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ABSTRACT OF THE DISSERTATION 

Computational Video Bioinformatics for Understanding the Dynamics of Living Cells 
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Recent advances in microscopy technologies such as high-throughput imaging, 

super-resolution, and 3D microscopy have revolutionized our ability to study cells and 

their underlying biological processes.  However, many research groups are overwhelmed 

by the quantity and complexity of this new data.  Traditional methods are time 

consuming, subject to bias, and difficult to reproduce. Because of this, it is highly 

advantageous to develop convenient software and tools to help cell researchers perform 

and analyze experiments.  Video bioinformatics is an interdisciplinary field that 

automatically processes, analyzes, and visualizes biological spatiotemporal data using 

biology, computer science, and engineering methods. Here we present three video 

bioinformatics projects and software toolkits that automatically analyze, classify, and 

visualize biological processes and structures in multidimensional image sets.  All three 

software packages were developed using novel machine learning, image processing, and 

computer vision algorithms.  Unique microscopy datasets were collected for each 

experiment and were used to test and validate each developed software package.  (1) 

StemCellQC, a bioinformatics toolkit that can automatically extract features from phase 

contrast videos of human embryonic stem cells, produce analyses, and classify cell 
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health. (2) PhaserR4D, a software that can produce live 3D phase contrast videos by 

fusing phase and fluorescent image stacks captured on commercially available 

microscopes. (3) DendritePA, a pattern recognition software that can analyze subpixel 

protein trafficking events in neurons by using spatiotemporal information present in 

multichannel fluorescence videos.   
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Chapter 1 Introduction 

Bioinformatics is an interdisciplinary field of science that combines computer 

science, engineering, mathematical, and statistical methods to address complex biological 

questions.  Bioinformatics integrates the use of computers, software tools, and databases 

to analyze physical specimens and understand their complex systems.  In addition, 

bioinformatics also focuses on the development of new technology that aid in the study of 

biology.  These technologies include new software, algorithms, databases, and 

specialized hardware.  Quantitative tools such as these are indispensable to modern 

biologists due to their ability to efficiently streamline experiments and provide alternative 

analyses [1]–[3]. 

While bioinformatics can be applied to many forms of biological data, image sets 

and videos of biological specimens collected using microscopy is particularly 

informative.  Due to the complexity and size of video data, extracting and managing 

information from videos is extremely difficult to do without the aid of computers.  Video 

bioinformatics is defined as the automated processing, analysis, and visualization of 

biological spatiotemporal data. This field integrates expertise from life sciences, 

computer science, and engineering while aiming to extract biological knowledge and 

develop tools using dynamic image sets and microscopy videos.  Like traditional 

bioinformatics, video bioinformatics is an interdisciplinary field that develops methods 

and software tools for the understanding biological data.  However, video bioinformatics 

focuses specifically on multidimensional data and more than a single image or data point.  

In an individual image, analysis is limited to a snapshot of biological processes that are 
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naturally dynamic and continuous.  By using live video imaging, video bioinformatics 

can provide powerful insight that would not be possible from traditional bioinformatics 

[4], [5]. 

Recent advances in microscopy technologies such as high-throughput imaging, 

super-resolution microscopy, and 3D microscopy have revolutionized our understanding 

of dynamic biological processes.  These modern technologies can be used for time-lapse 

imaging of cellular and molecular systems across multiple spatial dimensions.  However, 

modern biologists are overwhelmed by the amount of data these devices can produce.  To 

manage this data, proper tools for their organization, analysis, and interpretation must be 

developed.  Because of this, it is highly advantageous to create video bioinformatics 

software and toolkits that can aid researchers rapidly, automatically, and accurately 

analyze their data.  Such tools will enable the study of biological processes that were 

previous impossible or too time consuming to analyze.  These technologies also allow for 

multiscale studies both spatially and temporally.  These experiments will also benefit 

from greater objectivity and repeatability.   

Video bioinformatics has particularly useful applications in cell biology.  The 

complexity of biological videos is more challenging than structured medical data and 

requires interdisciplinary research.  As there are many forms of microscopy such as 

bright field, fluorescence, and phase contrast, there are many ways to visualize and study 

cells.  Each modality provides unique information that the others do not.  For the case of 

phase contrast, internal substructures of a cell become visible.  To analyze these 

substructures, a region-of-interest (ROI) must be detected on the image.  Traditionally 
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this required an expert in the field to manually outline the objects by hand.  This can be 

very time consuming and susceptible to human bias.  Video bioinformatics can 

automatically outline substructures using segmentation algorithms which will improve 

efficiency and reduce errors.  In addition, software may be developed to be used on high-

throughput data by individuals who have no experience with bioinformatics or computer 

science.  In fluorescence microscopy, the expression of biological processes may be 

labelled and visualized in an image.  In this case, bioinformatics may be used to extract 

features form the image that were invisible to the naked eye.  In some cases, it may be 

insufficient to use only one microscopy modality to analyze or visualize a biological 

process.  Video bioinformatics can extract information from multiple modalities and fuse 

them for the desired application.   

In chapter 2, we present our work on the use of computer vision and machine 

learning algorithms to study human pluripotent stem cells in culture.  There is a 

foundational need for quality control tools in stem laboratories engaged in basic research, 

regenerative therapies, and toxicological studies.  These tools require automated methods 

for evaluating cell processes and quality during in vitro passaging, expansion, 

maintenance, and differentiation.  By performing image segmentation and feature 

extraction on cell microscopy images, researchers can obtain useful metrics to help them 

analyze biological events and processes.  Previously, biologists were forced to perform 

such studies manually by drawing ROIs by hand.  Such tasks were very time consuming 

and prone to human error or bias.   With video bioinformatics, the process can be reduced 

to a matter of minutes and reproducibility is greatly improved.  Once various features 
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have been extracted, they may be used to automatically classify images or videos using 

machine learning classifiers.  By providing a supervised learning algorithm with 

sufficient ground truth data, a model is created to automatically classify new specimens.   

Chapter 2 introduces Stem Cell Quality Control (StemCellQC), our open source 

software which can automatically segment phase contrast videos of stem cell colonies 

using various segmentation methods.  Each colony in a frame is tracked across 

subsequent frames.  StemCellQC can merge tracks to account for merging cell colonies 

and can create new tracks for daughter colonies that split from a larger colony.  After 

segmentation, an array of morphological and dynamic features is extracted.  Each feature 

or a combination features can be plotted against time to provide researchers additional 

tools to analyze their data.  Lastly, StemCellQC apply the extracted features to supervised 

learning classifiers to automatically label microscopy videos.  While StemCellQC is able 

to classify many kinds of classes, chapter 2 specifically uses StemCellQC to study the 

health of stem cells.  In addition, StemCellQC can be used to predict the class at 48 hours 

using only features from the first 12 hours. 

In chapter 3, we use image processing and regression algorithms to produce live 

3D phase contrast videos.  3D reconstruction methods can be very useful for visualizing 

dynamic cell morphology and biological processes related to their internal structures.  3D 

microscopy is traditionally performed with fluorescent imaging which may alter the 

underlying biological processes and requires cells to be fixed and killed.  Development of 

3D phase contrast methods is important to bypass these deficiencies as phase contrast 

microscopy is noninvasive.  Previously, there were no methods to reconstruct phase 
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contrast images in 3D without specialized equipment.  Chapter 3 presents Phase Contrast 

Regression 4D (PhaseR4D), a novel automated 3D reconstruction software for rendering 

phase contrast microscopy images in 3D over time.  Using variance information from z-

stack phase contrast and fluorescent images, PhaseR4D trains supervised regression 

algorithms to produce a depth map.  The regressed depth map and original images are 

then used to reconstruct a 3D phase contrast volume.  Once trained, PhaseR4D no longer 

needs fluorescence images and can perform 3D reconstructions with only phase contrast 

images.  Another major significance of PhaseR4D is that once trained, live time-lapse 3D 

reconstructions can be used to study 3D features over time, which has never been done 

before.  Also, extracted 3D phase contrast features are used to train supervised machine 

learning classifiers to automatically and accurately classify biological conditions. 

In chapter 4, we study the interaction of biological proteins and cellular structures 

using video bioinformatics.  Cofilin and other Actin-regulating proteins are essential in 

regulating the shape of dendritic spines, which are sites of neuronal communications in 

the brain.  The analysis of cofilin motility in dendritic spines using fluorescence video-

microscopy may allow for the discovery of its effects on synaptic functions.  To date, the 

flow of cofilin has not been analyzed by automatic means.  Chapter presents Dendrite 

Protein Analysis (DendritePA), a novel automated pattern recognition software to 

analyze protein trafficking in neurons.  Using spatiotemporal information present in 

multichannel fluorescence videos, DendritePA generates a temporal maximum intensity 

project that enhances the signal-to-noise ratio of important biological structures, 

segments and tracks dendritic spines, estimates the density of proteins in spines, and 
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analyzes the flux of proteins through the dendrite/spine boundary. The motion of a 

dendritic spine is used to generate spine energy images, which are used to automatically 

classify the shape of common dendritic spines such as stubby, mushroom, or thin.  By 

tracking dendritic spines over time and using their intensity profiles, the system can 

analyze the flux patterns of cofilin and other fluorescently stained proteins.   
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Chapter 2 StemCellQC: Feature Analysis and Classification 

A. Introduction 

Human pluripotent stem cells (hPSC) have enormous potential for enhancing our 

understanding of human prenatal development, modeling diseases-in-a-dish, treating 

patients with degenerative diseases, and evaluating the effects of drugs and 

environmental chemicals on cells that model human embryos and fetuses [6]–[8]. In each 

of these applications, there is a foundational unmet need for technology to non-invasively 

monitor the quality of hPSC during passaging, expansion, growth, experimentation, and 

differentiation [9], [10]. Ideally such tools should be rapid, non-invasive, resource saving, 

and non-biased. Video bioinformatics, which involves mining data from video images 

using algorithms that speed analysis and eliminate human bias, offers a solution to this 

problem and can be used to produce high quality software for stem cell applications [5], 

[11]–[17]. 

Prior applications of video bioinformatics tools have successfully identified 

pluripotent stem cell colonies based on colony morphology [18], thereby speeding 

induced pluripotent stem cell (iPSC) derivation and reducing cost. Another study applied 

image processing software to fluorescent videos to identify iPSC after reprogramming 

[19], and a video bioinformatics method was developed to identify in vitro fertilized 

human embryos that will progress to blastocysts by 2 days after fertilization [20]. A 

recent report used phase-contrast video segmentation to generate lineage trees of neural 

stem cells using cell location, shape, movement, and size [21]. We previously developed 
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in-house video segmentation tools to analyze single hESC and small colonies [12]–[15]. 

In a toxicological application of video bioinformatics using CL-Quant software [22], 

cigarette smoke treatment altered hESC colony growth (area) and health [11]. While the 

above studies looked at single endpoints, multiple features related to cellular processes 

and health can be extracted from video data thereby enhancing the depth of analysis and 

providing data on the kinetics of each endpoint. However, no software currently exists for 

automatic detection of pluripotent stem cell processes and quality in culture. 

It is highly desirable to be able to multiplex multiple endpoints from a single 

experiment. The purpose of this study was to develop a high-content profiling software 

platform, StemCellQC, to automatically identify cell processes affected by 

culture/treatment and to classify the health of individual hESC colonies based on features 

extracted from phase contrast microscope video data. The method automatically 

segments the input colonies (non-labeled phase contrast images), extracts relevant novel 

features for each colony, utilizes the changes in features over time to identify cell 

processes that are affected by treatment, and statistically classifies healthy and 

unhealthy/dying colonies. StemCellQC’s feature analysis and classification system 

provide an effective method to evaluate pluripotent stem cell colony processes and 

quality before use in experiments or clinical applications. Because hESC model the 

epiblast cells of embryos [23], which if harmed can lead to embryonic death or 

development of congenital defect(s), StemCellQC has the potential to be used as a novel 

technology to identify toxicants or drugs that could affect cellular processes in young 

embryos. 
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B. Materials and Methods 

1. Overall Design of the System 

The overall design of the system will be discussed in Results (S1 Fig). Each 

component is presented in the following Methods section. 

2. Culture and Collection of hESC Videos 

H9 hESC, purchased from WiCell Stem Cell Institute (Madison, Wisconsin), 

were maintained on Matrigel coated 6-well plates in mTeSR complete medium (Stem 

Cell Technologies, Vancouver, Canada) in a 37°C incubator with 90% humidity and 5% 

CO2 [11], [24]. When cultures reached 80–85% confluency, they were detached using 

Accutase (eBiosciences, San Diego, CA) for 1 minute and used in experiments. 

For live cell imaging in the BioStation CT (Nikon Instruments, Melville NY), 

hESC colonies were plated at 25–30% confluency and allowed to attach for 24 hours. To 

create groups of colonies that were healthy, unhealthy and dying, hESC were treated with 

Marlboro Red cigarette smoke solutions as described previously [11], [25]. Sidestream 

smoke (SS) was used at a dose of 0.1 puff equivalent (PE), where 1 PE is the amount of 

smoke that dissolves in 1 ml of medium in 60 sec. The 0.1PE concentration of SS smoke 

has an estimated concentration of nicotine of 0.2 μg/ml [26], [27], which is within the 

estimated tissue range of passive smokers [25]. 

 

All imaging was done using a 10x phase contrast objective in the BioStation CT 

using automatic Z-focus; cells were not stained, labeled, or genetically modified thereby 
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permitting non-invasive analysis of cells. StemCellQC was tested on different 

magnifications (4x and 20x) and performs well. The dataset for feature analysis was 

made up of 34 videos of individual hESC colonies. 23 colonies were treated for 48 hours 

with sidestream cigarette smoke, while 11 control colonies were incubated in culture 

medium only. 

3. Development and Use of StemCellQC Software 

StemCellQC was written and developed with MATLAB 2015a programming 

environment. The MATLAB source code, a stand-alone executable version of this 

algorithm, and supplied test data are available online at 

http://vislab.ucr.edu/SOFTWARE/software.php. Scqc_multi.m is the main program of 

the code and requires the following MATLAB toolboxes: Statistics and Machine 

Learning, Bioinformatics, System Identification, Image Processing, and Model-Based 

Calibration. The standalone alone executable requires the installation of the 64-bit 

version of MATLAB Runtime R2015a (8.5) available at 

http://www.mathworks.com/products/compiler/mcr/. 

4. Categorization of hESC as Healthy, Unhealthy or Dying 

Before the StemCellQC software is run, a training dataset was collected. 

Categorization of colonies as healthy, unhealthy, or dying by the end of 48 hours was 

provided by experts in culturing hESC and was based on biological observations listed in 

a decision tree (S2 Fig). Categorization was used to validate the program’s predictions of 

colony health. 

http://vislab.ucr.edu/SOFTWARE/software.php
http://www.mathworks.com/products/compiler/mcr/
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5. Video Segmentation 

An edge-based method and a region-based method were used to segment colonies 

in video images (frames). The edge-based method convolves the Sobel edge operator 

with the image to produce a gradient magnitude image and a gradient direction image. 

