , K2 =


A O

B C

O D

 , K3 =

(
I

)
.

The matrices Ki have the same properties as outlined in the case of irreducible rep-

resentations above, and in the same way define the matrices Ai. It can be computed
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that,

Tor(ρ) =

∣∣∣∣det(A1) det(A3)

det(A0) det(A2)

∣∣∣∣ = |a+ d+ 2|.

Some details for the derivation are as follows, where the condition cu2 +(a− d)u− b = 0

is used to simplify expressions,

Tor(ρ) = |(2cu+ a− d)(b− u+ du)(a− b+ 1 + (c− d− 1)u)

u(1− cu− a)2(u− 1)
|

= |(2cu+ a− d)(b− u+ du)(a− b+ 1 + (c− d− 1)u)

(cu2 + (a− 1)u)(cu2 + (a− 1− c)u− a+ 1)
|

= |(2cu+ a− d)(b− u+ du)(a− b+ 1 + (c− d− 1)u)

((d− 1)u+ b)((d− c− 1)u+ b− a+ 1)
|

= | (d− c− 1)u+ b− a+ 1

2(c− d− 1)cu2 + (2c(a− b+ 1) + (a− d)(c− d− 1))u+ (a− d)(a− b+ 1)
|

= |(2c(a− b+ 1)− (a− d)(c− d− 1))u+ (a− d)(a− b+ 1) + 2b(c− d− 1)

(d− c− 1)u+ b− a+ 1
|

= |(a+ d+ 2)((d− c− 1)u+ b− a+ 1)

(d− c− 1)u+ b− a+ 1
|

= |a+ d+ 2|.

2.5.4 CS invariants of torus bundles

Any irreducible representation of π1(M) to SL(2,C) can be conjugated to one into

SU(2) (see Equation 2.10), and Kirk and Klassen computed its CS invariant in [20]. Here

we use methods in [21] to compute the CS invariant of both irreducible and reducible

but indecomposable ones, the latter of which can not be conjugated to SU(2).

Let Ti (i = A,B) be two copies of the torus, and I be the interval [0, 1]. Then M

is obtained by gluing the two Ti × I such that TB × {0} is glued to TA × {1} via the

identity map and TB × {1} is glued to TA × {0} via the map

a b

c d

. Let (µi, λi) be a

positive basis of H1(Ti) so that, under the embedding Ti × I ↪→ M , µi and λi are sent
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to x and y, respectively. For κ = 0, 1, denote by µκ
i the element of H1(Ti × {κ}) that

corresponds to µi in H1(Ti × I), and by λκ
i in a similar way. Then (µ1

i , λ
1
i ) is a positive

basis for H1(Ti ×{1}) and (−µ0
i , λ

0
i ) is a positive basis for H1(Ti ×{0}). These basis are

identified as follows,

(µ0
B, λ

0
B) = (µ1

A, λ
1
A), (µ1

B, λ
1
B) = (µ0

A, λ
0
A)

a b

c d

 .

Set N = |a + d + 2|. For an irreducible representation ρ in Equation 2.10 where

α = e
2πi k
N and β = e

2πi l
N , we have

cTi×I(ρ) = [
k

N
,
l

N
,
k

N
,
l

N
; 1](µ1

i ,λ
1
i ),(µ

0
i ,λ

0
i )

= [
k

N
,
l

N
,− k

N
,
l

N
; 1](µ1

i ,λ
1
i ),(−µ0

i ,λ
0
i )

Hence,

cTA×I(ρ)

= [
k

N
,
l

N
,
k

N
,
l

N
; 1](µ1

A,λ1
A),(µ0

A,λ0
A)

= [
k

N
,
l

N
,
ak + cl

N
,
bk + dl

N
; 1](µ1

A,λ1
A),(µ1

B ,λ1
B)

= [
k

N
,
l

N
,− k

N
,
bk + dl

N
; exp(2πi(−ν)

bk + dl

N
)], (ν :=

(a+ 1)k + cl

N
)

= [
k

N
,
l

N
,− k

N
,− l

N
; exp(2πi(−ν)

bk + dl

N
+ 2πi(−µ)

k

N
)], (µ :=

bk + (d+ 1)l

N
)

= [
k

N
,
l

N
,− k

N
,
l

N
; exp(2πif)](µ1

A,λ1
A),(−µ1

B ,λ1
B)

where,

f = ν
bk + dl

N
+ µ

k

N
=

kµ− lν

N
+ µν.
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Note that, by Equation 2.13, µ and ν are both integers. Also,

cTB×I(ρ) = [
k

N
,
l

N
,− k

N
,
l

N
; 1](µ1

B ,λ1
B),(−µ0

B ,λ0
B)

= [
k

N
,
l

N
,− k

N
,
l

N
; 1](µ1

B ,λ1
B),(−µ1

A,λ1
A)

By taking the pairing on cTA×I(ρ) and cTB×I(ρ), we obtain that,

CS(ρ) = f =
kµ− lν

N
. (2.27)

For reducible representations ρϵx,ϵy in Equation 2.14 depending on the values of ϵx

and ϵy (see Section ??), the computation of the CS invariant proceeds in the exactly the

same way as for irreducible representations by making the substitution,

k

N
→ ϵx

2
,

l

N
→ ϵy

2
.

Consequently, by setting

ν =
(a+ 1)ϵx + cϵy

2
, µ =

bϵx + (d+ 1)ϵy
2

,

we obtain that,

CS(ρϵx,ϵy) =
ϵxµ− ϵyν

2
=

ϵxµ+ ϵyν

2

=
(a+ d+ 2)ϵxϵy + bϵx + cϵy

4
(2.28)

It can be checked that CS(ρϵx,ϵy) ∈ 1
2
Z.
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Aspects about algebra

3.1 Modular tensor category

We recall some basics about modular tensor category. We choose C as base field and

denote the set of isomorphism classes of objects of category C by O(C).

3.1.1 Monoidal category

Definition 3.1.1. A monoidal category is a quintuple (C,⊗, a, 1, lX , rX) where ⊗ : C ×

C −→ C is a bifunctor, a:(−⊗−)⊗− −→ −⊗ (−⊗−) is a natural isomorphism called

associativity isomorphism, 1 ∈ C is an object, lX : 1 ⊗X −→ X and rX : X ⊗ 1 −→ X

are natural isomorphisms, subject to the two axioms as shown in Fig. 3.1, 3.2.

((W ⊗X)⊗ Y )⊗ Z

(W ⊗ (X ⊗ Y ))⊗ Z

W ⊗ ((X ⊗ Y )⊗ Z)

(W ⊗X)⊗ (Y ⊗ Z)

W ⊗ (X ⊗ (Y ⊗ Z))

aW,X,Y ⊗ id

aW,X⊗Y,Z

id⊗ aX,Y,Z

aW⊗X,Y,Z

aW,X,Y⊗Z

Figure 3.1. Pentagon axiom
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(X ⊗ 1)⊗ Y X ⊗ Y

X ⊗ (1⊗ Y )

aX,1,Y

rX ⊗ idY

idX ⊗ lY

Figure 3.2. Triangle axiom

3.1.2 Fusion category

Definition 3.1.2. An objectX∗ ∈ C is said to be a left dual ofX if there exist morphisms

evX : X∗ ⊗X −→ 1 and coevX : 1 −→ X ⊗X∗, called the evaluation and coevaluation,

such that the following compositions are identity morphisms.

X
coevX⊗idX−→ (X ⊗X∗)⊗X

aX,X∗,X−→ X ⊗ (X∗ ⊗X)
idX⊗evX−→ X (3.1)

X∗ idX∗⊗coevX−→ X∗ ⊗ (X ⊗X∗)
a−1
X∗,X,X∗
−→ (X∗ ⊗X)⊗X∗ evX⊗idX∗−→ X∗ (3.2)

A right dual ∗X of X can be defined similarly.

The left or right dual of an object is unique up to a unique isomorphism.

Definition 3.1.3. An object in a monoidal category is called rigid if it has left and right

duals. A monoidal category C is called rigid if every object of C is rigid.

Definition 3.1.4. A fusion category is a finite, semisimple, rigid, C-linear monoidal

category with a simple tensor unit.

Let C be a fusion category. We denote the set of isomorphism classes of simple objects
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of C by L(C) = {X0 = 1, · · · , Xn−1}. We have the fusion rules given by

Xi ⊗Xj
∼=
∑
k

Nk
i,jXk (3.3)

where Nk
i,j = dimHom(Xi⊗Xj, Xk) are called the fusion coefficients. For any Xi ∈ L(C),

the fusion matrix Ni is given by (Ni)k,j = Nk
i,j. The largest positive eigenvalue of Ni

is called the Frobenius-Perron dimension (or FP-dimension) of Xi and is denoted by

FPdim(Xi) (cf. [14]). A simple object X ∈ L(C) is called invertible if FPdim(X) = 1. A

fusion category C is pointed if any X ∈ C is invertible.

3.1.3 Spherical category

Definition 3.1.5. A pivotal sturcture on a fusion category C is a natural isomorphism

aX : X −→ X∗∗ for every X ∈ C.

