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Abstract

Delineating the gene regulatory programs underlying complex cell types is fundamental for 

understanding brain functions in health and disease. Here, we comprehensively examine human 

brain cell epigenomes by probing DNA methylation and chromatin conformation at single-cell 

resolution in 517k cells (399k neurons and 118k non-neurons) from 46 regions of three adult 

male brains. We identified 188 cell types and characterized their molecular signatures. Integrative 

analyses revealed concordant changes in DNA methylation, chromatin accessibility, chromatin 

organization, and gene expression across cell types, cortical areas, and basal ganglia structures. 

We further developed scMCodes that reliably predict brain cell types using methylation status of 

select genomic sites. This multimodal epigenomic brain cell atlas provides new insights into the 

complexity of cell type-specific gene regulation in adult human brains.

High-throughput epigenomic profiling has been used to elucidate the gene regulatory 

programs underlying tremendous cellular complexity in brains (1–3). 5’-methylcytosines 

(5mCs) are the most common modified bases in mammalian genomes. Most 5mCs in 

vertebrate genomes occur at cytosine-guanine dinucleotides (CpGs). CG differentially 

methylated regions (DMRs) are often considered indicative of cis-regulatory elements 

(CREs) (4, 5). In vertebrate neuronal systems, however, 5mCs are also abundantly detected 

in non-CG (or CH, H=A, C, or T) contexts (6). Both CG- and CH-methylation (mCG 

and mCH) are highly dynamic during brain development and show cell-type specificity 

(1, 4, 7). They are also essential for gene regulation and brain functions (8). In addition, 

gene regulation also requires proper 3D conformation of chromatin folding, which is 

organized into active (A) or repressive (B) compartments, topologically associating domains 

(TADs), and chromatin loops (9). These 3D structures facilitate the interaction between 

gene promoters and their regulatory elements, providing additional but yet critical layers 

of regulatory mechanisms. DNA methylation and chromatin conformation interplay and 

coordinate in regulating gene expression and these processes are highly correlated (3). 

Surveys on these epigenomic features of brain cells can deepen our understanding of gene 

regulation underlying the complexity of human brains. Here, we comprehensively profiled 

both DNA methylation and chromatin conformation in adult human brain cells from cortical 

and subcortical regions using single-nucleus epigenomic sequencing technologies.
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Epigenome-based brain cell type taxonomies

We dissected 46 brain regions encompassing brain structures of the cerebral cortex (CX, 

22 regions), basal forebrain (BF, 2), basal nuclei (BN, 11), hippocampus (HIP, 5), thalamus 

(THM, 2), midbrain (MB, 1), pons (PN, 1) and cerebellum (CB, 2) (Fig. 1A, fig. S1A, and 

tables S1 and S2). Most regions had three biological replicates from the three adult male 

donors (table S3) except two amygdala regions (BM and CEN; two replicates each) (fig. 

S1A and table S1). Fluorescence-activated nuclei sorting (FANS) was used to isolate 90% 

NeuN-positive and 10% NeuN-negative cells in each sample (fig. S1A). We then employed 

snmC-seq3 (“mC”)(10) to profile DNA methylation (DNAm) across all 46 brain regions 

at the single-cell level. Additionally, we utilized snm3C-seq(“m3C”)(3) to simultaneously 

examine single-cell DNA methylation and chromatin conformation from 17 brain regions 

spanning CX, BF, and BN (See Fig 1B, and fig. S1A). Following rigorous quality control, 

378,940 mC and 145,070 m3C nuclei were confirmed suitable for further analysis (fig. 

S1B). Each mC cell produced an average of 0.94 million filtered reads, and each m3C 

cell produced around 2.20 million reads with 406k chromatin contacts. This data quality 

allowed us to reliably measure DNAm across genomic features (fig. S1C), identify variable 

methylation regions, and pinpoint TADs and chromatin loops across different brain cell 

types.

Through iterative clustering of the mC dataset (Methods), nuclei were first divided into 

three classes: telencephalic excitatory neurons, inhibitory/non-telencephalic neurons, and 

non-neuronal cells (Fig. 1, C and D). These were further divided into 40 major types and 

188 subtypes (Fig. 1D, fig. S2, A to C, and tables S4 and S5). The cell types were annotated 

based on CH-hypomethylated gene markers for neuronal cells and CG-hypomethylated 

markers for non-neuronal cells (Methods). All major types and subtypes were conserved 

across donors, though there were minor variations in the proportion of certain cell 

types (Fig. 1D and fig. S2C). The robust dendrograms demonstrated similarities between 

major types and subtypes (Fig. 1D and fig. S2C; Methods). Telencephalic excitatory and 

inhibitory/non-telencephalic neurons are well-separated from non-neuronal cells, each type 

forming a specific clade except CB and PKJ, which were grouped with the non-neuronal cell 

types, likely owing to their similar global CG- and CH-methylation fractions (Fig. 1H and 

fig. S4A).

Non-neuronal major types distribute evenly across brain structures, whereas neuronal ones 

exhibit considerable spatial specificity (Fig. 1, D and F). Most telencephalic excitatory 

neurons were grouped by location (Fig. 1D). Hippocampal excitatory neurons were grouped 

based on their sub-structures (CA1, CA3, & DG). Cortical excitatory neurons were clustered 

by their cortical layers (like L2/3; L=layer) and projection types (like IT) (table S4). Basal 

nuclei excitatory neurons, predominantly from the amygdala, form the Amy-Exc group. 

