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ABSTRACT OF THE DISSERTATION

Virtual Node Methods for Incompressible Flow

by

Russell Edward Howes
Doctor of Philosophy in Mathematics

University of California, Los Angeles, 2014

Professor Joseph Teran, Chair

This thesis details two numerical methods for the solution of incompressible flow problems

using the virtual node framework introduced in [1]. The first method is a novel discrete Hodge

decomposition for velocity fields defined over irregular domains in two and three dimensions.

This new decomposition leads to a sparse, 5-point stencil in 2D (7-point in 3D) at all nodes in

the domain, even near the boundary. The corresponding linear system can be factored simply

into a weighted product of the standard discrete divergence and gradient operators, is symmetric

positive definite, and yields second order accurate pressures and first order velocities (second

order in L1).

The second method is an extension of the work in [2], which simulates the Stokes equations

in two dimensions, to a method that models the Navier-Stokes equations in two and three spatial

dimensions. The extension to three dimensions is partially accomplished by a new approach to

discretizing the multiplier term corresponding to the system jump conditions. This method

works either on domains with interfacial discontinuities in material quantities such as density

and viscosity, or on irregularly shaped domains with Dirichlet, Neumann, or slip boundary

conditions. This method leads to a discrete, KKT system solving for velocities and pressures

simultaneously, and yields second order accurate velocities in both time and space, and first

order pressures.
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CHAPTER 1

Introduction

The Navier-Stokes equations describing incompressible fluid flow are among the most studied

and most important equations in applied mathematics, and are central to numerous areas of

inquiry in physics, chemistry, biology, and engineering. Other systems of equations related to

Navier-Stokes, such as inviscid Euler flow and Stokes flow, are also commonly studied with

an eye to real-world problems. Modeling and observing the behavior of fluids governed by

these equations is typically done through numerical methods instead of by analytic means. Fre-

quently, the systems under observation have curved boundaries that do not easily conform to a

normal Cartesian grid, making typical finite-difference methods difficult to implement. Occa-

sionally, two or more materials with different material properties will interact, with a moving

interface separating them. Accurately capturing the motion of this interface can also be chal-

lenging.

This thesis describes the work of the author with Prof. Joseph Teran and other co-authors

on two different methods based on a Virtual Node approach, designed to solve incompressible

flow problems in two and three dimensions. The first is meant to solve inviscid Euler flow

problems with irregular boundaries, and the other to solve Navier-Stokes problems containing

irregular boundaries, and including multiple fluids with different physical parameters such as

density and viscosity. Each embeds the domain of interest in a regular Cartesian grid, and each

offers improvements over other methods for comparable problems.

We will first review the derivation of the Navier-Stokes equations from conservation laws,

as their derivation provides intuition on some of the computational techniques that have been

developed for the simulation of incompressible flow (for example, Chorin projection [5]). We

will also look at the role of pressure as a Lagrange multiplier in flow problems, which is key

1



to the design of one of our methods. We will discuss the development, relative advantages

and disadvantages of comparable methods for incompressible flow problems. After a brief

description of the Virtual Node algorithm for elliptic problems, we will present the first method,

which is based on the original Virtual Node algorithm [1]. Numerical examples for the first

method method show the accuracy for velocities to be first order in L∞ and second in L1. Finally,

we will describe the second method, which extends previous work [2] from Stokes flow to the

full Navier-Stokes equations, and from two to three dimensions. Numerical examples of the

second method indicate second order accurate velocities in L∞.
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CHAPTER 2

Incompressible Flow Problems

2.1 Derivation of Navier-Stokes Equations

The Navier-Stokes equations describe the motion of incompressible Newtonian (viscous) fluids

and are derived by applying certain assumptions about fluid properties to physical conservation

laws for mass, momentum, and energy. We start by making some very basic assumptions, which

constitute the continuum hypothesis, that the physical properties of the fluid such as density,

pressure, temperature, and velocity exist and are well-defined.

Under these assumptions, we will present a derivation of the equations that will describe

Navier-Stokes flow. We first derive an equation describing how mass is conserved, by viewing

the fluid from an Eulerian perspective. We start by letting W be a fixed subregion of a fluid-filled

domain Ω. The mass of W is given by

m(W, t) =
∫

W
ρ(x, t) dV

and rate of change of mass is given by

d
dt

m(W, t) =
d
dt

∫
W

ρ(x, t) dV =
∫

W

dρ

dt
(x, t) dV

Since mass is conserved, the rate of change of mass of W must be equal to the net rate of mass

flow into W , which can be represented by the normal flux at the boundary ∂W : −∫
∂W ρu ·n dA.

Setting these two quantities equal and applying the divergence theorem to the flux term gives us

d
dt

m(W, t) =−
∫

∂W
ρu ·n dA

⇔
∫

W

[
dρ

dt
(x, t)+∇ · (ρu)

]
dV = 0.

3



Since this is true for any control volume W , we have at each point the relation

dρ

dt
(x, t)+∇ · (ρu) = 0. (2.1)

This equation is known as the mass continuity equation.

We here make another material assumption, that of incompressibility of the fluid. Physically,

this means that the density of a small volume of fluid dV (t) does not change as dV moves

according to the velocity of the fluid u. The density ρ of dV is a function of t and x, and we can

write its total derivative as

dρ

dt
=

∂ρ

∂ t
+

∂ρ

∂x
dx
dt

+
∂ρ

∂y
dy
dt

+
∂ρ

∂ z
dz
dt

and substitute the velocity u in to obtain

dρ

dt
=

∂ρ

∂ t
+u ·∇ρ. (2.2)

The quantity ∂ρ

∂ t +u ·∇ρ is often called the material derivative of ρ and is often denoted by Dρ

Dt

instead of dρ

dt . Using the mass continuity equation (2.1) to substitute for ∂ρ

∂ t in (2.2) gives us

Dρ

Dt
=−ρ(∇ ·u) (2.3)

and the assumption of incompressibility implies that the material derivative of ρ is zero every-

where. We conclude that

∇ ·u = 0. (2.4)

Conservation of momentum comes from Newton’s second law of motion F = mA. Specif-

ically, for a control volume W , the rate of change of total inside momentum is equal to the

normal flux of momentum through the boundary ∂W , plus forces acting on ∂W , plus any body

forces acting inside W . We describe the normal flux of momentum as

−
∫

∂W
ρuu ·n dA.

The forces acting on ∂W are traction forces equal to the normal component of fluid stress (or

Cauchy stress) σ at the boundary, modeled by∫
∂W

σn dA.

4



For Newtonian fluids, we make the assumption that the Cauchy stress takes the form σ(x, t) =

−pI+2µ E(u), where

E(u) =

(
∂u
∂x

+
∂u
∂x

T
)

(2.5)

is the infinitesimal strain tensor and p is the fluid pressure. The pressure portion of the stress

is reactive to the incompressibility constraint (2.4) and the second term represents the effects of

viscosity on the fluid. A good derivation of these terms is given in [6]. In our work, the only

body force we consider to act on the fluid is gravity, which is represented by∫
W

ρg dV.

The vector g corresponds to the gravitational constant, which we take in this work to be

−9.8 m/s2. Our equation for conservation of momentum is then

∂

∂ t

∫
W

ρu dV =−
∫

∂W
ρuu ·n dA+

∫
∂W

σn dA+
∫

W
ρg dV, (2.6)

and we use the divergence theorem and move the ρuu ·n term to the left side to obtain∫
W

∂

∂ t
(ρu)+∇ · (ρuu) dV =

∫
W

∇ ·σ +ρg dV

which gives us
∂

∂ t
(ρu)+∇ · (ρuu) = ∇ ·σ +ρg,

into which we substitute for σ to yield

∂

∂ t
(ρu)+∇ · (ρuu) = ∇ ·

(
−pI+µ

∂u
∂x

+µ
∂u
∂x

T
)
+ρg. (2.7)

We can simplify terms on both the left- and right-hand sides of (2.7). First we expand both the

time derivative and the divergence term involving the second-order tensor (called a dyad), and

then use the mass continuity equation (2.1) to simplify:

∂

∂ t
(ρu)+∇ · (ρuu) =

∂ρ

∂ t
u+

∂u
∂ t

ρ + ∇ · (ρu)u+ρu ·∇u

=
∂u
∂ t

ρ + ρu ·∇u (2.8)

5



For the right-hand side, we use properties of the divergence operator to verify that ∇ ·(pI) =

∇p, ∇ ·(∇u) = ∆u, and ∇ ·(∇u) = ∇(∇ ·u), the latter of which vanishes due to the incompress-

ibility condition (2.4). This allows us to simplify the right-hand side of (2.7) to

−∇p+µ∆u+ρg, (2.9)

and combine the two halves for our conservation of momentum equation

ρ

(
∂u
∂ t

+ u ·∇u
)
=−∇p + µ∆u + ρg. (2.10)

Note that the left-hand side of Equation (2.10) is the material derivative of u; we will write

it Du
Dt . The equations (2.1), (2.4), and (2.10) form a closed system for the variables u, ρ , and p.

When we assume that the density ρ in a domain is known (we typically take it to be constant,

or piecewise constant), we usually omit (2.1) giving us the closed system of Navier-Stokes

equations

ρ

(
∂u
∂ t

+ u ·∇u
)
=−∇p + µ∆u + ρg

∇ ·u = 0

for fluid velocity and pressure.

2.2 Energy Minimization Formulation

Here we show another way to derive the equations for incompressible flow, this time as the

solution to a constrained minimization problem. We will start by presenting the derivation for

the Stokes problem, which makes use of a trick found in [7] to introduce pressure as a Lagrange

multiplier.

2.2.1 Stokes Flow

For simplicity, we assume a compact domain Ω with a uniform Dirichlet boundary Γ. The

constrained minimization problem describing Stokes flow is

infv µ

∫
Ω
|E(v)|2 dV −

∫
Ω

f · v dV s.t. ∇ · v = 0. (2.11)

6



We can make an equivalent, unconstrained problem by introducing a penalty function:

infv µ

∫
Ω
|E(v)|2 dV −

∫
Ω

f · v dV + δ (∇ · v|{0}) (2.12)

where δ (x|{0}) is the characteristic function, defined as 0 where x = 0 and ∞ otherwise. The

characteristic function still enforces the incompressibility constraint on any solution to the min-

imization problem. We can rewrite the penalty function as

δ (∇ · v|{0}) = sup
q
−
∫

Ω
q ∇ · v dV

since unless ∇ · v = 0, we can pick q to make the integral arbitrarily large. We have now turned

(2.12) into a saddle point problem:

infv sup
q

µ

∫
Ω
|E(v)|2 dV −

∫
Ω

f · v dV −
∫

Ω
q ∇ · v dV (2.13)

The solution pair (u, p) satisfying (2.12) can be found with the aid of the calculus of variations.

The Euler-Lagrange equations corresponding to the functional

I[q,v] = µ

∫
Ω
|E(v)|2 dV −

∫
Ω

f · v dV −
∫

Ω
q ∇ · v dV

are the differential equations satisfied by our energy-minimizing (u, p). The functional has first

variation functions iv(τ) = I[q,v+ τw] and iq(τ) = I[q+ τr,v] respectively. The constrained

minimum will be located where both first variations are zero, so we solve the resulting equations

i′v(0) = 0 and i′q(0) = 0 to obtain the two-equation system

2µ

∫
Ω

E(u) : E(v) dV −
∫

Ω
f · v dV −

∫
Ω

p ∇ · v dV = 0 ∀ v∫
Ω

q ∇ ·u dV = 0 ∀ q. (2.14)

We use the incompressibility constraint ∇ ·u to simplify the integral for the bilinear form:

2
∫

Ω
E(u) : E(v) dV =−

∫
Ω

v ·∆u dV

Replacing this integral in (2.14) and performing integration by parts on the pressure term leaves

us with the variational form of the Stokes equations (with a homogeneous boundary condition):

−µ

∫
Ω

v ·∆u dV −
∫

Ω
f · v dV +

∫
Ω

∇p · v dV = 0 ∀ v∫
Ω

q ∇ ·u dV = 0 ∀ q. (2.15)
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The Laplacian term above comes from the bilinear form by way of the incompressibility con-

straint. Since the variational form must hold for all test functions v,q, it is equivalent to

0 =−∇p + µ∆u + ρf

∇ ·u = 0

u|Γ = 0.

2.2.2 Euler Flow

The inertial contributions to Euler and Navier-Stokes flow makes the use of an Eulerian ap-

proach to deriving the equations very tricky, so we will use a Lagrangian formulation instead.

(A description of derivation in an Eulerian framework is given in [8].) We will first assume

µ = 0; that is, inviscid Euler flow. Letting x = x(X, t) and ρ0 = ρ(X,0), we will also define two

physical quantities: L is the load potential per unit mass, and U is the internal energy per unit

mass. We then state the kinetic and potential energy as

K =
∫

Ω0

1
2

ρ0

∣∣∣∣dx
dt

∣∣∣∣2 dV0

P =
∫

Ω0

ρ0 (U +L) dV0

where Ω0 is a unit volume of fluid at time t = 0. From the first law of thermodynamics we can

state that the change in the internal energy U per unit mass is equal to the work done by the

fluid externally, that is:

dU =−p dV =−p d
(

1
ρ

)
. (2.16)

We further recall that incompressibility means that ρ0(X) = ρ(x(X, t), t). We will use this

definition of incompressibility here instead of ∇x ·u, since our variable in the Lagrangian setup

is x and not u.

Our functional minimizes the difference between kinetic and potential energy, in accordance

with Hamilton’s Principle [9], subject to the incompressibility constraint:

infx

∫ T

0

∫
Ω0

1
2

ρ0

∣∣∣∣dx
dt

∣∣∣∣2−ρ0(U +L) dV0 dt s.t. ρ = ρ0. (2.17)
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As with the Stokes formulation, we introduce the Lagrange multiplier q and the constrained

minimization problem becomes

infu sup
q

∫ T

0

∫
Ω0

1
2

ρ0

∣∣∣∣dx
dt

∣∣∣∣2−ρ0(U +L) dV0 dt +
∫ T

0

∫
Ω0

q(ρ−ρ0) dV0 dt. (2.18)

We vary ρ and x to obtain the Euler-Lagrange equations ρ0
∂U
∂ρ

+ q = 0

ρ0
d
dt

∂xi
∂ t +ρ0

∂L
∂xi

+ ∂

∂xi
(qρ) = 0

(2.19)

by setting the first variation functions equal to zero. To solve the first Euler-Lagrange equation,

we differentiate both sides of (2.16) to find that

∂U
∂ρ

=
p

ρ2 ⇒ q =
p
ρ
.

We can then substitute for q in the remaining Euler-Lagrange equations (the second listed equa-

tion of (2.19) for i = 1,2,3.) By now we can replace ρ0 with ρ , and if we assume load potential

on the fluid comes from gravitation force, we can also assume that ρg = −∇L and substitute

u = ∂x
∂ t . This results in

ρ
du
dt
−ρg+∇p = 0.