Given aX defined as above and any f : X −→ X, define left and right quantum traces

TrL(f) : 1
coevX∗−→ X∗ ⊗X∗∗ id⊗a−1

X−→ X∗ ⊗X
evX−→ 1 (3.4)

TrR(f) : 1
coevX−→ X ⊗X∗ a⊗idX∗−→ X∗∗ ⊗X∗ evX∗−→ 1 (3.5)

A pivotal structure is spherical if TrL(f) = TrR(f) for any f ∈ End(X). A spherical

category C is a fusion category with a spherical structure. For any X ∈ L(C), define the

quantum dimension of X by

dima(X) = Tr(idX) ∈ End(1). (3.6)

Without making confusion, we omit the subscript a. Define the global dimension D of C
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(X ⊗ Y )⊗ Z

X ⊗ (Y ⊗ Z) (Y ⊗ Z)⊗X

Y ⊗ (Z ⊗X)

(Y ⊗X)⊗ Z Y ⊗ (X ⊗ Z)

aX,Y,Z

cX,Y⊗Z

aY,Z,X

cX,Y ⊗ id

aY,X,Z

id⊗ cX,Z

X ⊗ (Y ⊗ Z)

(X ⊗ Y )⊗ Z Z ⊗ (X ⊗ Y )

(Z ⊗X)⊗ Y

X ⊗ (Z ⊗ Y ) (X ⊗ Z)⊗ Y

a−1
X,Y,Z

cX⊗Y,Z

a−1
Z,X,Y

id⊗ cY,Z

a−1
X,Z,Y

cX,Z ⊗ id

Figure 3.3. Hexagonal axiom

by

D2 =
n∑

i=1

dim(Xi)
2, (3.7)

where Xi ∈ L(C).

Theorem 3.1.6 (P. Etingof, D. Nikshych, and V. Ostrik 05). Let C be a spherical

category, then dim(X)2 > 0 for any X ∈ L(C).

Accoring to the above theorem, D2 is always a positive number. Generally we choose

the positive value for D.

3.1.4 Premodular tensor category

Definition 3.1.7. A braiding on C is a natural isomorphism cX,Y : X ⊗ Y −→ Y ⊗ X

for any X, Y ∈ C satisfying the hexagonal axiom as shown in Fig. 3.3.
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Definition 3.1.8. A twist on C is an element θ ∈ Aut(idC) such that

θX⊗Y = (θX ⊗ θY )cX,Y cY,X (3.8)

θ is called a ribbon structure if θ∗X = θX∗ . A premodular tensor category is a braided

fusion category with a ribbon category.

Theorem 3.1.9 (C. Vafa 88, G.Andersen and G.Moore 88, B. Bakalov and A. Kirillov

Jr. 01). Let C be a premodular category. Twist θX is a root of unity for any X ∈ L(C).

Definition 3.1.10. (1) The T -matrix of C is a n by n diagonal matrix diag{θXi
} for

Xi ∈ L(C).

(2) The S-matrix of C is a n by n matrix with each entry SXi,Xj
defined by

SXiXj
= Tr(cXj ,Xi

cXi,Xj
) (3.9)

for any Xi, Xj ∈ L(C).

S, T -matrix are called the modular data of C.

Definition 3.1.11. A modular tensor category is a premodular category with a nonde-

generate S-matrix.

Theorem 3.1.12 (P. Etingof, S. Gelaki, D. Nikshych and V. Ostrik 15...). Let C be a

modular category. S and T -matrix form a projective representation of SL(2,Z).

3.1.5 Unitary category

Definition 3.1.13. A Hermitian ribbon category C is a ribbon category with a conjuga-

tion¯: Hom(X, Y ) −→ Hom(Y,X) for any X, Y ∈ C, such that

(1) ¯̄f = f , f ⊗ g = f̄ ⊗ ḡ, fg = ḡf̄ .
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(2) cX,Y = c−1
X,Y .

(3) θX = θ−1
X , coevX = evXcX,X∗(θX ⊗ idX∗), evX = (idX∗ ⊗ θ−1

X )c−1
X∗,XcoevX .

C is unitary if the Hermitian form (f, g) = Tr(fḡ) is positive definite on Hom(X, Y )

for any X, Y ∈ C.

On a unitary ribbon category, the quantum dimension of every object is a positive

real number.

3.2 Examples

We recall some algebraic examples that will be used in the program.

3.2.1 Temperley-Lieb-Jones category

Let A be an indeterminant over C, and d = −A2−A−2. We will call A the Kauffman

variable, and d the loop variable. Let F = C[A,A−1]. Let I = [0, 1] be the unit interval,

and R = I × I be the square in the plane. The generic Temperley-Lieb-Jones category

TLJ(A) is defined as follows. An object of TLJ(A) is the unit interval with a finite

set of points in the interior of I, allowing the empty set, with each point colored by

a natural number. Given X, Y ∈ TLJ(A), morphisms in Hom(X, Y ) are formal F-

linear combinations of uni-trivalent graphs connecting X, Y with admissible compatible

colorings, modulo d-isotopic relation. TLJ(A) has a tensor product from horizontal

juxtaposition of formal diagrams. The empty object is a tensor unit. Every object is

self-dual. The involution X −→ X̄ is the duality. For more details, please refer to [33].

TLJ(A) is not a premodular tensor category. But by setting A to be some roots of

unity, we will get (pre)modular tensor categories. The following theorem is known to

experts.
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Theorem 3.2.1.

(1) If A ∈ C/{0} such that the loop value d is not a root of any Chebyshev polynomial,

then the structure of TLJ(A) is the same as generic TLJ(A).

(2) If A is a primitive 4r-th root of unity, then TLJ(A) is a modular tensor category.

(3) If r is odd, and A is a primitive 2r-th root of unity, then TLJ(A) is a premodular

tensor category with S−matrix S = Seven ⊗

1 1

1 1

 where Seven is the submatrix

of S indexed by even labels. Furthermore, Seven is nondengenerate.

3.2.2 SU(2)k anyon model

For each integer r ≥ 2, there is a unitary MTC, usually denoted by SU(2)r−2 [4],

which is closely related to the Temperley-Lieb-Jones categories. Here r − 2 is called the

level of the MTC. It has the same label set as TLJ(e
2πi
4r ), say L = {0, 1, ..., r − 2}, but

differs from it in modular data by some signs. Explicitly, setting A = e
2πi
4r , the modular

data for SU(2)r−2 is given as follows where i, j ∈ L,

θj = Aj(j+2) = e
2πi j(j+2)

4r , (3.10)

Sij = [(i+ 1)(j + 1)]A =
sin (i+1)(j+1)π

r

sin π
r

. (3.11)

In particular, its quantum dimensions are all positive (since it is unitary),

dj = [j + 1]A =
sin (j+1)π

r

sin π
r

, (3.12)
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and the total dimension is

D =

√
r

2

1

sin π
r

. (3.13)

Note that dj = |dj(A)| andD = D(A), where dj(A) andD(A) are the quantum dimension

of j and total dimension of TLJ(A), respectively.

3.2.3 Pointed category

Let C be a premodular tensor category. We say an object X ∈ C is invertible if

dim(X) = 1. We call C a pointed category if every object in C is invertible. Every pointed

category is equivalent to VecωG, which is the category of finite dimensional vector spaces

graded by a finite group G with the associativity given by the 3-cocycle ω ∈ Z3(G,C×)

[13].

Let G be a finite abelian group, q : G → C× be a quadratic form, and χ : G → C×

be a character such that χ2 = 1. As shown in [12], there exists a pointed premodular

category C(G, q, χ) with the following properties:

• the simple objects of C(G, q, χ) are parametrized by G, and the monoidal product

is given by the group product;

• Sgh = b(g, h)χ(g)χ(h), where b is the bicharacter b(g, h) := q(gh)
q(g)q(h)

; and

• Tg = q(g)χ(q).

Moreover, every pointed premodular category is equivalent to some C(G, q, χ). When χ

is trivial, we simply denote it as C(G, q).
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3.2.4 Equivariantization

Let G be a finite group, and C be a fusion category. We recall some notions about

equivariantization. For more details, please refer to [5, 12, 24].

Definition 3.2.2. Let G be the fusion category whose objects are elements of G and

morphisms are identities. The tensor product is given by the multiplication of G.

Define the action of G on C by the tensor functor T : G → Aut⊗(C); g 7→ Tg. For

any g, h ∈ G let γg,h be the isomorphism Tg ◦ Th ≃ Tgh that defines the tensor structure

on the functor T .

Definition 3.2.3. Define the G-equivariantization of C as follows.

• An object of CG is a pair (X, u), where X ∈ C and u =
{
ug : Tg(X)

∼→ X | g ∈ G
}
,

such that ugh ◦ γg,h = ug ◦ Tg (uh) for all g, h ∈ G. (X, u) is called G-equivariant

object.

• The morphisms between equivariant objects are morphisms in C commuting with

ug, g ∈ G.

• The tensor product given by (X, u)⊗ (Y,w) := (X ⊗ Y, u⊗w), where (u⊗w)g :=

(ug⊗wg)◦ (µg
X,Y )

−1 and µg
X,Y : Tg(X)⊗Tg(Y ) → Tg(X⊗Y ) is the tensor structure

for T .

CG is a fusion category.
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From 3-manifolds to modular data

4.1 Program to construct modular data

The modular data of an MTC or a premodular category consist of the modular S- and

T - matrices. Given a 3-manifold M with certain conditions, [8] contains an algorithm

for choosing the T -matrix and the first row of the S-matrix, i.e. all quantum dimensions.

The next step for the full S-matrix is a trial-and-error algorithm based on finding the

right loop operators for each simple object. When all the loop operators are given, then

the modular data can be computed. There are no general algorithms to define loop

operators, but in the cases of SFSs and Sol manifolds, we find the relevant loop operators

completely.

