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Solar enhanced oxygen evolution
reaction with transition
metal telluride

Harish Singh1, Taishi Higuchi-Roos2, Fabrice Roncoroni3,
David Prendergast3 and Manashi Nath1*
1Department of Chemistry, Missouri University of Science and Technology, Rolla, MO, United States,
2Department of Chemical and Biochemical Engineering, Missouri University of Science and Technology,
Rolla, MO, United States, 3Joint Center for Energy Storage Research, the Molecular Foundry, Lawrence
Berkeley National Laboratory, Berkeley, CA, United States

The photo-enhanced electrocatalytic method of oxygen evolution reaction
(OER) shows promise for enhancing the effectiveness of clear energy
generation through water splitting by using renewable and sustainable source
of energy. However, despite benefits of photoelectrocatalytic (PEC) water
splitting, its uses are constrained by its low efficiency as a result of charge
carrier recombination, a large overpotential, and sluggish reaction kinetics.
Here, we illustrate that Nickel telluride (NiTe) synthesized by hydrothermal
methods can function as an extremely effective photo-coupled
electrochemical oxygen evolution reaction (POER) catalyst. In this study, NiTe
was synthesized by hydrothermal method at 145°C within just an hour of reaction
time. In dark conditions, the NiTe deposited on carbon cloth substrate shows a
small oxygen evolution reaction overpotential (261 mV) at a current density of
10 mA cm–2, a reduced Tafel slope (65.4 mV dec−1), and negligible activity decay
after 12 h of chronoamperometry. By virtue of its enhanced photo response,
excellent light harvesting ability, and increased interfacial kinetics of charge
separation, the NiTe electrode under simulated solar illumination displays
exceptional photoelectrochemical performance exhibiting overpotential of
165 mV at current density of 10 mA cm-2, which is about 96 mV less than on
dark conditions. In addition, Density Functional Theory investigations have been
carried out on the NiTe surface, the results of which demonstrated a greater
adsorption energy for intermediate -OH on the catalyst site. Since the -OH
adsorption on the catalyst site correlates to catalyst activation, it indicates the
facile electrocatalytic activity of NiTe owing to favorable catalyst activation. DFT
calculations also revealed the facile charge density redistribution following
intermediate -OH adsorption on the NiTe surface. This work demonstrates
that arrays of NiTe elongated nanostructure are a promising option for both
electrochemical and photoelectrocatalytic water oxidation and offers broad
suggestions for developing effective PEC devices.
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1 Introduction

The need for renewable and sustainable sources of energy is
becoming increasingly evident as the world’s population continues
to grow with increasing demand for energy and dwindling supply of
fossil fuels. In recent years, hydrogen has been considered as the
cleanest source of energy due to its high calorific value and lack of
secondary pollution specifically, no green-house gas emission.
However, the source for hydrogen generation can effectively
categorize it as clean (green or yellow) or dirty hydrogen (grey or
brown). Among these, hydrogen generated from electrocatalytic or
solar-intensified water splitting (green and yellow hydrogen,
respectively), have recently attracted significant interest due to
their potential impact in advancing hydrogen economy.
Electrochemical water splitting, typically includes the anodic
oxygen evolution reaction (OER) and the cathodic hydrogen
evolution reaction (HER) (Nath et al., 2022). However, the slow
reaction kinetics along with high energy consumption and
particularly the challenging OER process as the energy intensive
step, have emerged as the major limitations for green/yellow
hydrogen generation. This has led to significant efforts to design
exceptionally efficient electrocatalysts to accelerate the sluggish
kinetics of OER. Traditionally precious metal oxides like RuO2