All gradient magnitudes below a calculated threshold were ignored and the rest were used 

as edges. This calculated threshold was automatically computed by the “edge” function in 

the Image Processing Toolbox from MATLAB. The edges in the image were dilated 

using two line structuring elements (vertical and horizontal) of three pixel lengths to 

merge connected regions of the colony. Connected components were then filled and 

smoothed with image erosion using a diamond structuring element of one pixel radius to 

produce the segmentations. Segmented objects that are smaller than a user specified 

threshold, 3000 pixels in our case, were removed [28]. 

The Otsu’s region-based method for segmentation [29], [30], which was used to 

compute the solidity feature, is the ratio of the colony area divided by the area of the 

convex hull. The convex hull can be visualized as the shape enclosed by a rubber band 

stretched around a region-of-interest (ROI) [31]. Otsu’s method produces a slightly larger 

segmented boundary which is smoother than the edge-based method. The main purpose 

of using solidity was to detect dead cells that were extruded from the stem cell colonies. 

Edge-based segmentation provides tight edge boundaries, which does not include the 

dead cells that are in the process of being expelled from the colony; whereas, Otsu’s 

“larger” segmentation includes the dead cells. The concave regions of the segmentation 

that are produced by the dead cells affect the sensitivity of solidity. Therefore, solidity 
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changes (primarily due to dead cells) are more pronounced when using Otsu’s method. 

This larger boundary results in a larger convex hull which increases the sensitivity of the 

solidity feature. This allowed for better distinction between the peaks and valleys in the 

solidity plot. 

For the region-based method, initially frames were smoothed to remove a small 

amount of noise using a 3x3 Gaussian filter. Next, Ostu’s thresholding-based method was 

used to separate the pixels into the background and foreground by finding the optimal 

threshold for segmenting an image [29], [30]. Connected components were then found in 

the binary image. A morphological open operation (used to open gaps between loosely 

connected objects) was performed on the binary image to disconnect loosely connected 

pixels in the foreground. This is carried out by first eroding an object of interest (a 

connected component) and then dilating the output with a structuring element. To 

disconnect the objects, a circle with a radius of 12 pixels worked the best, and it was kept 

fixed for all the experiments. For both erosion and dilation, every pixel in the object was 

individually probed by the structuring element. The end result was a set of filtered 

connected components. Any holes in this region were filled, and the final ROIs were used 

to extract features. 

6. Validation of Segmentation 

The accuracy of segmentation was determined by manually segmenting hESC 

colonies using ImageJ and comparing the area and perimeter values to those obtained 

from the automatic segmentation (S3 Fig). 
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7. Feature Extraction 

Features based on appearance, morphology, and dynamics were extracted from 

segmented colonies. Dynamic features were obtained from morphological features by 

computing the rate of change of a feature over time. For example, to segment the 

protrusions extending from hESC, the main body of the colony (obtained using a 

morphological open algorithmic operation) was subtracted from the total colony 

segmentation. Also, the bright-to-total area ratio is the number of bright pixels divided by 

the area. Bright pixels were found by first computing a histogram of the intensities in the 

segmented colony to acquire the mean (μ) and standard deviation (σ). Then, a range of 

intensities (lower bound threshold = μ + 3 σ, upper bound threshold = μ + 6 σ) that best 

described dead cells in colonies were taken as the bright pixels. A complete list of 

features and their definitions is provided in S9 Fig. 

8. Identification of Key Features 

Both biologically-based feature selection and statistical-based feature selection 

were used to identify those features that provided information on affected cellular 

processes and to distinguish healthy, unhealthy, and dying colonies. In addition, all the 

features were exhaustively applied to the classifier. 

For biologically-based feature selection, plot observations over time can be 

interpreted by the user. A subset of features are shown as graphical plots in Figs 2.1–2.4. 

From the feature plots, the user can observe the non-overlapping standard error of the 

means (SEMs) to get a good indication of groups that are significantly different from 

each other. For a more rigorous statistical analysis, two-way ANOVAs with the 
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Bonferroni post-test were performed to identify those features that were significantly 

different in the plotted data. For the solidity feature, a one-tailed independent samples t-

test was used to determine if significant differences existed between means of 

healthy/unhealthy versus /dying colonies at 12 hours. 
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Fig 2.1. Features related to hESC colony growth.  The outline of segmentation for a 

healthy (A), unhealthy (B), and a dying colony (C) at the last recorded frame. (D) Area 

normalized to the first time point for colonies that were healthy, unhealthy, and dying. 

Colonies first became significantly different by 2-way ANOVA at 37.6 hours for healthy 

vs unhealthy (green arrow), at 33.5 hours for unhealthy versus dying (blue arrow), and at 

26.2 hours for healthy versus dying colonies (red arrow). (E) Change in area over time 

showing second contraction of dying colonies at 30–32 hours. (F) Perimeter over time 

normalized to the first time point for colonies that were healthy, unhealthy, and dying. 

Colonies first became significantly different by 2-way ANOVA at 46.6 hours for healthy 

versus unhealthy groups (green arrow), at 35.4 hours for unhealthy versus dying groups 

(blue arrow), and at 28.9 hours for healthy versus dying groups (red arrow). (G) Minor 

axis normalized to the first time point for colonies that were healthy, unhealthy, and 

dying. Colonies first became significantly different by 2-way ANOVA at 44.3 hour for 

healthy versus unhealthy groups (green arrow), at 36.5 hour for unhealthy versus dying 

groups (blue arrow), and at 28.9 hour for healthy versus dying group (red arrow). 

Number of colonies per group = 16 healthy, 12 unhealthy, 6 dying. Data are plotted as 

means ± SEM for each group. Arrows indicate first values that differed significantly from 

the control by 2-way ANOVA (* = P < 0.05). 
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Fig 2.2. Surface protrusions on colonies can be used to study cell morphology and 

growth. (A) Segmentation of protrusions (red outline) for a healthy colony (A), 

unhealthy colony (B), and dying colony (C) at the last recorded time frame. (D) Number 

of protrusions over time normalized to the initial time point for healthy, unhealthy, and 

dying colonies. Colonies first became significantly different by 2-way ANOVA at 43 

hours for healthy versus unhealthy groups (green arrow), at 33.3 hours for unhealthy 

versus dying groups (blue arrow), and at 27.1 hours for healthy versus dying group (red 

arrow). (E) Protruding-to-total area ratio for healthy, unhealthy, and dying colonies. 

Colonies first became significantly different by 2-way ANOVA at 6.8 hours for 

unhealthy versus dying groups (blue arrow), and at 4.8 hours for healthy versus dying 

groups (red arrow). Number of colonies per group = 16 healthy, 12 unhealthy, 6 dying. 

Data are plotted as means ± SEM for each group. Arrows indicate first values that 

differed significant from the control by 2-way ANOVA (* = P < 0.05). 
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Fig 2.3. Features related to hESC colony motility. Extracted contour of a healthy 

colony at 16 hours (yellow line) and 24 (green line) hrs. The distance between the 

centroids is indicated by the white line. (B) Change in centroid over time for healthy, 

unhealthy, and dying colonies. Colonies first became significantly different by 2-way 

ANOVA at 7.7 hours for healthy versus dying groups (red arrow), and at 20.6 hours for 

unhealthy versus dying groups (blue arrow). (C) The total displacement for healthy, 

unhealthy, and dying colonies. (D) The total distance traveled for healthy, unhealthy, and 

dying colonies. Colonies first became significantly different by 2-way ANOVA at 34.7 

hours for healthy versus unhealthy groups (green arrow). (E) The mean squared 

displacement (MSD) for healthy, unhealthy, and dying colonies. (F-G) Localization of 

actin microfilaments in a healthy (F) and an unhealthy (G) colony which had fewer 

microfilaments than the untreated control. Number of colonies per group = 16 healthy, 12 

unhealthy, 6 dying. Data are plotted as means ± SEM for each group. Arrows indicate 

first values that differed significant from the control by 2-way ANOVA (* = P < 0.05). 
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Fig 2.4. Features related to cell death. (A-D) Frames representing the beginning of the 

video (A), the highest and lowest solidity values respectively (B and C), and the time of 

death of dying colonies (D). E) Solidity values over time for healthy/unhealthy (blue) 

versus dying colonies (red). Colonies that eventually died are distinguished by a large 

peak in solidity between 8–24 hours. A one-tailed independent sample t-test at 12 hours 

revealed that the two groups were significantly different (P = 0.0285). (F-H) White 

regions on top of hESC colonies (outlined in red) represent dead cells, shown at the end 

of recording for a healthy colony (F), unhealthy colony (G), and dying colony (H). (I) 

Bright-to-total area ratio over time for healthy, unhealthy, and dying colonies. Colonies 

first became significantly different by 2-way ANOVA at 4 hours for healthy versus 

unhealthy groups (green arrow), and at 11.5 hour for the healthy versus dying groups (red 

arrow). (J) Minimum intensity values for healthy, unhealthy, and dying colonies. 

Colonies first became significantly different by 2-way ANOVA at 31.5 hour healthy 

versus unhealthy groups (green arrow), and at 24 hours for healthy versus dying groups 

(red arrow). (K-L) A healthy (K) and an unhealthy (L) colony incubated with Magic Red 

to identify activated caspases 3&7. Number of colonies per group = 16 healthy, 12 

unhealthy, 6 dying. Data are plotted as means ± SEM for each group. Arrows indicate 

first values that differed significant from the control by 2-way ANOVA (* = P < 0.05). 
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Statistical-based methods are useful in cases where the graphs for features may 

not reveal obvious effects, and they are good starting points to identify combinations or 

subsets of useful features. Filter methods which select variables regardless of the 

classification model are preferable for StemCellQC because of the use of multiple 

classifiers. 11 feature selection algorithms (10 methods from the Feature Selection @ 

Arizona State University toolbox [32]) and quadratic programming feature selection [33] 

were run on our dataset. These methods include Correlation-based Feature Selection 

(CFS) [34], Chi Square (Chi2) [35], Fast Correlation-based Filter (FCBF) [36], Fisher 9 

[37], Gini Index 16 [38], InfoGain 6 [39], Sparse Multinomial Logistic Regression 

(SBMLR 3) [40], t-test [41], Kruskal Wallis [42], and Minimal-Redundancy-Maximal-

Relevance [43]. The inputs for the feature selection algorithms are the average slope of 

each feature. The slope (incremental difference) is computed for each pair of adjacent 

frames for individual features. Next, the mean of these slopes is calculated for all 24 

features. These features individually or in groups can be used to train the classifier. 

9. Correlation of Key Features to Cellular Processes 

Key features were interpreted to identify cellular processes such as growth, 

motility, and apoptosis, which differed in the healthy, unhealthy and dying groups. Also, 

two-feature plots were constructed to detect correlations between features and identify 

temporal patterns over time (Fig 2.5, S1 and S2 Videos).  
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Fig 2.5. Two-Feature Plot Analysis. (A) Average intensity compared to perimeter 

running plot shown at approximately at 16 hours of incubation for all individual healthy 

(green), unhealthy (blue), and dying (red) hESC colonies. (B) Mean-squared 

displacement compared to area running plot shown at approximately 16 hours for all 

individual healthy (green), unhealthy (blue), and dying (red) hESC colonies. (C) User 

derived equation (perimeter divided by number of protrusions) plotted for healthy, 

unhealthy, and dying colonies. 
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10. Classification as Healthy or Unhealthy/Dying 

To automatically classify the dataset, all features measurements were first 

normalized with maximum-minimum normalization. 410 frames (collected over a 48 

hour period) multiplied by 24 features results in a 9840 feature space. Therefore, in order 

to reduce the number of dimensions, the input value to the classifier was the mean slope 

of the data. Classes used by the classifier were healthy and unhealthy (the unhealthy 

group included dying colonies which were not classified separately since this group 

contained only 6 colonies). 

To test the ability of the features to distinguish healthy versus unhealthy/dying 

colonies, several biologically selected features and additional features selected by 11 

statistical methods were used to train three classifiers: (1) support vector machines 

(SVM), (2) K-nearest neighbor (KNN), and (3) naïve Bayes [37]. SVM uses the training 

data to create a boundary in multi-dimensional space, which can be used to classify future 

data samples. KNN takes a test sample and compares it to the K-nearest training samples 

in a multi-dimensional space. The KNN algorithm was used with k = 3 (the 3 closest 

neighbors to the sample). A majority vote is taken by these neighbors and used as a label 

for the test sample. Naïve Bayes is a probabilistic classifier based on Bayes’ theorem that 

uses strong assumptions that features are independent from one another. An exhaustive 

test using all possible combinations of features was performed to determine the best 

classification results using combination of features. 
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A summary of the classification results using single features, combinations of 

features, and statistically determined features are shown in Tables 2.1–2.4 in the Results 

section. 

 

Table 2.1. Classification Results Using 48 Hours of Video. 

 

Table 2.2. Classification Results Using 36 Hours of Video. 
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Table 2.3. Classification Results Using 24 Hours of Video. 

 

Table 2.4. Classification Results Using 12 Hours of Video. 

11. Classification Validation 

The classification experiments were run with 10-fold cross validation where the 

dataset was partitioned into 10 parts. The 34 videos gave six partitions containing three 

videos each and four partitions containing four videos each. A 10-fold partition of the 
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training data was used, which allowed for computation of a standard deviation of the 

results. One part was used as the test data once, while the other nine parts were used as 

training data. The partitions were randomized, and this process was repeated with 5 

random permutations of the data. A percentage of correctly classified samples was 

calculated for each permutation by comparison to the manual labels. The classification 

results were then used to find the mean and standard deviation. 

12. Molecular Validation 

Apoptotic activity was detected using the Magic Red Caspases 3&7 Detection 

FLICA Kit (Immunochemistry Technologies, LLC, Bloomington, MN) as described 

previously [11]. Fluorescent staining of F-actin was performed using a phalloidin-Alexa 

Fluor 488 conjugate (Invitrogen, Carlsbad, CA) diluted 1:200 in 1% goat serum in 

phosphate buffered saline. hESC colonies in chamber slides were fixed using 4% 

paraformaldehyde for 10 minutes, incubated in blocking solution (3% goat serum in PBS) 

at room temperature for 1 hour, washed 5 times, and incubated in phalloidin-Alexa Fluor 

488 for 1 hour at room temperature. Samples were mounted using Vectashield with DAPI 

(Vector Laboratories, Burlingame, CA) and imaged with a Nikon Eclipse Ti fluorescent 

microscope (Nikon, Melville, NY). 
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C. Results 

1. Feature Analysis 

Features were analyzed graphically to identify those that differed in the healthy, 

unhealthy, and dying groups. Sets of affected features were then grouped according to the 

biological processes they represented (morphology, growth, motility, death) (Figs 2.1–

2.4, S4 Fig). The classifiers were run with 48, 36, 24, and 12 hours of video to show their 

effectiveness at different time points. For all durations, all 24 features were run singularly 

through the classifiers and the ones with the highest accuracy are shown in Tables 2.1–

2.4 (Single Features). Additionally, exhaustive searches for combinations of up to 5 

features were run to identify the most accurate results (Table 2.1 Combination of 

Features). Lastly, the best results from the 11 existing feature selection algorithms are 

also shown in Tables 2.1–2.4 (Feature Selection Methods). 

