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microRNAs (miRNAs), defined as
21–24 nucleotide non-coding

RNAs, are important regulators of gene
expression. Initially, the functions of
miRNAs were recognized as post-
transcriptional regulators on mRNAs
that result in mRNA degradation and/or
translational repression. It is becoming
evident that miRNAs are not only
restricted to function in the cytoplasm,
they can also regulate gene expression in
other cellular compartments by a spec-
trum of targeting mechanisms via coding
regions, 5' and 3'untransalated regions
(UTRs), promoters, and gene termini.
In this point-of-view, we will speci-
fically focus on the nuclear functions
of miRNAs and discuss examples of
miRNA-directed transcriptional gene
regulation identified in recent years.

Introduction

microRNAs (miRNAs), a class of non-
coding small RNAs, play important roles
in gene regulation and impact a myriad
of biological processes and diseases.1 Most
miRNAs are generated by the canonical
biogenesis pathway2 (Fig. 1). miRNA
genes are transcribed by RNA polymerase
II (RNAP II) into primary miRNA trans-
cripts (pri-miRNAs), which are further
processed into miRNA precursors (pre-
miRNAs) in the nucleus by the micropro-
cessor complex Drosha/Dgcr8. Pre-miRNAs
are then exported to the cytoplasm by
Exportin 5 and converted into ~22-nt
mature miRNAs by Dicer. Based on the
thermodynamic properties, one of the
strands is preferentially incorporated into
the Argonaute (Ago) protein, a key com-
ponent of the RNA-induced silencing
complex (RISC) complex, and guides it

to target(s). miRNAs are convention-
ally regarded as negative regulators of
gene expression, mostly through post-
transcriptional events taking place in the
cytoplasm. They are known to target
complementary sequence on the mRNA
at different sites or on many different
mRNAs through base-pairing between
the miRNA seed region and the 3'
untranslated region (UTR) in the target
mRNA. It has been reported that
miRNAs can also regulate gene expres-
sion by targeting the 5' UTR,3 coding
regions,4 promoters,5-8 and gene termini.9

In addition, miRNAs are predicted by
several genome-wide computational ana-
lyses to target gene promoters because
potential targets for miRNAs are com-
monly found based on sequence homo-
logy in promoter sequences as in 3'
UTRs,10,11 with some targets highly
complementary to miRNA sequences.8

Intriguingly, functional RISC activity
and RNAi components were detected in
the nucleus12-14 and the mitochondria,15

suggesting that miRNAs also regulate
gene expression in cellular compartments
other than the cytoplasm. A well-illustrated
example of small-RNA dependent trans-
cription gene silencing through hetero-
chromatin formation came from fission
yeast and plants.16 Deep sequencing
analysis revealed a subset of miRNAs
predominantly localized in the nucleus
of human cells and most miRNAs are
imported into the nucleus.17 It has also
been shown that nuclear-cytoplasmic
shuttling of miRNAs and RNAi com-
ponents involve CRM1/Exportin 1 and
Importin 818,19 (Fig. 1). Therefore, cyto-
plasmically processed miRNAs can be
imported into the nucleus to regulate
gene expression. In support, a number of
miRNAs have been recently identified to
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regulate gene expression in the nucleus
by binding to the promoter of targeted
genes.5-8 In our recent work, by using a
combination of computational prediction
and experimental validation, we identified
miRNAs highly complementary to pro-
moter sequences (also known as pro-
moter-targeting miRNAs) which can
activate gene expression in both human
and mouse cells.6,7

Promoter targeting miRNAs. We and
others showed that synthetic double-
stranded RNA (dsRNA) targeting gene
promoters, also known as small activating
RNA (saRNA), activate gene expression
via a process known as RNA activation