and IrO2 have been used as conventional state-of-the-art
electrocatalysts for OER, especially in acidic medium. However,
their limited reserves and high cost, have prevented their widespread
use in technologically relevant green hydrogen generating systems
(Kong et al., 2012; Lee et al., 2016; Xu et al., 2016). Recent research
efforts have witnessed the growth of transition metal based OER
electrocatalysts with significantly higher electrocatalytic efficiency in
alkaline medium, leading to potential application in fuel cells and
water splitting devices (Wang et al., 2018; Li P. et al., 2021; Rana
et al., 2021; Sanati et al., 2022; Sun et al., 2022). These transition
metals based electrocatalysts, comprising mainly nickel, cobalt, and
iron are appealing due to their accessibility, affordable price, and
significantly enhanced OER activity in alkaline medium (Zhao et al.,
2022). Among these, metal oxides, phosphides, sulfides, selenides,
and tellurides have garnered substantial attention as possible
electrocatalysts due to their tunable electrochemical activity,
lattice stability and compositional variance (Menezes et al., 2017;
Masud et al., 2018; Bhat and Nagaraja, 2019; Ghosh et al., 2019;
Zhang et al., 2020; Li et al., 2021; Nath et al., 2021; Singh et al., 2022b;
Singh et al., 2023). The transition metal oxides have shown good
performance for OER electrocatalysis. However, their high bandgap
and limited electrical conductivity along with higher overpotential
for OER has limited their superiority compared to precious metal
oxides (Rana et al., 2020; Gao et al., 2021; Zhang et al., 2021; Hu
et al., 2022). The advancements made through doping and the use of
carbon-based supports, significantly enhance the OER activity of
transition metal oxides. The doping of specific heteroatoms, various
structural refinements, and synthesis of many nanocomposites are
the processes that have also been used to accelerate the oxygen
evolution reaction (Umapathi et al., 2017; Guo et al., 2020). In
comparison, transition metal selenides and tellurides have shown
significantly better OER catalytic activity which has been primarily
attributed to their higher charge transport, better electrochemical
tunability of the catalytic site, and enhanced lattice covalency.

Recently, it has been shown that solar light-assisted
electrocatalysis via the photo-electrocatalytic effect can be an easy
and effective method for boosting electrocatalytic performance,
serving as an extra push to reduce activation energy barriers and
speed up the kinetics of electrochemical reactions (Shi et al., 2018;
Gaikwad et al., 2022). Furthermore, integrating sustainable and
renewable solar energy into the electrochemical process can not
only assure the rational and full exploitation of resources, but also
significantly boost the electrocatalyst’s activity. Using a light-driven
carrier method, Min et al. proposed using defect-rich Fe-doped
Co3O4, which showed minimal overpotential and remarkable
endurance (Min et al., 2021). Furthermore, by employing a Ni-
Fe-P-Ni3S2/NF heterogeneous electrocatalyst, Li et al. demonstrated
that solar illumination may significantly boost the OER and HER
properties (Li et al., 2021). Additionally, Zhang et al. demonstrated
that the multifunctional Ni3S2 nanosheets could enhance the surface
localized temperature through the in situ thermal effect in addition
to producing photogenerated carriers, which facilitated OER
performance (Zhang et al., 2020).

Due to its advantageous electrochemical activity in alkaline
electrolyte solutions, nickel (Ni) has become the most widely used
and widely available catalyst over the past few decades. Nickel
exhibits various oxidation states (Ni2+/Ni3+) with the closest
oxygen evolution potential to thermodynamic water splitting
voltage (1.23 V vs RHE). Ni-based electrode materials, such as
oxides, hydroxides, sulfides, selenides, and tellurides, are being
employed extensively as prospective electrocatalysts for water
splitting application, in comparison to noble metals like Pt, Ru,
and Ir (Swesi et al., 2016; Zhang et al., 2020; Xue et al., 2020; Singh
et al., 2022a; Gebreslase et al., 2022; Liu et al., 2022). Another
factor that affect the electrocatalytic activity is the covalency in
the metal-chalcogen bond and previous studies have
demonstrated that increasing the degree of covalency in the
metal-anion bonding improves OER catalytic efficiency. Since
covalency increases as the electronegativity of the chalcogen atom
decreases, it highlights the fact that catalytic efficiency will
improve along the chalcogenide series from oxide to telluride
(De Silva et al., 2018; Umapathi et al., 2020; Nath et al., 2021;
Singh et al., 2021; 2022a; Saxena et al., 2022). In recent years,
many Nickel-based selenide and telluride electrocatalysts have
been described for water splitting, but few for high-efficiency
solar-assisted electrocatalysis which could potentially offer the
additional driving power needed to decrease the activation energy
barriers. In this article, we have reported the growth of NiTe
elongated nanostructure on carbon cloth through low
temperature hydrothermal method which shows significantly
enhanced OER activity under solar illumination. The NiTe
electrode showed an overpotential of 165 mV under AM 1.5
solar illumination which depicted an improvement of 96 mV
compared to OER activity in the absence of light. The NiTe
elongated nanostructure were synthesized hydrothermally at low
temperatures with a reaction time of an hour which makes this a
very low energy expense rapid process that can be easily scaled
up. Moreover, the light activated enhanced OER efficiency makes
this NiTe composite as a promising candidate for
photoelectrocatalytic water splitting with high intrinsic activity
and low cost of operation.