2. Features Related to Growth as Biomarkers of hESC Health 

Extracted features related to colony growth (area, perimeter, minor axis, 

protrusions) were evaluated in healthy, unhealthy, and dying colonies. Area (the total 

number of pixels inside a segmented colony; S5Fig) differed in healthy, unhealthy and 

dying colonies (Fig 2.1A-2.1E). When area was normalized to the initial time point to 

account for variability in the starting size, all groups displayed an initial contraction 

which decreased area and lasted about 8 hours (Fig 2.1D). Contraction was likely caused 
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by changes in temperature/CO2 during transfer to the BioStation. After contraction, 

healthy colonies displayed a steady increase in area until the end of recording, while 

unhealthy colonies grew at a slower and variable rate. Both groups followed a similar 

trend up to 16 hours, after which healthy and unhealthy growth rates deviated and 

become distinguishable by about 24 hours. Dying colonies could be distinguished from 

the healthy and unhealthy groups by about 10 hours when growth rates for the dying 

group clearly diverged. At 30 hours, dying colonies underwent a second contraction 

leading to a sharp decrease in area (Fig 2.1D and 2.1E). These colonies were interpreted 

to be dead based on this pronounced decrease in size and shedding of dead cells. 

Perimeter, defined as the number of pixels constituting the colony periphery (red 

outline in Fig 2.1A-2.1C and 2.1F; S5 Fig), provided additional information about colony 

growth. There was divergence in the perimeters of healthy and unhealthy colonies at 

approximately 25 hours (Fig 2.1F), after which the rate of change in perimeter for 

unhealthy colonies slowed until about 33 hours when it underwent a growth spurt that 

lasted 3 hours. The dying colonies diverged from the other two groups at 8 hours and had 

an abrupt decrease in size at 30 hours, as was seen with area. 

Minor axis (smaller axis of an ellipse fitted to a colony) (S6 Fig) was affected in 

unhealthy/dying colonies (Fig 2.1G). After 23 hours, healthy colonies showed a steep 

increase in minor axis, suggesting that once healthy colonies reach a critical size, they 

have a less-elongated morphology. 

Protrusions are dynamic cell processes that extend off colonies and take a variety 

of shapes (Fig 2.2A-2.2C; S6 Fig). They allow colonies to attach, spread, and migrate 
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[44], [45]. The number of protrusions increased on healthy and unhealthy colonies and 

decreased on dying colonies during incubation (Fig 2.2D). The protruding-to-total area 

ratio, which is defined as the ratio of protrusion area divided by total colony area, had an 

inverse relationship with colony growth. Protrusion area decreased gradually in healthy 

and unhealthy groups but increased slightly in the dying group (Fig 2.2E). 

3. Colony Motility 

The change in centroid feature allowed tracking of stem cell colony movement. 

This feature is determined by finding the centroid of each colony and calculating the 

distance between two successive frames (S7 Fig). Outlines of a hESC colony at two times 

and the change in centroids are shown in Fig2.4A. Change in centroid oscillations were 

smaller in the healthy and unhealthy groups than in the dying group (Fig 2.3B). The 

unhealthy and healthy groups were similar in the magnitude of their oscillations, but 

overall motility was less in the healthy colonies, probably because the larger sized 

healthy colonies required more energy and coordination for directed movement. After a 

certain area was reached, the center of the healthy colonies moved very little as the 

colony continued to expand. It is also possible that smoke stimulated motility in 

unhealthy hESC to facilitate escape from exposure. The dying colonies displayed erratic 

motility and showed a significant decrease in movement after 20 hours as they were 

approaching death. Movements detected after death (30 hours) are due to slight 

segmentation differences between frames. 
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Total displacement detected how far a colony moved from its original starting 

point (Fig 2.3C; S7 Fig), while total distance traveled is the sum of the entire trajectory of 

movement (Fig 2.3D; S7 Fig). These features revealed information on the pattern of 

travel. Dying colonies traveled more up to 30 hours (when they died) than the other two 

groups, but their displacement was low indicating that they moved erratically near their 

original starting point. Unhealthy colonies moved further from their point of origin and 

travelled a longer total distance than healthy colonies. Both the healthy and unhealthy 

colonies displayed remarkably little variance in total distance travelled (Fig 2.3D). 

The mean squared displacement (MSD) feature measures Brownian motion [46] 

and can be used to study cellular migration [47]. MSD is defined by the equation: MSD(t) 

= ([x(t+t0) − x(t0)]2+[y(t+t0) − y(t0)]2), where MSD (t) can be approximated as ~ tβ(t). The 

logarithmic derivative exponent β can be used to determine the particular mode of 

motility, with β > 1 indicating super-diffusive movement, a form of diffusion where the 

colonies occasionally undergo very long steps. β < 1 indicates sub-diffusive movement, 

defined as a tendency for the colonies not to diffuse due to trapping (inability to move). 

For Brownian motion, or a random walk, β is approximately 1. The MSD feature is 

robust because it uses the squared value of displacement, making it less sensitive to small 

fluctuations. The MSD plot shows a similar trajectory for all three groups up until about 

11 hours (Fig 2.3E), after which the healthy colonies display Brownian motion (β = 

1.04). For dying colonies, sub-diffusive motility (β = 0.21) was observed from 23–50 

hours, consist with their death after 30 hours. The unhealthy group demonstrated sub-
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diffusive motility from 22–35 hours and 35–50 hours (β values = 0.76 and 0.52, 

respectively). 

To investigate the molecular basis of the aforementioned effects on motility, F-

actin was labeled with phalloidin-Alexa 488. Healthy colonies (Fig 2.3F) had a more 

robust actin cytoskeleton than unhealthy colonies (Fig 2.3G). Although F-actin was 

partially depolymerized by smoke treatment, there was sufficient functional F-actin in the 

treated colonies to allow colony movement. A decrease in F-actin may be linked to a 

decrease in the number of focal adhesions, which may facilitate motility in the unhealthy 

group [48], [49]. Other studies have reported the inverse correlation between cell motility 

and polymerization state of the actin cytoskeleton [50]. 

4. Solidity as Predictor of Apoptosis 

As colonies became rounder or more convex, their solidity increased and 

approached 1. Fig 2.4A-2.4D show hESC colonies at different times with outlines of their 

segmentations (red lines) and convex hulls (white lines). Solidity, which measured 

convexity (Fig 2.4E; S8 Fig), identified colonies that were destined to die by 48 hours. 

Solidity for the healthy/unhealthy groups combined changed little for 48 hours (Fig 

2.4E). These two groups were combined since solidity was a predictor of colony death, 

not health. In contrast, dying colonies had a significant spike in solidity at about 12 hours 

due to contraction and rounding of the colonies (B label in Fig 2.4E). This was followed 

by a drop that reached a minimum at 30 hours (C label in Fig 2.4E), when death occurred 
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and extrusion of dead cells caused the convex hull to be less circular. Graphs of solidity 

can be used to identify at 12 hours, colonies that will die by 48 hours. 

5. Colony Brightness Identifies Dying Cells 

As cells within a colony die, they are extruded to the top of the colony where their 

brightness increases. The white areas in Fig 2.4F are dead cells on a healthy colony at the 

end of incubation. Significantly more dead cells were present on the unhealthy (Fig 2.4G) 

and dying colonies (Fig 2.4H). To quantify dead cells on top of colonies, a bright-to-total 

area ratio feature was used. This feature measured the number of bright pixels in the 

colony as a ratio to the total area and is an indicator of cell death. All groups exhibited an 

increase in bright-to-total area ratio during the first 6 hours when the colonies contracted 

(Fig 2.4I), after which the bright-to-total area ratios of healthy and unhealthy colonies 

decreased and the ratio for the dead colonies increased up to 16 hours and stayed 

elevated. 

To compare the progression of colony brightness over time, a minimum intensity 

feature (lowest pixel intensity in the colony) was monitored (Fig 2.4J). Throughout 

incubation, healthy colonies displayed a lower minimum intensity than the unhealthy and 

dying colonies. These data support the idea that the unhealthy and dying colonies failed 

to spread as well on Matrigel as healthy colonies. 

To confirm cell death, colonies were labeled with Magic Red which detects 

activated caspases 3&7, biomarkers for apoptosis. As shown by the red staining in Fig 
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2.4K and 2.4L, unhealthy colonies exhibited more caspase 3&7 activity than the healthy 

colonies. 

6. 3D Visualization of Features and Custom Features 

To mine additional biological information such as correlation of features, 

StemCellQC can plot features against each other and play the plot as a video over time 

(S1 and S2 Videos). In Fig 2.5A, perimeter and average intensity, when plotted against 

each other, showed an inverse relationship (indicative of dead cells). In Fig 2.5B, area 

and the mean-squared displacement features were plotted against each other to highlight 

individual colonies with elevated MSD values (mainly colonies from the unhealthy 

group). This type of analysis can also reveal outlier colonies within a group. In addition, 

StemCellQC is able to plot mathematical equations using the original 24 features. In Fig 

2.5C, a user derived equation, ratio of perimeter to the number of protrusions, is plotted. 

This plot displays an estimate for the average length of a protrusion for each class and 

shows that the protrusions on dying colonies are about twice as long as those on 

healthy/unhealthy colonies (Fig 2.5C). 

7. Classification Results 

The input values used by the classifiers were the mean slopes of each feature. The 

nine individual features found by user-interpreted feature selection were tested separately 

giving each feature a classification rate (Table 2.1). Area was the best individual feature 



35 

 

at predicting health with a 94% accuracy when using any classifier. By combining 

features that are not related to the same process, accuracy increased. When the number of 

protrusions and minimum intensity were combined, the system’s ability to distinguish 

hESC colony health improved to 97% accuracy when using any classifier. Results for 

feature selection algorithms (CFS, ChiSquare and QPFS) were also shown. All three had 

at least 91% accuracy and CFS was 96.47% accurate with KNN. 

The classifiers were also run with the first 36, 24, and 24 hours, which are shown 

in Tables 2.2–2.4 For 36 hours (Table 2.2), area was the best feature with 88% accuracy, 

and combination of features improved results to 96.47%. For 24 hours (Table 2.3), area 

was still the strongest feature with 83.35% accuracy and a combination improved results 

to 91.17% accuracy. For 12 hours (Table 2.4), however, total distance travelled is the 

strongest feature with 71.76% accuracy. It should be noted that for 12 hours most 

individual features performed at about 50–60% accuracy which is slightly better than 

chance, however when we combine features, we are able to improve classification to 

80.59% accuracy. Judging colony health by eye after a mere 12 hours of time is biased 

and difficult, making an 80.59% classification rate very useful. These tables show that 

while a certain combination of features work best using the full 48 hours of time, another 

combination may produce a more accurate classification if less time is used. With shorter 

video duration, there is an increase in accuracy using a combination of features; whereas, 

with longer durations, a single strong feature (such as area) can be sufficient to get 

accurate results. 
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D. Discussion 

StemCellQC is an innovative, cost effective, non-invasive software tool that 

utilizes bioinformatics to automatically monitor dynamic cell processes, cell morphology, 

and cell health during passaging, culture, expansion, maintenance, or experimental 

treatment of pluripotent stem cells. StemCellQC eliminates the need for labeling with 

dyes or fluorescent probes and eliminates tedious manual classification, which 

significantly decreases analysis time and classification errors due to observer bias. 

Graphical plots of features provide quantifiable, real-time data on living hESC 

and are excellent analytical tools for comparing features across treatments and cell types. 

The plots can help users visualize trends or features that are not easily detectable by 

manual inspection. Cell process analysis is especially valuable in toxicological or drug 

studies as it provides insight into the mode of action of the treatment. For example, 

smoke treatment inhibited growth (area, perimeter, minor axis and protrusions), increased 

motility (change in centroid, total displacement, total distance traveled and MSD), and 

increased apoptosis (solidity and intensity features). Chemical treatments other than 

cigarette smoke may affect other features, and in such cases, other cell processes could be 

revealed by feature analysis. Multiplexing cellular process information (colony growth 

rate, motility, and apoptosis) increases the power of analysis, and in toxicological studies, 

this greatly increases the probability of detecting an effect if one exists. 

StemCellQC can plot user-derived equations of features (for example: 

perimeter/number of protrusions) for customized types of analysis. The software can also 

create videos of various features plotted against each other. These plots enable correlation 



37 

 

between features and help determine how biological processes are related over time. For 

example, an inverse relationship was found between colony size and colony brightness 

(dead cells on a colonies’ surface). 

Feature analysis, when combined with a classifier, enabled identification of 

healthy, unhealthy, and dying colonies. Area, which classified with 94% accuracy, was 

the strongest feature for predicting colony health. Changes in area are not always detected 

by human observation, especially when colonies do not die but experience stunted 

growth. In clinics or research laboratories, a decrease in growth rate may signal a 

problem with the culture or cell quality, and this would be rapidly detected in cultures 

monitored using StemCellQC. While smoke treatment slowed colony growth, factors that 

increase growth rate may be equally important and detectable by StemCellQC. For 

example, when chromosomal translocations occur in hESC, growth can be accelerated 

[51], and this would not be desirable in clinical or research labs. Combinations of features 

successfully increased the accuracy of classification of unhealthy/dying colonies to 97%. 

Depending on the rigor needed, change in area by itself will usually be sufficient to 

distinguish healthy from unhealthy/dying colonies. 

By comparing changes in features over 48 hours, biomarkers that predict 

biological outcomes were found at early time points (Fig 2.6). For example, growth rate 

separated dying from healthy/unhealthy colonies by 16 hours and further separated 

healthy from unhealthy colonies by 26 hours (Fig 2.1D; Fig 2.6A and 2.6B). Similar 

distinctions can be made from graphs for other growth features (perimeter, minor axis, 

and number of protrusions) (Figs 2.1F and 2.1G and 2.2D and 2.2E). Change in centroid 
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was the strongest motility biomarker which cleanly separated healthy from dying 

colonies as early as 8 hours (Fig 2.3D). Solidity successfully separated dying colonies 

from healthy/unhealthy by 12 hours when used with Otsu’s segmentation (Fig 2.4E), and 

bright-to-total area ratio separated all three groups from each other by 14 hours (Fig 2.4I). 

The biomarkers for dying colonies are powerful tools for monitoring apoptosis in living 

cultures without use of labels or probes, which themselves often produce unwanted 

effects. 
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Fig 2.6. hESC Health Timeline and Biomarkers. (A) Changes in several feature values 

and biological events during 48 hours of incubation for healthy, unhealthy and control 

groups. This type of plot can be used to compare events in different groups. (B) 

Biomarkers that can be used to identify healthy, unhealthy, and dying colonies and their 

earliest detection times. 
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Chapter 3 PhaseR4D: Time-Lapse 3D Phase Contrast 

Reconstruction 

A. Introduction  

Phase contrast microscopy is an optical imaging modality that converts phase 

shift differences in light as it passes through a transparent object to differences in 

brightness.  Phase shifts are invisible to the naked eye but become visible when they are 

converted to variations in brightness.  This type of microscopy is regularly used to 

capture high-contrast images of various transparent samples which include biological 

cells, microorganisms, internal structures and other microscopic objects.  Phase contrast 

imaging is especially important in biological sciences and it has many unique advantages 

over other microscopy techniques.  Specimens imaged with phase contrast capture more 

detail than other noninvasive methods like bright field microscopy. The converted phase 

shift differences, as the transmitted light passes through a sample, provide additional 

contrast which exposes internal structures that were previously invisible.  Before the 

development of phase contrast imaging techniques, researchers required fluorescent 

labeling to visualize these substructures.  However, this required special preparation of 

samples may alter them biologically, potentially introducing artifacts.  Fluorescent 

labeling also required the cells to be killed and fixed which prevented time lapse studies 

of the same specimen. Another advantage of phase contrast is that it is not orientation 

dependent and can be imaged at angle without producing artifacts. Phase contrast 

microscopy has traditionally been constrained to 2-dimensional (2D) visualization.  
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However, this is insufficient for thicker objects that are larger than the microscope’s 

depth-of-field [52].  As a result, advancements in 3-dimensional (3D) phase contrast 

microscopy are significant, in that they allow researchers to fully analyze any objects of 

interest.   