Telencephalic inhibitory neurons manifest as eleven major types, primarily from cortical 

areas (Pvalb, Pvalb-ChC, Sst, Lamp5, Lamp5-Lhx6, Sncg, and Vip) and basal nuclei or 

basal forebrain (MSN-D1, D2, Foxp2, and Chd7). In the thalamus, one excitatory and two 

inhibitory major types were identified. One inhibitory major type, THM-MB, shares similar 

DNA methylation profiles with a small population of midbrain cells. The other inhibitory 

major type, THM-Inh, is very rare (361 cells or 0.07% of the entire dataset), possibly 
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originating from the habenular nuclei of the thalamus due to dissection contamination 

(fig. S2D). Pontine nucleus neurons constitute a unique major type (PN). The cerebellum 

contained two distinct major types: the rare cell type Purkinje cells (PKJ, 867 cells or 

0.17%), and cerebellar granule cells (CB). Lastly, the SubCtx-Cplx major type, found in the 

basal nuclei and midbrain, was notable for its heterogeneity: its subtypes consisted of both 

excitatory and inhibitory cells (Fig. 1E) and featured highly variable DNAm of the genes of 

neurotransmitter receptors, transporters, and neuropeptides (fig. S2E).

The cell types determined from single-nucleus DNAm profiles were corroborated with 

single-nucleus transcriptome (snRNA-seq) and single-nucleus chromatin accessibility 

(snATAC-seq) data from the same human brains (Methods; companion manuscripts Siletti et 

al. (11) and Li et al. (12)). Integrative analysis revealed the strong correspondence between 

cell types determined using different molecular modalities (fig. S3A). All epigenome-based 

cell subtypes correspond well with transcriptome-based clusters (fig. S3B), though the 

transcriptome-based clusters were derived from ~10 times more cells and from ~2 times 

more brain regions.

Global methylation varied among major types: 77.7%-85.5% for mCG and 0.8%-10.7% 

for mCH. Non-neuronal and granule cell (DG and CB) major types had the lowest global 

fractions in both mCG and mCH (Fig. 1H and fig. S4A), consistent with the previous 

study in mice (1). Cortical inhibitory neurons have the highest mCG, whereas certain 

non-telencephalic neurons from the thalamus, midbrain, and pons exhibited the highest 

mCH (Fig. 1H and fig. S4A). Cell-type global methylation corresponded with the gene 

expression of DNAm readers and modifiers (Fig. 1I and fig. S4B). The expression of 

MECP2 and DNMT3A, the major mCH reader and writer, were positively correlated with 

global mCH (Pearson Correlation Coefficient, PCC=0.39 and 0.35) and weakly with mCG 

(PCC=0.17 and 0.08; Fig. 1I and fig. S4B). The DNA methyltransferase DNMT1 had a high 

positive correlation (PCC=0.63) between its expression and mCG across cell types (Fig. 

1I), matching its role as the major mCG maintainer in mature neurons (13). Intriguingly, 

we observed an even higher correlation between DNMT1 expression and mCH (PCC=0.72, 

Fig. 1I), though it is thought to have little effect on mCH (14). This implied an unknown 

relationship between DNMT1 and mCH or some yet-to-be-discovered factor influencing 

both DNMT1 expression and mCH.

Using the improved scHiCluster(15) for m3C cells, we were able to separate all major types 

except MSN-D1 and D2 solely through chromatin contacts (Fig. 1G). This also highlighted 

the diversity of chromatin conformation across brain regions (fig. S2F). To ensure the 

consistency of annotations between the two datasets, we co-clustered mC and m3C cells 

iteratively and then transferred cell type annotations from mC to m3C cells (table S5; 

Methods).

Differences in contact distance between neurons and non-neurons

To investigate cell-type-specific genome folding at different scales, we first examined 

the proportion of contacts per cell at genome distances. Neurons displayed enrichment 

of interactions at a shorter distance (200kb-2Mb), whereas mature oligodendrocytes and 
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non-neural cells were enriched for longer-range contacts (20Mb-50Mb). Astrocyte and 

oligodendrocyte progenitor cells exhibited enrichment in both ranges (Fig. 2, A to C, and 

fig. S5, A and B). Within neuronal cells, cortical excitatory and subcortical neurons had 

more shorter-range interactions than cortical inhibitory cells (p-value<1e-300, Wilcoxon 

rank-sum test; Fig. 2, A and B). We observed similar patterns in previous datasets from the 

mouse (1) and from a different technique (Dip-C (16); fig. S5C), signifying the conservation 

of these patterns. The enrichment of shorter-range contacts in neurons was observed across 

the whole genome, including both neuronal and non-neuronal gene loci (fig. S5D). The 

ratio between shorter and longer interactions highly correlated with global gene expression 

activity of cells (PCC=0.87, fig. S5E), and aligned with the sizes of nuclei (L5-ET > other 

cortical excitatory neurons > cortical inhibitory neurons > non-neurons (17)). These results 

demonstrated that the contact distance spectrum, traditionally associated with cell-cycle 

phases (18), can also vary based on cell type in non-dividing cells.

We next investigated the relationship between enriched longer-range or shorter-range 

chromatin interactions and chromatin compartments or domains. We identified chromosome 

compartments within each major type at 100 kb resolution (Fig. 2D) and domains at 

25 kb resolution. Enriched longer-range interactions in non-neurons were predominantly 

intra-compartment, especially between B compartment regions. Shorter-range interactions 

in neurons were also enriched within the same compartments (fig. S5, F and G). In 

total, we observed an enrichment of intra-compartment interactions and a depletion of 

inter-compartment interactions in non-neurons (fig. S5, H to K; Methods), indicating a 

stronger compartment strength. In contrast, the enrichment of short-range interactions in 

neurons was found to be both intra- and inter-domain (fig. S5, L and M).