Frontiers in Chemistry frontiersin.org02

Singh et al. 10.3389/fchem.2024.1381144

https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org
https://doi.org/10.3389/fchem.2024.1381144


2 Experimental section

2.1 Materials

All chemicals were used as is without further purification. Nickel
sulfate (NiSO4·6H2O) was purchased from Alfa-Aeser, hydrazine
hydrate (N2H4·H2O, 100%), isopropanol (IPA) and tellurium
dioxide (TeO2) were purchased from Acros Organics. Carbon
cloth (CC) substrate and Nafion were bought from Fuel Cells
store and Ion Power, respectively. Before usage, the carbon cloth
substrate was cleaned several times with acetone, ethanol, and
distilled water.

2.2 Hydrothermal synthesis of nickel
tellurides

First, 0.1 M TeO2 and 0.1 M NiSO4·6H2O were dissolved in
8 mL deionized water and stirred for 30 min. 3 mL of N2H4·H2Owas
then added to the above solution and stirred for another 20 min. The
resulting mixture was transferred to a 23 mL Teflon-lined stainless-
steel container, sealed and placed in an oven maintained at 145°C for
an hour. The autoclave was then allowed to cool down naturally. The
final, black-colored solid product was centrifuged and cleaned
several times with an ethanol/deionized water mixture. The
resultant product was then dried at 60°C in a vacuum oven.

2.3 Electrode preparation

Before conducting our electrochemical and electrocatalytic tests,
we have prepared nickel telluride electrodes on carbon cloth
substrate. After mixing 2.0 mg of catalyst powder with 300.0 µL
of isopropyl alcohol (IPA) and Nafion solution (50 µL of 1% Nafion
solution in 150 µL of 50% IPA in water) for 30 min, a homogenous
catalyst ink was obtained. 100 μL of the catalyst-Nafion dispersion
was drop-casted on carbon cloth electrode inside a confined area
(geometric area of 0.283 cm-2) and a total catalyst loading of
~0.67 mg was obtained. The drop-casted electrode composite was
dried at room temperature before being heated in an oven at 60°C
for 30 min.

3 Characterization

3.1 Materials characterization

The hydrothermally synthesized nickel telluride was
characterized by powder X-ray diffraction (pxrd) using a Philips
X-Pert X-ray diffractometer (PANalytical, Almelo, Netherlands)
with CuKα (1.5418 Å) radiation. Scanning electron microscopy
(SEM) images of the as-synthesized nickel tellurides powder were
obtained using Helios Hydra field-emission microscope. The Raman
spectra of all samples were collected with LabRam ARAMIS
(HORIBA Jobin-Yvon Raman spectrometer equipped with a
CCD detector) The nickel tellurides were analyzed by X-ray
photoelectron spectroscopy XPS with a KRATOS AXIS
165 X-ray photoelectron spectrometer (Kratos Analytical Limited,

Manchester, United Kingdom) equipped with a mono-chromatic Al
X-ray source. The C 1s signal at 284.5 eV was utilized as a reference
to adjust all the XPS binding energies. All XPS spectra were obtained
from the unaltered catalyst surface without sputtering. Bandgap
determination for the synthesized samples was conducted using
Diffused Reflectance Spectroscopy (DRS) on an Agilent Cary
5000 UV–Vis-NIR spectrophotometer. The analysis included a
Praying Mantis attachment, with BaSO4 serving as a white
background reference.

3.2 Electrochemical measurements

All electrochemical measurements were conducted with an
IviumStat potentiostat. The electrochemical experiments were
performed in three-electrode cell system with a graphite rod as
the counter electrode, Saturated Calomel Electrode (SCE) as the
reference electrode and catalyst loaded carbon cloth as working
electrode. All of the potentials measured throughout this
investigation were converted to the reversible hydrogen electrode
(RHE) scale using Eq. 1.

E RHE( ) � E SCE( ) + E° SCE( ) + 0.059 pH (1)
After acquiring linear sweep voltammetry (LSV) curves at a

scan rate of 5 mV s-1, the electrochemical workstation
automatically corrected them via iR compensation.
Electrochemical impedance spectroscopy (EIS) was used to
examine the charge transfer resistance from 0.01 Hz to 100 kHz
at a voltage of 1.50 V vs RHE. One Sun illumination was used to
examine the transient photocurrent response of the as
synthesized samples,.