When we substitute for the material derivative of the velocity, we get the Eulerian formulation

of the inviscid Euler equations

ρ

(
∂u
∂ t

+(u ·∇)u
)
=−∇p+ρg. (2.20)

2.2.3 Energy Minimization for Navier-Stokes

For a viscous fluid, we can obtain the Navier-Stokes equations from the Euler equations simply

by replacing the pressure term in (2.20) with the total contribution of the Cauchy stress tensor:

ρ

(
∂u
∂ t

+(u ·∇)u
)
= ∇ ·σ +ρg. (2.21)

Sometimes it is convenient to work directly with the individual components of the stress instead

of σ itself. In such cases we can simplify the Cauchy stress term ∇ ·σ with −∇p+µ∆u, based

on our assumptions used in (2.7) and (2.9). This gives us

ρ

(
∂u
∂ t

+(u ·∇)u
)
=−∇p+µ∆u+ρg. (2.22)
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CHAPTER 3

Existing Methods

Exact projection methods for incompressible flow, originally developed by Chorin in [5], are

very effective because of their accuracy, stability, and relative ease of implementation. The

temporary introduction of artificial compressibility in the advection stage of these algorithms,

through the use of an intermediate velocity field u∗, simplifies the interaction of the velocity

and pressure. The intermediate compressible velocity field must then be projected to its nearest

incompressible counterpart via Hodge decomposition. Projection is ultimately done with the

solution of a Poisson equation for the pressure, and it is often stabilized with a MAC-style

staggering of velocity and pressure variables [10]. This staggering naturally leads to second-

order, discrete central difference gradient and divergence operators. The composition of these

operators yields the standard 5- (in 2D) or 7-point Laplacian for cell-centered pressures.

A number of extensions to the early projection method of [5] improved on accuracy of

the computed velocities and pressure. A review of higher order projection methods can be

found in [11], which describes several of these methods and states conditions that must be

met for projection methods to attain second order accuracy. The projection procedure can be

generalized as follows:

Step 1: The intermediate velocity field u∗ is found by solving

u∗−un

∆t
+∇q =−[(u ·∇)u]n+1/2 +µ∆u

B(u∗) = 0

where q represents a partial approximation to the pressure pn+1/2 and B(u∗) = 0 is some bound-

ary condition on u∗ defined as part of the method. In this example from [11], the time derivative

is discretized with Backward Euler and is thus first order in time, but other time discretizations
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can also be used.

Step 2: Use the Hodge decomposition to project the divergence-free part of the velocity

u∗ = un+1 +∆t∇φ
n+1

∇ ·un+1 = 0

where φ n+1 is the potential uniquely defined (to a constant) by the decomposition.

Step 3: The pressure is then calculated as some function of q and φ . It is fairly common

for such projection methods to ignore the pressure gradient while computing the advection step

(in other words, q≡ 0). Such methods are called pressure-free projection methods and yield an

update formula for p that is fully in terms of φ : for example, the simple

pn+1/2 = φ
n+1

or the more accurate

pn+1/2 = φ
n+1− µ∆t

2
∆φ

n+1

described in [11]. In these cases, however, the pressure is not required to advance the velocity.

In other instances, q is nontrivial and is set to be the previous pressure pn−1/2. Here, the pressure

update is given by

pn+1/2 = pn−1/2 +φ
n+1− µ∆t

2
∆φ

n+1.

When the splitting and pressure updates are done correctly, both these methods have been shown

to yield second order spatial accuracy for flow problems on regular domains with Cartesian

grids.

3.1 Embedded Methods

Unfortunately, optimal accuracy is difficult to achieve for problems defined over irregular do-

mains because the MAC staggering is designed for Cartesian grids. A natural approach to the

numerical approximation of irregular domains or curved interfaces is the finite element method

(FEM) with unstructured meshes that conform to the geometry of Γ and ∂Ω. However, mesh-
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ing complex interface geometries can prove difficult and time-consuming when the interface

frequently changes.

Many researchers have developed approaches that generalize the Cartesian MAC-based pro-

jection for regular domains to the irregular case by embedding the irregular domain in a standard

Cartesian grid. These methods avoid the problems of remeshing found in FEM implementa-

tions. However, it is very difficult to maintain the simplicity of the original Cartesian approach

without sacrificing accuracy or efficiency. Most recent developments in embedded methods for

incompressible flow have as objectives increased orders of accuracy, faster computation by con-

struction of symmetric, positive definite linear systems, or capabilities to handle such situations

as solid-fluid coupling, moving boundaries, or interfacial flow of fluids with different material

properties (such as density and viscosity).

Some of the first embedded methods were fictitious domain methods by Hyman [12] and

Saul’ev [13]. The fictitious domain approach has been used with incompressible materials in

a number of works [14, 15, 16, 17, 18, 19, 20, 21, 22]. These approaches embed the irregular

geometry in a simpler domain for which fast solvers exist (e.g. Fast Fourier Transforms). The

calculations include fictitious material in the complement of the domain of interest. A forcing

term (often from a Lagrange multiplier) is used to maintain boundary conditions at the irregular

geometry. Although these techniques naturally allow for efficient solution procedures, they de-

pend on a smooth solution across the embedded domain geometry for optimal accuracy, which

is not typically possible.

3.1.1 Immersed Boundary Method

The immersed boundary method (IBM) was introduced in [23], originally developed to model

blood flow in the human heart. It has since been applied to a number of other problems in the

biosciences and in physics; a good review of applications of the IBM can be found in [24] as

well as a detailed exposition of the numerical method. The important detail in the IBM is the

use of regularized discrete delta functions to distribute a singular source to grid points near an

embedded boundary. This limits the accuracy of the IBM to first order in the case of sharp
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discontinuities across an infinitesimally small interface (although in some other cases, such as a

thick interface, the IBM is able to attain second order). A recent analysis [25] has suggested the

IBM gives O(1) errors in pressure near the interface for interfacial Stokes flow. Furthermore,

the IBM suffers from loss of volume near the interface. An improvement to the IBM in [26]

modified divergence and gradient stencils to partially fix this problem for Stokes flows. A

modification to the IBM gives the Blob Projection Method [27], which yields second order

accuracy but requires special conditions on the singular source, which seems to limit the type

of geometries it can support. It is also considerably more difficult to implement than traditional

IBM.

The IBM is robust and easy to implement; this advantage has led to its continued use in

applications over other, more accurate, methods. Some recent applications include modeling

fish-sized swimmer dynamics [28], simulating fluid-structure interaction such as platelets in

blood [29], insect swarm dynamics [30], and fluid-filled capsules in shear flow [31].

3.1.2 Immersed Interface Methods

The Immersed Interface Method (IIM) is one of the most popular finite difference methods for

approximating the Navier-Stokes equations to second-order accuracy. Leveque and Li intro-

duced the IIM in [32] for approximating elliptic interface problems, and the method has since

been extended to a number of applications including incompressible flow problems with irregu-

lar boundaries or interfaces [33, 34, 35]. Further extensions have taken into account interfacial

forces such as surface tension [36]. Finite-difference schemes for the IIM use standard second

order central-difference stencils away from an interface, modifying the terms of the standard

stencil near an interface. For discontinuous viscosity, the addition of an extra stencil point is

generally required at points near the interface to maintain second order accuracy. Jump discon-

tinuities in the pressure are handled by modification of the right-hand side. The IIM achieves

second order accuracy by capturing interfacial discontinuities in the pressure, the velocities and

their derivatives in a sharp manner. Immersed Interface Methods have also been used in other

flow problems including Hele-Shaw flow [37] and also problems in which the viscosity is dis-
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continuous across the interfaces [38, 39, 40]. Arbitrarily high orders of accuracy have been

achieved for elliptic problems [41]. A good survey of IIM methods and applications can be

found in [42].

The Taylor expansion-based discretization of the Immersed Interface Method is consider-

ably more complicated to implement than the IBM, and most applications are only in two space

dimensions as a result. However, researchers have applied the IIM to three dimensional flows

[43]. An important limitation of the IIM is the lack of symmetry in discretizations arising

from problems with discontinuous coefficients. This imposes an obstacle on the overall speed

of these methods since fast linear solvers for symmetric systems, such as conjugate gradient

or MINRES, cannot be used. One exception to this is continuous viscosity Stokes flow, which

only modifies the right-hand side of the linear system and can thus use fast Poisson solvers [33].

The IIM is also complicated from the lack of explicit knowledge of jump conditions on the fluid

variables (and their derivatives) along the interface in the case of discontinuous viscosity [38].

Significant efforts have been made to improve the performance of the IIM, particularly through

algebraic and geometric multigrid methods [44].

3.1.3 Extrapolation-Based Schemes

A number of schemes have modified a method such as IBM or IIM by introducing fictitious

‘ghost’ points to enable use of standard second-order stencils near an irregular boundary or

immersed interface. One such method is the Ghost Fluid Method (GFM), which guarantees a

symmetric, positive definite method by decomposing the flux jump separately in each dimen-

sion. [45]. Compared to the IIM, the Ghost Fluid Method is relatively easy to implement. The

GFM has been applied to the Poisson problem with interfacial jumps and variable coefficients

[45] and also to multiphase incompressible flow [46]. The way in which the GFM decomposes

the flux jump condition only takes into account the normal component of the flux, neglecting

treatment of the tangential flux terms. This renders the method capable only of achieving first

order results for interface problems. Also, in [46] the GFM treats viscous terms explicitly in

the discontinuous velocity case, because they cannot be properly decoupled. The ease of im-
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plementation of the GFM has led to its use in some applications, including a method [47] for

interfacial flows with very high density ratios.

The Matched Interface and Boundary (MIB) method [48, 49] adjusts the approach of the

IIM discretization, making modifications to the Poisson stencil on a dimension-by-dimension

basis using fictitious points. Enforcement of jump conditions is decoupled from the modified

finite difference stencil. The work of [50] applies the framework of the MIB to interfacial

flow in two dimensions, with an emphasis on viscous creeping flows in geodynamic processes.

The MIB achieves second-order accuracy and, although the resulting matrix is asymmetric, its

construction is somewhat more simplified than the IIM. Schemes for the MIB enable very high

orders of accuracy for the Poisson equation [49], although these have not yet been applied to

flow problems.

3.1.4 Finite Volume Methods

Some methods use finite volume-type approaches in cutting the domain over the MAC grid.

One recent and efficient method for flow problems on irregular domains is that of Ng. et al [51].

This work gives convergent results for velocities in L∞, improving on the results of previous

work by Batty [52]. The results in [51] were second order accurate pressures, and second order

velocities in two dimensions (first order in three dimensions.) The authors later extended their

method [53] to couple incompressible flow with motion of non-stationary rigid bodies. These

changes include a second-order accurate time discretization instead of backward Euler, use of a

nonzero pressure approximation in determining the intermediate velocity field, and a different

treatment of the viscosity term that gives second order accurate velocity gradients, but at the

cost of sacrificing symmetry for the intermediate velocity solve.

3.1.5 Extended Finite Element Method

The extended finite element method (XFEM) and related approaches in the finite element liter-

ature also make use of geometry embedded in regular elements. Although originally developed

for crack-based field discontinuities in elasticity problems, these techniques are also used with
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embedded problems in irregular domains. Daux et al. first showed that these techniques can

naturally capture embedded Neumann boundary conditions [54, 55]. These approaches are

equivalent to the variational cut cell method of Almgren et al. in [56]. Enforcement of Dirichlet

constraints is more difficult with variational cut cell approaches [57, 58] and typically involves

a Lagrange multiplier or stabilization. Dolbow and Devan recently investigated the conver-

gence of such approaches with incompressible materials and point out that much analysis in

this context remains to be completed [59]. Despite the lack of thorough analysis, such XFEM

approaches appear to be very accurate and have been used in many applications involving in-

compressible materials in irregular domains [60, 61, 62, 63, 64].

3.1.6 Other Cartesian Methods

There are also a handful of highly accurate embedded finite difference methods utilizing cut

uniform grid cells which have been developed in the context of incompressible flow for irregular

domains, although these methods are not applicable to interfacial flows. For example, Marella

et al. [65] use collocated grids and define sub cell interface and boundary geometry in cut cells

via level sets, and claim second order accuracy in two and three dimensions. Shirokoff et al.

[66] use the normal 5-point stencil for material points and use Neumann boundary conditions

to compute the stencils at the ghost points. This method also claims second order accuracy in

two dimensions. Unfortunately, both these methods produce non-symmetric linear systems.
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CHAPTER 4

The Virtual Node Method

The virtual node method was originally developed in [1] as a second order accurate method for

elliptic problems in two dimensions with interfaces or irregularly-shaped domains. It has since

been extended to elliptic problems in three dimensions [67] and elasticity problems [68].

The virtual node method uses duplicated Cartesian bilinear elements along the interface

to introduce additional ghost or “virtual” degrees of freedom that allow for an accurate repre-

sentation of functions that are defined on irregular domains, or have discontinuities across an

interface. Using a variational approach to discretize a system of equations leads to a linear sys-

tem that is symmetric, allowing for the use of fast solvers. In this chapter we will give a very

brief overview of the discretization induced by the virtual node method on a Poisson problem

with Neumann boundary conditions; we use a slight variation of this problem in the following

chapter. The method can also handle Dirichlet and interface conditions; we refer the reader to

[1] for more detail on the implementation in two dimensions, and to [67] for the implementation

in three dimensions.

4.1 Discretization

We discretize the embedded Neumann problem

−∇ · (β (x)∇u(x)) = f (x), x ∈Ω (4.1)

β (x)∇u(x) ·n = q(x), x ∈ ∂Ω (4.2)

over a regular Cartesian grid, which does not have to conform to ∂Ω. We assume the coefficient

function β and the forcing term f to be sufficiently smooth. We first embed the domain Ω in a

17



Ω

C h

G h

a

(a)

C h
∂Ω

a

(b)

Figure 4.1: Grid notation for the virtual node method. Degrees of freedom (red dots) are located

at the vertices. The computational domain C h [blue cells in (a)] consists of all cells ck ⊂ G h
p

that intersect Ω, and introduces virtual degrees of freedom outside of Ω. The computational

boundary C h
∂Ω [blue cells in (b)] contains the cells which only partially intersect Ω.

regular Cartesian grid G h with equal grid spacing ∆x = ∆y = h. We include all Cartesian cells

ck in the grid G h that intersect Ω in the discretization, as shown in Figure 4.1, and refer to this

subset of G h as the computational domain C h = {ck ∈ G h, ck ∩Ω 6= /0} ⊂ G h, as shown in

Figure 5.1(b). Since Ω and its boundary typically do not align with the Cartesian grid, many

of the grid cells ck only partially intersect the domain Ω, and some nodes of those cells will lie

outside Ω. The set of all cells that intersect the boundary is called the computational boundary,

C h
∂Ω = {ck ∈ G h, ck∩∂Ω 6= /0} ⊂ G h, and the nodes lying outside the domain are what we refer

to as the “virtual” degrees of freedom.

We obtain a variational form of this problem by multiplying (4.1) by a test function and

integrating:

−
∫

Ω
∇ · (β (x)∇u(x)) dx =

∫
Ω

f v dx
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We then use integration by parts to obtain∫
Ω

β∇u ·∇v dx−
∫

∂Ω
βv∇u ·n dS =

∫
Ω

f v dx

∫
Ω

β∇u ·∇v dx =
∫

Ω
f v dx +

∫
∂Ω

qv dS

giving us the variational formulation

Find u ∈H1(Ω) such that∫
Ω

β∇u ·∇v dx =
∫

Ω
f v dx +

∫
∂Ω

qv dS (4.3)

for all v ∈H1(Ω).

Our finite-dimensional approximation uh(x) to u(x) is written uh(x) = ∑N
i=1 uiNi(x) for~u =

(u1, · · · ,un) ∈ Rn, where Ni(x) are the standard piecewise bilinear interpolation basis functions

associated with the grid nodes which compose the cells of C h. When we replace the continuous

functions u and v in with their discrete counterparts, we end up with the linear system

Auh = f h (4.4)

where A = {ai j} is defined by

ai j =
∫

Ω
β∇Ni ·∇N j dx (4.5)

and f = ( f1, · · · , fn) by

fi =
∫

Ω
f Nidx +

∫
∂Ω

qNi dS (4.6)

For each i, j, the integrals (4.5) and (4.6) are supported over no more than four grid cells in

2D. Since the basis functions Ni in the integral are piecewise smooth over each grid cell, it is

practical to numerically evaluate integrals over each grid cell ck. For details on the numerical

integration, we refer the reader to [1]. There, the integrals are approximated by taking cell

averages of β , f , and q over ck∩Ω, and using an efficient quadrature approach. This produces

integral values which are accurate enough to guarantee second order accuracy of the computed

solution uh.