Compartments, domains, and loops in brain cell types

We postulated that the methylation status of two genome loci would co-vary if they were 

physically proximate. The co-methylation coefficient matrices, depicting the correlation of 

methylation between genomic bins across single cells, displayed plaid patterns echoing 

the compartment structures of chromatin contacts (Fig. 2E and fig. S6A). This suggested 

the genome was segregated into local co-methylation domains, which constituted two sets 

with opposite methylation diversities. A similar coregulation structure was also observed 

for chromatin accessibility in single-cell ATAC-seq data (19), reinforcing evidence for 

genome compartmentalization. Exploring the linking between DNA methylation and 3D 

genome architecture, we observed that correlations between the strengths of chromatin 

interactions and the average methylation fractions of their anchors were also associated 

with chromosome compartments (fig. S6B), where negative correlations occurred more 

frequently in the active compartment (p-value<1e-300; fig. S6C).

We then determined domains at 25 kb resolution in single cells and found that neurons had 

more domains (median 4,813) than non-neurons (median 4,308, p-value<1e-300) but with 

smaller average size, resulting in a similar domain-covered genome proportion (fig. S6, D 

and E). The number and size of domains were highly correlated with global gene expression 

activity (fig. S6F). The boundary probability of a genomic bin was defined as the frequency 
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it was identified as a domain boundary across cells, which mirrored the insulation scores 

from the cell-type pseudo-bulk contact maps (Fig. 2, F and G).

Chromatin loops were delineated at 10 kb resolution in each of the 29 major types (and 

119 cell subtypes) with >=100 m3C cells. We detected a median of 524,935 (541,551) 

loop pixels with 45,140 (59,905) loop summits among major types (subtypes) (fig. S6G). 

Of these, 24.3% were interactions between distal DMRs (see later section for systematic 

description of DMRs) and gene promoters (TSS±2kbp), 38.1% between distal DMRs, and 

5.8% between promoters (fig. S6H).

Cell type specificity of 3D genome features

Using either compartment scores, domain boundary probabilities, or loop strengths, we were 

able to distinguish between cell types and determine the hierarchy of their similarities 

(Methods; Fig. 2H and fig. S7, A to C), indicating cell type specificities of these 

3D structures. Particularly, chromosome compartments could distinguish non-neurons, 

excitatory, inhibitory, and MSN neurons, but had difficulty for finer major types within the 

excitatory or inhibitory cell classes (fig. S7, B and C). In contrast, both chromatin domains 

and loops distinguished better for finer excitatory and inhibitory major types, and loops 

performed the best (Fig. 2H and fig. S7, B and C). This underscores the varying roles of 

different scales of 3D features in gene regulation across cell type granularities, highlighting 

that loops could be more specific than domains. Note that the primary goal of these analyses 

was to contrast compartments, domains, and loops in cell type specificity, but not for cell 

type clustering. The state-of-the-art of cell clustering on chromatin contacts is still based on 

the genomic bin-pairs, as adopted by us (15) or other groups (20, 21) (fig. S7, B and C; more 

discussion in Methods).

Systematic examination on specific 3D structures across all (or neuronal) major types 

determined 1,188 (1,024) differential compartments (DCs), 2,050 (1,720) differential 

domain boundaries (DBs), and 173,806 (148,395) differential loops (DLs) (fig. S8A and 

table S6). Chromatin domains were considered conserved across cell types in general (22–

25), whereas they could display certain dynamics across cell types and development (3, 

26–28). Our data further showed that chromatin domains could vary even between closely-

related cell types (Fig. 2, F and G). DMR-DMR loops showed higher cell-type specificity 

than promoter-DMR or promoter-promoter loops (fig. S8B). Evaluating transcription factors 

(TFs) in differential chromatin looping, we found the motifs of cell type-specific TFs (like 

NFIX and NHLH1) were more enriched at anchors of DLs, whereas CTCF, a TF pivotal 

for chromosome structure, was highly enriched at housekeeping loops (fig. S8C). This 

implied CTCF’s role is more in structural loops than in cell type-specific promoter-enhancer 

interactions. Many neuronal TFs (like NEUROG1 and NEUROG2) were enriched at the 

pan-neuronal loops but not pan-brain-cell loops (fig. S8C), concordant with their neuron-

specific roles.
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Relationship between genome organization and other molecular modalities

We examined the link between different 3D structural features and other epigenomic 

modalities (mCG, mCH, and open chromatin). Across neuronal cell types, both mCG and 

mCH were anti-correlated with compartment scores, domain boundary probabilities, and 

loop strength (Fig. 2I, figs. S9, B and D, and S10, C and D). In contrast, open chromatin 

signals exhibited positive correlations with these structural features with similar or slightly 

weaker (absolute) correlations (Fig. 2I, figs. S9, B and D, and S10, C and D). These 

(anti-)correlations suggest orchestration among active compartments, strong domains and 

loop interactions, as well as open chromatin and methylation depletion corresponding to 

active chromatin states. Between the differential structural features (DCs, DBs, and DLs) 

across cell types, DLs had stronger (anti-)correlations with mCG, mCH, and open chromatin 

compared to DCs and DBs (fig. S10C), particularly at the loops with high variability across 

cell types (fig. S10D). Correlations across all cell types were generally weaker than in 

neurons alone (Fig. 2I, and figs. S9 and 10). The anticorrelation observed between DNAm 

and 3D genome structures could have resulted from the effect of DNAm on the binding of 

factors driving genome folding (like CTCF)(29), the recruitment or exclusion of methylation 

writers or erasers (such as DNMTs and TETs) through high-order structural formation, or 

shared regulators of both methylation and genome organization (for example, Neurog2 in 

mouse cortex (30)). Further developmental or mechanistic studies are needed to resolve the 

causality relationship (29, 31).