4.1.1 From adjoint-acyclic non-Abelian characters to simple ob-

ject types

Each premodular category has a label set—the isomorphism classes of the simple

objects, and a label is an isomorphism class of simple objects, so we will refer to a label
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also as a simple object type. In physics, an anyon model is a unitary MTC and a label

is called an anyon type or a topological charge.

A candidate label from a 3-manifold M and SL(2,C) is morally an irreducible repre-

sentation of the fundamental group π1(M) to SL(2,C). But the precise definition is more

subtle and based on our examples later, we make the following definition. In particular,

we discover that reducible but indecomposable representations cannot be discarded and

play important roles in the construction of premodular categories from torus bundles

over the circle. Our definition is specific for representations to SL(2,C) and we expect

an appropriate generalization is needed for other Lie groups such as SL(n,C), n ≥ 3.

Definition 4.1.1. Let χ ∈ χ(M) be a non-Abelian SL(2,C)-character of a 3-manifold

M .

• A non-Abelian character χ is adjoint-acyclic if each non-Abelian representation

ρ : π1(M) → SL(2,C) with character χ is adjoint-acyclic, namely, the chain complex

associated with the universal cover M̃ twisted by Adj ◦ ρ is acyclic (see Definition

2.3.2), and furthermore, the adjoint Reidemeister torsion of all such non-Abelian

representations with character χ are the same.

• A candidate label is an adjoint-acyclic non-Abelian character.

• A candidate label set L(M) from a 3-manifolds M is a finite set of adjoint-acyclic

non-Abelian characters in χ(M) with a pre-chosen character such that the difference

of the CS invariant of each character L(M) with that of the pre-chosen character

is a rational number.

The pre-chosen character is the candidate tensor unit.

Note that by definition, the adjoint Reidemeister torsion is well-defined for adjoint-

acyclic non-Abelian characters. The CS invariant only depends on characters, and is
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hence also well-defined for such characters.

In this paper, our candidate label set is in general maximal in the sense it consists of

all the adjoint-acyclic non-Abelian characters of the given three manifold. It is also true

that the CS invariants of all the candidate labels including the candidate tensor unit are

all rational in our examples. We are not aware of any example of a candidate label set

for which not all CS invariants are rational numbers.

4.1.2 Vacuum choices, loop operators, and modular data

Each simple object x of a premodular category C has a quantum dimension dx and a

topological twist θx. The set Td(C) := ∪i∈L(C){dxi
, θxi

} will be called the twist-dimension

set of C, where L(C) is the label set of C and {xi, i ∈ L(C)} form a complete representative

set of simple objects of C. A candidate label set of a three manifold M will lead to a

candidate twist-dimension set in the following.

The choice of a tensor unit or vacuum from a collection of adjoint-acyclic non-Abelian

characters is not unique in general and it is known that different choices could produce

different premodular categories. Once a vacuum is chosen, then the adjoint Reidemeister

torsion of each character is scaled to the absolute value of normalized quantum dimension

and the difference of the CS invariant of the character with that of the vacuum is the

conformal weight of the simple object up to a sign1.

Given a 3-manifold M and a Lie group G, a central representation of π1(M) is a

homomorphism from π1(M) to the center Z(G) of G. For G = SL(2,C), a central

representation of π1(M) is simply a homomorphism from π1(M) to Z2. The group of

central representations can be identified with H1(M,Z2). A central representation σ ∈

H1(M,Z2) of π1(M) naturally acts on R(M) by tensoring ρ ∈ R(M), i.e. by sending ρ to

1The sign and hence the negative sign in front of CS invariant below is not important and the choice
is made to be the same as in [8].
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ρ⊗σ. Moreover, this action induces an action of central representations on the character

variety χ(M).

Definition 4.1.2. 1. Given a candidate label set L(M) from a 3-manifold M , a cen-

tral representation σ is bosonic with respect to L(M) if the action of σ keeps L(M)

invariant and preserves the CS invariant of every candidate label. If the action of

σ changes the CS invariants of all candidate labels in L(M) by either 0 or 1
2
, then

χ is called fermionic if it is not bosonic.

2. Two candidate labels are centrally related if they are in the same orbit under the

action of H1(M,Z2) and they have the same CS and torsion invariant.

Given a candidate label set L(M) ofM that is invariant under the action ofH1(M,Z2),

the candidate symmetric center s(M) consists of all characters in L(M) that are cen-

trally related to the candidate tensor unit. Let G0(M) be the maximal subgroup of

H1(M,Z2) such that G0(M) maps the candidate tensor unit onto s(M). The action of

G0(M) separates L(M) into orbits {O0, · · · , Om}, where each subset Oi of L(M) consists

of candidate labels that are centrally related to each other, and O0 is the subset for the

candidate vacuum.

We often represent a candidate label (a character) by arbitrarily choosing a represen-

tative (a representation of π1(M)) for it.

Definition 4.1.3. A candidate label set L(M) = {ρα} of a three manifold M with ρ0

the candidate vacuum is admissible if the following two equations hold with the notations

as above: ∑
ρα∈L(M)

1

2Tor(ρα)
= 1, (4.1)

∣∣∣∣∣∑
α

exp(−2πiCS(ρα))

2Tor(ρα)

∣∣∣∣∣ = 1

sL

√
|s(M)|√
2Tor(ρ0)

, (4.2)
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where sL = 1 if all central representations in Go(M) are bosonic and sL =
√
2 if there is

a fermionic one.

The conditions above are derived from the conjecture that the Mueger center of the

potential premodular category is a collection of Abelian anyons parameterized by the

subset O0. In the condensed category, each subset Oi will be identified into a single

composite object which has the same quantum dimension as that of any simple object

in Oi and which splits into a number of simple objects of the same quantum dimension.

The resulting condensed category is either modular or super-modular depending on if

there is a fermion in the candidate Mueger center. In a particular case when M is a Z2

homology sphere, that is, H1(M,Z2) = 0, Equation 4.2 reduces to,

∣∣∣∣∣∑
α

exp(−2πiCS(ρα))

2Tor(ρα)

∣∣∣∣∣ = 1√
2Tor(ρ0)

. (4.3)

Given an admissible candidate label set L(M) with the chosen candidate tensor unit

ρ0, then the candidate twist-dimension set is constructed as follows:

θα = e−2πi(CS(ρα)−CS(ρ0)), (4.4)

D2 = 2Tor(ρ0) (4.5)

d2α =
D2

2Tor(ρα)
, (4.6)

where D2 is the total dimension squared of the candidate premodular category.

Next, we discuss the construction of the S-matrix.

Definition 4.1.4. Given a three manifold M , a primitive loop operator of M is a pair

(a,R), where a is a conjugacy class of the fundamental group π1(M) of X and R a finite

dimensional irreducible representation of SL(2,C).
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Given an SL(2,C)-representation ρ of π1(M) and a primitive loop operator (a,R),

then the weight of the loop operator (a,R) with respect to ρ is Wρ(a,R) := TrR(ρ(a)).

Denote by Symj the unique (j + 1)-dimensional irreducible representation of SL(2,C).

Then Wρ(a, Sym
j) can be computed from the Chebyshev polynomial ∆j(t) defined re-

cursively by,

∆j+2(t) = t∆j+1(t)−∆j(t), ∆0(t) = 1,∆1(t) = t. (4.7)

Explicitly,

Wρ(a, Sym
j) = ∆j(t), t = Wρ(a, Sym

1) = Tr(ρ(a)). (4.8)

From the above two equations, it follows that Wρ(a, Sym
j) only depends on the character

χ induced by ρ. It is direct to check that,

∆j(2 cos θ) = sin((j + 1)θ)/ sin θ, ∆j(−t) = (−1)j∆n(t). (4.9)

A fundamental assumption in constructing the S-matrix is that each candidate label

ρα should correspond to a finite collection of primitive loop operators:

ρα 7→ {(aκα, Rκ
α)}κ. (4.10)

Obtaining the above correspondence involves a guess-and-trial process as follows. With

a guess in hand and a choice ϵ = ±1, we define the W -symbols

Wβ(α) :=
∏
κ

Wϵ ρβ(a
κ
α, R

κ
α) =

∏
κ

TrRκ
α
(ϵ ρβ(a

κ
α)), ρα, ρβ ∈ L(X). (4.11)
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The W -symbols and the un-normalized S-matrix S̃ = DS are related by,

Wβ(α) =
S̃αβ

S̃0β

or S̃αβ = Wβ(α)W0(β), (4.12)

where 0 denotes the tensor unit ρ0. In particular, the quantum dimension

dα = W0(α) (4.13)

Hence, we can try to guess a correspondence between candidate labels and loop op-

erators so that the quantum dimension computed by Equation 4.13 matches (in absolute

value) with that computed by Equation 4.6.

We expect that the resulting modular data corresponds to a MTC if and only if

H1(M,Z2) = 0. Note that, this is purely a topological condition, independent of the

choice of loop operators. Hence, if H1(M,Z2) = 0, we can also validate a choice of the

loop operators by checking whether the resulting S and T matrices define a representation

to SL(2,Z).

4.2 Modular data from Seifert fiber spaces

Depending on different choices of the characters for a unit, we found that modular

data from three components Seifert fiber spaces can be realized by Temperley-Lieb-Jones

categories and SU(2)k MTCs, respectively.

4.2.1 Realization of Temperley-Lieb-Jones categories

We will show that the modular data constructed from 3-component SFSs for some

choice of unit are related to the Temperley-Lieb-Jones categories at root of unit. So let
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us collect some basic facts about those. For references, see for instance [33].