The cellwise integration we use leads to a stiffness matrix A with a 9-point stencil except at

virtual nodes. The presentation of the discretization shown in [1] formulates an energy which
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has as its Hessian the stiffness matrix A described above. The problem formulation in terms

of an energy facilitates a simple trick to reduce the stencil size: a different energy is defined at

interior cells, which yields the standard 5-point central difference discretization at nodes which

are surrounded by interior cells and not adjacent to the boundary.

Coercivity of the bilinear form in (4.1) guarantees that A is positive semi-definite, and nu-

merical experiments presented in [1] reveal second-order convergence in L∞.
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CHAPTER 5

An Algorithm for Inviscid Euler Flow Over Irregular

Domains

Here we present the work of [3], which leverages the Poisson virtual node framework described

in the previous chapter to present an efficient discrete Hodge decomposition for velocity fields

defined over irregular domains in two and three dimensions. This decomposition method is

designed for use in the exact projection discretization of incompressible flow. Our approach

uses a signed distance function to represent the irregular domain embedded in a Cartesian grid

and follows the variational approach from the previous chapter to create a symmetric positive

definite linear system. We present a novel modification to the previous approach that yields

a 5-point stencil (7-point in 3D) across the entire computational domain, where the original

algorithm required a 9-point stencil (27-point in 3D) near the embedded irregular boundary. We

show that this new condensed stencil enables a decomposition of the form A=GT M−1G, where

M is a diagonal weighting matrix and G and D = −GT are diagonal scalings of the standard

central-difference gradient and divergence operators. We use this factored form as the basis of

our discrete Hodge decomposition and show that this can be readily used for exact projection

in incompressible flow. Numerical experiments suggest our method is second order in L∞ for

pressures and first-order in L∞, second order in L1 for velocities. This work was performed

jointly with Craig Schroeder and Prof. Joseph Teran.

5.1 Background

Exact projection methods for incompressible flow are very effective because of their accuracy,

stability, and relative ease of implementation [5]. The temporary introduction of artificial com-
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pressibility in the advection stage of these algorithms simplifies the interaction of the velocity

and pressure. This intermediate compressible velocity field must then be projected to its near-

est incompressible counterpart via Hodge decomposition. Projection is ultimately done with

the solution of a Poisson equation for the pressure, and it is often stabilized with a MAC-style

staggering of velocity and pressure variables [10]. This staggering naturally leads to second

order, discrete central difference gradient and divergence operators. The composition of these

operators yields the standard 5-point Laplacian (7-point in 3D) for cell-centered pressures. Un-

fortunately, optimal accuracy is difficult to achieve for problems defined over irregular domains

because the MAC staggering is designed for Cartesian grids. Many researchers have developed

approaches that generalize the Cartesian MAC-based projection for regular domains to the irreg-

ular case, however it is very difficult to maintain the simplicity of the original approach without

sacrificing accuracy or efficiency. For example, the immersed boundary method [69, 24] can

be used to enforce boundary conditions on an irregular domain without any modification to the

Cartesian case other than a change in the forcing terms. However, the regularized delta function

conception of the right hand side terms degrades the convergence to first-order. The immersed

interface method [32, 70] can be used to preserve optimal accuracy, however the associated dis-

crete systems are generally no longer symmetric. This deviation from the standard Laplacian

discretization prevents the use of fast solvers, leading to considerable computational expense.

Methods that utilize a level set representation of the irregular domain can be used to define

embedded Cartesian discretizations that balance efficiency with improved accuracy by lever-

aging sub-cell geometric detail [71, 72, 73, 1, 67]. In a recent related work, we showed that

optimal velocity accuracy can be achieved for Stokes flow with a virtual node approach [2]

which uses such a level set representation. However, using a variational approach yields linear

systems that are typically of symmetric KKT type, (see e.g. [74]) so fast solvers like those used

for the standard Laplacian discretization are not available. Notably, Gibou et al. have recently

shown that level set approaches are very effective for exact projection discretization of incom-

pressible flow [51, 53]. In the present work, we take a virtual node approach (developed in [1]

and [67]) to factor the Poisson equation in a manner similar to that presented in [51].

Although there are many methods capable of achieving second order accurate velocities,
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these methods tend to either require expensive remeshing, such as with finite elements, or yield

linear systems which are indefinite (for example [2]) or even asymmetric (such as [70]).

By contrast, accurate and positive definite methods for solving the Poisson equation are rel-

atively easy to construct, but these discretizations generally do not carry forward to the problem

of exact projection. We demonstrate a method that is capable of condensing a 9-point stencil

(27-point in 3d) into a 5-point stencil (7-point in 3d) in a manner that admits a factorization of

the Poisson operator and leads immediately to an exact projection discretization. This alteration

to the Poisson stencil retains the second order convergence of the original Poisson operator, but

it only leads to first-order velocities.

5.2 Exact projection and Hodge decomposition

Since our focus is the Hodge decomposition aspect of an exact projection discretization, we will

ignore viscous and forcing terms and focus on the inviscid Euler equations

∂ρ

∂ t
+

∂ρ

∂x
u = 0

ρ

(
∂u
∂ t

+
∂u
∂x

u
)
=−∇p

∇ ·u = 0,

(5.1)

with Dirichlet normal velocity boundary conditions u ·n = UBC on ∂Ω. A simple splitting of

these equations give rise to the following temporal discretization

ρ
n
(

u∗−un

∆t
+

∂u
∂x

n

un
)
= 0

ρ
n
(

un+1−u∗

∆t

)
=−∇pn+1

ρn+1−ρn

∆t
+

∂ρn

∂x
un+1 = 0.

(5.2)

If we take the divergence of the second equation and note that ∇ ·un+1 = 0, we can equivalently

define this step as

∇ ·
(

∆t
ρn ∇pn+1

)
= ∇ ·u∗

un+1 = u∗− ∆t
ρn ∇pn+1,

(5.3)
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where the boundary conditions for the Poisson equation are then of Neumann type ∆t
ρn ∇pn+1 ·

n = u∗ ·n−UBC.

In order to create an exact projection discretization we come up with a discrete volume-

weighted approximation to ∇, and denote it by G. The Poisson equation for the pressure is

then

∆tDM−1Gpn+1 = Du∗, (5.4)

where D =−GT is the associated discrete approximation to the divergence and M is a diagonal

scaling that approximates ρn scaled by volume. In the sections that follow, we will show that

the virtual node Poisson discretizations developed in [1] and [67] can be rewritten in a form

that admits a scaled version of the standard MAC grid-based approximation of ∇ for G. This

modification to the original algorithm is the key step needed to apply it in Hodge decomposition-

based exact projection. That is, with this decomposition we can see algebraically that Dun+1 = 0

if we define un+1 = u∗−∆tM−1Gpn+1.

5.3 Discretization

Our extension of [1] to approximate the Poisson problem (5.3) reduces the 9-point stencil of the

previous work to a 5-point stencil. This is necessary to allow a decomposition of the Poisson

matrix A = DM−1G with a diagonal M and the previously described D and G. For simplicity,

we present our extension in two dimensions, describing how it differs from [1], and how we treat

the right-hand side to enforce the boundary condition on the projected velocity un+1. Finally,

we briefly mention the slight modifications to [67] necessary to implement our method in three

dimensions.

5.3.1 Condensed Stencil Approach

The energy-based discretization used in [1, 67] results in a 9-point stencil near the boundary

in two dimensions. Away from the boundary, a novel quadrature rule was used to condense

the stencil to the standard 5-point discretization. We present a novel modification of the stencil
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(b) Degrees of freedom for G cut by Ω

Figure 5.1: Grid notation for our method. Our pressure grid has pressure nodes at the vertices,

in contrast with the standard MAC grid (a) with pressures at cell centers. The computational

domain (b) consists of all cells ck ⊂ G h
p that intersect Ω, and introduces virtual degrees of

freedom for p, which lie outside of Ω.

coefficients in [1, 67] that admits a 5-point stencil over the entire domain without sacrificing the

second order accuracy in L∞ achieved in the original work.

As in [1, 67], and as described in Chapter 4, we embed the domain Ω in a regular Cartesian

grid. In our case, this grid is the subset of a standard MAC grid that has pressure degrees of

freedom at its vertices, as shown in Figure 5.1(a). We include in the discretization all cells in G h
p

that intersect Ω, and refer to this subset of G h
p as C h

p = {ck ∈ G h
p , ck∩Ω 6= /0} ⊂ G h

p , as shown in

Figure 5.1(b). For convenience let Ωk = ck∩Ω, and let Ω0
k be the same region transformed into

coordinates [0,1]× [0,1]. Since Ω and its boundary ∂Ω typically will not align with elements

of the Cartesian grid, our discretization will include many pressure cells that only partially

intersect with the domain Ω. Some nodes of those cells will lie outside the domain. We refer to

pressure nodes lying outside the domain as “virtual” nodes and their corresponding degrees of
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freedom as virtual degrees of freedom.

Also as in [1, 67], our discretization is designed by first assuming that our pressure field is

piecewise bilinear over the cells in C h
p . p(x) = ∑np

i=1 piNi(x) for ~p = (p1, . . . , pnp)
t ∈ Rnp . Here

Ni(x) is the standard piecewise bilinear interpolation basis function associated with pressure

grid vertex i; and np denotes the number of degrees of freedom in the discretization, equal to

the number of grid vertices that compose the cells of C h. Occasionally we will refer to the basis

functions as Nl,m, where l and m represent the position of vertex i on the Cartesian grid. With

this assumption, we start our approximation from the quadratic terms in the variational form of

the Poisson equation

ψ(p) := ∑
ck∈C h

p

1
2ρ

∑
r,s,r′,s′∈{0,1}

(∫
Ωk

∇Nl+r,m+s ·∇Nl+r′,m+s′ dx
)

pl+r,m+s pl+r′,m+s′ (5.5)

where l and m are the two-dimensional indices of the lower left node in pressure cell ck. As

in [1, 67], we perform the integration over cut cells using the divergence theorem to express

each entry as a boundary integral. The cut cell boundary geometry is discretized from the level

set representation of Ω. The Hessian of this energy gives rise to the matrix in our variational

approximation to the Poisson equation: Ei j := ∂ 2

∂ pi∂ p j
ψ(p). We will now detail our approach for

condensing the E ∈ Rnp×np stencil from up to 9 non-zero entries per row to at most 5 non-zero

entries per row. We will refer to the condensed stencil matrix as A.

The condensing procedure for a generic 9-point stencil, ignoring whether cells are cut or

interior, is shown in Figure 5.2. The change of stencil coefficients can be thought of in terms of

‘pushing’ coefficients from the top and bottom of the stencil into the middle approximating the

−pxx portion of the Laplacian (Figure 5.2(b)), and from the left and right sides of the stencil into

the center to approximate the −pyy portion of the Laplacian (Figure 5.2(c)). The ‘condensing’

of the coefficients in this case leads to a 5-point stencil—the standard 5-point stencil if the center

point is not incident on any cut cells.

At each node, the corresponding contributions to the stencil come from the four pressure

cells incident to that node. For each pressure cell ck in the discretization, we define Eck to be

the 4× 4 matrix containing the contributions of ck to the matrix E. We call Eck the element

stiffness matrix corresponding to ck: (Eck)i j =
∫

Ω0
k
ai j dx0 =

∫
Ω0

k
∇N0

i ·∇N0
j dx0, where Ω0

k is
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Figure 5.2: An illustration of our ‘condensed stencil’ modification at a generic point in the

domain. For a cell away from the boundary ∂Ω, the 9-point second order accurate stencil above

(derived from bilinear finite elements) is condensed by our modification to the standard 5-point

stencil.
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the corresponding scaling of ck ∩Ω to the unit square and we denote the four basis functions

supported over ck as in Figure 5.4(b), written in a scaled coordinate frame local to the element:

N0
0 = (1− x)(1− y) N0

1 = x(1− y) N0
2 = (1− x)y N0

3 = xy. (5.6)

The element stiffness matrix can be written as

Eck =
∫

Ω0
k


∇N0

0

∇N0
1

∇N0
2

∇N0
3




∇N0

0

∇N0
1

∇N0
2

∇N0
3



T

dx0.

Substituting in (5.6) yields Eck =

∫
Ω0

k


(x−1)2 +(y−1)2 −(y−1)2− x(x−1) −(x−1)2− y(y−1) x(x−1)+ y(y−1)

−(y−1)2− x(x−1) (y−1)2 + x2 x(x−1)+ y(y−1) −x2− y(y−1)

−(x−1)2− y(y−1) x(x−1)+ y(y−1) (x−1)2 + y2 −y2− x(x−1)

x(x−1)+ y(y−1) −x2− y(y−1) −y2− x(x−1) x2 + y2


dx0

=
∫

Ω0
k


a00 a01 a02 a03

a10 a11 a12 a13

a20 a21 a22 a23

a30 a31 a32 a33

 dx0 (5.7)

where we give the quadratic polynomials labels in (5.7) to make the condensation operation

easier to follow.

We rearrange the elements of Eck in the manner illustrated in Figure 5.3 for a single row to

create a modified element stiffness matrix Ack . This process maintains a stencil consistent with

our Poisson problem while moving all nonzero terms of the cellwise stiffness matrix to entries

of A where the row and column correspond to equal or adjacent nodes. This condensing process

for the four cells incident to a node produces a 5-point stencil for that node, similar to Figure

5.2, and results in the modified matrix
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aa00 a01

a02 a03

(a) original stencil

a
a00+ a02 a01+ a03

a02 a03

(b) condensing in y direc-

tion −pxx

aa00 + a01 a01

a02 + a03 a03

(c) condensing in x di-

rection −pyy

a
2a00+ a01+ a02 a01+ a03

a02+ a03 a03

(d) Cellwise constribution

to condensed stencil

Figure 5.3: We examine the changes made to the first row (corresponding to node 0) of the

element stiffness matrix Eck from [1] by the condensing procedure illustrated in Figure 5.2 to

yield our element stiffness matrix (5.8). Condensing the coefficients as shown ensures that the

nonzero terms in each row of A correspond only to adjacent nodes on the same row or column,

and allows for a 5-point stencil.

Ack =
∫

Ω0
k


2a00 +a01 +a02 a01 +a03 a02 +a03 0

a10 +a12 2a11 +a10 +a13 0 a12 +a13

a20 +a21 0 2a22 +a20 +a23 a21 +a23

0 a31 +a30 a32 +a30 2a33 +a31 +a32

 dx0,

(5.8)

which, after substituting for the ai j terms previously defined in (5.7), simplifies to

Ack =
∫

Ω0
k


2− y− x −1+ y −1+ x 0

−1+ y 1− y+ x 0 −x

−1+ x 0 1− x+ y −y

0 −x −y x+ y

 dx0. (5.9)

5.3.2 Factorization

Let Pck be the matrix that relates the pressure indices for pressure cell ck to indices in the full

grid. That is, the matrix Pck has four columns and as many rows as pressure nodes. It will

have a single 1 per column with 0 everywhere else. Similarly, let Qck
be the matrix that relates
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(c) Sck diagonals

Figure 5.4: The naming conventions used in referring to pressures and velocities (a) and pres-

sure degrees of freedom on a grid cell (b). Additionally, (c) shows, at each velocity node, the

basis functions contributing to that term of the cellwise weight matrix S.

the MAC velocity indices incident on pressure cell ck to indices in the full grid. Qck
has four

columns and as many rows as MAC faces, again with a single 1 per column. These operators

will allow us to build the individual pressure cell contributions onto the full system in a rather

convenient form later. Figure 5.4 shows the indexing convention we use in this work for the

degrees of freedom associated with a pressure cell, and by extension, the columns of Pck and

Qck
.