Gene expression was correlated with the 3D genome structures as well, particularly for the 

cell-type-specific genes (Fig. 2J). We identified 1,099 (1,358) top differentially expressed 

genes (DEGs) pairwisely across neuronal (all) major types. They exhibited strong positive 

correlations with all three structural features that overlapped with their gene bodies or 

promoters (Fig. 2J and figs. S11 to 13). For loops, the interaction strengths were more 

correlated with anchor-overlapped DEGs (on gene bodies or promoters) compared to the 

anchor-encompassed DEGs (p-value<1e-300; Fig. 2J). We also noticed that increasing 

variability of gene expression and/or structural signals of bins was linked to higher positive 

correlations between them, which corroborates the overlap between differential structural 

signatures and differential gene expression (figs. S11, E and F, and S12, E and F).

We further examined the relative location between 1,099 neuronal DEGs and their 

correlated chromatin structures (FDR<0.01, Methods) at surrounding regions (TSS-5Mb 

to TES+5Mb). The correlated compartments were mostly within the gene body (Fig. 2K), 

and the correlated domain boundaries were highly enriched at TSS and TES (Fig. 2L), 

suggesting the dynamics of gene body compartments and domains associated with gene 

expression diversity. The loops with positive correlations were enriched within gene bodies, 

as well as between the TSS/TES and the gene body ± 1 Mb regions (Fig. 2M). Specifically, 

48% of the loops within the gene body were correlated with gene expression, among which 

98% are positively correlated. In comparison, a much smaller proportion of loops outside 

the gene body were correlated with expression. A higher proportion of positively correlated 

loops were observed within the upstream and downstream regions of the DEGs, and between 

the upstream or downstream and the gene body regions, indicating the regulatory domain of 

a gene structure.
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Among the 1,099 DEGs, 453 (41.2%) had gene bodies overlapped by one or more 

genomic bins with positively correlated compartment scores, and 591 (53.8%) overlapped 

by one or more correlated domain boundaries. 1,037 (94.4%) DEGs had TSS- or TES-

anchored correlated loops, and 898 (81.8%) had correlated loops within gene bodies. 

These dynamics of chromatin architecture at different scales in total covered 96.8% of 

the DEGs (Fig. 2N), again suggesting a strong association between genome structures 

and gene expression diversity. Collectively, these analyses revealed the cell-type specificity 

of chromatin architecture and its relationship with other epigenomic and transcriptomic 

signatures at an unprecedented cell-type resolution in the human brain.

Cell-type specific DNA methylation patterns and associated gene 

regulatory landscapes

To delineate the cell type-specific methylation profiles, we identified 24,455 CH- and 

13,096 CG-differentially methylated genes (DMGs; fig. S14A; Methods) and 2,059,466 

CG-DMRs (Fig. 3A; Methods) across 188 brain cell subtypes. In addition to depicting 

distinct epigenetic signatures for brain cell identities, these methylation patterns provide 

critical insight into understanding gene regulatory programs in brain cells, with gene body 

methylation negatively correlating with gene expression (5, 7, 32), DMRs marking putative 

cis-regulatory elements (CREs) (4, 5)), and transcription factor (TF) motifs implicating 

candidate cell-type-specific regulators (32).

We assigned TFs to specific cell types if they were hypomethylated DMGs (fig. S14B; 

Methods) and their motifs were enriched at the hypomethylated DMRs (hypo-DMRs) in 

the same cell types (Methods). In total, 612 TFs were assigned to major neuronal types 

and subtypes, where they potentially play important roles in shaping and maintaining cell 

identities. For example, TBR1 was assigned to deep-layer excitatory neurons, particularly 

L6-CT and L6b (Fig. 3B), and it was noted to play a fate-determining role in the 

development of corticofugal projection neurons (33). ZNF423 and EBF2 were both assigned 

to the cerebellar cell types (Fig. 3B). Both of them are crucial for cerebellum development, 

whereas EBF2 particularly directs the migration of Purkinje cells (34–36).

Analyzing subtypes further highlighted variations in TF utilization. For instance, the 

TF PBX3, assigned to the MSN-D1 major type prevalent in the striatum, was only 

hypomethylated in the subtypes from the striosome compartment but not the matrix 

compartment of the striatum (Fig. 3B and fig. S14C). This indicates a preference 

for PBX3 expression in the striosome, corroborating previous observations (37, 38). 

Further examination of potential binding sites of PBX3 (hypo-DMRs with PBX3 motifs) 

showed lower average methylation fractions in striosome subtypes (Fig. 3B), suggesting a 

compartment-specific regulatory role of this TF in the striatum.

We integrated DMGs, DMRs, and differential loops to pinpoint putative CREs for each 

cell type (Fig. 3C). A gene was associated with a DMR if its TSS was within 5 Mb 

of the DMR. Further refinement retains only DMR-DMG pairs overlapping with both 

anchors of a loop or DL. Pearson correlations between mCG fractions of DMRs and mCH 

fractions of gene bodies across cell subtypes were calculated to assess the association (fig. 
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S14D). Enhanced associations were observed particularly for DL-filtered DMRs (Fig. 3D 

and fig. S14D), which showed an increased overlap with open chromatin regions as well 

(Fig. 3E). We identified 3.2M potential regulatory DMR/gene pairs between 1,122,919 

DMRs and 12,327 genes (table S7). The methylation fractions of these DMRs, DMGs, 

and the strengths of their interactions (loops) were (anti-)correlated (Fig. 3F), which could 

collectively orchestrate specific gene regulatory programs. For instance, the gene SYT1, 

encoding Synaptotagmin-1—a critical synaptic vesicle protein—exhibited lower methylation 

fractions of both the distal DMRs and the SYT1 gene body in L2/3-IT neurons and stronger 

interactions between the DMRs and the promoter compared to MSN-D1 neurons (Fig. 3G), 

leading to a higher expression of SYT1 in L2/3-IT than MSN-D1 (Fig. 3G and fig. S14E). 