The Tafel slope, obtained by fitting polarization data to the Tafel
equation, is a vital parameter for assessing the OER activity. The
relationship between the overpotential and the current density j) is
expressed through the Tafel equation, as illustrated in Eq. 2:

η � a + 2.3RT
αnF( )log j( ) (2)

where n is the number of electrons involved in the reaction, α is the
transfer coefficient, and F is the Faraday constant. The Tafel slope is
given by 2.3RT/αnF.

The Electrochemically active surface area (ECSA) was calculated
by employing double-layer capacitance (CDL) as per Eq. 3:

ECSA � CDL/CS (3)

Where CDL is the double layer capacitance and CS is the specific
capacitance. Similar to previously reported metal selenide-based
catalysts, Cs = 0.04 mF cm–2 was employed to analyze ECSA (Lee
et al., 2012; Ahsan et al., 2020; Kale et al., 2020; Oh et al., 2020). The
CDL was calculated by averaging the absolute values of cathodic and
anodic slopes.

3.3 Photoelectrochemical measurements

The photocurrent–photovoltage curves were obtained using
LSV with the scan rate set at 5 mV s–1 and the stirring speed set
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at 200 rpm. A 100-W ozone-free xenon Oriel LCS-100 lamp with an
AM 1.5 filter served as the primary source of simulated solar
illumination.

The Mott-Schottky (MS) analysis was conducted to determine
the positions of the conduction band and valence band edges in
NiTe. The Mott-Schottky plots for NiTe-electrode were obtained at
a frequency of 100 Hz, and the band-edge potentials were estimated
using Eq. 4 (Wu et al., 2012; Singh et al., 2020).

1
C2 �

2
∈ ∈0eN

[ ] E − Efb − kT
E

[ ] (4)

Here, E represents the applied potential, and Efb denotes the flat-
band potential. C stands for the charge capacitance, ε is the dielectric
constant of the semiconductor, ε0 is the permittivity of vacuum, k is
the Boltzmann constant, e signifies the electron charge (with +e
and −e for electrons and holes, respectively), and T denotes the
temperature.

3.4 DFT calculation

The Vienna ab initio Simulation Program (VASP) ver. 5.4.4 was
used to perform DFT calculations using the generalized
gradient approximation (GGA) that is described by the
Perdew–Burke–Ernzerhof (PBE) exchange-correlation functional
(Perdew et al., 1996). For all calculations, the slab containing a
3 × 3 supercell of NiTe was created. A kinetic energy cutoff of 520 eV
was used and integration was carried out over the Brillouin zone
using a 9 × 9 × 1 Monkhorst-Point k-point mesh and the Gaussian
smearing method with a sigma value of 0.05 eV. To prevent any
erroneous contact, a vacuum height of ~10 Å along the vertical
direction was used to position the slab separated from its
periodic images.

4 Results and discussion

Figure 1A shows the typical PXRD pattern of the as-synthesized
powder which confirmed formation of NiTe. A comparison of the
experimental pattern with the standard diffraction file of hexagonal

NiTe, (JCPDS: 38–1393) revealed a perfect match and the diffraction
peaks observed at 31.54°, 43.41°, 46.52°, and 58.61° could be
attributed to the (101), (102), (110), and (103) crystallographic
planes, respectively. In the XRD pattern, no other diffraction
peak is seen, indicating that no other crystalline product has
formed. It must be noted that such high purity NiTe was
obtained through the simple one-pot hydrothermal synthesis
within 1 h of reaction time. Traditional methods for synthesizing
metal chalcogenides typically take days or even weeks to complete,
while this new approach only takes an hour. Such short reaction
time, moderate temperature, along with high phase purity of the
obtained NiTe product makes this an excellent approach for scalable
and economically feasible catalyst development.