Let A be a complex number such that A4 ̸= 1. For an integer n, define the quantum

integer [n]A = A2n−A−2n

A2−A−2 . So [0]A = 0, [1]A = 1, [2]A = A2 + A−2. For each A, usually

called the Kauffman variable, such that A4 is a primitive r-th root of unity for some

integer r ≥ 2, there is an associated premodular category, called the Temperley-Lieb-

Jones category and denoted by TLJ(A). The category has the label set (simple objects)

[0 · · · r − 2] where the label 0 is the unit object. For i, j ∈ [0 · · · r − 2], the quantum

dimension is

dj(A) = (−1)j[j + 1]A = (−1)j
A2j+2 − A−2j−2

A2 − A−2
,

the twist is

θj(A) = (−A)j(j+2),

and the (un-normalized) S-matrix is

Sij(A) = (−1)i+j[(i+ 1)(j + 1)]A.

The total dimension can be computed directly,

D(A) =

√
2r

|A2 − A−2|
.

Denote by TLJ(A)0 (resp. TLJ(A)0) the subcategory linearly spanned by even (resp.

odd) labels. We call TLJ(A)0 and TLJ(A)1 the even and odd subcategory of TLJ(A),

respectively. The even and odd subcategory has the same dimension, both equal to D(A)√
2
.

It is well known that if A is a primitive 4r-th root of unity, then TLJ(A) is non-

degenerate. If r is odd and A is a primitive 2r-th root of unity, then TLJ(A) is degenerate,

but the even subcategory TLJ(A)0 is non-degenerate.
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Now we consider the construction of modular data. As before, set

M = {0; (o, 0); (p1, q1), (p2, q2), (p3, q3)}

. Here each pair (pk, qk) are co-prime. Choose integers sk and rk such that pksk−qkrk = 1.

If qk is odd, set ck = pkqksk − rk. Otherwise, set ck = pkqksk − rk(pk − 1)2. Let

Ak = − exp( 2πi
4pk

ck). Note that while ck depends on the choice of sk and rk, Ak does not.

Moreover, Ak is a primitive 4pk-th root of unity if qk is odd, a primitive 2pk-th root of

unity if qk = 0 mod 4, and a primitive pk-th root of unity if qk = 2 mod 4. In the latter

two cases, pk clearly must be odd. Hence, in all cases, A4
k is a primitive pk-th root of

unity.

If some q′ks are even, we re-arrange the elements of χnab(M) as follows. For (p, q)

co-prime, j ∈ [0 · · · p− 2], let

np,q(j) =


p−1−j

2
, q even and j even

j+1
2
, otherwise

Then from Equation 2.8, χnab(M) can also be written as

{
(np1,q1(j1), np2,q2(j2), np3,q3(j3),

1

2
) | jk ∈ [0 · · · pk − 2]e, k = 1, 2, 3

}
⊔
{
(np1,q1(j1), np2,q2(j2), np3,q3(j3), 0) | jk ∈ [0 · · · pk − 2]o, k = 1, 2, 3

} (4.14)

Thus, the elements of χnab(M) are indexed by j⃗ ∈
∏3

k=1[0 · · · pk−2]e ⊔
∏3

k=1[0 · · · pk−

2]o. Given such a j⃗ = (j1, j2, j3), denote a corresponding representation by ρj⃗. (The choice

of a representative is irrelevant.)

Proposition 2.5.1 shows that all non-Abelian characters of M are adjoint acyclic and
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Proposition 2.5.2 shows that the CS invariants of non-Abelian characters are all rational.

We choose the candidate label set L(M) to be χnab(M).

We propose the correspondence between L(M) and loop operators by the following

map,

ρj⃗ 7→
{
(xck

k , Symjk) | k = 1, 2, 3
}
. (4.15)

Moreover, we designate ρ0⃗ = ρ(0,0,0) as the unit object, which of course corresponds to

the loop operator

1 = ρ0⃗ 7→
{
(xck

k , Sym0) | k = 1, 2, 3
}
. (4.16)

The following two lemmas are direct consequences of Proposition 2.5.2 and Proposi-

tion 2.5.1, respectively.

Lemma 4.2.1. LetM, ck, Ak be given as above. For each j⃗ = (j1, j2, j3) ∈
∏3

k=1[0 · · · pk−

2]e ⊔
∏3

k=1[0 · · · pk − 2]o with ρj⃗ a corresponding representation, then

CS(ρj⃗) =
3∑

k=1

−ck
4pk

(jk + 1)2. (4.17)

As a consequence,

e−2πiCS(ρ⃗j) =
3∏

k=1

(−Ak)
(jk+1)2 = (−A1A2A3)

3∏
k=1

θjk(Ak). (4.18)

Lemma 4.2.2. Let M, ck, Ak be given as above and let D = D(A1)D(A2)D(A3)/2. For

each j⃗ = (j1, j2, j3) ∈
∏3

k=1[0 · · · pk − 2]e ⊔
∏3

k=1[0 · · · pk − 2]o with ρj⃗ a corresponding
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representation, then

Tor(ρj⃗) =
3∏

k=1

pk

4 sin2(πrk(jk+1)
pk

)
, (4.19)

and hence, (
2Tor(ρj⃗)

)− 1
2 = 2

3∏
k=1

∣∣∣∣djk(Ak)

D(Ak)

∣∣∣∣ =
|
∏3

k=1 djk(Ak)|
D

. (4.20)

The main result of the section is the following theorem.

Theorem 4.2.3. LetM = {0; (p1, q1), (p2, q2), (p3, q3)} and {Ak}k=1,2,3 be given as above.

With the operators and tensor unit given in Equations 4.15 and 4.16, respectively, the

modular data constructed from M matches that of the following premodular category,

C :=
(
⊠3

k=1TLJ(Ak)0
)⊕(

⊠3
k=1TLJ(Ak)1

)
Proof: Since A4

k is a primitive pk-th root of unity, the label set for C is clearly

L :=
∏3

k=1[0 · · · pk − 2]e ⊔
∏3

k=1[0 · · · pk − 2]o, the same index set for L(M). The

modular data of C can be easily expressed in terms of that of the individual TLJ(Ak).

For i⃗, j⃗ ∈ L,

dj⃗ =
3∏

k=1

djk(Ak), θj⃗ =
3∏

k=1

θjk(Ak), S̃⃗i j⃗ =
3∏

k=1

S̃ikjk(Ak).

Also, the total dimension of C is D = D(A1)D(A2)D(A3)/2.

Lemma 4.2.1 shows that, up to a global phase, the Chern-Simons invariant gives the

twist,

e−2πiCS(ρ⃗j) = θj⃗,

and Lemma 4.2.2 shows that the torsion matches the absolute value of the normalized
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quantum dimension, (
2Tor(ρj⃗)

)− 1
2 =

dj⃗
D
.

Lastly, We check the S-matrix computed from local operators. Given i⃗ = (i1, i2, i3), j⃗ =

(j1, j2, j3) ∈ L, we have (choosing ϵ = −1)

Wi⃗(⃗j) =
3∏

k=1

TrSymjk (−ρ⃗i(x
ck
k )).

Note that,

Tr
(
ρ⃗i(x

ck
k )
)

= 2 cos
2npk,qk(ik)πck

pk
= 2 cos

(ik + 1)πck
pk

,

where the second equality holds irrelevant of the parity of qk. Combining the previous

two equations, we get

Wi⃗(⃗j) =
3∏

k=1

∆jk(−2 cos
(ik + 1)πck

pk
) =

3∏
k=1

(−1)jk
sin (ik+1)(jk+1)πck

pk

sin (ik+1)πck
pk

,

where ∆jk(·) is the Chebyshev polynomial (see Equation 4.9). Therefore, the (⃗j, i⃗)-entry

of the potential un-normalized S matrix is,

Wi⃗(⃗j)W0⃗(⃗i) =
3∏

k=1

(−1)ik+jk
sin (ik+1)(jk+1)πck

pk

sin πck
pk

=
3∏

k=1

S̃(Ak)jkik ,

which is precisely S̃j⃗ i⃗ of C.

The premodular category produced in the previous theorem may not be modular in

general, and it depends crucially on the topology of the three manifold. For a three-
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component SFS M , it is a Z2 homology sphere, i.e., H1(M,Z2) = 0, if and only if

p1p2p3(
q1
p1

+
q2
p2

+
q3
p3
) ∈ 2Z+ 1

Lemma 4.2.4. Assume that r is odd. Suppose that

T (p, j, l, ∗) =
∑

m∈[p]∗

(
e(j+l)mr π

p
i − e(j−l)mr π

p
i − e(−j+l)mr π

p
i + e(−j−l)mr π

p
i
)

where ∗ = 1, 0, and [p]∗ denotes the set of odd integers from 1 to p− 1 if ∗ is 1 and the

set of even integers in the same range otherwise.

When p is odd, j ̸= l, j + l is odd,

T (p, j, l, ∗) =


0 j + l ̸= p

(−1)∗p j + l = p

When p is odd, j ̸= l, j + l is even,

T (p, j, l, ∗) = 0

When p is odd, j = l,

T (p, j, l, ∗) = −p

When p is even, j ̸= l, j + l is odd,

T (p, j, l, ∗) = 0
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When p is even, j ̸= l, j + l is even,

T (p, j, l, ∗) =


0 j + l ̸= p

(−1)∗p j + l = p

When p is even, j = l,

T (p, j, l, 0) =


−p j + l ̸= p

0 j + l = p

T (p, j, l, 1) =


−p j + l ̸= p

−2p j + l = p

Proof: We prove the lemma by direct computation.