Overall, the integration of CG- and CH-methylation with chromatin conformation reveals 

distinct cell-type regulatory dynamics.

Numerous non-coding loci linked to brain diseases have been pinpointed by GWAS, with 

many in enhancer regions (39). DMRs and loops help localize these genetic variants 

to specific cell-type regulatory elements. Using linkage disequilibrium score regression 

(LDSC) (40), we detected associations between 20 brain diseases or traits and DMRs 

or loop-overlapping DMRs in human brain cells (Fig. 3H and fig. S15A; Methods). 

Schizophrenia, bipolar disorder, and neuroticism risk variants were prominently enriched 

in hypo-DMRs of excitatory neurons in the cortices and hippocampus, whereas Alzheimer’s 

disease (AD) aligned with microglia (MGC; Fig. 3H; (41)). Tobacco usage disorder variants 

associated with the Foxp2 cell type from the basal ganglia (Fig. 3H), an area linked 

to tobacco addiction (42). Further exploration into disease risk variants revealed diverse 

impacts on gene regulations. Although many cell types are related to the same diseases, the 

risk variants to which they are implicated could be diverse. For example, the schizophrenia 

risk variants rs2789588 was implicated in both L2/3-IT and L6-CT neurons with similar 

epigenetic features, whereas rs17194490 was only implicated in L2/3-IT with specific DNA 

hypomethylation, stronger long-range interaction with the corresponding gene, and higher 

gene expression compared to L6-CT (fig S15B).

Regional heterogeneity in cortices and basal ganglia

Beyond cell type diversity, heterogeneity within shared cell types across regions has been 

noted in the neocortex in both gene expression (43–45) and DNA methylation (1). Our 

extensive epigenomic dataset further explores gene regulation heterogeneity across broader 

cortical regions and subcortical regions. To discern regional diversity from other cell-type 

heterogeneities, we devised a workflow to unveil the regional landscape within single-nuclei 

DNA methylation profiles (Fig. 4A). Integrating these profiles with brain region data, 

we mapped the cells to a “regional methylation space” (Fig. 4A; Methods), where cells 

closer together have methylation neighbors from similar brain regions. In this “regional 

methylation space” (Fig. 4A; Methods), trajectories depict regional transitions alongside 

associated methylome shifts, thereby enhancing our grasp of regional DNA methylation 

effects.

Cortical excitatory neurons exhibited remarkable regional diversity in methylation, 

particularly the intratelencephalic-projecting neurons (LX-IT; Fig. 4B). The regional 
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diversity of cortical inhibitory neurons (46) was less studied due to their inconspicuous 

regional patterns in transcriptome and epigenome (1, 47, 48). Our analysis reveals, though 

less pronounced, regional distinctions among cortical inhibitory neurons (Fig. 4B). Regional 

axes of each cortical neuronal cell type were constructed through single-cell trajectory 

analysis (49). We observed a shared ordering of brain regions on the axes among cortical 

neurons, from the posterior regions of the brain (like the primary visual cortex V1C) to 

the anterior lateral regions (like the prefrontal cortex A46 & the middle temporal gyrus 

MTG) and then to the anterior medial regions (like the anterior cingulate cortex ACC & 

the lateral entorhinal cortex LEC; Fig. 4, C and D). Only L6-CT showed an exceptional 

pattern (Fig. 4, B and C) from this Posterior–Lateroanterior–Medioanterior (P–LA–MA) 

trend. Nevertheless, the shared trend allowed for further analysis of a consensus regional 

axis for cortical neurons (Fig. 4C; Methods).

Epigenetic alterations along this axis suggest regional specification of cerebral cortices. 

For instance, the transcription factor NR2F1 (also known as COUP-TFI) has gradient 

expression during brain development, which is vital for establishing the caudal-rostral 

regional specialization in the neocortex (43) and the boundary between the neocortex and 

the entorhinal cortex (50). Our data showed low gene body methylation in V1C (P) and 

LEC (MA) and high in A46 (LA; Fig. 4G and fig. S16B), accompanied by a reversed 

trend of gene expression (fig. S16A). Two chromatin domains associated with NR2F1 

showed interaction strengths changing in the opposite direction (Fig. 4F). In V1C, the 

upstream domain interacted more with NR2F1’s promoter and had hypo-methylated DMRs 

compared to LEC. In contrast, the downstream domain displayed a stronger interaction 

with NR2F1’s promoter and featured DMRs hypo-methylated in LEC (Fig. 4, F and G). 

Two neighbor genes NR2F1-AS1 and FAM172A, encompassed in these two domains 

respectively, showed concordant expression trends with the domain strengths (fig. S16A). 

Such coherent variations in epigenetics and transcription imply regulatory domain switching 

and alternative CRE usage to activate the same gene in different cortical regions, which 

needs further investigation.