Raman spectra was used to further confirm the composition of
these nanostructures. As demonstrated in Figure 1B, Raman peaks
were observed at 124 and 143 cm-1 which can be attributed to the
NiTe. The Raman peaks that are positioned between 100 and
150 cm-1 are correlated with the telluride (Guo et al., 2022). Shi
et al. observed in their study that the Raman spectra of NiTe showed
distinct peaks at 85 cm-1, which represents the Ni-Te bond (Shi et al.,
2020; Deng et al., 2022). Figure 1C depicts the surface morphology of
NiTe nanostructures. The NiTe has elongated nanostructure with
diameters of approximately 80–100 nm, as shown by the low
magnification FESEM image (Figure 1C). Some of the NiTe
elongated nanostructure have a propensity to cluster together.
The nanostructured ensemble exhibited by the NiTe provides
larger surface area, ensuring a greater number of exposed
electrocatalytic active sites. This morphological feature maximizes
the potential for efficient access of electrolytes during
electrochemical reactions, thereby enhancing the overall OER
activity. The elemental composition and their oxidation states
were further investigated through XPS measurements. Ni XPS
spectra showed two spin-orbit doublets as well as two shakeup
satellites as shown in Figure 2A. Peaks at 853.6 and 870.8 eV
correspond to Ni2+ in NiTe. Furthermore, the peaks at
approximately 861.7 and 878.9 eV have been assigned to the
respective shakeup satellites (Wang and Zhang, 2018). The XPS
peaks at 586.6 and 576.7 eV are attributed to Te 3d3/2 and Te 3d5/
2 in NiTe, respectively, as shown in Figure 2B (Wang and Zhang,
2018). The appearance of two additional, minor peaks at 573.4 and
583.8 eV are indicative of zero-valent Te. It should be noted here

FIGURE 1
The (A) PXRD pattern, (B) Raman spectra and (C) SEM image of as-synthesized NiTe powder.
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FIGURE 2
High resolution XPS spectra of (A) Ni 2p and (B)Te 3d.

FIGURE 3
(A) The LSV curves of NiTe deposited on carbon cloth onmeasured in the dark and under light illumination. Inset shows the current response in dark
and chopped illumination. (B) The Tafel plots derived from the LSVmeasurements from dark and under illumination. (C) The EIS curves of NiTemeasured
under light illumination, dark and heating up to 36°C. (D–F) Photocurrents response of as deposited NiTe films at potentials of 1.25, 1.35 and 1.4 V versus
RHE in 1 m KOH solution under illumination.
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that presence of such trace amount of Te does not negatively impact
the photoelectrocatalytic response of the NiTe layer significantly as
shown in the following sections.

Detailed electrochemical measurements were performed in a 3-
electrode set-up as described above to evaluate the electrocatalytic
performance of NiTe for OER under dark and illuminated
conditions. The electrochemical measurements were performed in
an N2-saturated 1.0 M KOH electrolyte. Supplementary Figure S1
illustrates the Electrochemically Active Surface Area (ECSA) of the
synthesized NiTe catalyst. The ECSA was determined for the NiTe
electrode by utilizing double-layer capacitance in the non-faradaic
region, extracted from cyclic voltammetry (CV) plots, as depicted in
the inset of Supplementary Figure S1. Capacitive currents at 0.18 V
vs SCE were used from each CV at different scan rates in 1 M KOH
to calculate the ECSA. The as-prepared electrode exhibited an
estimated ECSA of 36.51 cm2. A larger ECSA correlates with
better charge transfer capabilities and improved exposure of
active sites leading to enhanced OER efficiency. All samples were
analyzed using iR-corrected linear sweep voltammetry LSV curves.
Figure 3A shows that NiTe nanostructures display intrinsic OER
activity in the absence of light irradiation, with overpotentials as low
as 261 mV to produce current densities of 10 mA cm-2. Interestingly
the OER activity of the NiTe nanostructures shows a significant
enhancement under illumination with 1.5 AM simulated solar light
source. After being exposed to solar light, the overpotential of NiTe
nanostructures clearly shifted to 165 mV at 10 mA cm-2 current
density, which is significantly less than that acquired in the absence
of light. Inset of Figure 3A shows the comparison of the LSV curves
of the NiTe catalyst in dark and under chopped illumination. The
reduced overpotentials suggest that the OER activity of the NiTe
nanostructures in a well-designed solar-intensified electrocatalytic
system might be significantly increased by the light illumination.
The incident light on the electrode increases the catalyst activity by
creating a more favorable environment for the OER. It also increases
the amount of charge transfer between the catalyst-electrode surface
and the electrolyte, thus reducing the overpotential of the reaction.