In biology, 3D reconstruction methods can be useful for visualizing the cell 

morphology and biological processes related to their internal structures. A single image 

may contain various types of microscopic objects such as living stem cells, debris, culture 

media and differentiated cells.  The height and surface curvature of these objects are not 

immediately apparent.  For example, tightly-packed monolayers of cells are common in 

certain cell types such as epithelial cells.  A 3D rendering may reveal membrane ridges 

that were previously invisible, which may aid in distinguishing the boundaries in 

individual cells.  Additionally, 3D phase contrast reconstruction can be used to identify 

individual cells in tightly packed colonies such as pluripotent stem cells, and cells which 

grow as tightly-packed monolayers such as cancer cells.  3D features may also be used to 

examine biological processes and structures that are not apparent in 2D.  Such features 

can be used in machine learning algorithms for classifications of biological conditions. 

In this paper, we introduce PhaseR4D (Phase Contrast Regression 4D), a novel 

automated 3D reconstruction software for rendering phase contrast images in 3D over 

time.  Unlike other existing software, PhaseR4D can be used with any microscopy system 

that can image at set focal distances.  Once trained to a dataset, PhaseR4D can render 

time-lapse phase contrast images in 3D over time using only phase contrast images.  
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PhaseR4D has many applications in basic biology, drugs discovery, and medicine. 

Live cell imaging using phase contrast can provide information on cell shape, organelles, 

and motility, as well as cell processes such as apoptosis and cell division [53].  We apply 

PhaseR4D to visualize human embryonic stem cell (hESC) colonies as well as human 

adenocarcinoma alveolar basal lung epithelial (A549) cells, which typically grow as 

tightly-packed colonies or monolayer respectively. Previously, we tracked the behavior 

and health of hESCs in culture using non-invasive 2D phase contrast imaging [54]. In this 

paper, we expand to 3D time-lapse phase contrast imaging, which allows us to visualize 

both the cellular dynamics and volumetric changes over time. It is important to be able to 

develop non-invasive methods to track the health and quality of stem cells during 

culturing, expansion and manipulation, since often these cells are used for cellular 

therapies and implanted into patients. The introduction of exogenous markers could 

present critical health hazards and unwanted modifications. In a different application, it is 

equally important to be able to study the state of cancer cells with respect to progression 

of the disease. Imaging has the powerful capability to reveal morphological and 

functional information at all stages of cancer care [55].  Cancer cells can undergo various 

morphological and migratory changes such as an epithelial-to-mesenchymal transition 

(EMT), a process that enables their metastasis in order to migrate and spread to 

neighboring tissues [56].  Furthermore, 3D imaging is advantageous in high-throughput 

screening, drug testing and discovery [57].  In this study, A549 lung cancer cells were 

treated with a tobacco product and PhaseR4D was used to detect changes in 3D.   
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B. Related Work 

Some preliminary work reported in this paper was originally presented at the 

International Conference on Image Processing 2018 [58].  While our main goal is to 

reconstruct a 3D volume with phase contrast images, we acquire fluorescent images for 

training PhaseR4D and for validating the results. Confocal or super-resolution 

microscopy are traditionally used for 3D microscopy due to their ability to remove out-

of-focus light rays [59].  However, most of the existing microscopes with these 

capabilities do not have the ability to image both fluorescence and phase contrast images 

at the same time. Due to this, our method is designed to work with non-confocal imaging 

systems which are far more common in cell research laboratories and can collect both 

phase contrast and fluorescent images.  To perform fluorescent imaging, markers are first 

introduced to the sample using various immunolabeling or transfection techniques.  By 

labeling the membrane of a cell or cellular structure, we can obtain an accurate depth 

ground-truth.   

The method used in PhaseR4D assumes that different sections of a sample will be 

more in focus at different heights.  This is especially true for thick cells which will have 

some regions in focus for an image but other regions in the same image will be out of 

focus.  Due to this, PhaseR4D uses a method inspired by existing all-in-focus algorithms. 

Many all-in-focus algorithms begin by acquiring images that are focused at different 

distances separated by a specified step size [60]. Such methods will either estimate a 

defocus or in-focus parameter to compute the focal plane in which a pixel location is 
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most in focus [61]. The estimated focal distance for each pixel can be collected in to a 

depth map which summarizes the depth information of an object.  From this depth map, a 

3D render of the object can be generated in a multidimensional matrix.  In addition to 3D 

reconstructions, the generated depth maps may be used to produce all-in-focus 

microscopy images or to automatically focus microscopy systems during imaging. 

To the best of our knowledge, PhaseR4D is the first and only open source 

software to perform 3D phase contrast reconstruction without specialized equipment.  

Chen et al. [62] have produced a 3D reconstruction of polystyrene beads using phase 

contrast, however they constructed a custom LED array and axial motion stage to image 

the sample at different angles.  Their method would, therefore, be unavailable for use to 

the majority of cell research groups.  Our proposed method used in PhaseR4D can be 

used with any existing microscopy system that has both phase contrast and fluorescence.  

Once PhaseR4D is trained, fluorescence will no longer be necessary and can be used with 

only phase contrast images.  

As compared to previous work, the key contributions of PhaseR4D are: a) 

creating 3D reconstructions from z-stack images without specialized equipment, b) 

rendering of 3D reconstruction only using phase contrast microscopy, c) generating 3D 

phase contrast videos of live cells over time, d) identifying 3D cell surfaces using local 

surface patches, and e) using 3D features to automatically classify biological conditions 

and quality. 
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C. Materials and Methods 

1. Cell Culture, Immunolabeling and Imaging  

H9 pluripotent human embryonic stem cells (hESCs), purchased from WiCell Stem 

Cell Institute (Madison, Wisconsin, USA), were maintained on Matrigel coated 6-well 

plates in mTeSR complete medium (Stem Cell Technologies, Vancouver, Canada). When 

cultures reached 80–85% confluency, they cultures were passaged using ReLeSR (Stem 

Cell Technologies, Vancouver, Canada) and plated onto 35mm dishes to be used in 

experiments.  A549 lung epithelial cells (human type II pulmonary alveolar 

adenocarcinoma cells) were obtained from (ATCC CCL-185, Manassas, VA, USA) and 

cultured in Ham’s F-12 media supplemented with 10% fetal bovine serum (ATCC, 

Rockville, MD). Cells were grown until 80% confluency, at which point they were 

detached using 0.25% trypsin EDTA/DPBS. A549 cells were passaged every 2-3 days and 

medium was replenished every other day. Cells were treated with an electronic cigarette e-

liquid for 3 days to induce distinct morphological changes.  Cells were grown in a 37°C 

incubator with 90% humidity and 5% CO2.   

The hESC colonies were plated at 25–30% confluency and allowed to attach for 24 

hours. A549 cells were treated for 4 days with 1% E-liquid from a popular electronic 

cigarette brand. Both the hESC colonies and A549 cells were fixed with 4% PFA for 

15min, followed by blocking in 10% donkey normal serum (Sigma-Aldrich, St. Louis, MO, 

USA) in 0.1% Triton X (Bio-Rad, Hercules, CA, USA). Primary antibodies used were: 

rabbit monoclonal non-phospho β-catenin Ser45 (clone D2U8Y) (1:1000 dilution, Catalog 

#19807, Cell Signaling, Danvers, MA, USA), mouse monoclonal CD-44 (clone 156-3C11) 
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(1:400 dilution, #3570, Cell Signaling), mouse monoclonal Acetylated α-Tubulin (clone 6-

11B-1)(1:500 dilution, Catalog #T7451, Sigma-Aldrich, St. Louis, MO, USA), and rabbit 

monoclonal Cyclin D1 (clone EPR2241) (1:50 dilution, Catalog #ab134175, Abcam, 

(1:500 dilutions, ambridge, MA, USA). Secondary antibodies used were Alexa-Fluor 488 

Donkey anti Mouse and Alexa-Fluor 594 Donkey anti Rabbit (Life-Technologies, 

Carlsbad, CA, USA). Lastly cells were mounted in Vectasheild anti-fade mounting 

medium (Vector Laboratories, Burlingame, CA, USA).  

In the A549s, Cyclin D1 is a marker important in cell-cycle and is localized to the 

nucleus. CD44 is a cancer stem cell marker and was localized to the plasma membrane. 

There was an increase in the Cyclin D1 and CD44 expression on the treated A549 lung 

cancer cells.  Acetylated α-tubulin is a stable form of tubulin, which is localized to the 

cytoplasm.  In the hESCs, the β-catenin is a dual function protein involved in cell-cell-

adhesion and gene transcription, and its labeling in normal cells is localized to the cell 

junctions.  The data set consists of 4 conditions: single cell control (6 samples), single cell 

treated (5 samples), control colonies (6 samples), and treated colonies (13 samples). 

All images in our datasets have a resolution of 800x600 pixels.  To reduce 

processing time, all fluorescent and phase contrast images were resized to 400x300 by 

subsampling every other pixel in the image.  Phase contrast and fluorescence 3D images 

were acquired using the BioStation IM (Nikon Instruments, Melville NY) which is a 

compact live cell incubator and imaging system. 99 slices were collected at 0.3 um spacing. 

A 20x objective was used to gather individual cells and small cell clusters.  All images 

were of A549 lung epithelial cells. 
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2. Development and use of PhaseR4D Software.  

The PhaseR4D is designed in a modular manner with three parts: fluorescent depth 

map generation, variance measure extraction, and phase contrast 3D reconstruction using 

supervised regression.  A diagram of our workflow is shown in Fig 3.1.  PhaseR4D was 

written and developed with MATLAB 2016a programming environment. The MATLAB 

source code, a stand-alone executable version of this algorithm, and supplied test data are 

available online at http://vislab.ucr.edu/SOFTWARE/software.php.  PhaseR4D.m is the 

main program of the code and requires the following MATLAB toolboxes: Statistics and 

Machine Learning, Bioinformatics, Image Processing, and System Identification.  The 

standalone executable requires the installation of the 64-bit version of the MATLAB 

Runtime R2016a (9.0.1) which is available 

at http://www.mathworks.com/products/compiler/mcr/. 

 

 

 

http://vislab.ucr.edu/SOFTWARE/software.php
http://www.mathworks.com/products/compiler/mcr/
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Fig 3.1. PhaseR4D Overview Diagram.  PhaserR3D extracts variance values from phase 

contrast z-stacks which are equally spaced apart.  The extracted variances are used as input 

features into supervised regression algorithms.  A depth map generated from a 

corresponding set of fluorescent images is used as the labels for training the regression 

subsystem.  Once trained, PhaseR4D computes a depth map containing the estimated 

regressed height values of the phase contrast images.  A 3D rendering is generated from 

the depth map by projecting it into a 3D volume and it can be visualized over time.  A base 

height is estimated for the volume and intensity values from the original phase contrast 

image stacks are reapplied to volume to finalize the 3D reconstruction.   

 

 

3. 3D Reconstruction of Fluorescent Ground-Truth 

PhaseR4D extracts variance features from phase contrast image slices collected at 

set intervals and estimates an optimal depth value using supervised regression.  Fluorescent 

images are used to generate a ground truth for the height of each surface and to provide 

labels to the phase contrast data to be used in training.  The regressed height values are 

then reshaped into a depth map which is used for 3D phase contrast image reconstruction. 



49 

 

4. Ground-Truth Generation 

During data collection for each sample, the user is required to focus the objective 

at the center plane of the object.  From this focused plane, h’ planes above and below are 

imaged across the z-axis of the microscope.  Each of these planes are equally separated by 

a step size of s micrometers.  In total, h = 2h’+1 planes are imaged for each object of interest 

in each imaging experiment.  Each image represents a different focal plane in the volume.  

To validate and train PhaseR4D, both phase contrast and fluorescent images of size r x c 

must be captured at the same magnification and location. Phase contrast and fluorescent 

images collected at various planes for the same cell are shown in Fig 3.2.  z = 1 is the 

bottom of the image stack and z = 99 is the top of the stack.  As z increases various sections 

of the cell will come into focus and then come out of focus as z approaches 99.  Near the 

border of the cell, pixels for both phase contrast and fluorescence become focused at about 

z = 29.  However, the regions in the center of the cell where the nucleus is located does not 

become focused until about z = 36.  The borders also come out of focus sooner than the 

center of the cell.  This indicates that the height of a cell varies over its cytoplasm.  Videos 

generated from all 99 stacks are included in the supplemental material to help visualize the 

height variations in a cell. 
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Fig 3.2. Corresponding Phase Contrast and Fluorescent Images.  All images are from 

the same cell and were collected at 20x magnification.  15 of the 99 stacks are shown for 

both phase contrast (odd rows) and fluorescence (even rows).  Each stack is separated by 

0.3 um. 
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To generate a ground-truth for the supervised regression algorithms used during 

phase contrast 3D reconstruction, a fluorescent depth map is generated at the same location 

and magnification.  Traditionally, these images are collected with confocal or structured 

illumination microscopy (SIM) because of their ability to remove out-of-focused light [63].  

However, since there are not many microscopy systems that can collect these types of 

images with phase, we must compute a depth map while taking blur into account.  To 

generate our fluorescent depth map, an in-focus parameter is extracted from the set of 

fluorescent images collected at different focal planes.  Several in-focus measures have 

previously been used to estimate the height of a surface at different points.  Yao et al. [64] 

have shown that variance is a particularly strong metric to compute an all-in-focus image.  

PhaseR4D begins by computing a variance volume V by convolving a variance filter 

through each voxel.  Because only the most in-focused plane is of interest, the convolving 

filter is an m x m 2D filter. This assumes that the most in focused plane for a pixel in the 

image stack is also the plane with the highest detail or variance at that neighborhood. From 

our testing, we have found m=5 pixels worked the best empirically.  During image 

collection, cells, culture media, and other objects may sway slightly even when the cell is 

fixed.  This is common when the mechanical instruments in the microscopy system are 

refocusing, changing objectives, or cycling though capture points.  Because this will affect 

the variance calculation, it is important to register the images beforehand if sway is 

significant [65].  All other image stacks should be registered to the most focused image 

(z~50) as reference. 
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A fluorescent depth map D is generated from the variance volume by the following 

algorithm. 