If Ĝ is the standard central difference operator defined over the entire domain, then we can

define a pressure cellwise Ĝck by restricting Ĝ to the pressure cell as

Ĝck = QT
ck

ĜPck =
1

∆x


−1 1 0 0

0 0 −1 1

−1 0 1 0

0 −1 0 1

 (5.10)

30



With this, we can factor Ack as

Ack =
∫

Ω0
k


2− y− x −1+ y −1+ x 0

−1+ y 1− y+ x 0 −x

−1+ x 0 1− x+ y −y

0 −x −y x+ y

 dx0

=
∫

Ω0
k


−1 1 0 0

0 0 −1 1

−1 0 1 0

0 −1 0 1



T 
1− y 0 0 0

0 y 0 0

0 0 1− x 0

0 0 0 x




−1 1 0 0

0 0 −1 1

−1 0 1 0

0 −1 0 1

 dx0

= ĜT
ck

SckĜck ,

where we have made the definition

Sck = ∆x2
∫

Ω0
k


1− y 0 0 0

0 y 0 0

0 0 1− x 0

0 0 0 x

 dx0

=
∫

Ωk


Nl,m +Nl+1,m 0 0 0

0 Nl,m+1 +Nl+1,m+1 0 0

0 0 Nl,m +Nl,m+1 0

0 0 0 Nl+1,m +Nl+1,m+1

 dx. (5.11)

The matrix Sck is just a diagonal matrix formed by integrating basis functions over the pressure

cell.

Observe that pressure gradients are naturally computed at the MAC faces, which lie on

edges of the pressure cells. Mathematically, we can say that QT
ck

Ĝ = QT
ck

ĜPckPT
ck

. Put another

way, we can look solely at the MAC faces associated with a particular pressure cell, then ignore

all pressures not associated with the cell. With this observation, it is possible to construct the
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full Poisson matrix from the individual pressure cell contributions Ack .

A = ∑
k

PckAckPT
ck

= ∑
k

PckĜT
ck

SckĜckPT
ck

= ∑
k

Pck(Q
T
ck

ĜPck)
T Sck(Q

T
ck

ĜPck)P
T
ck

= ∑
k

ĜT Qck
SckQT

ck
Ĝ

= ĜT
(

∑
k

Qck
SckQT

ck

)
Ĝ

= ĜT SĜ,

where

S := ∑
k

Qck
SckQT

ck
.

This is a diagonal matrix since it is the sum of diagonal matrices. Each diagonal entry lives at an

edge of the pressure grid and is formed by adding the pressure basis functions at the endpoints

and integrating the result over the two pressure cells incident to the edge. The matrix ĜT SĜ

is very easy to construct and apply since it is composed of standard central difference gradient

and divergence operators, with a simple diagonal scaling in between.

The discussion so far has assumed constant density, omitting it from the

discretization. If R is a diagonal matrix defined over MAC faces whose di-

agonal entries are the density at MAC faces, then the appropriate system is

A = ĜT R−1 S Ĝ, noting that R and S are diagonal and commute. With this factoriza-

tion complete, we are ready to define G and M, which we do as

G = SĜ M = SR.

Now, A = ĜT R−1SĜ = GT M−1G, which is the desired form.

5.3.3 Right-Hand Side

As noted in Section 5.2, the Poisson equation in (5.3) has Neumann boundary conditions

∆t
ρn ∇pn+1 ·n = u∗ ·n−UBC (5.12)
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so we want the right-hand side of our discretized system to approximate the right-hand side of

the corresponding weak form for p:

∫
Ω

∇q ·∇pd~x−
∫

Ω
(∇ ·u∗) q d~x+

∫
∂Ω

(u∗ ·n−UBC) q dS(~x) (5.13)

where q = ∑i qiNi is a test function. Near the em-

bedded boundary, the operator (GT u∗)i approximates not

−∫Ω (∇ · u∗) Ni d~x but −∫Ω(∇ · u∗) Ni d~x +
∫

∂Ω u∗ · n Ni dS(~x), which we can under-

stand by recalling the weak form used in constructing the original stiffness matrix E.

Therefore, to satisfy the Neumann boundary condition (5.12) we need to approximate the rest

of the boundary condition

−
∫

∂Ω
UBC Ni dS(x)

We approximate UBC with a linear interpolant uBC and solve

∆tGT M−1Gpn+1 = GT u∗−uBC; (uBC)i =
∫

∂Ω
uBCNi dS(x). (5.14)

Our projection step then entails solving

∆tGT M−1Gpn+1 = GT u∗−uBC;

un+1 = u∗−∆tM−1Gpn+1.
(5.15)

5.3.4 Modifications for Three Dimensions

Implementation of our condensed stencil method in three dimensions is also a straightforward

extension of the existing virtual node approach for Poisson problems and has the effect of con-

densing a 27-point stencil into a 7-point stencil which is equivalent to the standard 7-point

stencil away from the boundary. As the stencil in Figure 5.2 was created by ‘pushing’ terms

along the x direction to approximate −pyy, and similarly along the y direction to approximate

−pxx, in three dimensions we push terms of the 27-point stencil along the x and y directions to

approximate −pzz, and a similar approach generates approximations to −pxx and −pyy.
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Figure 5.5: Naming conventions used in referring to pressures and velocities on a grid cell in

three dimensions. Note that velocities are located at cell edges in our grid, rather than at cell

faces as with a MAC grid.

Each pressure grid cell in 3D has eight adjacent pressure nodes and four each of x,y, and

z velocities (see Figure 5.5), Therefore, the sizes of the cellwise matrices Gck , Ĝck , Sck , and

Ack differ from the 2D case, as do the matrices Pck and Qck
described in Section 5.3.2 relating

indices for a pressure cell to indices in the full grid. For example, Ĝ is a 12-by-8 matrix defined

in a straightforward manner like in (5.10).

The virtual node cellwise stiffness matrix Eck is an 8-by-8 matrix containing contributions

of the cell ck to the stiffness matrix: In three dimensions (Eck)i j =
∫

Ω0
k
ai j dx0 = dx

∫
Ω0

k
∇N0

i ·
∇N0

j dx0. The dx scaling appears in the 3D case because the cell volume scales as dx3 and the

gradient functions each scale as 1/dx. The condensed element stiffness matrix Ack is derived

in a manner analogous to the 2D case, condensing all coefficients to matrix entries where the

row node and column node are adjacet. This leads to four nonzero entries per row: the diagonal

entry and the columns corresponding to the three adjacent nodes. Pck has eight rows, Qck
has

twelve rows, and the cellwise scaling matrix Sck is a 12-by-12 diagonal matrix similar in form to

the right-hand side of (5.11). The diagonal entry of Sck for each velocity node comes from the

integrals of the basis functions corresponding to the two adjacent pressure nodes. The diagonal

entries of S are created by summing the contributions of the four pressure cells adjacent to each

velocity.
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Figure 5.6: Illustration of different constructions of the scaling matrix S: Sng from [51], an al-

ternative formulation Spw as described in Section 5.3.5, and the S resulting from our condensed

stencil factorization explained in Section 5.3.2.

Two nontrivial differences in the 3D implementation of the virtual node algorithm are de-

tailed in [67]. First, the domain is initialized from the signed distance function φ over a grid

cell divided into tetrahedra to create a polyhedral approximation to the domain. Second, the

method for evaluating integrals over the pressure cells also differs slightly, combining use of

the divergence theorem with a quadrature-based approach to evaluating integrals over triangles.

5.3.5 Related Discretizations

The discretization we have proposed is closely related to the discretization from [51]. Their

discretization also factors nicely, as was demonstrated in [75]. Expressed in our notation, their

discretization is identical except with a different S, which we refer to as Sng. The value of Sng

at a MAC face is proportional to the length of that face that is in the interior. Since S scales as

area (in 2D), we find that Sng = `×∆x corresponds to the rectangular portion of the MAC face’s

associated pressure cell intersecting the face at the same point where the interface intersects the

MAC face. This is illustrated in Figure 5.6(a).

35



While our pressure basis {Ni} is multilinear, an alternative definition of S with a piecewise

constant pressure basis would result in a different scaling matrix which we will call Spw. The

entries of Spw correspond to the area of the MAC face pressure cell that is in the interior as

shown in Figure 5.6(b). If the interface is well-resolved and does not slice out a corner from

this pressure cell, the entries in Sng and Spw will be very close. The entries in S are computed

similarly to those in Spw, except that a weighted area is computed over a wider region as shown

in Figure 5.6(c), effectively smoothing out the entries in S.

Note that we use GT un+1 = ĜT Sun+1 = 0 as our incompressibility condition rather than

the perhaps more intuitive central differenced condition ĜT un+1 = 0. This is in line with the

condition used by [51], where the incompressibility condition takes on an intuitive flux-based

interpretation.

5.4 Examples

For each example, we take a vector field (u∗,v∗) or (u∗,v∗,w∗) to be the sum of an incom-

pressible, divergence-free component and the gradient of a pressure. We apply our projection

method to the vector field and compare the solution with the exact solution of the incompress-

ible component. Each 2D example was discretized on a variety of N×N grids for resolutions

up to 5622. Our 3D example was discretized on a series of N×N×N grids where N ranged up

to 320. With each example we provide a graphic depicting the embedded domain, a plot of the

computed pressure, and error plots for pressure and for the x-component of the incompressible

velocity. In each case we perform linear regression analysis on the error data to obtain estimates

of the order of accuracy for the pressure in the L∞ norm and for velocities in the L1, L2, and L∞

norms. (Although we only present data for the x-component of velocities, the other velocities

yield equivalent results.) Generally, our method produces pressures which are second order ac-

curate in L∞ and velocities which are first-order in L∞ but second in L1; however, projection of

velocities with zero incompressible component is accurate to second order in L∞.
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5.4.1 Two-Dimensional Projection Example 1

In our first two-dimensional example we project a gradient field velocity used in [51]:

u∗ =(x2−πx)(πy2/2− y3/3)

v∗ =(y2−πy)(πx2/2− x3/3)

The embedded Neumann boundary ∂Ωn of the domain is bounded by the curve defined by:

t0 =.00132

r0 =.02
√

5

r(t) =.5+ .2sin(5t)

X(θ) =r0 + r(θ + t0)cos(θ + t0)

Y (θ) =r0 + r(θ + t0)sin(θ + t0).

This curve is used in [1]. The domain is shown in Figure 5.7. The computed order of accuracy

for pressure in the maximum norm is 1.990 and for velocity in the maximum norm is 1.876, see

Figure 5.7. We computed second order accurate velocities in L∞ whenever projecting a fully

irrotational, gradient velocity field.

5.4.2 Two-Dimensional Projection Example 2

We next project the velocity field given by

u∗ =x+2π cos(2πx)sin(2πy)

v∗ =− y+2π sin(2πx)cos(2πy)

The embedded Neumann boundary ∂Ωn of the domain is bounded by the curve defined by:
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(a) (b)

(c) (d)

Figure 5.7: Figures for Example 5.4.1: (a) geometry of ∂Ω at N = 80, (b) convergence plot of

the errors, and error plots of the pressure (c) and x-velocity (d) at N = 80.
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t0 =.45234

θ(t) =t + sin(4t)

r(t) =.60125+ .24012cos(4t +π/2)

X(θ) =r(t + t0)cos(θ(t + t0))

Y (θ) =r(t + t0)sin(θ(t + t0)),

also used in [1], and the domain is shown in Figure 5.8. We computed the orders of accuracy to

be 2.000 for pressure in L∞ and .947 and 1.955 for velocity in L∞ and L1 respectively.

5.4.3 Two-Dimensional Projection Example 3

In this example our projected velocity is given as

u∗ =sin(πx)cos(πy)+(x+1)/((x+1)2 +(y+4)2)

v∗ =−cos(πx)sin(πy)+(y+4)/((x+1)2 +(y+4)2)

The domain Ω is defined to be the square [−1,1]× [−1,1] with a circle removed of radius .7

and centered at the origin. Grid-aligned Neumann boundary conditions are defined at the edges

of the square, while embedded Neumann boundary conditions are used at the circle boundary.

See Figure 5.9. We estimated an order of accuracy of 1.988 for pressure in L∞, and .819 and

1.972 for velocity in L∞ and L1 respectively.

5.4.4 Three-Dimensional Projection Example

Finally, we present an application of our decomposition method in three dimensions. Here our

projected velocity is given by
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(a) (b)

(c) (d)

Figure 5.8: Figures for Example 5.4.2: (a) geometry of ∂Ω at N = 80, (b) convergence plot of

the errors, and error plots of the pressure (c) and x-velocity (d) at N = 80.
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(a) (b)

(c) (d)

Figure 5.9: Figures for Example 5.4.3: (a) geometry of ∂Ω at N = 80, (b) convergence plot of

the errors, and error plots of the pressure (c) and x-velocity (d) at N = 80.
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u∗ =.5− y− sin(π(x+ y+ z))

v∗ =.5− z− sin(π(x+ y+ z))

w∗ =.5− x− sin(π(x+ y+ z))

and the domain, shown in Figure 5.10, is a sphere of radius .35 centered at (x,y,z) = (.4, .5, .5).

As in the two-dimensional case, we observe second order accuracy (1.974) in L∞ for the com-

puted pressure, and order .993 in L∞ and 1.986 in L1 for velocity.
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(a) (b)

(c) (d)

Figure 5.10: Figures for Example 5.4.4: (a) geometry of ∂Ω at N = 32, (b) convergence plot of

the errors, and z-slices of the x-velocity error (c) and x-velocity (d) at N = 32.
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CHAPTER 6

A Second-Order Algorithm for Navier-Stokes with Interfacial

Forces

In this chapter we present the numerical method in [4] for the solution of the Navier-Stokes

equations in two and three dimensions that handles interfacial discontinuities due to singular

forces and discontinuous fluid properties such as viscosity and density. We show that this also

allows for the enforcement of normal stress and velocity boundary conditions on irregular do-

mains. The method improves on the method of [2], which solved the Stokes equations in two

dimensions, by using a new discretization of jump and boundary conditions that accurately

resolves pressure null modes in both two and three dimensions. Our embedded discretiza-

tion yields discretely divergence-free velocities that are second order accurate. We implement

Dirichlet, Neumann, and slip velocity boundary conditions as special cases of our interface rep-

resentation. The method leads to a discrete, symmetric KKT system for velocities, pressures,

and Lagrange multipliers. We also present a novel simplification to the standard combination of

the second order semi-Lagrangian and BDF schemes for discretizing the inertial terms. Numer-

ical results indicate second order spatial accuracy for the velocities (L∞ and L2) and first order

for the pressure (in L∞, second order in L2). Our temporal discretization is also second order

accurate. The work in this chapter was done jointly with Craig Schroeder, Alexey Stomakhin,

and Prof. Joseph Teran.