It was observed that continuous illumination while measuring
LSV, led to slight increase of the electrolyte temperature to 36°C. To
confirm the enhanced OER activity as shown in Figure 3 is indeed
due to light illumination and not effect of increased temperature, we
have compared the OER activities of the same NiTe-electrode under
solar illumination with that where the electrolyte was heated to 36°C
without any illumination as shown in Supplementary Figure S2. The
comparison LSV plot clearly shows that even though the system was
heated up to 36°C by external heat supply, the LSV curve of the NiTe
exhibits minimal change in the absence of light illumination,
showing that the OER activity of the NiTe cannot be obviously
increased by this slight increase in temperature of the electrolyte. In
contrast, the OER activity clearly improved in presence of light
illumination of NiTe, as demonstrated in Figure 3A further
confirming the solar-intensified OER activity of NiTe. The
observed enhancement in OER activity under light illumination,
surpassing the impact of uniform system heating, can be attributed
to the distinct mechanisms involved in photothermal conversion.
Photothermal effects induced by light lead to localized temperature
increases specifically at the electrode surface where the
electrocatalytic reactions take place. This localized temperature
enhancement influences the reaction kinetics and facilitates more

efficient activation of catalytic sites, thereby improving the overall
electrocatalytic performance. Unlike uniform heating of the entire
system, which may not effectively concentrate thermal energy at the
reaction sites, photothermal conversion optimizes the distribution of
heat precisely where it is needed for catalysis. This targeted thermal
enhancement, coupled with the inherent properties of the material,
results in a more pronounced improvement in OER activity.
Consequently, these findings underscore the strategic advantage
of harnessing photothermal effects to enhance electrocatalytic
performance, providing valuable insights for optimizing oxygen
evolution reactions in various applications.

The Tafel slope deduced from LSV is an important parameter
used to describe the kinetics of the electrochemical process. It is
defined as the negative of the slope of the logarithmic current as a
function of overpotential, or the rate at which the current density
increases with increasing overpotential. The Tafel slope is an
important parameter for understanding the electrokinetic
behavior of catalysts used for the OER and for predicting the
performance of fuel cell systems. The Tafel slope is also
influenced by the nature of the catalyst, the electrolyte, and other
factors. The Tafel slope for NiTe under one Sun illumination was
estimated to be only 56.2 mV dec−1, which is lower than the Tafel
slope for NiTe in the dark (65.4 mV dec−1). This signifies that the
favorable reaction kinetics of NiTe in electrocatalytic oxidation can
be clearly boosted under solar illumination (Zhang et al., 2020).

To investigate the OER kinetics in the presence and absence of
illumination, electrochemical impedance spectroscopy (EIS) studies
were performed. Figure 3C shows a typical Nyquist plot for NiTe-
modified electrode, which reveals a clear decreasing trend in charge
transfer resistance (Rct) for the as synthesized electrode under light
illumination. The NiTe sample, which demonstrates the smallest Rct

(74Ω) in presence of solar light, reveals that it has the fastest
electrocatalytic reaction kinetics under all conditions.
Additionally, Supplementary Table S1 presents the equivalent
circuit parameters derived from fitting the EIS experimental data
for the NiTe sample under conditions of light, heat, and darkness.
The ameliorated electrical conductivity during the OER process can
be largely attributed to the solar energy absorption, as evidenced by
the lower charge transfer resistance. This improvement is the
combined effect of large number of carrier generation through
illumination and faster transport induced by the localized
increase in temperature produced by the solar-induced thermal
effect. These findings suggest that solar energy can effectively
increase the kinetics and thermodynamics of OER in NiTe-based
electrodes.

Figures 3D–F depicts the j-t curve used to investigate the solar-
induced current density of NiTe at applied potentials of 1.25, 1.35,
and 1.4 V vs RHE. In addition to the photothermal effect on OER
performance discussed above, the photoelectric effect caused by light
irradiation may also play a crucial role in affecting OER
performance. Chronoamperometric j-t measurements were
performed at various applied potentials to record the transient
photocurrent response of the NiTe electrode under chopped
illumination, with an aim to ascertain whether or not such an
effect also ameliorates the OER performance. When the light was
turned on, there was an increase in the current density from 0.06 to
0.64, 5.6, and 7.86 mA cm-2 at an applied potential of 1.25, 1.35, and
1.4 V (vs RHE) respectively, while switching off the light reduced the
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current densities close to their respective base values. This
intermittent on-off experiments also confirmed that the
enhancement of current density is due to increase in the charge
carriers formed in NiTe under illumination. The density of charge
carriers in the electrocatalyst are enhanced through the formation of
excitons by the absorption of photons with sufficient energy. The
presence of additional charge carriers can increase the rate of
reaction on the catalyst surface leading to enhanced OER activity.