(RNAa) (see recent review by Portnoy
et al.11). Mutation analysis showed that
dsRNAs with mismatches between dsRNA
and targeted promoter sequences retained
the ability to induce gene expression,20,21

indicating that RNAa does not require
perfect complementarity between the
guide RNA and target sequences, a
feature reminiscent of miRNA targeting
mRNA sequence. This observation led
to the hypothesis that endogenously
expressed miRNAs might also trigger
RNAa. We supported this notion by
identifying miR-373 as the first example
of a promoter-targeting miRNA in human
cells7 (Table 1). We showed that miR-373

can readily activate E-Cadherin (CDH1)
and cold-shock domain-containing protein
C2 (CSDC2), which contain putative
miR-373 target sites with at least 80%
sequence complementarity in their pro-
moters. Furthermore, gene activation by
miR-373 is Dicer dependent and involves
recruitment of RNAP II at the target
promoter.

Kim et al.8 subsequently reported
another promoter-targeting miRNA,
miR-320. Computational analysis revealed
that miR-320 is among one of the 9
mature miRNAs which exhibited perfect
sequence complementarity with gene pro-
moters and is transcribed from the

Figure 1. Actions of miRNAs in the nucleus. Canonical miRNAs are transcribed by RNA polymerase II (RNAP II) into primary miRNA transcripts
(pri-miRNAs), which are further processed into miRNA precursors (pre-miRNAs) in the nucleus by Drosha/Dgcr8. Pre-miRNAs are then exported
to the cytoplasm by Exportin 5 (XPO5)/CRM1 and are processed into mature miRNAs by Dicer. One of the strands is preferentially incorporated into
the Argonaute (Ago) protein, a component of the miRISC complex. (A) Classical function of miRNA-mediated post-transcriptional inhibition by 3 ‘UTR
targeting. (B and C) In order for miRNAs to function in the nucleus, Ago-miRNA complex is imported into the nucleus by binding to Importin 8 (Imp8).
Promoter-targeted miRNA complexed with Ago binds to chromosomal DNA sequences or nascent cognate transcripts derived from promoters. During
RNAa, recruitment of chromatin modifying proteins (CMPs) leads to increased H3K4 methylation thereby activates transcription at the targeted promoter
(B). In TGS, recruitment of CMPs leads to increased H3K9/K27 methylation thereby inhibits transcription at the targeted promoter (C). RNAa: RNA
activation; TGS: transcriptional gene silencing; CMPs: chromatin modifying proteins; miRISC: miRNA-containing RNA induced silencing complex
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promoter of POLR3D gene. miR-320
levels correlated inversely with POLR3D
expression in different tissues examined
and transfection of miR-320 mimics
induced gene silencing of POLR3D,
implying that miR-320 targets the pro-
moter of POLR3D and directs transcrip-
tional gene silencing (TGS) of POLR3D
in cis (Table 1). Following transfection
of miR-320, enrichment of Ago1 and
H3K27me3 was observed at the POLR3D
promoter. mR-320 also induced enrich-
ment of EZH2, a histone methyltrans-
ferase, suggesting miR-320 mediated TGS
of POLR3D associated with epigenetic
changes.

Very recently, Younger et al.5 identified
multiple exogenous miRNA mimics
(miR-423-5p, miR-372, miR-373, miR-
520c-3p) that inhibit the expression of
progesterone receptor (PR), a locus well-
characterized for small RNA mediated
gene regulation (Table 1). Consistent with
their previous reports using perfectly
matched dsRNAs, they showed that TGS
at the PR promoter mediated by miR-423-
5p in trans is associated with recruitment
of Ago2 to a non-coding RNA (ncRNA)
transcript transcribed from the PR pro-
moter. Similar to miR-373 which targets
multiple promoters for transcriptional
regulation,7 miR-423-5p can target addi-
tional genes which bear its targets within
their promoters (Table 1). An increase in
H3K9me2 was detected at the PR pro-
moter, again, suggesting that epigenetic
changes were associated with miRNA-
induced TGS (Fig. 1).