6.1 Problem Formulation

We consider the Navier-Stokes equations over an irregular domain Ω=Ω+∪Ω− with boundary

∂Ω = ∂Ωd ∪ ∂Ωn∪ ∂Ωs, where Dirichlet velocity constraints are enforced at ∂Ωd , Neumann
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boundary conditions at ∂Ωn, and slip conditions at ∂Ωs.The two subdomains Ω+ and Ω− are

separated by an interface Γ, which is typically a co-dimension one closed surface. The corre-

sponding equations are

ρut +ρ(u ·∇)u = ∇ ·σ + f , x ∈Ω\Γ (6.1)

∇ ·u = 0, x ∈Ω\Γ (6.2)

[u] = ai, x ∈ Γ (6.3)

[σ ·n] = f̂ , x ∈ Γ (6.4)

u = b, x ∈ ∂Ωd (6.5)

σ ·n = ĝ, x ∈ ∂Ωn (6.6)

n ·u = n · c, x ∈ ∂Ωs (6.7)

(I−nnT ) ·σ ·n = (I−nnT )ĥ, x ∈ ∂Ωs (6.8)

where the stress is σ = µ(∇u+∇uT )− pI, ai describes velocity jumps at interfaces, b describes

velocities at Dirichlet boundaries, c represents slip velocities, f̂ describes interface forces, ĝ

describes Neumann boundary conditions, and ĥ describes tangential stresses for slip boundary

conditions. Although for physical problems the velocity jump is equal to zero (representing

continuity of the velocity), we include a velocity jump which may be nonzero in our formulation

of the interface. This is convenient not only for testing our implementation, but for handling

the other types of boundary conditions. We take the standard convention of defining [u] =

u+− u− for interface jumps and n as the normal pointing outward from Ω−. The interface

Γ and boundary pieces ∂Ωd , ∂Ωn, and ∂Ωs are assumed to be smooth and not intersect one

another. This layout is illustrated in Figure 6.1. We do not consider triple junctions in this

paper.

We have previously developed a class of embedded methods that utilize uniform Cartesian

grids and sub-cell representations of interface/boundary geometry to achieve optimal accuracy

without the need for frequent remeshing [2, 1, 67, 68]. Our use of regular grids simplifies

the implementation, permits straightforward numerical linear algebra and naturally allows for

higher order accuracy in L∞. We have used the term virtual node methods to describe these tech-

niques since they utilize additional structured degrees that are outside the domain of interest.
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Figure 6.1: (a) MAC layout in two dimensions. The red dots indicate location of pressure and

level set variables, the green and blue triangles represent horizontal (u) and vertical (v) variables

respectively. (b) Interface Γ separates the fluid domain Ω = Ω−∪Ω+∪Γ. In this case all sides

of the computational domain have a periodic boundary condition applied. (c) Another layout

which our method can handle in practice. Here an embedded Dirichlet boundary condition is

applied on the left side of the domain Ω and a Neumann boundary condition on the right.
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In the present work, we introduce a new virtual node method for approximating the two-phase

Navier-Stokes equations with irregular embedded interfaces and boundaries on a uniform Carte-

sian MAC grid.

As in [2], we duplicate Cartesian grid cells along the interface Γ to introduce additional vir-

tual nodes that accurately resolve discontinuous quantities. This naturally treats discontinuities

in material properties such as viscosity and density. Interface cells are cut and duplicated using a

level set that allows for accurate evaluation of integrals needed for the numerical stencils. These

stencils (for the viscous stress forces as well as the divergence-free and jump constraints) are

constructed from a variational formulation that yields a symmetric linear system. This approach

requires the introduction of a Lagrange multiplier variable to maintain continuity of the fluid ve-

locity across the interface. Unfortunately, the introduction of this variable forced the approach

in [2] to require that interface domain geometry have a constant normal on each MAC grid cell.

Although it is a reasonable restriction in two dimensions, this is not possible in three dimensions

and so the method was fundamentally limited to 2D. We present an improved discretization of

this Lagrange multiplier term that works naturally in both two and three dimensions without the

restriction of a constant normal per MAC grid cell. The necessity of this in [2] was due to the

requirement that the discretization resolve null modes in the variational form of the equations

exactly. Failure to do this resulted in significant degradation in performance. We show that our

new discretization also captures these modes exactly.

We also consider a simplification to the combination of the BDF and second order semi-

Lagrangian schemes that is often used in second order Navier-Stokes discretizations to calculate

the intermediate velocity field [76]. This simplification reduces the number of semi-Lagrangian

interpolation steps required from four to two while retaining the temporal and spatial accuracy

of the original method. The interface is evolved using the level set method or, when more appro-

priate, the particle level set method. Numerical experiments indicate second order accuracy in

L∞ and L2 for the velocity and first order accuracy in L∞, second in L2, for pressure. Numerical

experiments indicate a stability restriction on the minimum time step size (relative to the grid

spacing) that may be taken by our method in the case of a Navier-Stokes discretization. We

explore the nature and source of this restriction further.

47



6.2 Numerical method

Our method extends the framework of [2] from two to three spatial dimensions and from the

Stokes equations to the full Navier-Stokes equations. As with [2], our method is second order

in L∞ and L2 for the velocities and first order in L∞ for the pressure (second order in L2) for

embedded interfacial discontinuities and irregular boundaries in two-phase flows, though unlike

the previous work, we are also second order in time. Our method produces sparse and symmetric

indefinite KKT-type linear systems. Furthermore, our approach yields discretely divergence-

free velocities. We do not require knowledge of jumps on the fluid variables and their derivatives

but rather only of expressions for the interfacial forces.

Our numerical method uses an Eulerian representation of the fluid velocity and pressure.

A level set φ represents the domain Ω and interface Γ at each time step. We split the Navier-

Stokes equation (6.1) into two equations by introducing an intermediate velocity u?. We use a

weak form of the Navier-Stokes interface problem and simultaneously solve for the pressure,

velocity, and Lagrange multipliers needed to preserve the specified velocity jumps across the

interface. The complete procedure for advancing one time step is:

1. Update level set φ n→ φ n+1

2. Advect time n−1 and n velocity

3. Compute intermediate fluid velocity u? using BDF

4. Setup symmetric system and right hand side

5. Solve the linear system to obtain p and un+1

We will describe each of these steps in necessary detail, following which we will discuss

how to add surface tension forces, and present requirements for the stability of our method.
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6.2.1 Spatial discretization

We use a standard MAC layout for our degrees of freedom, with velocity degrees of freedom at

faces and pressures at cell centers, as shown in Figure 6.1(a). We maintain our level set at cell

centers.

Fluid advection and the implicit update at the end both require valid ghost data in a narrow

band around the region where each fluid phase is defined. We accommodate this by storing a

separate velocity array for each fluid phase for un−1 and un, which over the course of a time

step we update to un and un+1. At each MAC face, only one of the velocity arrays is considered

to hold a real velocity degree of freedom, based on the sign of the level set interpolated to that

face. The other array is treated as ghost data and is populated as needed using the extrapolation

of [77]. Note that across interfaces the velocity field, though physically continuous, may have

a jump in its derivatives. In our case, we also included support for velocity discontinuities,

since this makes analytic tests far easier to construct and thus the method itself easier to test and

debug.

In practice, we found using the level set directly to distinguish real and ghost velocities to

be too unreliable and on a few occasions led to the use of invalid velocity data. We avoid these

problems by explicitly storing which, if any, velocity degree of freedom is valid at each MAC

face, both for un−1 and un. Since we do this, there is no need to maintain a level set other than

the one at the current time.

6.2.2 Update level set

We discretize our momentum equation at time tn+1. Setting up the intermediate u? requires that

we know which fluid region is valid at each face, which is determined by φ n+1. Thus, we begin

our time step by updating our level set φ n→ φ n+1. We use the level set method for this task in

most of our examples. For examples where the level set method loses volume too quickly, we

use the more expensive but more accurate particle level set method [78] instead.

In the case of the level set method, there are two steps: advection and reinitialization. We

advect our level set using third order Runge-Kutta [79] in time and fifth order HJ-WENO [80,
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81] in space. This update requires an estimate for un, un+1, and then un+ 1
2 . To obtain these,

we merge our per-phase velocity fields into a single velocity field by selecting the non-virtual

degree of freedom at each MAC face (as determined by the sign of φ ). We will call these

merged velocities un−1
m and un

m. Our velocity estimates for the level set advection are then un
m,

2un
m−un−1

m , and 3
2un

m− 1
2un−1

m . Note that our velocities do not live at the same locations as our

level set, so interpolation is required to co-locate them prior to advection. For reinitialization

we use also use third order Runge-Kutta and fifth order HJ-WENO.

When we use the particle level set method, we perform advection and reinitialization the

same way we do for the level set method. In addition to this, the particle level set method

also does particle evolution, for which we use third order Runge-Kutta and the same velocity

estimates as for the level set advection step.

6.2.3 Discretization of inertial terms

Following [76], we use a variant on semi-Lagrangian for advection and a BDF discretization

for the time derivative. This transforms (6.1) into

ρ
3un+1−4un

d +un−1
d

2∆t
= ∇ ·σ + f , (6.9)

where un
d = un(xn) and un−1

d = un−1(xn−1) indicate that the un and un−1 velocities are evaluated

at the departure locations obtained by tracing the position back along the characteristics of the

fluid flow from the face located at xn+1. By introducing an intermediate velocity u? we split the

Navier-Stokes equations into the two separate equations:

ρ
3u?−4un

d +un−1
d

2∆t
= 0, (6.10)

in which we apply the inertial terms to an intermediate velocity, and

α(un+1−u?) = ∇ ·σ + f , (6.11)

where we have introduced α = 3ρ

2∆t for convenience accommodating the first time step. We

discuss the first time step later in this section.
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Standard discretization To obtain second order temporal and spatial accuracy, [76] computes

the advected un
d and un−1

d using

un
d = un(xn+1−∆tun+ 1

2 (xn+1− 1
2∆tun(xn+1))), (6.12)

where un+ 1
2 = 3

2un− 1
2un−1, and

un−1
d = un−1(xn+1−2∆tun(xn+1−∆tun(xn+1))). (6.13)

These formulas require three velocity evaluations each. The innermost is evaluated at the face

and is a simple lookup. The middle evaluation requires interpolation, which can be linear inter-

polation since it will be multiplied by an extra factor of ∆t. The outermost velocity evaluation

also requires interpolation, but this time quadratic interpolation is required to obtain second

order spatial accuracy.

Simplified discretization Taylor series analysis of the advection and BDF process reveals

that the standard approach to computing un
d and un−1

d is more expensive than necessary. In

particular, it suffices to use

un
d = un(xn+1−∆tun(xn+1)) (6.14)

un−1
d = un−1(xn+1−2∆tun−1(xn+1)). (6.15)

That is, the application of inertial terms simplifies down to doing a step of semi-Lagrangian

advection on un and un−1 and then computing u? as a linear combination of the results using

(6.10). Normally, using semi-Lagrangian advection would only be expected to produce first

order temporal accuracy, but using it in combination with BDF in this way yields second order

temporal accuracy. Note that the interaction of semi-Lagrangian advection and BDF does not

improve spatial accuracy, so quadratic interpolation is still required for the semi-Lagrangian

advection steps. We use this simplified discretization in all of our numerical examples.

First step Since BDF is a multistep method, we need a way to take the first step. We can

afford one time step with one order lower, so we simply use a backward Euler discretization,
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which leads to the alternate formula

ρ
u?−un

d
∆t

= 0 (6.16)

for computing u?, where α = ρ

∆t is used in (6.11) and un
d is computed as in (6.14).

6.2.4 Discretization of implicit terms

We follow the derivation put forth in [2] to discretize the implicit portion of our splitting. From

(6.11), the continuity equation, and the boundary conditions associated with the problem, we

derive the weak form, which yields our discrete stencils for the velocity and fluid variables. We

continue by detailing aspects of our discretization necessary to account for possible null modes

of the linear system, and to admit Dirichlet, Neumann, and slip boundary conditions. We then

discuss our implementation of computing the integrals necessary to obtain the discrete stencils

in our discretization.

6.2.4.1 Continuous weak form

We begin by taking a dot product of both sides of (6.11) by a test function w, then integrating

both sides over Ω\Γ to get∫
Ω\Γ

αw · (u−u?)dV =
∫

Ω\Γ
w · (∇ ·σ + f)dV, (6.17)

where we have used u = un+1 for conciseness. We assume for now that we have an interface at

Γ but no other non-periodic boundaries. We will discuss other boundary conditions in Section

6.2.4.5. Integration by parts yields∫
Ω\Γ

w ·(∇ ·σ)dV =
∫

Ω\Γ
∇ ·(w ·σ)−∇w : σ dV =−

∫
Γ
[w ·σ ] ·ndA−

∫
Ω\Γ

∇w : σ dV, (6.18)

where n is the outward normal from Ω− and [w] = w+−w− denotes the jump in w across the

interface. Then,∫
Ω\Γ

αw ·udV +
∫

Ω\Γ
∇w : σ dV +

∫
Γ
[w ·σ ] ·ndA =

∫
Ω\Γ

αw ·u? dV +
∫

Ω\Γ
w · f dV. (6.19)
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Utilizing symmetry,∫
Ω\Γ

∇w : σ dV =
∫

Ω\Γ
∇w : (µ(∇u+∇uT )− pI)dV

=
∫

Ω\Γ
µ∇w : (∇u+∇uT )dV −

∫
Ω\Γ

∇ ·wpdV

=
∫

Ω\Γ

µ

2
(∇w+∇wT ) : (∇u+∇uT )dV −

∫
Ω\Γ

∇ ·wpdV

Using the identity [w ·σ ] = [w] ·σ +w · [σ ], where σ = 1
2(σ

++σ−) and w = 1
2(w

++w−),∫
Γ
[w ·σ ] ·ndA =

∫
Γ
[w] ·σ ·ndA+

∫
Γ

w · [σ ] ·ndA =
∫

Γ
[w] ·qdA+

∫
Γ

w · f̂ dA, (6.20)

where f̂ = [σ ] ·n is known but q = σ ·n must be treated as a degree of freedom since its value

will not in general be known. Combining these with (6.19) yields

∫
Ω\Γ

αw ·udV +
∫

Ω\Γ

µ

2
(∇w+∇wT ) : (∇u+∇uT )dV −

∫
Ω\Γ

p∇ ·wdV +
∫

Γ
[w] ·qdA =∫

Ω\Γ
αw ·u? dV +

∫
Ω\Γ

w · f dV +
∫

Γ
w · f̂ dA. (6.21)

Introducing test functions λ and v, the weak forms for (6.2) and (6.3) are∫
Ω\Γ

λ∇ ·udV = 0 (6.22)∫
Γ

v · [u]dA =
∫

Γ
v ·ai dA. (6.23)

The equations (6.21-6.23) form our weak form of the Navier-Stokes problem. Note that the test

functions w, λ , and v complement the unknowns u, p, and q respectively. The pressure p and

other Lagrange multiplier q enforce the continuity equation and the velocity jump condition,

respectively.

6.2.4.2 Discretization

We begin our discretization procedure by cutting each grid cell of the computational domain

into portions belonging to Ω+ and Ω− with the aid of the level set function φ n+1. Each cell that

is cut will have one or more triangles (segments in 2D) which are used to calculate integrals
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Figure 6.2: A portion of a fluid grid is cut by an interface. The degrees of freedom for the hashed

region are shown. Solid markers indicate real degrees of freedom, and hollow markers indicate

virtual degrees of freedom. Note that only degrees of freedom with interpolating functions

whose support intersects the the hashed region participate in the discretization.

over each cell that is cut. We refer to an individual triangle as a surface element. Different

approaches exist for performing cutting from a level set; we explain the method we use in

Section 6.2.4.6.

Following [2], we place u and p in space according to a standard MAC layout, with p at

cell centers and u components at face centers. We create copies of these degrees of freedom

near interfaces so that each phase will have virtual values available as shown in Figure 6.2.