Figure 4A shows the Mott–Schottky plots of the prepared NiTe
electrode. A Mott-Schottky plot, correlating 1/C2 with the applied
potential, reveals crucial insights into the flat band potential (VFB)
and the electrode’s nature. As depicted in Figure 4A, the negative
VFB of NiTe suggests efficient photogenerated charge carrier
separation at the interface. Furthermore, the positive slope in the
plot indicates the n-type nature of the prepared electrode (Singh
et al., 2020). The doping density can be estimated from the slope of
the linear fit of the Mott-Schottky plots using the equation shown in
Figure 4. However, for such analysis, a more accurate estimation of
the dielectric constant of the semiconductor layer is needed. Linear
fit of the Mott-Schottky plots, on the other hand, revealed the flat-
band potentials of NiTe under dark and light conditions to
be −0.42 and −0.39 V vs Ag/AgCl, respectively. The shift towards
a more negative flat-band potential under light conditions, as
observed in the Mott-Schottky curves for NiTe, is indicative of a
phenomenon known as the photogenerated charge carrier
separation. In the presence of light, photon absorption leads to
the generation of electron-hole pairs within the material. The
resulting photogenerated charge carriers, particularly electrons,
influence the electrostatic interactions at the semiconductor-
electrolyte interface. When light is incident on NiTe, the
absorption of photons energizes electrons, elevating them to
higher energy states. This promotes efficient charge separation,
causing a surplus of electrons near the surface. As a result, the

flat-band potential becomes more negative compared to the dark
condition. The negative shift reflects the enhanced separation and
accumulation of photogenerated electrons at the semiconductor-
electrolyte interface during illumination. This phenomenon is
crucial for applications like photoelectrochemical cells, where
efficient charge separation is essential for harnessing light energy
(Zhuang et al., 2018; Sajeev et al., 2022).

The conduction band of the n-type semiconductor is positioned
in close proximity to the flat bandgap. Consequently, the conduction
band potential (ECB) for pure NiTe is also determined to be −0.39 V,
aligning with the semiconductor’s intrinsic characteristics. In
Figure 4B, analysis of the UV-vis diffuse reflectance spectra
further reveals a bandgap of 0.83 V for NiTe. Leveraging the
relationship between ECB and bandgap (EBG), the valence band
potential (EVB) is calculated for pure NiTe, resulting in a value of
0.44 V. This methodology provides insights into the electronic
structure and band alignment of NiTe.

In addition, the stability test for the NiTe catalyst was carried out
in alkaline conditions by chronoamperometry at an applied constant
potential of 1.5 V vs RHE. According to Figure 5A, the NiTe catalyst
exhibited remarkable stability over a substantial period of time. As
demonstrated in Figure 5A, even after 12 h of long-term OER, the
NiTe sample exhibited no change in LSV plots while the
chronoamperometry showed no deterioration of the current
density (Figure 5A inset). The composition and morphology of
the electrocatalyst after prolonged activity in the presence and
absence of illumination was investigated using XPS, Raman
spectroscopy, and powder X-ray diffraction. As demonstrated in
Figure 5B, the XPS data of the NiTe exhibited no change in XPS peak
positions of either Ni or Te, indicating the compositional stability of
the catalyst composite. Similarly, the Raman spectra of the NiTe
catalysts (Figure 5C) showed no shift in peaks and no new peaks
after 12 h of OER, indicating that no structural changes occurred in

FIGURE 4
(A)Mott-Schottky plots at 100 Hz of NiTe in dark and light. (B) Plots of (αhv)2 vs photon energy (hν) obtained using UV−Vis diffuse reflectance spectra
of NiTe.
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the NiTe catalytic composite. After 12 h of OER in alkaline media,
the crystallinity and phase purity of the NiTe phases were not
altered, as seen by the PXRD patterns in Figure 5D.
Consequently, based on the results of the PXRD, XPS, and
Raman spectra, it can be concluded that there was no
degradation or bulk transformation of the NiTe catalyst after
sustained OER under applied anodic potential. These analyses
provide confirmation of the excellent stability of the NiTe
catalyst, without any performance degradation.