When p is odd, j ̸= l, j + l is odd,

T (p, j, l, 1) =

p−2∑
m=1,m odd

(e(j+l)mr π
p
i − e(j−l)mr π

p
i + e(j−l)(p−m)r π

p
i − e(j+l)(p−m)r π

p
i)

=

p−2∑
m=1,m odd

(e(j+l)mr π
p
i − e(j−l)mr π

p
i) +

p−1∑
m=2, even

(e(j−l)mr π
p
i − e(j+l)mr π

p
i)

= −
p−1∑
m=1

(−e(j+l)r π
p
i)m +

p−1∑
m=1

(−e(j−l)r π
p
i)m

=


0 j + l ̸= p

−p j + l = p

= −T (p, j, l, 0)

Similarly, we get other cases.

Proposition 4.2.5. Given a three-component SFS M , the premodular category CM pro-

duced in Theorem 4.2.3 is modular if and only if M is a Z2 homology sphere.

66



From 3-manifolds to modular data Chapter 4

Proof: Since the structure from the above subsection respects the change of parametriza-

tion of Seifert fiber space, it suffices to verify the following 5 cases for (p1
q1
, p2
q2
, p3
q3
).

(
odd

odd
,
odd

odd
,
odd

odd
), (

odd

odd
,
odd

odd
,
even

odd
), (

odd

odd
,
even

odd
,
even

odd
),

(
even

odd
,
even

odd
,
even

odd
), (

odd

odd
,
odd

odd
,
odd

even
)

The first two cases correspond to Z2-homology sphere. In the following, we will explicitly

calculate S2, which directly implies the proposition.

When q1, q2, q3 are odd, j1 = j2 = j3 mod 2, l1 = l2 = l3 mod 2.

Up to a scalar,

S(j1,j2,j3),(l1,l2,l3) = (−1)j1+l1

3∏
k=1

sin jklkrk
π

pk

(S2)(j1,j2,j3),(l1,l2,l3)

=
∑

(m1,m2,m3)

(−1)j1+m1+m1+l1

3∏
k=1

sin jkmkrk
π

pk
sinmklkrk

π

pk

= (−1)j1+l1
∑

(m1,m2,m3)

3∏
k=1

−1

4
(e

(jk+lk)mkrk
π
pk

i − e
(jk−lk)mkrk

π
pk

i − e
(−jk+lk)mkrk

π
pk

i

+ e
(−jk−lk)mkrk

π
pk

i
)

= (−1)j1+l1(
∑

(m1,m2,m3),mi odd

+
∑

(m1,m2,m3),mi even

)...

= (−1)j1+l1(
3∏

k=1

T (pk, jk, lk, 1) +
3∏

k=1

T (pk, jk, lk, 0))
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When p1, p2, p3 are odd,

(S2)(j1,j2,j3),(l1,l2,l3) =


0 (j1, j2, j3) ̸= (l1, l2, l3)

p1p2p3
32

(j1, j2, j3) = (l1, l2, l3)

When p1, p2 are odd, p3 is even,

(S2)(j1,j2,j3),(l1,l2,l3) =


0 (j1, j2, j3) ̸= (l1, l2, l3)

p1p2p3
32

(j1, j2, j3) = (l1, l2, l3)

Thus S2 = cI for the above two cases.

When p1 is odd, p2, p3 are even,

(S2)(1,1,1),(l1,l2,l3) =


p1p2p3
32

(l1, l2, l3) = (1, 1, 1), (1, p2 − 1, p3 − 1)

0 otherwise

(S2)(1,p2−1,p3−1),(l1,l2,l3) =


p1p2p3
32

(l1, l2, l3) = (1, 1, 1), (1, p2 − 1, p3 − 1)

0 otherwise

(S2)(1,1,1) = (S2)(1,p2−1,p3−1)

When p1, p2, p3 are even,

(S2)(1,1,1),(l1,l2,l3) =


p1p2p3
32

(l1, l2, l3) = (1, 1, 1), (1, p2 − 1, p3 − 1)

0 otherwise

(S2)(1,p2−1,p3−1),(l1,l2,l3) =


p1p2p3
32

(l1, l2, l3) = (1, 1, 1), (1, p2 − 1, p3 − 1)

0 otherwise
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(S2)(1,1,1) = (S2)(1,p2−1,p3−1)

S2 is degenerate for above two cases.

When q1, q2 are odd, q3 is even, j1 = j2 mod 2, l1 = l2 mod 2, j3 = 0 mod 2, l3 = 0

mod 2.

(S2)(j1,j2,j3),(l1,l2,l3) =
2∏

k=1

T (pk, jk, lk, 1)T (p3, j3, l3, 0) +
3∏

k=1

T (pk, jk, lk, 0)

When p1, p2, p3 are odd,

(S2)(1,1,2),(l1,l2,l3) =


−p1p2p3

32
(l1, l2, l3) = (1, 1, 2), (p1 − 1, p2 − 1, 2)

0 otherwise

(S2)(p1−1,p2−1,2),(l1,l2,l3) =


−p1p2p3

32
(l1, l2, l3) = (1, 1, 2), (p1 − 1, p2 − 1, 2)

0 otherwise

S2 is degenerate.

It is worth noting even if every TLJ(Ak) appearing in the construction of CM in

Theorem 4.2.3 is not modular, CM could still be modular. For instance, for the SFS M0 =

(0; (o, 0); (5, 1), (3, 2), (5, 4)), the corresponding Kauffman variables are A1 = −e
iπ
10 , A2 =

−e
iπ
3 , A3 = −e

2iπ
5 . It is direct to see that TLJ(A1) is modular, but TLJ(A2) and TLJ(A3)

are not. However, M0 is a Z2 homology sphere, by Proposition 4.2.5, CM0 is modular, a

rank-8 MTC.

4.2.2 Realization of SU(2)k MTCs

Here we study a special class of SFSs with three components, namely, M(r) :=

{0; (o, 0); (3, 1), (3, 1), (r, 1)}. We show explicitly that different choice of characters as
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the unit object may lead to different theories. In fact, it will be proved that from M(r)

we can construct either the MTC SU(2)r−2 or TLJ(e
2πi
4r ).

For each integer r ≥ 2, there is a unitary MTC, usually denoted by SU(2)r−2 [4],

which is closely related to the Temperley-Lieb-Jones categories. Here r − 2 is called the

level of the MTC. It has the same label set as TLJ(e
2πi
4r ), but differs from it in modular

data by some signs. Explicitly, setting A = e
2πi
4r , the modular data for SU(2)r−2 is given

as follows,

θj = Aj(j+2) = e
2πi j(j+2)

4r ,

S̃ij = [(i+ 1)(j + 1)]A =
sin (i+1)(j+1)π

r

sin π
r

.

In particular, its quantum dimensions are all positive (since it is unitary),

dj = [j + 1]A =
sin (j+1)π

r

sin π
r

,

and the total dimension is

D =

√
r

2

1

sin π
r

.

Note that dj = |dj(A)| andD = D(A), where dj(A) andD(A) are the quantum dimension

of j and total dimension of TLJ(A), respectively.

We will use notations from Section 2.2. The non-Abelian characters of M(r) is given

by

χnab(M(r)) =

{(
1

2
,
1

2
,
j + 1

2
,
1

2

)
| (0, 0, j) ∈ {0} × {0} × [0 · · · r − 2]e

}
⊔
{(

1, 1,
j + 1

2
, 0

)
| (1, 1, j) ∈ {1} × {1} × [0 · · · r − 2]o

}
.

(4.21)

Thus, each j ∈ [0 · · · r−2] corresponds to a non-Abelian character indexed by (j mod

2, j mod 2, j). We denote the corresponding representation by ρj (instead of using the
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triple as the subscript). The eigenvalues of ρj(x3) are e
± (j+1)πi

r . The eigenvalues of ρj(x1)

and those of ρj(x2) are both e±
ajπi

3 , where aj = 1 if j even and aj = 2 otherwise.

Also, it is direct to see that c1 = c2 = c3 = 1, and A1 = A2 = −e
πi
6 , A3 = −e

2πi
4r .

In Section ??, we chose the candidate label set L(M(r)) to be χnab(M(r)), and defined

the following map from χnab(M(r)) to local operators,

ρj = 7→
{
(x1, Sym

j mod 2), (x2, Sym
j mod 2), (x3, Sym

j)
}
. (4.22)

It can be checked directly that for i, j ∈ [0 · · · r − 2], Tr(ρi(x1)) = Tr(ρi(x2)) = ±1, and

it follows that,

Wi(j) = TrSymj mod 2(−ρi(x1)) TrSymj mod 2(−ρi(x2)) TrSymj(−ρi(x3))

= TrSymj(−ρi(x3)).

Hence, we may as well choose a simplified map to local operators,

ρj 7→ {(x3, Sym
j)}. (4.23)

The unit object was chosen to be ρ0 which corresponds to the local operator (x3, Sym
0).

By Theorem 4.2.3, the modular data match that of the premodular category,

CM(r) =
(
⊠3

k=1TLJ(Ak)0
)⊕(

⊠3
k=1TLJ(Ak)1

)
. (4.24)

Note that TLJ(A1) = TLJ(−e
πi
6 ) has label set {0, 1}, the twists θ0 = 1, θ1 = i, and

un-normalized S-matrix,

S̃ =

 1 −1

−1 −1

 .
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This means that CM(r) has the same twists for even labels and S-matrix as TLJ(A3). The

twists for odd labels differ by a minus sign between the two theories. Let A(r) = −A3 =

e
2πi
4r . Note that a change of the Kauffman variable from A to −A does not change the

S-matrix. It follows that CM(r) and TLJ(A(r)) has the same modular data. In fact, they

are isomorphic.