Systematic examination of regionally differential epigenetic features in cortical neurons 

determined in total 14,606 (average 2.9k for each major type) regional DMGs (rDMGs), 

885.4k (63.2k) regional DMRs (rDMRs), 773k (71.2k) regional differential loops (rDLs) 

and 1,495 (136) regional differential domain boundaries (rDB; fig. S16B; Methods). Many 

rDMGs and rDMRs showed monotonic methylation gradients along the P–LA–MA axis 

(Fig. 4E, and fig. S16, C and D), whereas more complex patterns (such as NR2F1) also 

existed.

Basal ganglia neurons exhibited remarkable regional diversity as well. An L-D-V axis 

(lateral to dorsal to ventral) became evident in the basal ganglia (Fig. 4H) with 

accompanying epigenetic shifts. For instance, moving from NAC through CaB to Pu, the 

LSAMP gene increased in mCH (Fig. 4, I and J) and decreased in strengths of chromatin 

domains and loops around (Fig. 4K). We determined 6,371 rDMGs and 398.8k rDMRs 

in the four major types of basal ganglia (MSN-D1, MSN-D2, FOXP2 and CHD7; fig. 

S16B), and identified 98,276 (50,271) rDLs and 193 (99) rDBs (fig. S16B) in MSN-D1 

and MSN-D2 cells. The majority of rDMGs and rDMRs showed strong (anti-)correlations 
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with the L–D–V axis (fig. S16, C to F), highlighting regional variation as a key to basal 

ganglia within-cell-type heterogeneity. Distinctions in both functions and neural connections 

between the dorsal (CaB and Pu) and the ventral parts of basal ganglia, particularly its major 

component striatum, have been noted previously (51, 52). Our data and analysis provided the 

epigenetic basis of the dorsal-ventral differences and refined the regional differences within 

the dorsal basal ganglia (Fig. 4H).

A considerable amount (427 out of 746) of TF motifs were enriched in rDMRs (fig S16G; 

Methods). Approximately 47% of these TFs are expressed in the corresponding cell types 

(fig. S16H), with expression (anti-)correlated with the regional axes (for example, fig. S16I). 

These findings hint at potential region-specific regulatory mechanisms in the brain, possibly 

underlying functional diversities.

Conservation of brain cell types and DMRs between humans and mice.

Brain cell type conservation between primates and rodents was noted in several neocortical 

regions (17, 53). To assess whether the conservation holds in broader brain regions, we 

compared the single-nucleus DNA methylation profiles from human and mouse (1), using 

corresponding regions including the cerebral cortex, basal forebrain, basal nuclei, and 

hippocampus (Methods). The integration analysis showed three major types defined in 

human brains were discrepant with mouse brain cells (Fig 5A). Mouse L4-IT neurons 

aligned only to subpopulations of their human counterparts (Fig. 5B), confirming a larger 

heterogeneity in human L4-IT neurons (17). The human hippocampal HIP-Misc1 neurons 

were integrated with some mouse cortical IT neurons, and HIP-Misc2 neurons did not 

match any mouse cell type. The parallel snRNA dataset (11) validated these two human 

hippocampal cell types (Fig. 5C and fig. S17B). Although the unmatched cell types will 

need further investigation, the major type taxonomies were generally conserved across 

broader brain regions between humans and mice (Fig. 5A and fig. S17A), whereas both 

global CG- and CH-methylation were consistently higher in humans than in mice for 

corresponding cell types (Fig. 5D and fig. S17C).

To compare the gene regulation between human and mouse brains, we used liftOver to 

match major-type hypo-DMRs identified within single species (Fig. 5E). 40~60% hypo-

DMRs across cell types had ortholog sequences in the other species (and we referred 

to these DMRs as OrthSeqs). Around half of OrthSeqs had their orthologs also hypo-

DMRs in the other species (OrthDMRs). Most (95%) of OrthDMRs were reciprocally 

matchable (CnsvDMRs; Fig. 5F and fig. S17D). Methylation fractions of CnsvDMRs 

showed remarkable correlations across cell types between human and mouse (Fig. 5, G 

and H), suggesting functional conservation between species.

We further selected the most highly correlated DMRs (hcCnsvDMRs, Fig. 5G). Functional 

enrichment analysis of hcCnsvDMRs showed that they were enriched in biological processes 

related to forebrain development and in cellular components related to dendrites and 

synapses (fig. S17, F and G; Methods). Comparison to histone modifications in mouse 

forebrains (4) demonstrated these DMRs were depleted from heterochromatic regions 

(H3K9me3) as well as enriched in regions of enhancers (H3K27ac & H3K4me1), promoters 

Tian et al. Page 11

Science. Author manuscript; available in PMC 2023 October 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(H3K4me3), and poised enhancers (H3K27me3; fig. S17E; Methods). Categorizing the 

hcCnsvDMRs further into open or closed status based on their chromatin accessibility (2) 

showed that open DMRs were enriched in enhancers and promoters. In contrast, closed 

DMRs were particularly enriched in the poised enhancers (Fig. 5I), which had probably been 

active during development.

Methylation conservation between species hints at a strategy for enhancer discovery through 

comparative epigenetics. For example, INPP5J, a specific gene of Pvalb neurons, had many 

distal and proximal hcCnsvDMRs overlapping with matched chromatin-accessible regions 

(Fig. 5J), including two validated as specific enhancers for viral targeting of mouse Pvalb 

neurons (Fig. 5J) (54).

Single-cell methylation barcodes (scMCodes) reliably predict human brain 

cell Identity.

DNA methylation variation in the genomes of cells contains molecular “engrams” 

representing past and present gene regulatory events (55). We observed distinct DNA 

methylation patterns on many CpG sites highly specific to brain cell types (for example, 

fig. S18B). This led us to devise single-cell methylation barcodes (scMCodes) to determine 

brain cell types at single cell level using the methylation status of selected CpG sites (Fig. 