1. Initialize D as a zeros matrix with the same size as the input images. 

2. Loop across i and j for all pixels of D. 

3. Compute the maximum value of V at (i,j) across the z-axis. 

4. The value of D(i,j) is the index of the maximum value across the z-axis.  

The choice of fluorescent label and imaging step size are important for our method.  A 

small step size will give more resolution in the z-axis, however more z-stacks may be 

needed to capture the entire volume.  Because PhaseR4D computes a depth map based on 

the location of the surface of the cell, a fluorescent label that is localized only to the exterior 

cell surface is preferable. A label that fills the entire cell volume will work as well but may 

produce more out-of-focus light.  Fig 3.3 shows contour plots representing the normalized 

variance through the z-axis.  Each contour shows the changing variance of a pixel in the 

ROI of the depth map.  Fig 3.3A shows the variance plot for a hESC labeled with 

Acetylated α-Tubulin.  Fig 3.3B and 3C shows the corresponding depth map and 

fluorescent image at z = 50.  Acetylated α-Tubulin is a volume filler and Fig 3.3D shows 

the variance plot for the same hESC but strained with cell junction protein, β-Catenin. Fig 

3.3G shows the variance for an A549 cell labeled with CD44 which is localized to the 

exterior surface of the cell.  Here the variance peak is sharp, and the contours increase 

exponentially, making it easier to distinguish the optimal focus plane for each pixel.   
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Fig 3.3. Variance Plots for Various Fluorescent Labels.  A) Variance plot of pixels with 

large variances across z axis.  B) Depth map generated from variance plots shown in A.  C) 

Fluorescent image for hESC colony labeled with Acetylated α-Tubulin at stack z=50. It 

corresponds to the contour plot shown in A.  D-F) Variance plot, depth map, and 

fluorescent image for hESC colony labeled with β-Catenin at stack z=50. G-I) Variance 

plot, depth map, and fluorescent image of A549 cells labeled with CD44 at stack z=50.   
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Since there may be some errors in the depth map at each pixel, a median filter may 

be used to smooth the values.  The depth map can be refined by segmenting a region-of-

interest (ROI) around the objects.  This is done by using Otsu’s method [29] on every image 

in the set, which separates the images into a foreground and background.  A single ROI 

mask is generated by combining the foregrounds from every image.  Any pixel of D that is 

not in the ROI is set to zero.   

From Fig 3.3G, we can see that most pixels begin to suddenly increase in variance 

around the same point.  This seems to indicate that the fluorescence is beginning to come 

into focus.  This can also be seen in Fig 3.3D and Fig 3.3G.  While fluorescence reaches 

its peaks at different locations for each marker, both Acetylated α- α-Tubulin and β-Catenin 

begin to increase around the same region showing the start of detail at same height.  We 

assume that the height in which the variance begins to suddenly increase is the base of the 

cell.  To find this point, we first compute the derivative of each contour and it can be seen 

in Fig 3.4.  The location of the maximum value for the first derivative is a point of inflection 

in the original curve (Fig 3.4B).  While this indicates the location of greatest increase of 

variance, variance has been increasing before this point.  Therefore, the 2nd derivative is 

computed to find the location of greatest increase in the change of variance.  In Fig 3.4C, 

we see two local maxima for the 2nd derivative.  However, we are only concerned with the 

first local maxima which is towards the bottom of the image volume.  The location of the 

first maxima of each contour is the base index bi.  Since there are multiple contours, the 

base index b of the entire volume is the median of all bi.  
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Fig 3.4. Cell Base Estimation from 2nd Derivative.  A) Contour plot of variance across 

z-axis for pixel locations on cell.  Contours have been smoothed with gaussian filters.  B) 

Contour plot of 1st derivative of variances.  C) Contour plot of 2nd derivative of variances.  

Red line represents the computed base index. 
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Once PhaseR4D has computed the depth map and base height, a 3D rendering can 

be built.  Because the microscopy system is imaging only the top of cells, the PhaseR4D 

assumes that every voxel below the top voxel of the object and above the base height is a 

part of the object. This is a fair assumption for our data which comprise of in vitro cells on 

a dish.  Once these cells attach to the substrate, the cells lay flat on the surface and there 

cannot be any parts of the cells that are passed the bottom of the dish.  Using this constraint, 

a labelled volume L is created from the depth map as follows:   

1      if b ( , )
( , , )

0     otherwise

k D i j
L i j k

 
= 


   (1) 

L will be of the size r x c x h which is the same as the original image stacks.  Color 

information can be brought back from the original images and put into the matrix L to 

produce a color 3D reconstruction. 

5. 3D Reconstruction of Phase Contrast Images 

The method used by PhaseR4D to perform phase contrast 3D reconstruction is to 

generate a depth map using supervised regression.  The input features used by the 

supervised regression algorithms are the variance values at each plane in the phase contrast 

image stack.  A variance volume Vp is generated for phase contrast using the same method 

that was used to generate the fluorescent variance volume.  The only difference is that 

instead of using the fluorescence images, the phase contrast images are used.  To reduce 

the effect of background information in our regression, we remove the background from 

every z plane in Vp.  This is done by using the edge based segmentation method used in 

[54] for each z plane to create a set of foregrounds. Connected components are removed 
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from the foreground if they are smaller than a specified number of pixels.  These 

foregrounds are combined to create a single ROI mask which is applied to every z plane in 

Vp.   

While the maximum variance location is sufficient for estimating the height in 

fluorescence images, it is not feasible to reconstruct phase contrast with it alone. Fig 3.5A 

shows the variance plots of all pixels in the cell.  All contours in the ROI are displayed to 

show that the variance patterns in phase contrast are not as consistent as in fluorescence 

(as seen in Fig 3.4).  For many pixels, the variance seems to increase sooner than usual and 

has a 2nd local maximum (black arrows in Fig 3.5A).  This is due to the effect of blurring 

in phase contrast images, where a ripple or haloing effect occurs when out of focus.  This 

is especially apparent at the bottom of the phase contrast images in Fig 3.5B where a small 

piece of debris is located (red arrow).  You can see that variance is at a local minimum 

when the debris is most in focus.  Because of this an alternate method is required to estimate 

the depth map. 
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Fig 3.5. Cell Base for 3D Phase Contrast.  A) Contour plot of variance across z-axis for 

all phase contrast pixels in ROI.  Black arrows represent 2 peaks for a debris shown in Fig 

3.5B.  B) Phase contrast image at z=50.  Red arrow indicates debris which is not visible in 

fluorescence image.  C) Single variance contour generated from variance of background at 

each slice.  D) Final 3D reconstruction after rendering 3D volume with base index. 
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Our proposed method used by PhaseR4D is to use the variance as inputs into 

existing supervised regression algorithms.  After acquiring Vp, variance vectors are 

extracted by examining variance values along the z-axis and will be used as an input sample 

into the supervised regression algorithms.  For a volume of size r x c x h, there will be r*c 

variance vectors of size h x 1.  A label H(i,j) is also assigned to each sample vector based 

on corresponding value on the fluorescent depth map D(i,j).   

6. Phase Contrast Depth Map from Supervised Regression  

Once the variance vectors are extracted, they will be used to train a regression 

model.  We have tested three different regression models: regression trees [66], linear 

support vector regression (LSVM) [67], least squares boosting regression (LSBoost) [68]. 

Each model will take a vector of h x 1 inputs and estimate a height value.  After estimating 

a height value for the r*c samples of an image volume, these values are reshaped into a 

depth map Dp of size r x c.  

Phase contrast requires a different method for estimation of the base height than 

fluorescence.  For phase contrast variances, there is no specific height in which all the 

variance contours begin increasing together.  This is apparent in Fig 3.5A where there are 

multiple increasing slopes for the same contour.  To deal with this, we make use of the 

background information which is not visible fluorescence.  Using the ROI, we extract the 

background variance from every z stack.  Plotting this gives the contour plot in Fig 3.5C.  

The height with the maximum variance where the base of the dish becomes focused.  This 

height is taken as the base index for phase contrast, bp. 
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7. 3D Reconstruction from Depth Map 

Because the microscopy system is imaging only the top of cells, the method 

assumes that every voxel below the top voxel of the object is a part of the object. This is a 

fair assumption for our data which comprise of in vitro cells on a dish.  Once these cells 

attach to the substrate, the cell lay flat on the surface.  Using this constraint, a labelled 

volume Lp is created from the depth map as follows:   

 1      if ( , )
( , , )

0     otherwise

pp

p

k i jb D
i j kL

 
= 


                  (2) 

Because the height values are regressed for each pixel in a depth map and they are 

independent of their neighbors, the 3D reconstruction may not be smooth.  To create a 

smoother 3D reconstruction, a 2D median filter is convolved with the depth map before 

being used to create the labelled volume.  The median filter will remove isolated outliers 

and replace them with the median value of the neighborhood.  Once Lp is computed, 

intensity information from the phase contrast images are brought back to create the final 

phase contrast reconstruction which is shown in Fig 3.5D. 

8. Phase Contrast 3D Reconstruction on Live Cells over Time 

 After a PhaseR4D has constructed a regression model to generate depth maps of 

specific data conditions, the model can be used to generate depth maps for new image sets 

of the same conditions.  Because of this, the fluorescent depth maps are no longer necessary 

as they were only used to label the voxels in the phase contrast image sets.  Additionally, 

the cell samples do not have to be fixed for imaging. Capturing phase contrast images 

(approximately 1/32-1/8 sec) is orders of magnitude faster than capturing fluorescent 



61 

 

images (approximately 0.3-1 secs), thereby making it possible to render 3D in live images 

without producing artifacts.  This allows PhaseR4D to preform 3D reconstruction of the 

same sample over time.  This type of visualization would be beneficial for analyzing 

biological processes that may not be visible in 2D images alone, such as height variations 

over time.  Fig 3.6 displays the 3D reconstruction and most focused image slice for a 

sample imaged over time.  This sample was imaged for 99 z-planes, 145 timepoints about 

20 minutes apart for 48 hours.  The videos related to this sample are included in the 

supplemental materials.  4 cells are imaged over time, each displaying different 

morphologies.  All cells were stressed to detect changes in morphology and started dying 

at about 24 hours.  PhaseR4D was able to create a 3D reconstruction of each 4 cell for 48 

hours.  Errors did appear after 24 hours as PhaseR4D was not trained on dead cells.  These 

videos show that it is possible to use only phase contrast images captured over time and 

from a single vertical angle to generate 3D reconstructions of live dynamic cells.  Since the 

cells are live and unfixed, all 99 image slices must be captured at a sufficient rate.  For 

consistency, the median base index is of all time points is used as the base for all frames in 

the video. 
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Fig 3.6. Live 3D Reconstruction of Phase Contrast over time.  Odd rows: Phase contrast 

images of live control A549 cells captured at the same location over 48 hours (4-hour time 

steps).  All images are at z=50.  Even rows: Final 3D reconstruction at the corresponding 

time point. 
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9. Classification of Biological Processes using 3D Features 

Once a 3D reconstruction is completed, 3D features may be extracted from the 

reconstructed surfaces.  PhaseR4D extracts the volume, average volume intensity, and 

average shape index in each reconstructed phase contrast volume.  The shape index, Si, a 

value which can be used to identify the surface type of a point on a surface, can be 

computed as follows: 

 1 21

1 2

1 1 ( ) ( )
( ) tan

2 ( ) ( )
i

P Pk k
PS

P Pk k
− +

= −
−

                        (3) 

where P is the point of interest on the 3D surface, k1 is the maximum principal 

curvature, and k2 is the minimum principal curvature [69].  Si will have a value between 0 

and 1 and can be used to classify the surface based on the following ratios: spherical cup 

[0, 1/16), trough [1/16, 3/16), rut [3/16, 5/16), saddle rut [5/16, 7/16), saddle [7/16, 9/16), 

saddle ridge [9/16, 11/16), ridge [11/16, 13/16), dome [13/16, 15/16), and spherical cap 

[15/16, 1] [70].  These shapes are can be further summarized into convex [0, 5/16), saddle 

[5/16, 11/16), and concave [11/16, 1].   

After the 3D features are extracted from a phase contrast dataset, they can be used 

as inputs into supervised classifiers. These features were used to train three classifiers for 

classification of biological process: (1) discriminant analysis (DA) classifier, (2) k-nearest 

neighbor (KNN), and (3) error-correcting output codes (ECOC) multiclass model.  The 

discriminant analysis classifier is trained by fitting a Gaussian distribution to each class.  

Test samples are compared to each class distribution and assigned to the class with the 

lowest misclassification cost [71]. k-nearest neighbor classifiers label new observations by 
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comparing them to the k-nearest training samples in a multi-dimensional space [37].  k = 

5 was used for all experiments. ECOC is a classifier that reduces a multiclass classification 

problem into a set of L binary classifiers.  PhaseR4D uses a support vector machines (SVM) 

classifier for every pair of classes, L = 3.  A new test observation is assigned to the class 

that minimizes the losses of the L binary learners [72].   

D. Results 

Our datasets consisted of cell volumes with 400x300x99 data points each.  A leave 

one out cross-validation was performed for each regression model by training on all cell 

volumes but one and testing on the last volume.  Fig 3.7 displays the depth maps of ground 

truth and the 3 regression models.  The figure also shows the 3D reconstruction generated 

by the depth maps. All sub images are of the same cell. 

 

Fig 3.7. Regressed Depth Maps and 3D Reconstructions.  First row: Depth maps 

generated from A) fluorescence images of A549 cells, B) supervised regression trees, C) 

linear support vector regression, and D) least-squares boosting.   Second row: Final 3D 

reconstructions generated from corresponding depth maps. 
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In order to validate the quality of the curvature of our surfaces, we compared 

sections of our phase contrast depth map with our fluorescent ground-truth using local 

surface patches (LSP) [73], [74].  Chen and Bhanu have been shown LSPs to be very useful 

in the study of 3D ear recognition.  LSP is a local surface descriptor that is characterized 

by a centroid, a local surface type, and a 2D histogram.  To compute the local surface type 

and 2D histogram, the shape indices around a neighborhood must be computed [75].  In 

addition to the shape indices, a dot product of surface normal vectors at P and each of its 

neighbors are needed for the 2D histogram.  This dot product has a value between -1 and 

1 and is computed for every neighbor in a specified range.  The shape index and dot 

products for every neighbor are collected into the histogram.   

Two LSP histogram can be compared using the χ2-divergence which is one of the 

most used divergence measures used for assessing the dissimilarity between two 

probability density functions.  Once normalized, a histogram can represent an 

approximation of PDF.  The dissimilarity between two histograms, Q and V, is shown in 

the following equation [76]:   
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The dissimilarity value will be between 0 and 2.  Two histograms with a higher value will 

be more dissimilar, while a lower value means they are similar.  Fig 3.8 shows the multiple 

LSP histograms and their corresponding location in the 3D surface.  The size of our LSP 

histograms are 34x17, the same bin sizes used by Chen and Bhanu [74].  Chen and Bhanu 

showed that a dissimilarity value of ~0.5 was extremely similar (same object with slightly 
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different view), a value of ~1.0 was similar (same type of surface), and ~2.0 was extremely 

dissimilar (completely different surface type). The figure shows 4 LSPs and their 

corresponding locations.  Table 3.1 contains the χ2-divergence between LSP 1 and the other 

3 LSPs.  LSP 1 and 2 are on the same cell and both are on nuclei.  From the measured shape 

indices at these positions, both locations have a concave surface.  The dissimilarity value 

for these two histograms is 0.428 which indicate that they are similar.  LSP 3 is also on the 

same cell but has a concave surface.  The dissimilarity to LSP 1 one is much higher in this 

case.  LSP 4 is a local surface patch that has been extracted from the fluorescent 3D 

reconstruction of the same cell.  The location of this patch is very close in proximity to 

LSP 1 and has the same surface type.  The dissimilarity between these two histograms is 

low at 0.374 indicating that they are very similar.   
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Fig 3.8.  Local Surface Patches at Specific Cell Locations.  Four LSP histograms and 

their corresponding locations on the 3D reconstruction and z=50 image slice.  LSP 1 and 2 

are on the same cell and both are located on a nucleus with a concave surface.  LSP 3 is on 

the same cell but in between nuclei with a convex surface.  LSP 4 on the corresponding 

fluorescent location to LSP 1. 