Therefore, by using the local operator correspondence in Equation 4.23 and letting

ρ0 be the unit object, we recover the MTC TLJ(A(r)).

Now we examine an alternative choice of the unit object. SinceM(r) is a Z2 homology

sphere, a potential unit object ρα0 can be determined by the equation,

∣∣∣∣∣∣
∑

ρ∈χnab(M(r))

exp(−2πiCS(ρ))

2Tor(ρ)

∣∣∣∣∣∣ = (2Tor(ρα0))
− 1

2 . (4.25)

Such a ρα0 would have quantum dimension in absolute value equal to 1 in any MTC

produced by M(r). Since we already know that we can produce TLJ(A(r)) from M(r)

and the only non-unit object in TLJ(A(r)) whose quantum dimension is 1 in absolute

value is ρr−2, we can choose ρr−2 as the unit object in a new theory.

In this case, we reverse the previous order of the simple objects. Denote by ρ̃j :=

ρr−2−j, j ∈ [0 · · · r − 2]. Set ρ̃0 = ρr−2 as the unit object. The correspondence between

characters and local operators is now defined as,

ρ̃j 7→ (x3, Sym
j). (4.26)

We claim that with above choice of unit object and local operators, the modular data

produced from M(r) matches that of SU(2)r−2 where ρ̃j corresponds to j in the label set

of SU(2)r−2. See the above section for a collection of facts about SU(2)r−2.
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Firstly, by Lemma 4.2.1, up to an irrelevant phase factor,

CS(ρj) = −j(j + 2)

4r
+

1− (−1)j

4
mod 1. (4.27)

Then rewriting above equation in terms of ρ̃j, we get, again up to an irrelevant factor,

CS(ρ̃j) = −j(j + 2)

4r
mod 1. (4.28)

Thus,

e−2πiCS(ρ̃j) = e
2πi j(j+2)

4r (4.29)

is the twist θj of SU(2)r−2.

Next, we check the S-matrix.

W0(j) = TrSymj(−ρ̃0(x3)) = ∆j(2 cos
π

r
) =

sin (j+1)π
r

sin π
r

, (4.30)

and the (j, i)-entry of the potential S-matrix is,

Wi(j)W0(i) = TrSymj(−ρ̃i(x3))W0(i) (4.31)

= ∆j(2 cos
(i+ 1)π

r
)∆i(2 cos

π

r
) (4.32)

=
sin (i+1)(j+1)π

r

sin π
r

, (4.33)

which is Sji of SU(2)r−2.

Lastly, by Lemma 4.2.2,

(
2Tor(ρ̃j)

)− 1
2 =

(
2Tor(ρr−2−j)

)− 1
2 =

|dr−2−j(A3)|
D(A3)

, (4.34)
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where we used the fact that in TLJ(A1) = TLJ(A2), the two simple objects have quantum

dimensions ±1 and thus the dimension of the category is D(A1) =
√
2. Also note that

A3 = −e
2πi
4r , then |dr−2−j(A3)| = |dj(A3)| and D(A3) are equal to the quantum dimension

dj and the total dimension D, respectively, in SU(2)r−2. Hence, the torsion invariant

computes the normalized quantum dimension,

(
2Tor(ρ̃j)

)− 1
2 =

dj
D
. (4.35)

To summarize, for the SFS M(r), two choices of the unit object together with appro-

priate definition of loop operators produce the MTCs TLJ(e
2πi
4r ) and SU(2)r−2, with the

former non-unitary and the latter unitary.

4.2.3 Graded product of graded premodular categories

In the above subsection, we have seen that the premoduar category resulting from

three-component SFSs is formed from three Temperley-Lieb-Jones categories, by taking

the Deligne product of the even sectors, that of the odd sectors, and suming them up.

Here we generalize the operation.

Definition 4.2.6. Let C = ⊕g∈GCg and D = ⊕g∈GDg be two G-graded premodular tensor

categories for some finite group G (which must be Abelian). The graded product of C

and D is again a G-graded premodular category C ⊠gr D = ⊕g∈G(C ⊠gr D)g such that

(C ⊠gr D)g := Cg ⊠Dg.

The monoidal and braiding structure on C ⊠gr D is defined in the obvious way which

make it into a premodular category. Another way to see this is that C ⊠gr D is a full

subcategory of the premodular category C ⊠ D and is closed under tensor product and

braiding. The graded product operation ⊠gr is associative up to canonical equivalence.
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For a Kauffman variable A, TLJ(A) is a Z2-graded premodular category with TLJ(A)0

spanned by even labels and TLJ(A)1 odd labels. Hence, Theorem 4.2.3 states that, for

a three-component SFS M = {0; (o, 0); (p1, q1), (p2, q2), (p3, q3)} with Ak, k = 1, 2, 3, the

premodular category resulting from M is CM = TLJ(A1)⊠gr TLJ(A2)⊠gr TLJ(A3).

The graded product operation provides method to construct new premodular cate-

gories from old ones. A very interesting question is when the graded product of two

pre-modular categories is modular. For instance, take A1 = −e
iπ
6 , A2 = −e−

iπ
5 . Here A1

is a primitive 12-th root of unity and A2 a primitive 5-th root of unity. Hence TLJ(A1)

is modular of rank 2 and TLJ(A2) is none modular of rank 4. Their S-matrices are given

by,

S̃(A1) =

 1 −1

−1 −1

 , S̃(A2) =



1 φ φ 1

φ −1 −1 φ

φ −1 −1 φ

1 φ φ 1


, (4.36)

where φ = 1
2
(1−

√
5). Then the S-matrix of TLJ(A1)⊠grTLJ(A2) with its simple objects

ordered as {0⊠ 0, 0⊠ 2, 1⊠ 1, 1⊠ 3} is,

S̃ =



1 φ −φ −1

φ −1 1 −φ

−φ 1 1 −φ

−1 −φ −φ −1


, (4.37)

which can be checked straightforwardly to be non-degenerate. Thus TLJ(A1)⊠grTLJ(A2)

is modular.

We leave the question of when the graded product of two arbitrary graded (and more

generally multiple) premodular categories is modular as a future direction. In the rest
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of this section, we focus on the case where the group is Z2 and study a special class of

Z2-graded modular categories, namely SU(2)k. For basic facts, see Section 4.2.2.

Let C = C0 ⊕ C1 be a Z2-graded MTC. Denote by I the label set of C and partition

I = I0⊔ I1 where Iα consists of objects of I that are in the Cα sector. To avoid confusion,

when there is more than one MTC present, we write I(C), S̃(C), etc.

Proposition 4.2.7. Let C and D be two Z2-graded MTCs. Then C⊠grD is a proper (i.e.,

degenerate) premodular category if and only if there exist i ∈ I(C), j ∈ I(D), scalars

c0(C), c1(C), c0(D), and c1(D), such that,

1. i and j belong to sectors of the same parity;

2. the following equations concerning S-entries hold:

S̃(C)ik =


c0(C)dk(C) k ∈ I0(C)

c1(C)dk(C) k ∈ I1(C)
S̃(D)jk =


c0(D)dk(D) k ∈ I0(D)

c1(D)dk(D) k ∈ I1(D)

3. c0(C)/c1(C) = c1(D)/c0(D) ̸= 1.

Proof: The main idea is to show that the conditions presented in the statement

of the proposition are equivalent to the property that in the S-matrix of C ⊠gr D, the

row corresponding to the object i ⊠ j is proportional to the first row (i.e., the row

corresponding to the unit object).

Remark 4.2.8. In the above proposition, the conditions c0(C)/c1(C) ̸= 1 and c1(D)/c0(D) ̸=

1 are used to eliminate the trivial case where i and j are both the unit object. When

neither of i nor j is the unit object, those conditions automatically hold since other-

wise the S-matrix of C or D would be degenerate. Also, note that if either C0 or D0 is

non-degenerate, then i and j must be in the sector of odd parity.
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For m ≥ 0, SU(2)m is a Z2-graded MTC with (SU(2)m)0 spanned by even labels and

(SU(2)m)1 by odd labels.

Theorem 4.2.9. For m,n ≥ 0, SU(2)m ⊠gr SU(2)n is an MTC if and only if the pair

(m,n) have different parity. In particular, SU(2)m ⊠gr SU(2)m is always degenerate.

Proof: In SU(2)m, the un-normalized S-matrix is given by,

S̃ab =
sin (a+1)(b+1)π

m+2

sin π
m+2

.

Hence, S̃mb = (−1)bS̃0b = (−1)bdb. For (m,n) with the same parity, with the notation

from the statement of Proposition 4.2.7, we choose i = m, j = n. Then the relevant con-

stants are c0(SU(2)m) = c0(SU(2)n) = 1, c1(SU(2)m) = c1(SU(2)n) = −1 which satisfies

the conditions stated in that proposition, and hence SU(2)m ⊠gr SU(2)n is degenerate.

For the converse direction, it can be seen that the only non-unit simple object in SU(2)m

for which c0(SU(2)m) and c1(SU(2)m) exist is the object m. Therefore, if (m,n) have

different parity, the only pair of indexes for (i, j) is (m,n) which contradicts the first

condition of Proposition 4.2.7. This implies that SU(2)m ⊠gr SU(2)n is non-degenerate.