The authors also evaluated the endo-
genous functions of miR-423-5p in PR
regulation. However, they were unable to
detect changes in PR gene expression
following the expression of antisense
RNAs against miR-423-5p in the two
cell lines used in this study. The use of
exogenous miRNA mimics allowed for

proof-of-principle demonstration for small
RNA-mediated gene regulation studies at
the well-characterized PR locus. However,
due to the lack of functional evidence of
miR-423-5p, the endogenous functions of
this miRNA in mediating TGS still needs
to be further examined in other cell types
and/or other physiological conditions.

Ccnb1 Promoter-targeting miRNAs

In our recent work by Huang et al.,6 we
identified miRNAs (miR-744, miR-1186,
miR-466d-3p) which are highly comple-
mentary to sites in the mouse Cyclin B1
(Ccnb1) promoter and can activate Ccnb1
expression (Table 1). In an attempt to
identify miRNAs that may have gene
activating roles in an endogenous context,
Ccnb1 came out of the initial screen as
one of the genes that were downregulated
by depletion of Drosha and Dicer. In silico
miRNA target prediction conducted on
a 1-kb promoter region of the mouse
Ccnb1 gene identified 21 potential targets
for 20 miRNAs. Among the top candidate
miRNAs, miR-744 and miR-1186 possess
over 90% complementarity with the
Ccnb1 promoter and consistently activate
Ccnb1 expression. Depletion of miR-744
resulted in the downregulation of Ccnb1
expression, suggesting the basal expression
of Ccnb1 is in part miR-744 dependent.
Upregulation of Ccnb1 by the miRNAs
involves recruitment of Ago1 and RNAP
II and accompanied by an increase in
histone mark H3K4me3 at the Ccnb1
promoter. Based on these findings, it is
suggested that Ccnb1 activating miRNAs
activate Ccnb1 expression by binding to
the Ccnb1 promoter in an Ago1 depend-
ent manner although the exact molecular
targets (promoter transcript vs. chromo-
somal DNA) remain to be determined.
Upon binding to the Ccnb1 promoter,
it is likely that Ago1 further recruits

chromatin modifying proteins to activate
transcription (Fig. 1).

Given the observation that mouse phy-
siological Ccnb1 expression depends on
the miRNA pathway and the fact that
Ccnb1 is an essential protein that drives
mitotic cell cycle entry, it is expected that
perturbation of such intricate relationship
may have profound functional conse-
quences. Indeed, transient overexpression
of Ccnb1 promoter targeting miRNAs
enhanced in vitro cell proliferation and
promoted mitosis in the short-term.
Surprisingly, stable expression of these
miRNAs in mouse prostate cancer cells
disrupted global chromosome stability
and suppressed in vivo tumorigenecity.
Collectively, this work provides the first
example of physiologically relevant RNAa
and demonstrated that miRNAs have
nuclear function to positively impact gene
transcription. What is more, cancer cells
may exploit such mechanism to gain a
growth advantage. Identifying additional
examples will provide insights into con-
textual requirement and mechanism for
miRNA-mediated gene regulation.

Roles of Ago Proteins
in miRNA-Mediated
Gene Regulation

Members of the Ago proteins belong to a
highly evolutionarily conserved protein
family. There are four Ago family mem-
bers expressed in mammals. It has been
reported that all four human Ago1–4
exhibit similar biochemical preferences
for binding to duplex RNA, although
only Ago2 uniquely exhibits cleavage
activity.22,23 Ago 1–4, especially Ago1
and Ago2, have been implicated in small
RNA-mediated gene regulation.5,6,8,20,24

Subcellular localization studies in human
cells have shown that Ago1 and Ago2 are
localized in the nucleus,13,25,26 suggesting

Table 1. Promoter-targeting miRNAs

miRNA Species Validated target promoter(s) Gene regulatory effect Reference

miR-373 Human CDH1, CSDC2 Activation 7

miR-744, miR-1186, miR-466d-3p Mouse Ccnb1 Activation 6

miR-320 Human POLR3D Silencing 8

miR-423–5p Human PR, IGSF1 Silencing 5

miR-372, miR-373, miR-520c-3p Human PR Silencing 5
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their possible interactions with the
chromatin.