Although these degrees of freedom can be assigned directly, we create a copy of each degree

of freedom for Ω− and Ω+, so that each fluid region has its own set of variables, and then

discard the variables that are never referenced (those whose interpolating function support does

not intersect Ω− or Ω+ respectively, see Figure 6.2). The result is the same, but we found the

resulting algorithm to be easier to implement. We follow a finite element discretization, letting

ux(x) = ∑
i

ux
i Nx

i (x), uy(x) = ∑
i

uy
i Ny

i (x), uz(x) = ∑
i

uz
i N

z
i (x),

p(x) = ∑
i

piPi(x), q(x) = ∑
i

qiQi(x), (6.24)

as in [2], where Nx
i (x), Ny

i (x), and Nz
i (x) define the standard piecewise trilinear basis functions

associated with the velocity nodes for the respective dimension, and Pi(x) is 1 in MAC cell i
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and 0 otherwise. We have also introduced the (vector-valued) basis Qi and (scalar) degrees of

freedom qi for q(x). The way these are defined is critical to capturing the null mode properly,

and we delay the definition of these until Section 6.2.4.4. We discretize the test variables the

same way as their corresponding degrees of freedom as

wx(x) = ∑
i

wx
i Nx

i (x) wy(x) = ∑
i

wy
i Ny

i (x) wz(x) = ∑
i

wz
i N

z
i (x) λ (x) = ∑

i
λiPi(x)

v(x) = ∑
i

viQi(x). (6.25)

This leaves the discretization of the forcing terms. The body force f is discretized as a vector

quantity (f x
i , f

y
i , f

z
i ) that is constant per MAC cell as

f x(x) = ∑
i

f x
i Pi(x) f y(x) = ∑

i
f y

i Pi(x) f z(x) = ∑
i

f z
i Pi(x). (6.26)

The interface force f̂ is discretized with a vectoral force (f̂ x
i , f̂

y
i , f̂

z
i ) that is constant over each

surface element i. Letting Ei be 1 on surface element i and 0 elsewhere,

f̂ x(x) = ∑
i

f̂ x
i Ei(x) f̂ y(x) = ∑

i
f̂ y

i Ei(x) f̂ z(x) = ∑
i

f̂ z
i Ei(x). (6.27)

The velocity jump is discretized in the same way as f̂ , so that

ax(x) = ∑
i

ax
i Ei(x) ay(x) = ∑

i
ay

i Ei(x) az(x) = ∑
i

az
i Ei(x). (6.28)

The discretized equations can now be written in matrix form as

Mx +Axx +Bx Axy Axz −Gx Hx

Ayx My +Ayy +By Ayz −Gy Hy

Azx Azy Mz +Azz +Bz −Gz Hz

−(Gx)T −(Gy)T −(Gz)T 0 0

(Hx)T (Hy)T (Hz)T 0 0





ux

uy

uz

p

q


=



Mx(u?)x +Jxf x +Kxf̂ x

My(u?)y +Jyf y +Kyf̂ y

Mz(u?)z +Jzf z +Kzf̂ z

0

Lxax +Lyay +Lzaz


, (6.29)
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where we have defined the matrix blocks (r,s ∈ {x,y,z})

(Mr)i j = α

∫
Ω\Γ

Nr
i Nr

j dV (Ars)i j =
∫

Ω\Γ
µNr

i,sN
s
j,r dV (6.30)

(Br)i j = ∑
s∈{x,y,z}

∫
Ω\Γ

µNr
i,sN

r
j,s dV (Gr)i j =

∫
Ω\Γ

Nr
i,rPj dV (6.31)

(Hr)i j =
∫

Γ
ΘiNr

i Qr
j dA (Jr)i j =

∫
Ω\Γ

Nr
i Pj dV (6.32)

(Kr)i j =
∫

Γ
ΦiNr

i E j dA (Lr)i j =
∫

Γ
Qr

i E j dA. (6.33)

In the Hr matrices, the value Θi = 1 if degree of freedom i corresponds to the Ω+ phase and

Θi = −1 if degree of freedom i corresponds to the Ω− phase. For an interface, Φi =
1
2 in

the Kr matrices; this will change for other types of boundary conditions that we mention in

Section 6.2.4.5.

6.2.4.3 Null Modes

The discretization of the Stokes equations in [2] allowed for nullspace modes corresponding to

the null modes of the corresponding continuous weak formulation. In the periodic Stokes case,

there is a constant velocity mode per dimension and a constant pressure mode. In problems

with an interface, the pressure mode will also have nonzero q entries. The primary limitation

restricting the discretization in [2] to two dimensions is the inability to capture the pressure

mode discretely in 3D. We present a modification to the discretization of q that resolves this

limitation and captures null modes discretely in either two or three dimensions.

First, we must identify the null modes for our weak formulation of Navier-Stokes with an

interface and a periodic boundary, but no other boundary conditions. (We will discuss the effect

of other boundary conditions on null modes in Section 6.2.4.5.) A null mode (u, p,q) must

56



satisfy homogenous versions of (6.21), (6.22), and (6.23) for any (w,λ ,v):∫
Ω\Γ

αw ·udV +
∫

Ω\Γ

µ

2
(∇w+∇wT ) : (∇u+∇uT )dV −

∫
Ω\Γ

p∇ ·wdV +
∫

Γ
[w] ·qdA = 0

(6.34)∫
Ω\Γ

λ∇ ·udV = 0

(6.35)∫
Γ

v · [u]dA = 0.

(6.36)

Letting w = u, λ = p, and v = q,∫
Ω\Γ

αu ·udV +
∫

Ω\Γ

µ

2
(∇u+∇uT ) : (∇u+∇uT )dV −

∫
Ω\Γ

p∇ ·udV +
∫

Γ
[u] ·qdA = 0

(6.37)∫
Ω\Γ

p∇ ·udV = 0

(6.38)∫
Γ

q · [u]dA = 0.

(6.39)

Combining these yields∫
Ω\Γ

αu ·udV +
∫

Ω\Γ

µ

2
(∇u+∇uT ) : (∇u+∇uT )dV = 0 (6.40)

Both terms are clearly nonnegative. Since α > 0, the first term will be positive unless u = 0.

Thus, any null mode necessarily has u = 0. Note that our weak Navier-Stokes formulation has

no translational null modes, unlike the periodic Stokes problem. This reduces the homogeneous

system to

0 =−
∫

Ω\Γ
∇ ·wpdV +

∫
Γ
[w] ·qdA (6.41)

=−
∫

Ω\Γ
∇ · (pw)dV +

∫
Ω\Γ

w ·∇pdV +
∫

Γ
[w] ·qdA (6.42)

=
∫

Ω\Γ
w ·∇pdV +

∫
Γ
[pw] ·ndA+

∫
Γ
[w] ·qdA (6.43)
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It remains to determine conditions on p and q for a null mode. If we choose f (x) to be a smooth

scalar function that is positive over some set U ⊂Ω\Γ and zero elsewhere, then w= f ∇p would

produce

0 =
∫

Ω\Γ
f‖∇p‖2 dV, (6.44)

from which ∇p = 0 in U , and necessarily, ∇p = 0 in Ω\Γ. Thus, p is piecewise constant, and

0 =
∫

Γ
[pw] ·ndA+

∫
Γ
[w] ·qdA (6.45)

If f is positive over some U ⊂Ω but zero elsewhere, where U ∩Γ 6= /0, then w = f ∇φ , where φ

is the level set, produces

0 =
∫

Γ
[p] f ∇φ ·ndA =

∫
Γ
[p] f dA (6.46)

From this it follows that [p] = 0 in U and thus [p] = 0 over Γ. Finally,

0 =
∫

Γ
[w] · (pn+q)dA (6.47)

By defining w to be f times an arbitrary piecewise constant vector, we are forced to conclude

that q = −pn, where p is the constant pressure. Thus, the only possible nullspace is u = 0,

p = c, and q =−cn, where c is a constant.

6.2.4.4 Discretizing interface stress jump

In Section 6.2.4.2, we introduced our discretization for all quantities except q, whose description

we left at (6.24). We will take up this topic here.

If we return to the equation for the constant pressure null mode u = 0, p = c, q =−cn, we

quickly run into a problem in 3D. In 2D, we can cut the MAC grid cells in a manner yielding

one surface element per cut cell (ignoring under-resolved cases where there may be a second

element). Such a procedure was employed in [2], and for each cut cell the normal of that element

was chosen as n. In 3D, it is generally impossible to maintain one surface element per cut cell,

so for many cells we do not have an obvious candidate n.

If we substitute the null mode into (6.34), we get

−
∫

Ω\Γ
p∇ ·wdV +

∫
Γ
[w] ·qdA = 0 (6.48)
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(a) Qn(x) and Qt(x) for one MAC

cell.

(b) Qt(x) assigned inconsistently.

Figure 6.3: MAC cell with doubly-fine subcells and interface elements. Qn(x) and Qt(x) are

constant per interface element (and doubly-fine subcell) but not per MAC cell. In 2D, cutting

on a doubly-fine grid may produce multiple segments, which must be oriented consistently.

(a) Qn(x), Qt0(x), and Qt1(x) for part of a MAC

cell.

(b) Qt0(x), and Qt1(x) oriented inconsistently.

Figure 6.4: Qn(x), Qt0(x), and Qt1(x) are constant per interface element and should be consis-

tent within a MAC cell (left). Consistency in the normal direction is automatic, but if care is not

taken, the tangential directions will be inconsistent.
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Applying the divergence theorem and using p = c yields∫
Γ
[w] · (cn+q)dA = 0 (6.49)

In [2], n was constant per cut MAC cell, so discretizing q as constant per surface element (of

which they had one per cut MAC cell) allowed them to discretely capture the pressure nullspace.

If w were defined as piecewise constant per MAC cell, then discretizing q as constant per cell

would lead to q being defined over each MAC cell Ci as

q|Ci
=−c

(∫
Γ∩Ci

dA
)−1 ∫

Γ∩Ci

ndA (6.50)

as the discrete nullspace. This is not the case, however, since w is discretized with the non-

constant bases Nx(x), Ny(x), and Nz(x).

Our solution to this problem is to define a normal component qn and two tangential compo-

nents qt0 and qt1 for each cut MAC cell. Then, the basis Qn(x) for the normal component qn

is the local normal direction Qn(x) = n(x), which will be different for every surface element

in the MAC cell. Now, the nullspace will be captured discretely as qn =−c and qt0 = qt1 = 0.

The tangential bases Qt0(x) and Qt1(x) should be orthogonal tangential directions local to each

element.

Unlike Qn(x), which will automatically be consistent across elements in a MAC cell, the

directions Qt0(x) and Qt1(x), if not chosen carefully, could vary wildly in 3D. (In 2D, the

tangential component can also be chosen consistently, though in 2D only one element is required

anyway.) To see why such inconsistency may be problematic, consider a MAC cell cut by two

coplanar surface elements e0,e1 of equal area. Let Qt0(x) = −Qt0(y) and Qt1(x) = −Qt1(y),

where x ∈ e0 and y ∈ e1. Such a configuration would be incapable of applying a tangential

tractive component in the MAC cell, since the tangential contribution from qt0 and qt1 to one

element would cancel out their contributions to the other element.

To prevent tangential inconsistencies, we define a reference orientation for the MAC cell.

The normal direction for this orientation is the weighted normal,

n′ =
∫

Γ
ndA n =

n′

‖n′‖ , (6.51)
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where A > 0 is the area and n is the unit direction. The first reference tangential direction

t0 is chosen as an arbitrary vector orthogonal to n, and t1 = t0× n, which we write as R =(
t1 t0 n

)
. To construct the local orientation for an element e, we begin by mapping the

element’s normal ne into tho reference frame as n̂e = RT ne. Note that if the adjacent elements

are similar in orientation, then ne ≈ n and n̂e ≈ k, where i, j, and k are the axial unit vectors.

Similarly, we should have t̂0e ≈ j and t̂1e ≈ i. This suggests choosing

t̂′0e = (I− n̂en̂T
e )j t̂0e =

t̂′0e

‖t̂′0e‖
t̂1e = t̂0e× n̂e t0e = Rt̂1e t1e = Rt̂0e. (6.52)

We found this local definition of the tangential directions to work well in practice. We can now

define the bases for q locally as

Qn(x) = ne Qt0(x) = t0e Qt1(x) = t1e, (6.53)

where e is the element at location x. In 2D, the tangential direction is simply chosen by rotating

the normal direction clockwise one-quarter turn. Note that unlike the bases for u or p, the bases

for q are vector quantities. For simplicity of exposition, we index the qi degrees of freedom

uniformly, ignoring the distinction between normal and tangential degrees of freedom. These

consistency concerns are illustrated in Figures 6.3 and 6.4.

6.2.4.5 Boundary Conditions

Up to this point, we have described how to discretize the interface Γ splitting the domain Ω, but

have not treated boundary conditions on Ω, excepting periodic boundary conditions which can

be handled in the obvious way. An advantage of our discretization of the embedded interface

is the relative ease with which we can modify it to implement Dirichlet velocity boundary

conditions (6.5), Neumann boundary conditions (6.6), and slipping boundary conditions (6.7)

and (6.8).

We represent our boundary conditions by treating the regions beyond Dirichlet, Neumann,

and slip boundaries as special fluid phases. These boundary condition phases have level sets

associated with them representing the location of the boundary. The boundary condition phases

are not real fluid. There are no velocity or pressure degrees of freedom associated with these
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Γ

Ω−

Ω+

∂Ωd

∂Ωd

(a) Interface intersects boundary

Ω0

Ω1

Ω2

Γ

Γ

Γ

(b) Three interfaces meet

Ω

∂Ωn

∂Ωd

∂Ωs∂Ωs

(c) Different boundary conditions

meet

Figure 6.5: Triple junctions are formed when interfaces or boundary conditions of different

types meet at a point. The filled circles represent the location of triple junction in these exam-

ples.

phases. This representation allows us to reuse our interface routines with little extra work.

The problem of handling the different boundary conditions becomes a problem of handling an

interface between a fluid region and boundary condition region. Note that if two boundary

condition regions are adjacent, there will be an interface between them, which we can ignore.

There will also be a triple junction at the point where the fluid region meets the two boundary

condition regions. Some common triple junction configurations are shown in Figure 6.5. We

leave the problem of handling triple junctions for future work.

Dirichlet boundary conditions are implemented by treating the region beyond the boundary

as having an identically zero velocity. Nonzero Dirichlet velocity boundary conditions (u = b

at x ∈ ∂Ωd) are treated as velocity jumps at the interface ([u] = b at x ∈ Γd). The stress in the

region beyond the boundary condition can be taken to be continuous with the stress in the fluid,

so ([σ ·n] = 0 at x ∈ Γd). There will be q degrees of freedom for Dirichlet boundary conditions

just as there are for regular interfaces. Practically speaking this amounts to omitting the velocity

degrees of freedom (as well as the associated rows and columns of the system) corresponding

to the dirichlet fluid phase.
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In the Neumann case, we wish to enforce a desired normal stress. We treat the region

beyond the boundary as having identically zero stress. In (6.33), we divide the interface stress

jump evenly to both sides of the interface (Φi =
1
2 ). In the Neumann case, we must put the

entire contribution on the side corresponding to the fluid (Φi = 1) since the other rows will

be discarded. The interface stress now corresponds to the region beyond the boundary, so

q = σ · n = 0. Eliminating q in this way corresponds to not having any particular velocity

jump to enforce (a will never be used). Practically speaking, Neumann boundary conditions

are implemented by omitting q degrees of freedom corresponding to the Neumann boundary

condition and omitting the corresponding entries of the system. Note that the Dirichlet and

Neumann treatments above are equivalent to the standard finite element treatments of these

boundary conditions.

Our treatment of the slip boundary condition takes advantage of our division of q degrees

of freedom into normal and tangential components. Slip is treated like Dirichlet in the normal

direction and Neumann in the tangential directions. The tangential q degrees of freedom, as

well as corresponding matrix entries, are omitted. Note that the equation corresponding to the

normal component of q enforces the velocity jump condition in the normal direction ([u] = c),

so omitting degrees of freedom in this way suffices to encode Dirichlet in the normal direction.