 

 

Local Surface Patches LSP 1 LSP 2 LSP 3 LSP 4 

Surface Type Concave Concave Convex Concave 

χ2-divergence compared to LSP 1 N/A 0.428 1.312 0.374 

 

Table 3.1. Local Surface Patch Surface Types and χ2-Divergence Local surface patch 

surface types of the 4 LSPs displayed in Fig 3.8.  Displays distance measure computed 

using χ2-Divergence between LSP1 and the other 3 LSPs. 
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Because there are 400*300 points in our depth map, we do not generate an LSP for 

each.  LSPs are only generated for feature points on a surface.  A point is considered feature 

point if it is a regional maximum on the depth map and has a shape index greater than 

11/16.  This limits the possible shapes at the local maximum to convex shapes: ridge, dome, 

and spherical cap.  In addition, a point may also be considered a feature point if it is a 

regional minimum and has a shape index less than 5/16.  These points represent concave 

regions and can be classified as spherical cups, trough, or ruts.  Concave feature points will 

be very rare in single cells as most minima will be at the edge of cells.  However, concave 

feature points are far more common in colonies as pits will form between cell boundaries.  

A feature point in the test case will only be compared with a feature point in the ground-

truth if they are both the same shape type (concave or convex) and their centroids are within 

25 pixels. 

Because fluorescent markers target specific cellular structures, other objects such 

as debris are not detected.  However, they are still visible in phase contrast.  One such 

object can be seen in the bottom of the regressed depth maps (Fig 3.7B-3.7D). These 

objects are then detected in the phase 3D reconstructions but not in the fluorescence.  While 

this will negatively affect our 3D reconstructions results because it will produce false 

positives when compared to our ground-truth, it is opens the possibility of 3D 

reconstructing objects that fluorescence cannot. 

Table 3.2 shows the average dissimilarity, precision, and recall results on the single 

cell control conditions.  The average dissimilarity is computed from all matched LSP 

histograms between the regressed and ground truth 3D reconstructions.  If no match to the 
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ground-truth is found, N/A is displayed.  The table displays the results for all three 

supervised regression algorithms.  Tables 3.3, 3.4, and 3.5 display the corresponding 

information for the single cell treated, control colony, and treated colony conditions, 

respectively. 

 

Method  Trees LSVM LSBoost 

Samples 

Mean  

Dissim. Precision Recall 

Mean  

Dissim. Precision Recall 

Mean  

Dissim. Precision Recall 

Control 1       0.97  74.82% 57.70%       0.59  36.15% 24.84%       0.95  72.42% 57.34% 

Control 2       0.83  54.21% 86.23%       0.72  19.59% 33.97%       0.73  54.86% 81.28% 

Control 3       0.89  83.15% 56.43%       1.34  28.40% 18.74%       0.85  80.92% 62.90% 

Control 4       1.13  87.95% 77.06%       1.19  32.13% 24.57%       0.96  84.23% 69.52% 

Control 5       0.63  85.48% 82.70%       0.85  28.05% 30.70%       1.01  83.61% 74.03% 

Control 6       1.46  42.53% 94.55%       1.10  15.93% 37.29%       0.59  75.99% 90.59% 

Average       0.99  71.36% 75.78%       0.97  26.71% 28.35%       0.85  75.34% 72.61% 

SD       0.28  18.71% 15.57%       0.29  7.62% 6.87%       0.16  11.02% 12.14% 

 

Table 3.2. Classification and Dissimilarity Results for Single Cell Control Samples.  

Precision, recall, and average dissimilarity results for Trees, LSVM, and LSBoost on 6 

single cell control samples. 
 

Method  Trees LSVM LSBoost 

Samples 

Mean  

Dissim. Precision Recall 

Mean  

Dissim. Precision Recall 

Mean  

Dissim. Precision Recall 

Treated 1      0.29  88.31% 92.12%  N/A  26.67% 36.84%      0.75  88.06% 86.82% 

Treated 2      0.83  89.90% 89.69%      1.18  37.86% 49.05%      0.73  93.57% 84.63% 

Treated 3      1.23  70.83% 91.24%      1.07  22.88% 47.20%      0.74  70.42% 89.08% 

Treated 4      0.75  99.40% 66.97%  N/A  34.74% 14.55%      1.02  99.31% 60.33% 

Treated 5      0.95  77.10% 85.37%      0.85  44.64% 52.63%      0.83  77.98% 83.40% 

Average      0.81  85.11% 85.08%      1.03  33.36% 40.05%      0.82  85.87% 80.85% 

SD      0.34  11.24% 10.45%      0.17  8.72% 15.42%      0.12  11.68% 11.67% 

 

Table 3.3. Classification and Dissimilarity Results for Single Cell Treated Samples.  

Precision, recall, and average dissimilarity results for Trees, LSVM, and LSBoost on 5 

single cell treated samples. 
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Method  Trees LSVM LSBoost 

Samples 

Mean  

Dissim. Precision Recall 

Mean  

Dissim. Precision Recall 

Mean  

Dissim. Precision Recall 

Colony 1      0.89  58.15% 88.34%      0.95  15.33% 26.91%      0.98  56.51% 83.45% 

Colony 2      0.57  47.32% 93.07%      1.34  29.68% 62.41%      0.86  46.02% 87.88% 

Colony 3      0.81  83.81% 83.10%  N/A  20.29% 19.00%      0.92  83.00% 75.52% 

Colony 4      0.80  81.53% 90.81%      0.81  36.75% 23.75%      1.07  81.34% 85.34% 

Colony 5      0.78  47.26% 90.43%  N/A  15.20% 35.07%      0.76  46.38% 85.16% 

Colony 6      0.93  93.20% 82.38%      1.45  28.95% 30.51%      1.06  92.96% 73.10% 

Average      0.80  68.54% 88.02%      1.14  24.37% 32.94%      0.94  67.70% 81.74% 

SD      0.13  20.11% 4.37%      0.31  8.77% 15.45%      0.12  20.53% 5.98% 

Table 3.4. Classification and Dissimilarity Results for Control Colony Samples.  

Precision, recall, and average dissimilarity results for Trees, LSVM, and LSBoost on 6 

control colony samples. 
 

 

Method  Trees LSVM LSBoost 

Samples 

Mean  

Dissim. Precision Recall 

Mean  

Dissim. Precision Recall 

Mean  

Dissim. Precision Recall 

Treated Colony 1      0.92  82.79% 43.45%  N/A  39.04% 14.10%      0.97  80.09% 42.91% 

Treated Colony 2      1.17  67.83% 67.04%  N/A  23.87% 21.83%      0.77  67.00% 64.23% 

Treated Colony 3      0.72  73.63% 61.51%      0.60  28.55% 20.11%      0.96  72.46% 57.89% 

Treated Colony 4      1.11  71.07% 61.30%      1.39  23.89% 19.75%      1.40  69.78% 58.79% 

Treated Colony 5      0.47  55.41% 88.47%  N/A  15.94% 23.90%      0.90  54.00% 81.22% 

Treated Colony 6      1.21  63.34% 86.49%  N/A  24.32% 28.35%      0.84  63.61% 80.72% 

Treated Colony 7      0.88  68.31% 78.73%      0.88  39.33% 22.16%      0.85  68.22% 74.34% 

Treated Colony 8      1.00  46.57% 80.81%  N/A  15.70% 26.75%      0.82  44.19% 73.98% 

Treated Colony 9      1.08  52.87% 74.77%      0.98  24.41% 40.75%      0.51  51.44% 71.79% 

Treated Colony 10      0.97  52.44% 84.05%      0.59  18.64% 40.29%      0.89  50.83% 79.24% 

Treated Colony 11      0.74  40.20% 95.66%      1.01  17.53% 33.63%      0.68  40.08% 90.65% 

Treated Colony 12      1.06  55.96% 69.17%  N/A  17.60% 26.56%      0.87  51.77% 63.35% 

Treated Colony 13      1.19  68.27% 54.72%      1.17  31.89% 30.43%      1.03  67.10% 53.44% 

Average      0.96  61.44% 72.78%      0.94  24.67% 26.82%      0.88  60.04% 68.66% 

SD      0.22  12.00% 14.94%      0.29  8.08% 7.90%      0.21  12.05% 13.31% 

Table 3.5. Classification and Dissimilarity Results for Treated Colony Samples.  

Precision, recall, and average dissimilarity results for Trees, LSVM, and LSBoost on 13 

treated colony samples. 
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For all conditions, the Trees and LSBoost outperformed LSVM.  For single cell 

control results, LSBoost had slightly better precision and was able to produce surfaces that 

were slightly more similar. As seen in table 3.2, all algorithms performed better for the 

treated samples.  This is likely due the dark vesicles noted in the cytoplasm that are visible 

on phase contrast images (Fig 3.2).  These vesicles produce more contrast (variance) for 

regions inside the cells.  Both control and treated colonies performed worse compared to 

single cells.  While the precision results are worse due to more false positives, recall results 

were the same.  Also, PhaseR4D was able to find many similar surfaces when compared to 

the ground truth for colonies.  This shows that while PhaseR4D works on colonies, it does 

perform better for single cell conditions by producing fewer false positives.  Precision 

results for all conditions are also lower because of unlabeled objects in fluorescent such as 

debris.  Since these objects are not invisible in phase contrast, they will appear as false 

positive voxels.  Additionally, because of the haloing and blurring effects of phase contrast, 

as objects become defocus, they will appear larger at the edges producing more false 

positives.  Improving the edge detection to account for this will produce a better ROI and 

reduce the number of false positives. 

After completing the 3D reconstruction of phase contrast images, 3D features were 

extracted and used to classify images as control or treated cells.  Tobacco products have 

been shown to induce signs of EMT in cancer cells, which include increased motility, 

elongated morphology, and loosely formed colonies [56].  The treated cells in the A549 

datasets showed changes in cell morphology and less cell-to-cell contracts visually, and 
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their 3D features could be used to automatically distinguish from the control A549s.  The 

extracted features, the number of cells in the volume, and a condition label of treated or 

control were used as training inputs to our machine learning classifiers. 

Our total dataset for A549 cells consisted of 30 samples, of which 12 were control 

and 18 were treated.  Classification was done with 10-fold cross validation by partitioning 

the data into 10 equal sets.  Each set is used as the test set once while the other 9 are used 

for training.  The experiments were repeated 10 times by randomly shuffling the dataset so 

that the sets would be randomly sorted.  In total each classifier was trained and test 100 

times.  The DA classifier had a classification accuracy of 91.00 ± 2.25%, the KNN had an 

accuracy of 88.00 ± 2.33%, and the ECOC had an accuracy of 90.33 ± 1.89%.  This shows 

that is possible to classify a biological process such as EMT using 3D features.   
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Chapter 4 DendritePA: Fluorescent Protein Dynamics 

A. Introduction 

Dendritic spines are small protrusions located on the surface of neurons, which 

receive inputs from other neurons and are the active sites for neuronal communications 

called synapses. These synapses are often remodeled by the rapid turnover of the actin 

cytoskeleton, which is regulated by various actin-binding proteins [77], [78]. Cofilin is an 

actin-severing protein and its activity is regulated by phosphorylation at Ser3 [79], [80].  

Cofilin mediated remodeling of the actin cytoskeleton is critical in regulating the shape 

and functionality of dendritic spines. Therefore, the localization and phosphorylation 

state of cofilin within dendritic spines can affect the synaptic functions.  Cofilin-S3A is a 

constitutively active mutant form of cofilin, where the Ser3 is substituted to alanine, 

which can constitutively bind and remodel actin filaments, whereas in inactive form of 

Cofilin-S3D the serine is substituted with aspartate [77], [78]. The S3A mutant cannot be 

inactivated by phosphorylation, hence it is always in its active “severing” state, which 

leads to filamentous actin (F-actin) depolymerization, whereas the S3D substitution 

prevents the cofilin binding to F-actin, which reduces F-actin depolymerization. These 

two mutants are often used to study the mechanism of cofilin phospho-regulation in 

neurons [81], [82] and are shown in Fig 4.1. Although various studies have reported on 

the functional down-stream effects of the cofilin mutants, the changes in their dynamics 

have been relatively unexplored to date. 
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Fig 4.1. Cofilin dynamics in dendritic spines. A) When wild-type cofilin is active 

(Active Cofilin Ca) it binds to F-actin (F-actin Bound Cofilin Cf) and severs it into G-

actin (G-actin Bound Cofilin Cm). When cofilin is phosphorylated (Phospho Cofilin Cp) 

on Ser3, it cannot bind the actin. This phospho-regulation is mediated by two upstream 

players, LIMK which phosphorylates cofilin, and SSH which dephosphorylates cofilin. 

Both Active and Phospho Cofilin can move from the spines into the dendrites.   B) 

Cofilin-S3A, which cannot be phosphorylated, can bind to actin (Cf) and sever it into G-

actin (Cm). However, Cofilin-S3D cannot bind to actin.  S3A and S3D are not able to 

convert between each other, since they are different mutants.  However, both may flow in 

and out of dendritic spine regions.  
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In this paper, we investigate the dynamics of the actin-severing protein, cofilin, 

and its effects on remodeling of dendritic spines.  Dendritic spines contain the post-

synaptic sites of excitatory synapses in the central nervous system (CNS) [83]–[87].  

Dysregulation of dendritic spines can have a strong impact on brain functions and 

underlie cognitive decline associated with neurological diseases.  Cofilin can regulate the 

remodeling of dendritic spines through the disassembly and reorganization of F-actin 

cytoskeleton, which provides the structure to dendritic spines.  Elevated levels of cofilin 

have previously been shown to contribute to loss of synapses and spines in 

neurodegenerative disorders, such as Alzheimer’s disease (AD) [88], [89].  However, the 

precise mechanism underlying cofilin-mediated loss of synapses is unclear.  Therefore, it 

is important to quantify the motility of cofilin and examine how the localization of cofilin 

affects dendritic spine shape.   

Most previous studies involving the effects of proteins on neurons have primarily 

used manual examination, segmentation, and classification [90]. Most of these biological 

studies have used popular user-operated software such as ImageJ [91] to manually 

segment dendritic spines, other studies have used visualization systems such as Imaris or 

Neurolucida [92]. However, both Imaris and Neurolucida require z-stack information and 

are sensitive to parameter selection.  These manual methods are prone to human bias and 

are extremely tedious and time-consuming processes when performed on multiple 

images. Because of this, it is advantageous to develop an image analysis software such as 

DendritePA to automatically segment dendritic spines and extract features for the 

analysis of live fluorescence videos.  
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To automatically relate cofilin motility with dendritic spine shapes, dendritic 

spines must be automatically segmented. Because of the small size of dendritic spines, it 

is very hard to acquire images with sufficient resolution and contrast to properly analyze 

the dynamic entities and structures. To compensate, many experiments use the maximum 

intensity projection of a z-stack instead of data from a single image.  For our work, 

capturing these z-stacks would be disadvantageous, as we are examining two separate 

fluorescence channels; a green channel, which detects wild-type (wt)-Cofilin-GFP to 

assess cofilin motility and a red channel to detect tdTomato providing spine structural 

information.  While it may be possible that overexpression of proteins cause artificial 

effects, our previous studies with the cofilin mutants have showed no adverse effects of 

GFP-tagged cofilin or TdTomato on neurons [81]. In addition, the genetic cofilin mutants 

cofilin-S3A and cofilin-S3D were used to study the effects of cofilin activity on its 

dynamics and spine shape. To analyze the spatiotemporal relationship between dendritic 

spines and cofilin, a time series of sufficient temporal resolution must be captured. Here 

we present a method that uses the spatiotemporal information of the video to improve the 

signal-to-noise ratio of each frame without having to acquire z-stack data.  