Example 4.2.10. By Theorem 4.2.9, SU(2)2 ⊠gr SU(2)3 is an MTC of rank 6. Its un-

normalized S-matrix and T -matrix are given by,

S̃ =



1 1
2

(
1 +

√
5
)

1 1
2

(
1 +

√
5
)

1+
√
5√

2

√
2

1
2

(
1 +

√
5
)

−1 1
2

(
1 +

√
5
)

−1 −
√
2 1+

√
5√

2

1 1
2

(
1 +

√
5
)

1 1
2

(
1 +

√
5
)

−1+
√
5√

2
−
√
2

1
2

(
1 +

√
5
)

−1 1
2

(
1 +

√
5
)

−1
√
2 −1+

√
5√

2

1+
√
5√

2
−
√
2 −1+

√
5√

2

√
2 0 0

√
2 1+

√
5√

2
−
√
2 −1+

√
5√

2
0 0
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T =



1 0 0 0 0 0

0 e
4iπ
5 0 0 0 0

0 0 −1 0 0 0

0 0 0 −e
4iπ
5 0 0

0 0 0 0 e
27iπ
40 0

0 0 0 0 0 −ie
3iπ
8


Since SU(2)2 ⊠gr SU(2)3 contains the even part of SU(2)3 as a subcategory which is

itself an MTC (Fibonacci), SU(2)2 ⊠gr SU(2)3 must split. In fact, SU(2)2 ⊠gr SU(2)3 ≃

Fib⊠ TLJ(−ie
πi
8 ).

4.3 Modular data from Sol torus bundles

We will show that the modular data constructed from torus bundles with Sol geometry

can be realized by the Z2-equivariantization of pointed categories.

4.3.1 Equivariantization of Z2 symmetry

Let C(G, q) denote the premodular category associated to a finite Abelian group

G and a quadratic form q : G −→ C as defined in [12]. In this section, we con-

sider the Z2-equivariantization C(G, q)Z2 of this premodular category, where the action

Z2 → Aut⊗(C(G, q)) corresponds to the involution g 7→ −g in G. Commonly referred to

as the “particle-hole symmetry,” this action previously appeared in the classification of

metaplectic modular categories [1, 7, 6] and equivariantization of Tambara-Yamagami

categories [17]. It is clear that this action preserves the braiding as well since any

quadratic form is invariant under inversion of its argument, and for any braided pointed

fusion category C(G, q) the braiding is given by the bilinear form associated to q.

78



From 3-manifolds to modular data Chapter 4

Proposition 4.3.1. As a fusion category, C(G, q)Z2 has the following simple objects:

Invertible objects: X+
b , X

−
b , for each b ∈ G such that b = −b.

Two-dimensional objects: Y{a,−a} for each a ∈ G such that a ̸= −a.

For simplicity, we denote Ya := Y{a,−a}, and hence Ya = Y−a.

The fusion rules of C(G, q)Z2 are given by

Xϵ
b ⊗Xϵ′

b′
∼= Xϵϵ′

b+b′ ,

Xϵ
b ⊗ Ya

∼= Ya+b,

Ya ⊗ Ya′
∼=

 X+
0 ⊕X−

0 ⊕ Y2a, if a = ±a′,

Ya+a′ ⊕ Ya−a′ , if a ̸= ±a′,
where ϵ, ϵ′ = ±1.

Proof: We can pick the following representatives for each isomorphism class of

simple objects: X±
g is given by (g, u±), where u±

ε : g → g is given by u±
ε = (±1)εidg

for every ε ∈ Z2. Similarly, for all g ̸= −g, there is a Z2-equivariant object Yg given by

(g ⊕−g, u), where u0 : g ⊕−g → g ⊕−g is given by

 idg 0

0 id−g

 ,

while u1 : −g ⊕ g → g ⊕−g is given by

 0 idg

id−g 0

 .

To see that these objects are simple, one can easily check that their endomorphism

rings are one-dimensional. For example, if f : Yg → Yg is a Z2-equivariant morphism,
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then f = x idg ⊕ y id−g and f ◦ u1 = u1 ◦ T1(f) = u1 ◦ (x id−g ⊕ y idg) = y idg ⊕ x id−g.

This implies x = y.

These simple objects are clearly pairwise non-isomorphic (except Ya = Y−a as men-

tioned in the statement of the theorem), and the fusion rules follow from a simple cal-

culation. To see that they form a complete set of representatives, one can compare the

sum of the squares of their Frobenius-Perron dimensions with the categorical dimension

of C(G, q)Z2 , which must be twice that of C(G, q) by [13, Prop. 7.21.15].

Table 4.1 goes into more detail in the special case G = Zr × ZN/r.

(r, N
r
) X±

(a,b)

∣∣L(C (Zr × ZN/r, q
)Z2

pt
)
∣∣ Y(a,b) Number of Y(a,b)

(o, o) (a, b) ∈ ⟨(0, 0)⟩ 2
a = 1, · · · , r−1

2
,

b = 1, · · · , N/r−1
2

N−1
2

(o, e) (a, b) ∈ ⟨(0, N
2r
)⟩ 4

a = 1, · · · , r−1
2
,

b = 1, · · · , N
2r

− 1
N
2
− 1

(e, o) (a, b) ∈ ⟨( r
2
, 0)⟩ 4

a = 1, · · · , r
2
− 1,

b = 1, · · · , N/r−1
2

N
2
− 1

(e, e) (a, b) ∈ ⟨( r
2
, 0), (0, N

2r
)⟩ 8

a = 1, · · · , r
2
− 1,

b = 1, · · · , N
2r

− 1
N
2
− 2

Table 4.1: Simple objects for C(Zr ×ZN/r, q)
Z2 . In the first column, we use ‘e’ to denote

‘even’ and ‘o’ for ‘odd’.

4.3.2 S- and T - matrices in a special case

We now specialize to the case that the minimal number of generators for G is at most

2. Fixing a surjective homomorphism Z× Z → G, we further assume the existence of a

well-defined quadratic form q : G −→ ZN given by

q(x1, x2) = c1x
2
1 + c2x1x2 + c3x

2
2 (4.38)
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for some c1, c2, c3 ∈ Z and independent of the choice of representative (x1, x2) ∈ Z × Z.

We denote the associated bilinear form by λ, where λ : G × G −→ ZN defined by

λ(x, y) = q̃(x + y) − q̃(x) − q̃(y), where x = (x1, x2), y = (y1, y2) ∈ G. Thus λ can be

expressed explicitly as

λ(x, y) = 2c1x1y1 + c2(x1y2 + x2y1) + 2c3x2y2. (4.39)

In this case, we consider the pointed premodular category C(G, q) where q is a

quadratic form q : G → U(1) defined by q = exp 2πiq̃
N

. Let F : C(G, q)Z2 → C(G, q)

be the forgetful functor. We can equip the fusion category C(G, q)Z2 defined in the pre-

vious section with a premodular structure as follows. We define the braiding cX,Y in

C(G, q)Z2 by cX,Y = cF (X),F (Y ). Similarly, we define θX for X ∈ C(G, q)Z2 by θX = θF (X).

Combining the twists with the fusion rules described in Proposition 4.3.1, we compute

the corresponding S-matrix using the balancing equation:

• SX±
(a,b)

,X±
(a′,b′)

= exp

(
2πi

N
λ(a, b, a′, b′)

)
;

• SX±
(a,b)

,Y(a′,b′)
= 2 exp

(
2πi

N
λ(a, b, a′, b′)

)
;

• SY(a,b),Y(a′,b′)
= 4 cos

(
2π

N
λ (a, b, a′, b′)

)
.

4.3.3 Realization of Z2-equivariantization

Let M be a torus bundle over S1 with Sol geometry, i.e., the monodromy map A =a b

c d

 ∈ SL(2,Z) satisfies |a+ d| > 2. Set N = |a+ d+ 2| > 0.

Recall the Chern-Simons invariants and adjoint Reidemeister torsions in 2.5. In par-
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ticular, we have

Tor(ρ) =


|a+ d+ 2|

4
, ρ is irreducible

|a+ d+ 2|, ρ is reducible

(4.40)

and

CS(ρ) =


kν − lµ

N
ρ is irreducible

(a+ d+ 2)ϵxϵy + bϵx + cϵy
4

ρ is reducible

(4.41)

We now define a map q : Z× Z → ZN by q(µ, ν) = cν2 + (a− d)µν − bµ2.

Lemma 4.3.2. The map q induces a quadratic form q : G → ZN .

Proof: Since Ker(f) = Im(g) =


a+ 1 c

b d+ 1


i

j

 i, j ∈ Z

, it suffices to

show that q(µ+ a+1, ν + b) = q(µ, ν) and q(µ+ c, ν + d+1) = q(µ, ν) for general µ and

ν. We have

q(µ+ a+ 1, ν + b)− q(µ, ν) = c(ν + b)2 + (a− d)(µ+ a+ 1)(ν + b)

− b(µ+ a+ 1)2 − q(µ, ν)

= −b(d− a+ 2a+ 2)µ+ (2bc+ (a− d)(a+ 1))ν

− b(−bc+ (d− a)(a+ 1) + (a+ 1)2)

= (−2 + 2ad− ad+ a2 + a− d)ν

− b(1− ad+ ad− a2 + d− a+ a2 + 2a+ 1)

= (−2 + a(−a− 2) + a2 + a+ 2 + a)ν

= 0,
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and

q(µ+ c, ν + d+ 1)− q(µ, ν) = c(ν + (d+ 1))2 + (a− d)(µ+ c)(ν + d+ 1)

− b(µ+ c)2 − q̂(µ, ν)

= c(2(d+ 1) + (a− d))ν + ((a− d)(d+ 1)− 2bc)µ

+ c((d+ 1)2 + (a− d)(d+ 1)− bc)

= (−d2 − d+ a− ad+ 2)µ+ c(d+ 1 + ad+ a− bc)

= 0

Thus q induces a well defined map q : G → ZN . It is routine to check that this map is a

quadratic form.