The tangential portion requires a slight modification, since (I− nnT )ĥ must be used as the

interface stress. As in the Neumann case, Φi = 1 is used in (6.33). We demonstrate all three

types of boundary conditions in our numerical examples.

Since our implementations of Dirichlet and slip boundary conditions do not eliminate the

normal components of q degrees of freedom, a Dirichlet or slip boundary condition will not

preclude the presence of a null mode. However, a Neumann boundary condition will prevent

the existence of a null mode since its q degrees of freedom are removed.

6.2.4.6 Practical implementation

The primary difficulty in implementing the proposed method is computing the necessary inte-

grals. Our pressure basis functions are piecewise constant over MAC cells, but our velocity
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(a) Interface elements (b) Boundary elements (back) (c) Boundary elements (front)

Figure 6.6: We use a modified marching cubes table that emits both the usual interface elements

(left) as well as a triangulation of the portion of boundary of the cell in each region (center and

right). These extra triangles greatly simplify our integration process.

basis functions are piecewise trilinear over cells whose corners contain the respective velocity

degrees of freedom. Since we will be integrating products of these bases and their derivatives,

we perform our integration over the cells of a doubly-fine grid. Over each doubly-fine cell, these

products are all polynomials. The polynomials being integrated may be different, even discon-

tinuous, across the boundaries between adjacent doubly-fine cells (even across those contained

in the same MAC cell). This is a consequence of the staggering of the variables.

We represent our regions using level sets (both for the interface and boundary conditions)

stored at MAC cell centers. Since we wish to integrate over doubly-fine cells, we interpolate

our level set to populate a doubly-fine node-centered level set. This representation allows us

to compute our interface geometry using marching cubes in 3D (marching squares in 2D) over

the doubly-fine grid. The boundary integrals amount to integrating a polynomial over these

triangles. Note that all of the bases, restricted to one interface element, are polynomials.

The volumetric integrals at first seem rather difficult, particularly in light of the rather com-

plicated regions that occur with marching cubes. If approached in the right way, however, they

are quite manageable. We begin by converting the volume integral into a surface integral using

the divergence theorem as in [2]. This reduces the problem into one of integrating polynomials
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of one degree higher over the triangles on the boundary of the cut marching cubes volumes.

We augment our marching cubes table (marching squares table for 2D) to emit these triangles

(segments in 2D) on the surface of the cube in addition to the triangles on the interface itself.

See Figure 6.6 for an illustration. This enhancement of marching cubes is straightforward in

practice, as most of the work involved is required to implement marching cubes in the first

place. It also greatly simplifies the integration.

The highest degree polynomials we must integrate over cut volumes are of degree six in

3D (degree four in 2D), which occur for Mx, My, and Mz. These become degree seven poly-

nomials in 3D (degree five in 2D) once the divergence theorem is applied. The highest degree

polynomials we integrate for boundary integrals is three in 3D (two in 2D). We perform all of

these integrations using quadrature rules of high enough order (listed in [67]) to get the integral

exactly.

Although solving the linear system 6.29 is by far the slowest step of our method, we still

perform a few simple optimizations when computing the integrals. The first is to precompute

the stencils for uncut doubly-fine cells (there will be eight such integrals required, since each

octant of a MAC cell may contribute differently to the final stencil). Additional integrations

are only required for integrating in cut cells or computing boundary integrals. Most cells are

not cut and can simply use a copy of one of these precomputed stencils. For the cells that are

cut, we will be computing many integrals over the same geometry, so we begin by integrating

the monomials individually using quadrature rules. With these, integrating the actual basis

polynomials reduces to a simple dot product.

We can also take advantage of the way in which the volume integral was converted into a

surface integral using divergence theorem to save even more work. That is we can convert a

volume integral over f (x,y,z) into a surface integral using∫
Ω

f dV =
∫

∂Ω
gnx dA =

∫
∂Ω

hny dA =
∫

∂Ω
k nz dA

where we have integrated the polynomial f (x,y,z) to obtain

g =
∫

f dx h =
∫

f dy k =
∫

f dz.
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If we choose the x direction as our preferred direction, then nx = 1 along two faces of the cube,

and nx = 0 along the other four. This means we can discard the boundary elements along four

of the faces of the cube.

Finally, we only need to compute volume integrals on one side of an interface, since the

integrals for the other can be obtained by subtracting from the integral over the whole cube,

which we have precomputed.

6.2.5 Solving the system

We solve our system using preconditioned MINRES using the same Jacobi-style preconditioner

as in [2]. We project out our nullspace (when we have one) inside the MINRES solver in

addition to projecting the right hand side for compatibility, since we have found this to improve

the convergence behavior of the solver. This simple preconditioner we employ significantly

improves the conditioning of our systems, but in practice the systems remain very slow to solve.

We leave the problem of finding a more effective preconditioner for future work.

6.2.6 Surface tension

There are many popular options for introducing surface tension into a fluid discretization that

are available to us. Since our discretization has provisions built in for incorporating an interface

force f̂ , we take this approach. We begin by computing normals and curvature at MAC cell

centers

ni =
∇φ n+1

‖∇φ n+1‖ Hi = Hessian(φ n+1) κi =
nT

i Hini− tr(Hi)

‖∇φ n+1‖ ,

where all derivatives are computed using central differencing. Using these, we can compute n̂

and κ̂ estimates wherever we need them by interpolating ni and κi using cubic interpolation.

Finally, we approximate our surface tension as the interface force

f̂ =−βκ̂n̂.

Note that ni and κi are only required near the interface, and reinitialization must be performed

in a wide enough band for the combined central differencing stencil and cubic interpolation
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stencil.

6.2.7 Stability

6.2.7.1 System stability

The final step of our scheme (u? → un+1) applies viscosity and enforces incompressibility.

This operation is linear (or affine if there are forcing terms such as inhomogeneous boundary

conditions or surface tension). This system can be expressed asM+S G

GT 0

un+1

λ

=

Mu?

0

 ,

where M contains the inertial blocks, S contains the viscous blocks, and G contains the pressure

and interface stress blocks. The vector λ contains the p and q degrees of freedom. Non-

homogeneous terms on the right hand side are omitted. Note that the λ degrees of freedom

are not state, in that these values can be discarded at the end of the time step. The only state

variables present in this system are velocities.

The matrix S made up of the viscous blocks is symmetric positive semi-definite, since from

our discretization w′Su is equal to the inner product
∫

Ω
µ

2 ∇(w +wT ) ·∇(u + uT ) dV of the

piecewise trilinear functions corresponding to the vectors u,w. We will substitute S = CT C for

the purposes of this analysis, and rewrite our matrix equation asM+CT C G

GT 0

un+1

λ

=

Mu?

0

 .
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Following [82] and letting w = Cvn+1, we can transform this system to CM−1 0

GT M−1 −I

M+CT C G

GT 0

un+1

λ

=

 CM−1 0

GT M−1 −I

Mu?

0


C+CM−1CT C CM−1G

GT M−1CT C GT M−1G

un+1

λ

=

 Cu?

GT u?


I+CM−1CT CM−1G

GT M−1CT GT M−1G

w

λ

=

 Cu?

GT u?



I 0

0 0

+

 C

GT

M−1

 C

GT

T

w

λ

=

 C

GT

u?

(P+KM−1KT )z=Ku?,

where

P =

I 0

0 0

 K =

 C

GT

 z =

w

λ

 .

Since both P and KM−1KT are symmetric positive semi-definite, P+KM−1KT may have the

nullspace component z if and only if both PP and KM−1KT do individually. zT Pz = 0 implies

un+1 = 0, which reduces zT KM−1KT z= λ
T GT M−1Gλ . Since M is symmetric positive definite,

we must have Gλ = 0. That is, G has a nullspace. We often do have such a nullspace. Though

this complicates the analysis, we note that we can ignore this nullspace since we will never get

a component in it on the right hand side. In this way, we can solve this system for z.

The next step is to recover un+1 from z, which we do using the momentum equation

(M+CT C)un+1 +Gλ =Mu?

un+1 +M−1CT w+M−1Gλ =u?

un+1 +M−1KT z=u?

un+1 =u?−M−1KT z.
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Finally, the change in kinetic energy due to the update u?→ un+1 is

∆KE =
1
2
(un+1)T Mun+1− 1

2
u?T Mu?

=
1
2
(u?−M−1KT z)T M(u?−M−1KT z)− 1

2
u?T Mu?

=
1
2

zT KM−1KT z− zT Ku?

=
1
2

zT KM−1KT z− zT (P+KM−1KT )z

=−1
2

zT KM−1KT z− zT Pz

≤ 0.

Thus we see that this step does not introduce energy into the system.

6.2.7.2 Time step restriction

Empirically, our method appears to have a stability restriction on the value of the dimensionless

quantity ∆tµ
ρ∆x2 (see Sections 6.3.12.1 and 6.3.12.2). This limits the minimum choice for ∆t. Since

the criterion depends on refinement as ∆t
∆x2 , convergence is possible as long as ∆t is refined no

faster than ∆x2. In particular, ∆t = k∆x and ∆t = k∆x2 are both suitable refinement strategies.

It is worth discussing the apparent source of this instability in more detail. In the absence of

an interface, no instability is observed. When an interface (or boundary condition) is present and

instability is observed, it starts near the interface. This in particular suggests that the modified

velocity advection scheme proposed is stable. Indeed, the instability is also observed with the

original advection scheme or no advection at all. Similarly, instability is observed with BDF or

backward Euler.

An unusual characteristic of this stability restriction is that ∆t must not be chosen too small.

To see what may be causing this, consider a time step in the limit ∆t→ 0. In this case, advection

has no effect, and the viscosity terms vanish. Using backward Euler eliminates the complica-

tions of BDF. The only part of the time integration remaining that has an appreciable effect is

setting up the right hand side and solving the system, which we showed will not increase energy.

The source of the energy increase is the velocity extrapolation used to fill the ghost cells of u?

needed for the right hand side. If sufficient viscosity is present, this added energy is dissipated

69



ǫ

3ǫ

6ǫ

Figure 6.7: Extrapolation amplifies errors. In this case, the ideal solution (black horizontal line)

is perturbed by ε at the interface, which is then amplified by quadratic extrapolation to 3ε and

6ε in the ghost region.

as it is introduced, and the scheme remains stable. Examining the role of ∆t, µ , and ρ in this

system, we can rescale the system so that the only reference to these quantities is through the

expression ∆tµ
ρ

. This is consistent with the empirical stability criterion suggested by our numer-

ical examples. Noting that the viscosity blocks are scaled by 1
dx2 relative to the inertial blocks

leads to the full criterion ∆tµ
ρ∆x2 . This value describes the efficiency with which viscosity is able

to damp out energy in our scheme.

To see why extrapolation is able to lead to instability, consider a set of uniformly spaced

sample points u1,u2, . . .. The value u0 is to be computed by extrapolation. If uk = 1 for k≥ 2 are

set to a constant value but u1 = 1+ε , so that a small error has been made near the interface, then

we will compute u0 = 1+ ε with constant extrapolation, u0 = 1+2ε with linear extrapolation,

and u0 = 1+3ε with quadratic extrapolation (see Figure 6.7). Thus, we see that extrapolation

has magnified the error by a factor greater than one. Solving the system pulls some of this energy

from the ghost region inside, where it is magnified further by extrapolation in the next time step.

The above example has a growth factor of 3, though in practice a value near 1.25 is observed

for unstable simulations. Instabilities always exhibit this slow and steady exponential march

to infinity. Using lower order extrapolation decreases the growth rate, but even for constant

extrapolation the factor is still slightly larger than one. This supports the idea that extrapolation

is providing the amplification required for instability.
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6.3 Numerical examples

Our method supports a range of boundary conditions and forces. Through a mixture of analytic

and more practical tests, we demonstrate second order accuracy for u in L∞ and L2, second

order accuracy for p in L2, and first order accuracy for p in L∞. We also investigate the stability

characteristics of our method.

6.3.1 Taylor-Green vortex

The Taylor-Green vortex is a popular analytic accuracy test for single-phase Navier-Stokes.

We use a (dimensionless) domain [0,π]× [0,π] in which we confine fluid to the region

sin(x)sin(y) ≥ k, where k = 0.2. The fluid has ρ = 1, µ = 1, and the final time is T = 0.2.

The analytic solution is

u = sin(x)cos(y) v =−cos(x)sin(y) p =
1
4

ρ(cos(2x)+ cos(2y))e−4νt ,

where ν = µ

ρ
. The velocity field is initialized with the analytic velocity. Velocity and pressure

errors along with convergence order estimates are shown in Figure 6.8.

6.3.2 Translating Taylor-Green vortex

We test our method on a problem where two fluids are separated by an interface in the periodic

domain [0,2π]× [0,2π]. The interface is initially set to be the circle centered at (11π

10 ,0) with

radius 3π

5 . Each fluid has ρ = 1 and µ = 2, and the analytic solution for both fluids is given by

a translating Taylor-Green vortex:

u = sin(x− .2t)cos(y− .5t) v =−cos(x− .2t)sin(y− .5t)

p =
1
4

ρ(cos(2x− .2t)+ cos(2y− .5t))e−4νt ,

where ν = µ

ρ
. As before, the velocity field is initialized with the analytic velocity. Velocity and

pressure errors, and estimates of the convergence order, are shown in Figure 6.9.
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Figure 6.8: Errors in the Taylor-Green vortex, Example 6.3.1, for velocity and pressure (shown

log base 10) in L∞ and L2, plotted against resolutions from 16 to 256 by increments of 8 (shown

log base 10). The pressure does not start to display convergence until the resolution is high, so

separate regressions are provided for the highest resolutions 128 to 256 to eliminate bias from

resolutions below the convergence regime. The estimated orders for velocity when throwing out

the lowest resolutions are 2.01 in L∞ and 2.14 in L2. For pressure, the estimated orders when

throwing out the lowest resolutions are 0.82 in L∞, 1.66 in L2.
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Figure 6.9: Translating Taylor-Green vortex errors, Example 6.3.2, for velocity and pressure

(shown log base 10) plotted against resolutions from 16 to 128 by increments of 8 (shown log

base 10). Regression lines and the corresponding orders shown for L∞ and L2, with separate

regressions provided for the highest resolutions 64 to 128. The estimated orders for velocity

when throwing out the lowest resolutions are 1.84 in L∞ and 1.89 in L2. For pressure, the

estimated orders when throwing out the lowest resolutions are 1.18 in L∞, 1.77 in L2.
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Figure 6.10: Analytic test I errors in velocity and pressure (shown log base 10), plotted against

resolutions from 16 to 128 by increments of 8 (shown log base 10). Regression lines and the

corresponding orders shown for L∞ and L2. Separate regressions are provided for the highest

resolutions 64 to 128 to eliminate bias from earlier resolutions. The estimated orders for velocity

when throwing out the lowest resolutions are 2.34 in L∞ and 2.36 in L2. For pressure, the

estimated orders when throwing out the lowest resolutions are 0.86 in L∞, 1.99 in L2.
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6.3.3 Analytic test I

In this analytic test we evolve two fluids, separated by an interface, in the periodic domain

[−π,π]× [−π,π]. The interface in this example is the circle x2 + y2 = (.8π)2. We set an

inner boundary at the circle (x− .2π)2 + y2 = (.2π)2, on which we apply a Neumann boundary

condition. The fluid bounded by the inner and outer circles has ρ− = 1, µ− = 1, and the outer

fluid has ρ+ = 2, µ+ = 3. The fluids are initialized with the analytic velocity and evolved to

final time T = .1. The analytic solution is given by

u =


.2− x x ∈Ω−

sin(x)cos(y) otherwise
v =


y x ∈Ω−

−cos(x)sin(y) otherwise

p =


0 x ∈Ω−

1
4ρ+(cos(2x)+ cos(2y))e−4νt otherwise

.

where ν = µ

ρ
. Velocity and pressure errors along with convergence order estimates are

shown in Figure 6.10.