In this paper, we present DendritePA, a novel automated pattern recognition 

system that analyzes protein localization in neurons using multi-channel florescence 

microscopy and relates it to dendritic spine shape and protein activity state. Unlike 

previous work, our DendritePA uses video bioinformatics algorithms to automatically 

obtain spatiotemporal pattern information on protein dynamics.  The system is used 

specifically to examine the effects of cofilin motility on the shape and evolution of 
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dendritic spines.  Fluorescence microscopy is used because the pixel intensity is assumed 

to be proportional to the amount of stained proteins in the region.  Due to the small size 

of cofilin, which is at the subpixel level or smaller than a pixel at 40x magnification, 

individual molecules of cofilin cannot be tracked.  However, our DendritePA can 

estimate the changes in cofilin density within the dendritic spines by measuring their 

intensity levels.  DendritePA also uses a spine energy representation derived from an 

existing motion pattern representation called gait energy image (GEI) to summarize spine 

motion into a single image.  Doing so allows for the extraction of useful features that can 

be used to classify segmented spine shapes. By relating the spine shapes with the 

observed cofilin trafficking dynamics, it is possible to examine the underlying biological 

processes. 

B. Related Work 

Some preliminary work reported in this paper were originally presented at the 

International Conference on Pattern Recognition 2016 [93].  To the best of our 

knowledge, before our previous conference paper, cofilin has never been automatically 

quantified.  Another actin-regulating protein paxillin, has previously been automatically 

analyzed in non-neuronal florescence images [94]. However, only paxillin dense regions 

that are clearly visible are examined.  These paxillin dense regions are also sparse and 

appear much brighter than the rest of the cell allowing for simple segmentation. 

However, this is not the case for cofilin located in neurons as it is more uniformly 

distributed.  Also, cofilin dense regions are not static, forming and dispersing over time, 
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making tracking these clusters challenging.  Bosch et al. [82] have manually studied the 

effect of cofilin localization on the remodeling of dendritic spines.  They classified cofilin 

transport in dendritic spines into four patterns: persistent increase in concentration, 

transient increase, transient decrease, and persistent decrease.  In their work, they found 

that cofilin transport patterns correlated with the remodeling of dendritic spine shapes. 

There are some current methods that automatically inspect the flow of proteins in 

cells.  Many of these techniques evaluate individual particle trajectories over time by 

using frame by frame object detection [95] and associating the objects across time.  An 

issue with these techniques is that they do not perform well with high particle density and 

background noise.  Another method is to separate the cell into regions and measure 

particle flux by the intensity level or protein density in the regions [96], [97]. Pecot et al. 

[97] designed an approach that involves partitioning the cell into predefined sections of 

set sizes and shape.  By checking the quantity of particles or tracking changes in the 

intensity levels, they could estimate the flux of these particles through the boundaries 

between sections.  A drawback of this approach is that regions must be rigid and the 

choice of region size affects the performance. Experiments on live samples utilized 

micro-fabricated patterns [98] to constrain the cell shape so that the partitioned regions 

remained consistent throughout the experiment. 

To efficiently correlate cofilin motility with dendritic spine shape, spines must be 

automatically segmented and classified.  Spine segmentation methods can be separated 

into two groups, classification-based [99] and centerline extraction based [100]–[104]. 
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The classification-based methods classify individual pixels into various groups such as 

spine, dendrite, or background [99]. The software NeuronStudio by Rodriguez et al. [99] 

utilizes the pixel distance to the nearest surface point as a feature in classification, 

however, this can generate spurious spine detection and it is sensitive to noise. 

NeuronStudio also requires manual input by the user before the segmentation process can 

begin. Centerline extraction based methods involve detecting the backbone or central 

region of dendrites and segmenting spines by their relationship to the central region.  

Traditional methods may experience issues when the dendrite width varies along its 

orientation.  In our previous work, the method [105] was used to detect a center region 

using gradient vector flow [106] instead of a thin backbone. However, this method does 

not completely capture the segmentation of a dendrite.  Instead, in this paper, we choose 

to build upon the method used by Basu et al.  [104] called 2dSpAn. This method uses a 

set of convolution kernels at varying angles to accurately segment a dendrite.  This 

method can compensate for varying dendritic spine widths.  However, the software 

requires user input of seed points for the kernels, does not consider dendrites with large 

curvatures, and may overestimate the size of the dendrite at the base of large spines.  In 

our work, we address each of these issues. 

Using segmented spine information, automated classification of shape type is 

critical in analyzing biological conditions.  Basu et al. [104] utilized a decision tree 

method to classify spines by using neck length, spine height, and head width. An issue 

with these features arises when the resolution is low because they are measured in only a 

few pixels.  This prompts an increased likelihood of measurement error and resulting in 
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misclassifications. The primary feature utilized by DendritePA is an adaption of gait 

energy image (GEI) [107]. GEI is a spatiotemporal gait representation that has been 

widely used to characterize human walking patterns and has previously been shown to be 

highly effective for recognition of different individuals.  DendritePA uses a spine energy 

image (SEI) along with other features in the classification of dendritic spine shapes such 

as mushroom, thin, and stubby.  Unlike previous spine classification methods, SEI allows 

for the use of spatiotemporal information in classification.   

As compared to previous work, the key contributions of our work are: a) Present 

DendritePA (protein analysis) software which is an automated, unbiased program that can 

be used to segment and track dendrite spines, analyze cofilin patterns in fluorescence live 

videos, and classify dendrite spine shape.  b) Develop for the first time an automated 

algorithm suite to quantify the movement of cofilin in dendrites and spines, and correlate 

it to spine shape using multi-channel fluorescence live videos.  c) Use spatiotemporal 

information to enhance the signal-to-noise ratio in videos and perform automated analysis 

of multiple fluorescent probes in time-lapse videos for tracking the local distribution of 

cofilin while simultaneously analyzing the effects on spine shape. d) Segment spines and 

dendrites using convolution kernels that can adapt to changing angles automatically. e) 

Automatically classify individual dendritic spine shapes using SEI and other features.  f) 

Examine the effect of cofilin activation using wild-type cofilin, cofilin-S3A, and cofilin-

S3D. Understanding the dynamics of cofilin motility and activation within sub-neuronal 

compartments is critical to understanding its function in regulating the morphological 

structure and functionality of synapses.  
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C. Materials and methods 

1. Animal protocol 

All animal care protocols and procedures were approved by the UC Riverside 

Animal Care & Use Program, which is accredited by AAALAC International, and animal 

welfare assurance number A3439-01 is on file with the Office of Laboratory Animal 

Welfare (OLAW). 

2. Mice 

Mice were obtained from Jackson laboratories, housed in an AAALAC-accredited 

facility under 12-h light/dark cycles and fed standard mouse chow. Food and water were 

provided ad libitum. All procedures were approved by the Institutional Animal Care and 

Use Committee at the University of California, Riverside. 

3. Hippocampal neuron cultures 

Cultures of hippocampal neurons were prepared from embryonic day 15 (E15) or 

E16 pups. Briefly, hippocampal cells were treated with papain (0.5 mg/ml) and DNase 

(0.6 μg/ml) for 20 min at 37ºC, mechanically dissociated, and then plated on glass 

coverslips that had been pre-coated with poly-DL ornithine (0.5 mg/ml in borate buffer) 

and laminin (5 μg/ml in PBS). The hippocampal cells were cultured in Neurobasal 

medium with 25 μM glutamine, 1% penicillin-streptomycin, and B27 supplement 

(Invitrogen, Carlsbad, CA), under 5% CO2/10% O2 atmosphere at 37ºC. Hippocampal 

neurons were transfected with ptdTomato and pcDNA3-EGFP-cofilin, pcDNA3-EGFP-
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cofilinS3A or pcDNA3- EGFP-cofilinS3D plasmids to express tdTomato and wt-Cofilin-

GFP, cofilin-S3A-GFP or cofilin-S3D-GFP at 10 days in vitro (DIV) using a calcium 

phosphate method, as previously described [81]. 

4. Live imaging 

Time-lapse imaging was performed on 14 DIV hippocampal cultures under an 

inverted fluorescent microscope (model TE2000; Nikon) with a 40x air Fluor objective 

and monitored by a 12-bit CCD camera (model ORCA-AG; Hamamatsu) using Image-

Pro software (Media Cybernetics). During imaging, the cultures were maintained in 

Hank’s solution supplemented with 1.8 mM CaCl2, 0.45% glucose, and 0.1% BSA at 

37°C and 5% CO2, and images were captured at 3 min intervals for 1 h. Cofilin was 

visualized by GFP fluorescence and dendritic spines were identified with tdTomato. 

Briefly, samples were encoded for blind analysis. In each experiment, 2-3 coverslips 

were analyzed for each condition. At least ten spiny pyramidal neurons were randomly 

imaged in each group. 

5. Development and use of DendritePA software.  

The DendritePA is designed in a modular manner with three parts: Dendritic spine 

segmentation, protein motility extraction, and cofilin-spine shape analysis.  A diagram of 

our workflow is shown in Fig 4.2.  DendritePA was written and developed with 

MATLAB 2016a programming environment. The MATLAB source code, a stand-alone 

executable version of this algorithm, and supplied test data are available online 

at http://vislab.ucr.edu/SOFTWARE/software.php. DendritePA.m is the main program of the code 

and requires the following MATLAB toolboxes: Statistics and Machine Learning, 

http://vislab.ucr.edu/SOFTWARE/software.php
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Bioinformatics, Computer Vision System, Image Processing, Mapping, and System 

Identification.  The standalone executable requires the installation of the 64-bit version of 

MATLAB Runtime R2016a (9.0.1) available 

at http://www.mathworks.com/products/compiler/mcr/. 

 

Fig 4.2. System Overview Diagram.  DendritePA is designed with three subsystems: 

Dendritic spine segmentation, Protein Motility Extraction, and Protein-Spine Shape 

Analysis.  Dendritic spine segmentation subsystem uses the red fluorescence channel to 

extract the foreground, central region, and spines.  Protein motility extraction subsystem 

uses green fluorescence channel to measure cofilin levels and transport in spines.  

Protein-spine shape analysis subsystem uses both channels and temporal information to 

relate spine shape with cofilin flow. 

6. Dendritic spine segmentation 

Dendritic spine segmentation is performed on the red color channel of our 

florescence data. This channel is stained with TdTomato, which fills the cell, providing 

structural information used for examining the cell morphology. Common issues with 

fluorescence microscopy include hazy background noise, lack of contrast, and bleaching 

of intensity over time [108].  The background may auto-fluoresce and structures such as 

http://www.mathworks.com/products/compiler/mcr/


84 

 

other dendrites and axons that are out of focus may affect the structures of interest.  To 

account for these issues, it is useful to preprocess a video.  Top-hat filtering has been used 

to reduce background fluorescence [109].  For this work, a top-hat filter using a disk with 

a radius of 50 pixels was used on each frame.  After completing top-hat filtering, a 3 by 3 

median filter was also used to reduce noise.  Previous methods have used histogram 

matching to correct for photo-bleaching.  This step is important for segmentation of 

dendritic spines in later frames as well as getting the correct intensity of fluoresced 

proteins. Every frame after the first was histogram matched using the first frame as a 

reference [110].  

7. Temporal maximum intensity projection 

Dendritic spine segmentation begins by estimating the foreground in each frame. 

The foreground in our case is any pixel brightly illuminated by fluorescent proteins in a 

dendritic structure. DendritePA starts by computing the maximum intensity projection 

using all frames in a video.  For a video consisting of Nv frames, this temporal maximum 

intensity projection (TMIP) is defined as follows: 

 ( , ) max ( , , ),
t

T x y I x y t=           (1) 

where I(x,y,t) is the image or frame at time t.  Since TMIP uses the maximum 

intensity of a pixel along the time dimension, a TMIP pixel will have a larger intensity if a 

structure strongly fluoresced at that location for any time in the video.  The pixel value 

will be minimal for any background structures such as dendrites or axons outside of the 

focal distance.  The TMIP is then max-min normalized producing filter whose values will 
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be used as weights for enhancing the signal-to-noise ratio in each frame.  For every frame, 

the TMIP is multiplied to the image as weights.  This image enhance procedure is 

summarized in the following equation:  

 
min

max min

( , )
'( , , ) * ( , , ).

T x y T
I x y t I x y t

T T

−
=

−
        (2) 

By preprocessing with a TMIP, structures that are brighter in the TMIP will be 

enhanced in each frame, while background structures such as axons or dendrites outside 

the depth of focus will be suppressed.  Since the data in the present frame is utilized, no 

artifacts will be generated from the bright areas in the TMIP. The TMIP, an original 

image, and a temporally enhanced image are shown in Fig 4.3.  TMIP is only applied for 

the segmentation step and not utilized in the cofilin analysis step. This is because it is 

undesirable to modify the intensity in such a way that would change the relative intensity 

differences between pixels.  An initial segmentation of the dendrites and spines can now 

be computed by using the Otsu’s method [29].  This initial segmentation is the foreground 

which can be used to extract the central region of the dendrite.  With the foreground 

computed, the contours are then acquired by removing all interior pixels of the foreground 

leaving only the outline. 
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Fig 4.3. Effect of preprocessing video frames. A) Temporal maximum intensity 

projection (TMIP) computed from an image sequence of dendrites. B) An original frame 

from the image sequence. C) An enhanced image generated by combining the original 

frame with the TMIP. D) Extracted foreground segmentation done on the original frame 

without TMIP. E) Foreground extracted after enhancement with TMIP. F) An overlay of 

foreground contours with (green outline) and without (red outline) TMIP on enhanced 

frame. This reveals that TMIP significantly improves segmentation of foreground. 
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8. Foreground and dendrite segmentation 

Upon computing the foreground, we segment the central regions or backbone of 

dendrites.  Past strategies have relied on basic skeletonization of the initial segmentation 

until only a thin backbone remain.  The skeleton of a foreground image (Fig 4.4A) is 

shown in Fig 4.4B.  However, this skeleton does not give the best representation of a 

dendrite and does not give data regarding the changing width of the dendrite.  Precise 

dendrite information is critical because numerous spine segmentation algorithms are 

dependent on accurately segmented dendrites.  In our previous work [93], we used the 

method outlined in [105] to find the central region.  This method used a modified gradient 

vector flow (GVF), in which vectors are orientated towards the center of a structure. 