We define the loop operators for non-Abelian characters by

X±(µ, ν) 7→ (xmyn, Sym0)

Y (µ, ν) 7→ (xmyn, Sym1)

where m = −bµ + (a − 1)ν, n = (−d + 1)µ + cν, and Symj denotes the unique (j + 1)-

dimensional irreducible representation of SL(2,C). We choose X+(0, 0) to correspond to

the monoidal unit object. Each character can be represented by infinitely many repre-

sentatives (µ, ν) ∈ Z×Z, but as the following lemma shows, the S-matrix is independent

of this choice.

Lemma 4.3.3. Let Sl be the S-matrix constructed from loop operators as above, then

Sl
X±(µ1,ν1),X±(µ2,ν2)

= 1
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Sl
X±(µ1,ν1),Y (µ2,ν2)

= 2

Sl
Y (µ1,ν1),Y (µ2,ν2)

= 4 cos

(
2π

N
λ (µ1, ν1, µ2, ν2)

)
where λ(µ1, ν1, µ2, ν2) = q(µ1 + µ2, ν1 + ν2) − q(µ1, ν1) − q(µ2, ν2) is the bilinear form

associated to the quadratic form q : G → ZN defined in Lemma 4.3.2.

Proof: From Equation 4.11, we have the following W -symbols

WX±(µ1,ν1)(X
±(µ2, ν2)) = WY (µ1,ν1)(X

±(µ2, ν2)) = 1

WX±(µ1,ν1)(Y (µ2, ν2)) = Tr(X±(µ1, ν1)(x
m2yn2))

WY (µ1,ν1)(Y (µ2, ν2)) = Tr(Y (µ1, ν1)(x
m2yn2))

Thus,

Sl
X±(µ1,ν1),X±(µ2,ν2)

= WX±(µ2,ν2)(X
±(µ1, ν1))WX+(0,0)(X

±(µ2, ν2)) = 1

Sl
X±(µ1,ν1),Y (µ2,ν2)

= WY (µ2,ν2)(X
±(µ1, ν1))WX+(0,0)(Y (µ2, ν2)) = 2

Sl
Y (µ1,ν1),Y (µ2,ν2)

= WY (µ2,ν2)(Y (µ1, ν1))WX+(0,0)(Y (µ2, ν2)) = 2Tr(Y (µ2, ν2)(x
m1yn1))
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and

Tr(Y (µ2, ν2)(x
m1yn1)) = 2 cos

(
2π

k2m1 + l2n1

N

)

= 2 cos

2π

N

(
m1 n1

)k2

l2




= 2 cos

2π

N

(
µ1 ν1

) −b −d+ 1

a− 1 c


d+ 1 −c

−b a+ 1


µ2

ν2




= 2 cos

2π

N

(
µ1 ν1

) −2b a− d

a− d 2c


µ2

ν2




= 2 cos

(
2π

N
λ(µ1, ν1, µ2, ν2)

)
.

Defining q : G → U(1) by q(x) = e
2πiq̂(x)

N , we have the premodular category C(G, q)

and its Z2-equivariantization C(G, q)Z2 as described in the above subsection. Our main

theorem is the following.

Theorem 4.3.4. The S- and T -matrices constructed from torus bundles with Sol geom-

etry coincide with those of the Z2-equivariantization C(G, q)Z2 .

Proof: From Equations 2.13 and 4.41, we have CS(ρ) = −cν+(d−a)µν+bµ2

N
= − q̂(µ,ν)

N
.

Thus, the T -matrix of C(G, q)Z2 as defined in Section 4.3.2 coincides with the one con-

structed directly from the torus bundle as defined in Equation 4.4.

Let Se denote the S-matrix from the Z2-equivariantization C(G, q)Z2 as defined in

Section 4.3.2, and let Sl denote the S-matrix from the loop operator construction as
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defined in Lemma 4.3.3. We first consider the following entry:

Se
X±(µ1,ν1),X±(µ2,ν2)

=
q(X(µ1 + µ2, ν1 + ν2))

q(X(µ1, ν1))q(X(µ2, ν2))

When X(µ1, ν1) = X(µ2, ν2), according to the group structure of G we have X(µ1 +

µ2, ν1 + ν2) = X(0, 0). Thus Se
X±(µ1,ν1),X±(µ2,ν2)

= 1. Similarly, if X(µi, νi) = X(0, 0) for

either i, then clearly Se
X±(µ1,ν1),X±(µ2,ν2)

= 1.

When X(µ1, ν1) ̸= X(µ2, ν2) and (µi, νi) ̸= (0, 0) for all i, then the characters X(µ1+

µ2, ν1 + ν2), X(µ1, ν1), and X(µ2, ν2) are all distinct. Using the notation of Section ??,

these characters must correspond to the cases (ϵx, ϵy) ∈ {(1, 0), (0, 1), (1, 1)}. As men-

tioned in that section, this can only occur if the parities of (a, d; b, c) are (o, o; e, e). Using

the fact that ad−bc = 1, one obtains that N = a+d+2 = 0 (mod 4). Thus Equation 4.41

reduces to CS(X(µ, ν)) = (bϵx + cϵy)/4. By inspection, one finds that applying q(µ, ν) =

exp(−2πiCS(X(µ, ν))) to the (µ, ν) corresponding to (ϵx, ϵy) ∈ {(1, 0), (0, 1), (1, 1)} yields

either the multiset −1,−1, 1 or 1, 1, 1. Thus Se
X±(µ1,ν1),X±(µ2,ν2)

= 1.

Next we consider

Se
X±(µ1,ν1),Y (µ2,ν2)

= 2
q(Y (µ1 + µ2, ν1 + ν2))

q(X(µ1, ν1))q(Y (µ2, ν2))
.

Without loss of generality, we only need to consider two cases: (µ1, ν1) corresponding

to (k1 =
N
2
, l1 = 0) where the parity of (a, d; b, c) is (o, o; e, o), and (µ1, ν1) corresponding

to (k1 =
N
2
, l1 =

N
2
) for (o, o; e, e) and (e, e; o, o).
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When k1 =
N
2
and l1 = 0,

Se
X±(µ1,ν1),Y (µ2,ν2)

= 2 exp

(
2πi

(k2 +
N
2
)(ν2 +

b
2
)− l2(µ2 +

a+1
2
)− k2ν2 + l2µ2 − Nb

4

N

)

= 2 exp

(
2πi

Nν2 + k2b− l2(a+ 1)

2N

)
= 2 exp

(
2πi

Nν2 + ν2N − l2(d+ 1)− l2(a+ 1)

2N

)
= 2 exp

(
2πi

−l2(a+ d+ 2)

2N

)
= 2 exp

(
2πi

−l2
2

)

Since l2 = −bµ2+(a+1)ν2 and b, a+1 are both even, l2 is even. Thus S
e
X±(µ1,ν1),Y (µ2,ν2)

= 2.

When k1 =
N
2
and l1 =

N
2
,

Se
X±(µ1,ν1),Y (µ2,ν2)

= 2 exp

(
2πi

N
((k2 +

N

2
)(ν2 +

b+ d+ 1

2
)− (l2 +

N

2
)(µ2 +

a+ c+ 1

2
)

−k2ν2 + l2µ2 −
N(a+ c+ b+ d+ 2)

4
)

)
= 2 exp

(
πi

N
(N(ν2 − µ2) + k2(b+ d+ 1)− l2(a+ c+ 1))

)
= 2 exp

(
πi

N
(N(ν2 − µ2) +Nν2 − (d+ 1)l2

+ k2(d+ 1)−Nµ2 + k2(a+ 1)− l2(a+ 1))
)

= 2 exp

(
πi

N
(k2 − l2)(a+ d+ 2)

)
= 2 exp (πi(k2 − l2))

Since k2 − l2 = (b + d + 1)µ2 − (a + c + 1)ν2 and b + d + 1, a + c + 1 are both even,

k2 − l2 is even. Thus Se
X±(µ1,ν1),Y (µ2,ν2)

= 2.
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Lastly, it follows from their definitions in Lemma 4.3.3 and Section 4.3.2 that

Se
Y (µ1,ν1),Y (µ2,ν2)

= Sl
Y (µ1,ν1),Y (µ2,ν2)

.
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Chapter 5

Future Questions

The program is still at its infancy, and there remain many questions which we want to

resolve. We hope the insights obtained will lead to an intrinsic understanding of how

and why this program works.

(1) The program only provides an algorithm to compute the S- and T -matrices. Other

data such as such as the F -symbols and R-symbols, which specify the associators

and braidings, respectively [32], are still missing.

(2) Even for the modular data, the computation for the S-matrix follows a trial-and-

error procedure. A definite algorithm to construct S-matrix is in demand.

(3) There are also a number of subtleties in choosing the correct set of characters as

simple objects, determining the proper unit object, etc.

(4) Connect sum of two 3-manifolds should correspond to Deligne product of the cor-

responding categories which need to be verified.

(5) The current program concerns closed manifolds whose Chern-Simons invariants are

all real, thus hyperbolic manifolds do not fit in with the program to some extent.
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The interaction between the program and hyperbolic manifolds is still mysterious.

(6) M-theory also suggests possibility about constructing vertex operator algebra from

4-dimensional manifolds [15], and the category of modules over a vertex opera-

tor algebra is a modular tensor category [18]. We are interested in a potential

relationship of the two frameworks.
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