Density functional theory (DFT) calculations were used to
further analyze activation of the catalyst surface through -OH
adsorption, which has been considered as one of the primary
steps for OER catalytic activity. The (001) surface of NiTe was
used for DFT calculations, where OH was adsorbed on the
catalytically active Ni site. The optimal top layer structures of the
NiTe (001) structure without and with OH adsorption are shown in

Supplementary Figure S3, Figures 6A, B. Figures 6C–E illustrate the
differential charge densities after adsorption of OH on Ni sites of
NiTe. Furthermore, the interaction between OH and NiTe surfaces
leads to an intriguing phenomenon of redistribution of charges. This
redistribution occurs due to the electronic hybridization that
transpires between the orbitals of the adsorbate (OH) and those
of the adsorbent (NiTe). Such charge density redistribution is a
common occurrence accompanying the process of adsorption. It is
an important feature to consider when examining the effects of
chemical interactions at surfaces, as it can have significant
implications for the material’s electronic and chemical properties.
In our current study, we have employed a charge analysis technique
to delve into the changes in charge density. This approach enables us
to gain a deeper understanding of the adsorption mechanism at play.
It allows us to pinpoint where electrons are gained or lost and
provides valuable insights into the interactions between the

FIGURE 5
(A) LSV of NiTe before and after 12 h of chronoamperometry. Inset shows the chronoamperometry test at applied potential of 1.5 V vs RHE. (B)High
resolution XPS spectra of Ni 2p, and Te 3d (inset) before and after chronoamperometry. (C) High resolution XPS spectra and (D) PXRD pattern of NiTe
before and after chronoamperometry.
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adsorbate and adsorbent. This understanding is crucial for
unraveling the underlying mechanisms and behaviors of chemical
reactions and surface interactions. According to the calculated
charge density differences analysis (Figures 6C–E), Te atom was
accustomed to donating electrons to Ni center. This characteristic
could lead to a strong coupling between Ni atoms and
hydroxyl species.

This interaction is important because the catalytic activity in OER
involves catalyst site activation through the adsorption of OH. When
hydroxyl species, which tend to attract electrons (electron-drawing), are
added, there’s a noticeable charge transfer occurring at the Ni-OH
interface. Specifically, electron density moves from the Ni center to the
oxygenO) atomof the hydroxyl group. This charge transfer is significant
because it affects how electrons are distributed in the catalyst,
influencing its catalytic behavior. The depleted electron density on
the catalytic site reduces the overpotential for further charge transfer
thereby enhancing the electro-oxidation reaction. Furthermore, the
adsorption energies of OH on Ni sites were estimated on (001)
facets of NiTe. Adsorption energy is a critical factor in catalysis as it
influences how strongly or weakly the reactants interact with the catalyst
surface. Understanding these energies can help in tuning the catalyst for
optimal performance. Supplementary Figure S4 in Supplementary
Material shows the structural models and energies of OH adsorption.
The OH-binding energy was calculated to be–1.64 eV at the Ni -site.
Supplementary Figure S4 provides insight into the Total Density of
States (TDOS) concerning the Ni 3d orbital before and after the
attachment of the OH group. This data reveals a notable shift in the
occupied spin-up Ni states towards lower negative energy levels upon
the binding of OH-. This shift can be attributed to the weakening of the
Ni-Te interactions as a consequence of OH attachment.

5 Conclusion

Nickel telluride, a non-precious transition metal based
chalcogenide, has been identified as a highly efficient

electrocatalyst for solar-enhanced water splitting leading to very
low overpotential for oxygen evolution reaction. Moreover, the NiTe
could be synthesized through a 1-h hydrothermal reaction at a
remarkably low temperature of just 145°C. The synthesized NiTe
elongated nanostructure exhibited exceptional OER activity, evident
from the low overpotential values of 261 mV in the dark and
165 mV under simulated solar illumination. DFT studies were
performed to investigate the electronic interactions within NiTe,
particularly focusing on how electron transfer and intermediate
hydroxyl adsorption characteristics on the catalyst site can influence
its efficiency as a catalyst in OER processes. Such understanding of
the intrinsic material properties towards enhance electrochemical
activity is fundamental in designing and optimizing materials for
energy conversion applications. Moreover, the demonstrated
durability of the material positions it as a highly prospective
OER electrocatalyst for various applications, offering significant
implications for the advancement of electrochemical technologies.
The NiTe catalyst, with its combination of high activity and
remarkable stability, makes it competitive with the noble metal
catalysts RuO2 and IrO2. This report not only demonstrates a
significant advancement in the field of OER electrocatalysts, but
also opens up new possibilities for the rapid and controlled
fabrication of functional telluride nanostructures.
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