6.3.4 Analytic test II

We embed the circle x2 + y2 = (.8π)2 into the domain [−π,π]× [−π,π]. A circle (x− .2π)2 +

y2 = (.2π)2 separates the larger circle into an inner domain Ω− and an outer domain Ω+, and a

slip boundary condition is enforced along the boundary of the outer circle. The inner fluid has

ρ− = 1, µ− = 1 and the outer fluid has ρ+ = 2, µ+ = 3. The velocity field is initialized with

the analytic velocity and evolved to the final time T = .1. The analytic solution is given by

u =

 .2− x x ∈Ω−

−y otherwise
v =

 y x ∈Ω−

x otherwise
p =

 0 x ∈Ω−

.5ρ+(x2 + y2) otherwise
.

Velocity and pressure errors along with convergence order estimates are shown in Fig-

ure 6.11.
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Figure 6.11: Analytic test II errors in velocity and pressure (shown log base 10), plotted against

resolutions from 16 to 128 by increments of 8 (shown log base 10). Regression lines and the

corresponding orders shown for L∞ and L2. Separate regressions are provided for the highest

resolutions 64 to 128 to eliminate bias from earlier resolutions. The estimated orders for velocity

when throwing out the lowest resolutions are 1.99 in L∞ and 2.61 in L2. For pressure, the

estimated orders when throwing out the lowest resolutions are 0.90 in L∞, 1.77 in L2.
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Figure 6.12: Analytic test II-3D errors in velocity and pressure (shown log base 10), plotted

against resolutions from 16 to 96 by increments of 8 (shown log base 10). Regression lines

and the corresponding orders shown for L∞ and L2. Separate regressions are provided for the

highest resolutions 48 to 96 to eliminate bias from earlier resolutions. The estimated orders for

velocity when throwing out the lowest resolutions are 1.82 in L∞ and 2.05 in L2. For pressure,

the estimated orders when throwing out the lowest resolutions are 0.87 in L∞, 1.32 in L2.

6.3.5 Analytic test II-3D

We examine a three-dimensional analogue of our test from the previous section: The sphere

x2 + y2 + z2 = (.8π)2 is embedded into the dimensionless domain [−π,π]× [−π,π]× [−π,π].

A shell (x− .2π)2 + y2 + z2 = (.2π)2 separates the larger sphere into an inner domain Ω− and

an outer domain Ω+. As before, the slip boundary condition is enforced along the boundary of

the outer circle. The inner fluid has ρ− = 1, µ− = 1 and the outer fluid has ρ+ = 2, µ+ = 3.

As in previous examples, the velocity field is initialized with the analytic velocity and evolved

to the final time T = .1. The analytic solution is given by
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u =

 .2− x x ∈Ω−

2z−3y otherwise
v =

 y x ∈Ω−

3x− z otherwise

w =

 −2z x ∈Ω−

y−2x otherwise
p =

 0 x ∈Ω−

.5ρ+(x2 + y2) otherwise
.

Velocity and pressure errors along with convergence order estimates are shown in Fig-

ure 6.12.

6.3.6 Two-phase Couette flow

We run a two-phase Couette flow test, where two phases are separated by a stationary interface.

The phases have different density and viscosity. The domain is [0,1]× [0,1]. The fluid is

confined by vertical no-slip walls at x0 = 0.2 (where u(x0,y) = (0,1)) and x2 = 0.8 (where

u(x2,y) = (0,−1)). Periodic boundary conditions are enforced at the top and bottom of the

domain. The interface is vertical at x1 = 0.5, with phase 0 (ρ− = 1, µ− = 1) occupying 0.2 <

x < 0.5 and phase 1 (ρ+ = 2, µ+ = 3) occupying 0.5 < x < 0.8 The analytic solution is u = 0,

p = 0, and

v1 =
v0µ−(x2− x1)+ v2µ+(x1− x0)

µ−(x2− x1)+µ+(x1− x0)
, v =

 v0 +
x−x0
x1−x0

(v1− v0) x≤ x1

v1 +
x−x1
x2−x1

(v2− v1) x > x1

.

The initial velocity is the analytic solution. This test demonstrates that the method correctly

(and sharply) handles discontinuities in viscosity. Convergence results are summarized in Fig-

ure 6.13.

6.3.7 Parasitic currents

In this test, we check for convergence of parasitic currents in the case of a stationary circle with

surface tension. The fluid domain is [0m,0.01m]× [0m, .01m], with periodic boundary condi-

tions and an initially circular interface with radius 0.003m centered at (0.005m,0.005m). We

simulate glycerin inside the circle (ρ− = 1261kg m−2, µ− = 1.4746kg s−1) and a generic light
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Figure 6.13: Couette flow errors in velocity (shown log base 10), plotted against resolutions

from 16 to 128 by increments of 8 (shown log base 10). Regression lines and the corresponding

orders shown for L∞ and L2. The analytic solution (piecewise linear velocity, constant zero

pressure) would often be resolved exactly by a second order method. In our case, we do observe

fourth order velocity convergence on this simple test. Note that the first two resolutions are too

small to resolve the setup and have been omitted from the regression. The pressure errors are

below 10−9 in L∞ and L2 for all resolutions and are limited by the convergence tolerance of our

MINRES solver.

79



-7.5

-7

-6.5

-6

-5.5

-5

-4.5

 1.2  1.3  1.4  1.5  1.6  1.7  1.8  1.9  2  2.1  2.2

L-inf

L-inf order 1.96

L-2

L-2 order 2.04

(a) Velocity error

-3

-2.5

-2

-1.5

-1

-0.5

 1.2  1.3  1.4  1.5  1.6  1.7  1.8  1.9  2  2.1  2.2

L-inf

L-inf order 1.13

L-2

L-2 order 1.97

(b) Pressure error

Figure 6.14: A stationary circle is run with surface tension to test convergence of parasitic cur-

rents. Errors in velocity and pressure (y-axis, shown log base 10) are plotted against resolutions

from 16 to 256 by increments of 8 (x-axis, shown log base 10). We estimate the velocity to be

order 1.96 in L∞ and 2.04 in L2. For pressure, we obtained 1.13 in L∞ and 1.97 in L2.

fluid outside (ρ+ = 1kg m−2, µ+ = 1kg s−1, similar in density to air but more viscous). The

interface is evolved with the level set method. Convergence results are shown in Figure 6.14.

6.3.8 Parasitic currents - 3D

This test is a 3D analogue of Section 6.3.7. The fluid domain is [0m,0.01m]× [0m, .01m]×
[0m, .01m], with periodic boundary conditions and an initially spherical interface with radius

0.003m centered at (0.005m,0.005m,0.005m). Glycerin is inside (ρ− = 1261kg m−3, µ− =

1.4746kg m−1 s−1), and a light fluid is outside (ρ+ = 1kg m−3, µ+ = 1kg m−1 s−1). The

interface is evolved with the level set method, and the results are shown in Figure 6.15.

6.3.9 Relaxing ellipse

The tests up to this point have been analytic tests. Here we run a relaxing ellipse test similar

to the one performed in [2]. Two fluids are separated by an interface in the initial shape of

an ellipse. The fluid domain is [−1m,1m]× [−1m,1m], with periodic boundary conditions.
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Figure 6.15: A stationary sphere is run with surface tension to test convergence of parasitic cur-

rents. Errors in velocity and pressure (y-axis, shown log base 10) are plotted against resolutions

from 16 to 64 by increments of 8 (x-axis, shown log base 10). We estimate the velocity to be

order 1.94 in L∞ and 2.09 in L2. For pressure, we obtained 1.12 in L∞ and 1.87 in L2.

The ellipse is centered in the domain with major axis 1.4m and minor axis 0.8m. The inside

fluid has parameters ρ− = 0.01kg m−2 and µ− = 1kg s−1. The outside fluid has parameters

ρ+ = 0.02kg m−2 and µ+ = 3 kg s−1. The surface tension coefficient is 10kg m s2. The

simulations were run with time step ∆t = (0.01m−1s)∆x until time T = 0.05s. Convergence

orders are shown in Figure ??. Snapshots from the simulation are shown in Figure 6.16.

6.3.10 Relaxing ellipsoid - 3D

This relaxing ellipsoid test is a 3D analogue of Section 6.3.9. Two fluids are separated by an

interface in the initial shape of an ellipsoid. The fluid domain is [−1m,1m]× [−1m,1m]×
[−1m,1m], with periodic boundary conditions. The ellipsoid is centered in the domain

with major and minor axes 1.4m, 0.8m, and 0.8m. The inside fluid has parameters ρ− =

0.01kg m−3 and µ− = 1kg m−1 s−1. The outside fluid has parameters ρ+ = 0.02kg m−3 and

µ+ = 3kg m−1s−1. The surface tension coefficient is 10kgs2. The simulations were run with

time step ∆t = (0.01m−1s)∆x until time T = 0.015s. Convergence orders are shown in Fig-
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Resolutions Order (u) Order (p)

compared L∞ L2 L∞ L2

8 16 32 1.428 1.567 0.990 1.078

16 32 64 2.724 2.948 0.326 1.084

24 48 96 4.178 3.568 0.105 1.317

32 64 128 2.521 2.682 0.216 1.684

48 96 192 2.185 2.074 -0.358 1.638

64 128 256 2.453 2.112 0.457 2.334

Table 6.1: Order of convergence for 2D relaxing ellipse. Note that pressure is too noisy in L∞ to

give a meaningful convergence estimate. On the other hand, the pressure error is transitioning

to second in L2. (The transition to second is not merely noise. Noisy L∞ and convergence

orders consistent with second order in L2 were also observed when this simulation was run with

different parameters.) This suggests that, while the pressure may be noisy, it is converging.

Resolutions Order (u) Order (p)

compared L∞ L2 L∞ L2

8 16 32 2.779 3.012 1.856 2.188

16 32 64 3.521 3.572 0.773 1.646

Table 6.2: Order of convergence for 3D relaxing ellipsoid.
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(a) t = 0.0s (b) t = 0.1s

(c) t = 0.2s (d) t = 0.3s

(e) t = 0.4s (f) t = 0.5s

Figure 6.16: Pressure and interface configuration for the relaxing ellipse of Section 6.3.9. Dark

regions have lower pressure and lighter regions have higher pressure.
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ure 6.2.

6.3.11 Rising Bubbles

We used our algorithm to simulate a rising fluid bubble surrounded by fluid of differing viscosity

and density. We assumed a uniform gravitational acceleration equal to g = 9.8, with the fluid

densities being ρ− = 1 inside the interface and ρ+ = 2 outside the interface for all simulations.

The interface is an ellipse of major radius a = 0.5 and minor radius b = .2 in a domain [−1,1]×
[0,5], and we center it at (0,1). The top and bottom have zero Dirichlet boundary conditions on

the top and bottom, and the sides are periodic. We simulate examples where the inner viscosity

µ− = 1 is less than the outer viscosity µ+ = 3, and examples where the inner viscosity µ− = 3

is greater than the outer viscosity µ+ = 1. These values are similar to those used in the rising

bubble example in [2]. For each of these viscosity value pairs, we simulate a rising bubble

without (Figures 6.17(a) and 6.17(b)) and with (Figures 6.17(c) and 6.17(d)) surface tension.

In the simulations of Figures 6.17(c) and 6.17(d), we include a surface tension force whose

coefficient is the same as in the other surface tension examples.

6.3.12 Stability

To examine stability, we consider two different examples, and for each run simulations for a

variety of parameters that affect our stability. In each case, we choose five values of µ−, ten

values of ρ−, two values of ∆x = 2/N, and ten values of ∆t, each sampled by powers of two.

Each of these 1000 simulations is classified as stable or unstable. A simulation is classified

as stable if it completes without producing velocities larger than 10 (Section 6.3.12.1) or 2

(Section 6.3.12.2). In practice, the classification was quite unambiguous most of the time (most

simulations that are unstable simply explode). The rather low cutoff is much smaller than

what would normally be considered ‘blowup’, and errs on the side of classifying simulations as

unstable which do not blow up but still have large uncharacteristic variations in velocity.
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(a) µ− = 1, µ+ = 3, no surface tension

(b) µ− = 3, µ+ = 1, no surface tension

(c) µ− = 1, µ+ = 3, surface tension

(d) µ− = 3, µ+ = 1, surface tension

Figure 6.17: Pressure and interface configurations for the four rising bubble simulations de-

scribed in Section 6.3.11 at t = 0.0,1.0,2.0, . . . ,9.0,10.0s. For each simulation, dark regions

correspond to lower pressure and lighter regions have higher pressure.
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(j) µ− = 4, N = 64

Figure 6.18: These plots show the stability of our method on one of our analytic tests. Each

point on the (x,y) grid corresponds to a simulation with ρ− = 10x, ρ+ = 2ρ−, µ+ = 2µ−, ∆x =

2π/N, and ∆t = 10y. Circles represent stable simulations, and squares represent simulations

that were unstable.

6.3.12.1 Analytic test - stability

We demonstrate the stability characteristics of our method as a function of µ , ρ , ∆x, and ∆t

first for the analytic test in Section 6.3.4 with ρ− = 1, µ− = 1, ρ+ = 2, and µ+ = 2. For

this simulation, the transition between stable and unstable occurs at ∆tµ
ρ∆x2 ≈ 0.2. When this

threshold is reached, instabilities begin to develop at the interface between the two phases. In

this simulation, there also appears to be a competing stability criterion of the form ∆tLu∞
∆x2 , where

L and u∞ are a characteristic length and velocity. When this threshold is crossed, instabilities

develop at the slip boundary condition. Results are shown in Figure 6.18.
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Figure 6.19: These plots show the stability of our method on the relaxing ellipse with varying

parameters. Each point on the (x,y) grid corresponds to a simulation with ρ−= 10x, ρ+ = 2ρ−,

µ+ = 3µ−, ∆x = 2/N, and ∆t = 10y. Circles represent stable simulations, and squares represent

simulations that were unstable.

6.3.12.2 Relaxing ellipse - stability

For this stability test, we use the setup in Section 6.3.9, sampling ρ , µ , ∆t, and ∆x as before. For

this simulation, the transition between stable and unstable occurs at ∆tµ
ρ∆x2 ≈ 0.1. Instabilities,

when they occur, develop at the interface. Results are shown in Figure 6.19.
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CHAPTER 7

Conclusion

7.1 Conclusion

In this work we presented two numerical methods for incompressible flow problems. The first

is a method for Hodge decomposition problems for inviscid Euler flow over irregular domains.

This method is symmetric positive definite and produces pressures which are second order ac-

curate and velocities which are first order accurate in L∞ and second in L1. Future work in this

area will involve implementing this decomposition in time-varying Navier-Stokes problems,

and in finding a modification which will give second order accurate velocities in L∞.

The other method is a second order accurate method for the Navier-Stokes equations which

can incorporate immersed interfaces, discontinuous fluid properties, and various boundary con-

ditions. We considered examples in which both the fluid viscosities and densities are discon-

tinuous across the interface, examples implementing each type of boundary condition listed in

(6.8), and examples showing many combinations of these boundary conditions interacting. We

demonstrated the ability of the method to handle interface forces by considering examples with

surface tension. This method yields a symmetric indefinite linear system of equations. We also

discussed two significant limitations of this method, which may be addressed in future work.

The first limitation of our method, its additional stability restriction, effectively restricts its use

to problems involving low or moderate Reynolds numbers (Re up to about 20 in practice). The

method presented is not suitable for high Reynolds number flows. The second limitation is the

KKT system, for which we currently lack an effective preconditioner.
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