Several recent studies reflect functional
segregation between Ago1 and Ago2 in
miRNA-mediated gene regulation. For
example, Kim et al.8 showed that Ago1
is enriched at the POLR3D promoter
following transient overexpression of
miR-320, suggesting that Ago1 may be
one of the effector proteins for initiating
TGS. A recent report by Younger et al.5

showed that miRNAs can robustly inhibit
PR transcription despite their low degree
of complementarity with the target
ncRNA and suggested that miRNAs
with incomplete complementarity to their
target require Ago2 as opposed to Ago1
as shown by Kim et al.8 Recruitment of
Ago2 to their respective target ncRNAs
results in alteration in the level of RNAP
II at the PR promoter. Therefore, the
authors concluded that Ago2 is required
for recognition of promoter-overlapping
ncRNAs by miRNA mimics.5 Consistent
with Kim et al.,8 our recent work sug-
gested that Ago1 seemed to play a major
role in Ccnb1 gene activation mediated
by miRNA. We found Ago1 but not
Ago2 is selectively enriched at the Ccnb1
promoter in vicinity to the miR-744
target site on mouse Ccnb1 promoter.
Moreover, depletion of Ago1 by RNAi
had a stronger effect on Ccnb1 down
regulation in mouse cells than depletion
of Ago2. Mescalchin et al.27 has shown
that while Ago2 is primarily involved
in siRNA-mediated silencing pathways,
Ago1 and other family members are

primarily involved in miRNA-mediated
gene regulation. Ago1 and Ago2 also
showed differential distribution in the
nucleus in response to promoter-targeted
siRNAs during TGS.26 Taken together,
these findings suggest that the promoter
targeting mechanism mediated by
miRNAs may be different from those
utilized by perfectly matched dsRNAs in
terms of requirement for Ago proteins.
Moreover, chromatin environment, se-
quence complementarity, and the type
of promoter targets for miRNAs may
account for the differential requirement
for Ago proteins in miRNA mediated
gene regulation.

Future Perspectives

Recent discoveries of the noncanonical
functions of miRNAs in gene regulation
present a paradigm shift—miRNAs
possess the ability to fine-tune gene expres-
sion at different levels of gene regulation.
The nuclear functions of miRNAs have
begun to emerge in recent years, although
the mechanism of miRNA-mediated trans-
criptional regulation remains to be fully
elucidated. Studies have shown that endo-
genously expressed miRNAs have similar
gene regulatory effects on target gene pro-
moters compared with promoter-targeting
short interfering RNAs (siRNAs) or
saRNAs.5,6,28,29 Thus, rules that govern gene
regulation utilized by promoter-targeting
dsRNAs can be partly applied to the
understanding of the targeting mechanism
mediated by promoter-targeting miRNAs.

It has been reported, at least for the PR
gene, ncRNAs overlapping the promoter
serve as targets for both promoter-targeting
miRNAs and siRNAs.5,30 Hansen et al.31

reported circular noncoding antisense
transcripts as direct targets of miR-671, a
nuclear enriched miRNA. Identification of
other types of nuclear targets of miRNAs
needs to be determined. Long ncRNAs
have been shown to interact with chro-
matin remodeling factors in mammalian
cells,32 suggesting that ncRNAs have the
potential to regulate gene transcription
through epigenetic reprogramming.
Indeed, Drosophila Ago2 and other RNAi
components have been recently shown to
be directly involved in chromatin regula-
tion.14,33 Other than transcriptional regula-
tion, synthetic dsRNAs have also been
shown to redirect splicing in the nucleus
of mammalian cells.34 Deciphering the roles
of miRNAs and other small RNA species
in regulation of chromatin dynamics and
additional nuclear processes in mammalian
systems is a fascinating area of investigation
in the years to come.
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