6A and fig. S18A; Methods).

We first selected CpG sites distinguishing brain cell types iteratively (Methods). These 

sites were further clustered into 39k groups according to their across-cell-type methylation 

patterns. We then assessed their cell-type predicting power through machine learning models 

with cross-validation (fig. S18A; Methods). 800 groups with a total of 12k CpG sites were 

selected as the scMCodes (Fig. 6B and C, and tables S8 and S9) to achieve good predicting 

power (Fig. 6D) while minimizing feature number (fig. S18C). These scMCodes achieved 

~93% accuracy (Fig. 6D; Methods).

Cross-donor tests were conducted among the three donors of this study and an 

external individual (5). The results showed high prediction accuracies (92~96%; Fig. 

6E), demonstrating the cross-individual robustness of the scMCode approach. Single-cell 

sequencing has limited genomic coverage. On average, only ~200 CpG sites of scMCodes 

were detected in each cell (Fig. 6F), which underscores the effectiveness of scMCode in 

determining human brain cell types using a few hundred select methylation sites.

Discussion

A profound understanding of cellular diversity and distinctive gene regulatory mechanisms 

in the human brain is pivotal for elucidating brain functions and formulating therapeutics 

for brain disorders. We have compiled a comprehensive single-cell DNA methylation and 

3D genome structure atlas of human brains with 524,010 deeply sequenced nuclei from 46 

distinct brain regions, permitting us to identify 188 epigenetically distinct cell types. The 

extensive profiling of brain regions in this study has allowed us to identify cell types specific 

to subcortical regions and compare epigenetic diversity within the same cell type across 
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different brain regions, which considerably expands previous work (3, 5, 56). Additionally, 

we have made considerable strides in understanding the 3D genome diversity across brain 

cell types and regions, facilitated by a 30-fold increase in cell profiling via snm3C-seq. 

Moreover, the specificity of domains and loops across 29 cell types was determined, pushing 

the cell type resolution extensively beyond previous studies (28, 57–59).

Single-nucleotide resolution DNAm has proven valuable in predicting epigenetic age 

(60), tracing cell lineage (61, 62), and diagnosing life-threatening diseases (63, 64). The 

intricate regulatory information encoded in DNAm has enabled us to distill a set of 

single-cell methylation barcodes (scMCodes) for reliable cell-type identification. Given that 

circulating-free DNA (cfDNA) methylation has been recognized as a robust tool for cancer 

diagnosis (58) and provided promising biomarkers for brain disorders (59), our scMCode 

method presents itself as a potentially transformative tool for the non-invasive diagnosis of 

brain disorders. It could aid in pinpointing pathological brain cell types and inform treatment 

selection, marking a stride forward in precision medicine.

However, several avenues warrant further exploration. 1) Beyond the 46 brain regions 

sampled in this study, the human brain has other intricate structures with complex cell 

diversity, particularly in subcortical regions. A more comprehensive brain region sampling, 

beyond what was available for this study, would provide deeper insights into the underlying 

gene regulation complexities. 2) Availability of high-quality tissues restricted us to only 

three male donors. Although this satisfied the purpose of this study for surveying human 

brain cell types and revealing their epigenomic patterns, expanding the donor base would 

further elucidate individual variations of brain cells, alongside the genetic impact on gene 

regulatory diversity. 3) Our findings largely stem from molecular modality correlations. 

Verifying these associations is imperative for delineating the functionality of regulatory 

elements, mapping regulatory networks, and harnessing putative enhancers for cell subtype 

studies.

Overall, this multimodal human brain cell atlas enriches our understanding of brain cells 

with a foundational epigenomic perspective. It offers not only an invaluable resource 

for exploring cell type diversity, gene regulation complexity, regional variation, and 

evolutionary conservation within brain cells but also provides the essential elements, such 

as putative regulatory elements, for the development of innovative genetic tools for cell 

type-specific targeting.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Epigenomic profiling of human brain cells with snmC-seq3 and snm3C-seq.
(A) Human brain structures and regions covered. (B) Schematics of profiling modalities 

of snmC-seq3 and snm3C-seq. (C) Iterative clustering and annotation of human brain 

nuclei. Cells from the whole mC dataset, from the inhibitory/non-telencephalic neuron cell 

class, and from the SubCtx-Cplx major type are visualized successively using t-distributed 

stochastic neighbor embedding (t-SNE), colored by the cell groups annotated in the 

corresponding iterations. (D) The robust dendrogram of the major types and the meta info 

of subtype numbers, brain structure, and donor origins. The color palettes are shared across 
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this study. (E) CH-methylation of excitatory and inhibitory markers (SLC17A1 and GAD1) 

of the major type SubCtx-Cplx. (F) Human brain cells are colored by the dissection regions. 

(G) 2D visualization of brain nuclei profiled by snm3C-seq. (H) Variation of global CG- and 

CH-methylation across brain cell types. (I) Correlations between global DNA methylation 

and gene expressions of MECP2 and DNMT1 across major types.
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Figure 2. Diversity of 3D genome structures across major types.
(A) Frequency of contacts against genomic distance in each single cell, Z-score normalized 

within each cell (column). The cells are grouped by major type and then ordered by the 

median log2 short/long ratio over cells. The y-axis is binned at log2 scale. (B) log2 short/

long ratio of major types, ordered the same as in (A).(C) Imputed contact maps of four 

major types. (D) Heatmaps show the correlation matrices of distance normalized contact 

maps in (C), and line plots show the first principal component of the correlation matrices. 

(E) Zoom in view of two matrices in (D) and the corresponding correlation matrices of 
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mCG across cells. (F and G) Imputed contact matrices (heatmap), boundary probabilities 

(blue lines), insulation scores (orange lines), differential boundaries (red dots in line plots), 

and differential loops (cyan dots in heatmaps) of excitatory IT neurons at FOXP2 locus (a 

marker of cell type L4-IT; F) or CGE-derived inhibitory neurons at LAMP5 locus (a marker 

of Lamp5 and Lamp5-Lhx6; G). Grey shade represents the gene body (TSS to TES). (H) 

t-SNE plot of cells (n=5,707) using domains (top) or loops (bottom) as features, colored by 

major types. (I) PCC between compartment score, boundary probability, or loop interaction 

strength and ATAC signals, mCG and mCH fractions of the bin(s) across all major types for 

all genes (left) or top DEGs only (right). (J) PCC between compartment scores, boundary 

probabilities, or loop interaction strength and gene expression across all major types for 

different categories of overlap (x-axis) using all genes (left) or top DEGs (right). (K 

and L) Proportion of significantly positively or negatively correlated compartment (K) or 

domain boundary (L) out of all the bins located at different positions relative to a gene, 

average across the top neuronal DEGs. (M) Proportion of significantly correlated loop 

pixels out of all the loop pixels (left), ratio between positively and negatively correlated 

loop pixels (middle), or average PCC of significantly correlated loop pixels (right) located 

at different positions relative to a gene, average across the top neuronal DEGs. (N) The 

number of genes, out of the top neuronal DEGs, having significantly positively correlated 

compartments, domain boundaries overlap the gene body, or loop pixels within the gene 

body or with at least one anchor overlaps the TSS or TES of the gene. 35 genes were not 

included in any of the three circles.
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Figure 3. Gene regulation in brain cells.
(A) mCG of cell type-specific DMRs across 188 cell subtypes. (B) CH-hypomethylated 

transcription factors and the enrichment of their motifs in CG hypo-DMRs. The lower 

panel showed average methylation fractions of transcription factor PBX3 in its potential 

binding sites across the whole genome. (C) Workflow of determining putative CREs. (D) 

Distribution of correlation between methylation of putative CREs and the corresponding 

genes from different filtering. (E) Numbers of putative CREs and overlapping proportions 

with open chromatin regions for different filtering. (F) Heatmaps showing mCG of putative 
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CREs, mCH and expression of the target genes, and contact strength of the corresponding 

loops. (G) The gene body mCH, DMR mCG, and 3D chromatin organization around the 

gene SYT1 in the major types L2/3-IT and MSN-D1. (H) Heatmap showing the results 

of LDSC analysis of the variants associated with the indicated traits or diseases in DMRs 

identified from major human cell types. The asterisks indicate the magnitude of p-values 

(*=−1, **=−2, ***=−3, and ****=−4).
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Figure 4. Regional axes of cortical and subcortical cells.
(A) Workflow of determining regional axis from single-nucleus DNAm. (B) 2D 

visualization of cortical neurons in regional spaces, colored by dissection locations. (C) 

The common regional axis among cortical neurons. The scatter plot showed how regional 

indices vary in each cortical region. (D) Schematic of example cortical dissection locations. 

(E) Regional gradients in mCG of rDMRs, and mCH and expression of rDMGs in L2/3-IT 

cells. (F) Regional difference in chromatin conformation around NR2F1. The blue and 

purple numbers showed respectively the relative domain strength and promoter strength of 
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each domain. (G) Zoom-in view of example differential-loop-overlapping rDMRs marked 

in F. In the decreasing domain (left), the methylation fractions increase from V1C to A46 

to LEC, while the methylation fractions decrease in the increasing domain (right). (H) 

Inhibitory neurons in basal ganglia showed an L–D–V axis in DNA methylation (I) 2D t-

SNE visualization of MSN-D1. Cells from NAC, CaB and Pu were highlighted. (J) Regional 

differences of gene body mCH-methylation and expression of LSAMP in MSN-D1. (K) 

Regional difference in chromatin conformation around LSAMP in MSN-D1.
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Figure 5. Cross-species comparison between human and mouse brain cell methylomes.
(A) Integration of single-cell methylomes between human and mouse brains, visualized 

using 2D t-SNE. (B) Discrepancy between cell types of human and mouse brains in cell 

types L4-IT, HIP-Misc1, and HIP-Misc2. (C) CH-hypomethylation and gene expression of 

TF TSHZ2 in the cell types HIP-Misc1 and HIP-Misc2. (D) Correlated global mCH and 

mCG of conserved cell types between human and mouse. (E) Schematic of cross-species 

matching of cell type DMRs. (F) Overall, ~50% of DMRs have orthologous sequences 

in the other species, among which ~25% are reciprocal DMRs. (G) Distribution of cross-

species correlation of DMR methylations (red) and the randomly shuffled background 
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(black). (H) Examples of methylation fractions of hcCnsvDMRs. (I) The enrichment of the 

hcCnsvDMRs in the histone modification marks. (H) Browser view of hcCnsvDMRs around 

gene INPP5J in major type Pvalb. The regions colored by red are the cell type-specific distal 

enhancers validated in Ref (54).
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Figure 6. snMCodes for brain cell types.
(A) Workflow of deriving snMCodes. (B) snMCodes derived from all three donors. (C) 

Examples of cell-type specificity of snMCode features. (D) Heatmap showing confusion 

matrix of snMCodes in predicting cell types. (E) Cell-type-prediction accuracy in cross-

donor test. (F) snMCodes predict human cell types with a limited number of CpG sites at 

single-cell resolution.
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