Starting from every edge pixel, the algorithm follows the path of vectors until it 

encounters a vector greater than 90 degrees from the current vector.  Both these pixels will 

now be marked as a central dendrite pixel.  While this method is an improvement over 

skeletonization, it does not fully capture the outline of a dendritic spine as it will not detect 

the outer edges of a dendrite.  Another issue is that the algorithm will not detect central 

regions near large dendrites or crossing structures. This is because the GVF vectors area 

oriented in a spiral for these regions and will not be 90 degrees from each other, which 

causes an infinite loop as it traces the vectors.   



88 

 

 

Fig 4.4. Dendrite Segmentation. A) Foreground segmentation of one image. B) 

Skeletonization of the segmentation done by removing pixels from the peripheries until 

only an individual pixel remains. C) Diagram of piecewise linear approximation method 

used to automate dendrite segmentation. D) Dendrite segmentation using convolution 

kernels. E) Low pass filter output performed after the convolution step. F) Segmented 

foreground contours (green outline) and final dendrite segmentation (red) overlaid on to 

the original frame. 

For this work, we adapted the convolution kernel method of [104] called 2dSpAn.  

In this method, a foreground segmentation containing spines and dendrites is computed 

either with manual thresholding or automatic Otsu’s method [29].  The user specifies two 

points on the dendrite.  The angle of flow is computed based on the two points selected.  
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Based on this angle, a set of two 3 by 3 convolution kernels is selected.  Starting from one 

point, a convolution kernel is continuously applied until it reaches the other point.  Next, 

starting from the opposite point, the complementary convolution kernel is applied until it 

reaches the first.  The intersection of the two regions generated by the kernels is taken as 

the segmentation of the dendrite.   

Because the kernels are chosen by the original angle of flow, this method fails for 

dendrites with large curvature.  To automate this method and to account for large 

curvatures, we propose the following steps.  The foreground segmentation is skeletonized 

and trimmed.  The two endpoints of the dendrite skeleton that are furthest from each other 

are used as the first two seed points for the kernel method.  Additional seed points can 

now be computed using piecewise linear approximation as shown in Fig 4.4C.  A line 

connecting the two current seed points is computed and the dendrite skeleton pixel that is 

furthest from this line is evaluated.  If the distance between the dendrite skeleton pixel and 

the closest point on the line is greater than distance d (which is set to 15 pixels for our 

experiments), then this skeleton pixel will be used a new seed point.  The seed point 

generation step is repeated for all pairs of seed points until no more seed points can be 

generated.  This allows the dendrite to be computed in a piecewise process, which 

accounts for large curvature in the dendrite.  Once all seed points are found, the 

convolution kernel method of 2dSpAn is used to generate a dendrite segmentation as 

shown in Fig 4.4D. 

Another issue with 2dSpAn is that for spines with large bases, a portion of the 

spine will be included in the dendrite segmentation.  Also, by breaking the dendrite into 
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piecewise segments, regions at the seed points will not be segmented perpendicular to the 

angle of flow.  By applying a low pass filter to the dendrite segmentation contour, the 

method smooths contour of segmentation.  This repairs both types of regions by reducing 

the high-frequency changes in the dendrite segmented contour as seen in Fig 4.4E.  Fig 

4.4F shows the contour of the foreground (green) and the segmentation of the dendrite 

(red) overlaid onto the original image.  

9. Spine segmentation and declumping 

Once a segmentation of the dendrite is obtained, DendritePA begins the spine 

segmentation process. Using the generated backbone, a distance map is computed [111].  

This distance map measures the distance of each foreground pixel to the closest dendrite 

pixel.  Only pixels in the computed foreground contour are considered dendritic spine 

candidates. Using the inner distance map and the foreground contour, all regional maxima 

are used as possible dendritic spine detections.  These regional maxima correlate with the 

furthest spine pixels from the central regions of the dendrite and are considered seed 

points for spine detection.  All contour pixels that are closer to the seed point than the 

closest backbone pixel are considered a part of that spine as shown in Fig 4.5A.  The end 

points of this contour are found and a line is drawn to connect them.  This line represents 

the interface or boundary between the spine and its dendrite.  The contour is now filled 

and will be used as the segmentation of the spine as displayed in Fig 4.5B. 



91 

 

 

Fig 4.5. Spine Segmentation.  A) Diagram of dendritic spine contour extraction using a 

seed point. This contour is used as the initial segmentation of a dendritic spine. B) Spine 

segmentation (blue) and foreground contour (red) overlaid onto the image. C) Images of 

procedure to declump a segmented dendritic spine.  Marker-controlled watershed 

composite image (top left), boundary generated by watershed algorithm (top right), 

declumped segmentation (bottom left), and contour of declumped segmentations overlaid 

onto image (bottom right). D) Final spine segmentation displaying split and declumped 

spines. 

While many spines will be properly segmented, some spines may be merged due to 

their close proximity to each other. Spines that are slightly touching at the base can be 

split by computing the distance to dendrite of every contour pixel.  We trace these values 

and detect if a regional minimal distance is between two regional maximal distances.  If 

the minimal distance is less than half of either maxima, draw a dividing line form the 
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minima to closest dendrite pixel.  For spines with severe overlap, we propose a marker 

control watershed method to declump the dendritic spines.  For each spine region, 

examine the intensity and detect regional minima and maxima.  If the centroid of two 

maxima are not parallel to the dendrite, connect the maxima with a line.  This line must 

not cross any minimal regions.  The same is done for any pair of regional minima as long 

as the line does not cross any maximal regions.  Using the spine segmentation, connected 

maxima, and connected minima, a composite image is generated to serve as the markers 

for the watershed method.  Background and regional minima are set to a low value of 

zero, regional maxima are set to a high value of 255 and the rest of the spine segmentation 

is set to a middle value.  The composite image is inverted and the watershed will begin 

filling at the regional maxima.  As the algorithm continues, the middle values will begin to 

form the watershed boundaries while taking the regional minima into account.  The 

regional maxima were connected to reduce the number of watershed boundaries, while 

connected regional minima were used to aid in the shape of the boundary.  The generated 

watershed boundary is applied to the spine mask, separating the segmentation in two. The 

declumping process is illustrated in Fig 4.5C and the final segmentations after splitting 

and declumping are shown in Fig 4.5D. 

10. Cofilin motility extraction 

Cofilin motility extraction is performed exclusively on the green channel of our 

fluorescence microscopy videos. The channel shows GFP-labeled cofilin, (wt)-Cofilin-

GFP, which allows for cofilin density to be visually analyzed. In order to analyze the 
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motility of cofilin, at least two adjacent frames are needed. Because individual cofilin 

molecules exist at the subpixel level and cannot be resolved at our (40x) magnification, 

they cannot be tracked individually. Since the green intensity channel tracks the GFP-

tagged cofilin proteins, the intensity is directly proportional to the amount of cofilin in the 

pixel.  While the visual changes in cofilin density are difficult to examine by eye, the 

DendritePA is able to analyze this data by using spatiotemporal information in the red 

structural channel.  Utilizing the previous dendritic spine segmentations, DendritePA can 

estimate the amount of cofilin contained in these structures.  The framework starts by 

performing data association of segmented spines in neighboring frames to produce 

dendritic spine tracks.  Association is performed by choosing the segmentation with the 

largest percentage of overlap with an existing track.  The ratio of overlap is sufficient as 

the spines are attached to a fixed location on the dendrite.  Most of the movement in 

dendritic spines is attributed to sway and shape change, whereas the sway of the dendrite 

itself is negligible. A new track may be created if the segmentation has little or no overlap 

with a track. Dendritic spines may not be detected in every frame as they may shrink into 

the dendrite or sway in and out of the z-axis, thereby going out of view.  Because of this, a 

spine segmentation may be associated with any existing track if there is overlap with the 

last known location. 
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11. Cofilin flux 

Since we are concerned with the flow of cofilin through sections of a cell, it is 

advantageous to relate this concept to fluid dynamics. The differential form of the 

continuity equation in fluid mechanics is written as: 

 ( ) ,div f s
t




+ =  such that ,f v=         (3) 

where  is the density of the fluid particles, f is the flux of the fluid through a 

boundary, v is the velocity, and s is a source term.  To find the change in the amount of 

cofilin in the spine, we want to solve for the div(f) which is the “flux density” and 

represents the amount of flux entering or leaving a point. In florescence microscopy, 

fluorescence intensity levels are proportional to the amount of tagged proteins in a region.  

This leads to the follow proportionality formula: 

 
( , ) ( )

( ) ( , , ),i

x y S t

t i x y t 


 =             (4) 

where pi(t) is the integrated density in spine S(t) at time t, and i(x,y,t) is the 

intensity of pixel (x,y). Using integrated density accounts for changing spine area and is 

commonly used for analyzing fluorescence microscopy images [112].  It can be assumed 

that cofilin neither produced nor consumed in the spine.  This allows the source term s to 

be set to zero for all calculations of flux.  Also as there is only one boundary between the 

spine and the dendrite, cofilin flux must be either in or out of this boundary. Solving for 

div(f), the continuity equation becomes: 
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Cofilin flux and density can now be compared by examining the intensity levels in 

the green cofilin channel.  An increase in the intensity in a spine represents an increase in 

the cofilin density at the spine and a flux of cofilin into the spine.  Conversely, a decrease 

in the intensity represents a decrease in cofilin density as well as a flux of cofilin out of the 

spine. 

12. Cofilin-spine shape analysis 

After estimating the motility of cofilin and dendritic spines morphology, we 

correlate their effect on one another. The initial step is to automatically classify the shape 

of the dendritic spine using machine learning. To do this, we obtain the spine energy 

image representation of a spine. Generating the SEI starts by cropping the binary 

segmentation of each spine in a track.  All binary spines images are then transformed so 

that the spine-dendrite boundary is aligned with the x-axis.  These aligned cropped 

images are resized into 10x10 images.  Given the registered binary images Bt(x,y) at time 

t for a spine track of N frames, the spine energy image can be computed as follows: 

1

1
( , ) ( , ).

N

t

t

S x y B x y
N =

=                                (6) 

An example of the aligned binary images and SEI are shown in Fig 4.6. Since the 

SEI images are 10x10 pixels, the dimension of the feature vector is 100, which leads to a 

problem with the curse of dimensionality.  This feature vector needs to be reduced while 
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minimizing the loss of information. Recent studies [113], [114] have shown that local 

binary pattern applied to Gait Energy Image can reduce dimensionality.   By applying 

uniform LBP [115] to SEI, the feature vector is reduced to 59 dimensions. 

 

Fig 4.6. Spine energy image. Examples of aligned binary images and spine energy 

image for each class stubby, thin, and mushroom shaped dendritic spines.  The aligned 

and resized spine segmentations of a single spine track are combined to produce a single 

spine energy image (images in the furthest right column).  This image is a representation 

of the motion of the spine for the image sequence. 

While SEI has been shown in our previous work [93] to classify spine tracks well, 

it cannot classify individual spine segmentations by itself. To classify individual spine, 

additional features must be used.  Before being passed to a classifier the SEI feature 

vector is combined with the area, height, width, and average intensity of each spine.  

These features were used to train three classifiers: (1) discriminant analysis (DA) 

classifier, (2) k-nearest neighbor (KNN), and (3) error-correcting output codes (ECOC) 

multiclass model.  The discriminant analysis classifier trains by fitting a Gaussian 

distribution to each class.  New data is compared to each class distribution and assigned 
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to the class with the lowest misclassification cost [71]. A k-nearest neighbor classifier 

labels a new observation by comparing it to the k-nearest training samples in a multi-

dimensional space [37].  k = 5 was used for all experiments. ECOC is a classifier reduces 

a multiclass classification problem into a set of L binary classifiers.  DendritePA uses a 

support vector machines (SVM) classifier for every pair of classes, L = 3.  A new 

observation is assigned to the class that minimizes the losses of the L binary learners [72].   

D. Results 

Our data set for segmentation consists of seven live fluorescence videos, which 

contain 3428 spines across all analyzed frames.  TdTomato was used to label the entire 

structure of the cell (dendritic structural information) and wild type (wt)-Cofilin-GFP was 

used to label cofilin (cofilin distribution information). Videos varied in length from 39 

frames and were collected at intervals varying from every 30 seconds to 60 seconds over 

approximately 20 minutes. All videos were collected at 40x magnification and were 128 

by 128 in image resolution.  To improve image quality, all frames were resized to 512 by 

512 with bicubic interpolation [116]. Most of the segmentation algorithm parameters 

were kept constant for each video, except a multiplier for Otsu’s computed threshold 

which ranged from 0.2 to 0.4.   

Dendrite segmentation was validated using the first frame of each of the seven 

videos.  An expert in the field labeled each frame by selecting only regions that are a part 

of the dendrite and not the spines.  Tests were performed using a GVF generated 
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backbone, 2dSpAn’s convolution algorithm with piecewise linear approximation, and 

DendritePA after using a low pass filter.  Results are obtained on a pixel detection basis 

and they are shown in Table 4.1.  While DendritePA has a slightly worse precision, it has 

a much better recall. 

 

Table 4.1. Dendrite segmentation results. Segmentation results for dendrites using 

GVF, 2dSpAn, and DendritePA. 

Ground-truth for dendritic spine was created by labeling every spine in every 

frame manually by two experts in the field.  In order to reduce user bias, the decision tree 

shown in Fig 4.7 was used as a guideline during ground-truth labeling. For comparison, 

our spine detection method is tested against the NeuronIQ software [117].  NeuronIQ was 

chosen because it is a fully automated dendritic spine segmentation software.  2dSpAn and 

NeuronStudio both required series of manual inputs for each frame, making them 

inappropriate for comparisons.  While NeuronIQ was able to segment without 

preprocessing, using a TMIP to preprocess the videos improved segmentation results.  A 

spine is considered detected if the segmentation has at least 50% overlap with the ground-

truth data. Table 4.2 shows the results of segmentation for DendritePA, NeuronIQ with 

TMIP preprocessing, and NeuronIQ alone.  NeuronIQ alone seems to produce many false 

positives.  By using TMIP to preprocess the videos, the SNR is improved allowing 

NeuronIQ to perform better. DendritePA was able to achieve comparable recall, but could 
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greatly improve precision as it has nearly half as many false positives. Because the 

classification of spines is dependent on the quality of their segmentations, only true 

positives were passed to the tracking and classification steps.  

DendritePA was also run without bicubic interpolation and compared to ground-

truth sub-sampled at 128 by 128 resolution.  Using the original resolution (128 by 128), 

DendritePA with TMIP had a precision of 59.00% and recall of 16.09%.  These results are 

noticeably worse when compared to DendritePA with bicubic interpolation.  To show that 

bicubic interpolation does not have a major effect on cofilin analysis, we computed the 

average intensity of cofilin in dendritic spines (green channel) for both 128 by 128 and 

512 by 512.  The average values for seven wild-type videos were 0.78 ± 0.13 for the 

original resolution and 0.76 ± 0.13 for the bicubic interpolation.  The values were very 

similar between the two scales of resolution, and the standard deviation was identical.  

Also, because we are only interested in relative change of intensity compared to the 

previous frame, we do not require exact intensity values if the relationship between frames 

is maintained. 
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Fig 4.7 Ground-truth decision tree. Decision tree for generating ground truth of 

dendritic spine segmentation and classification.  Spines in images were manually labelled 

(to be used as ground truth), using this decision tree to reduce bias and improve 

reproducibility. Spines were marked if they satisfied the conditions of the stubby, thin, or 

mushroom shapes. 

 

 

Table 4.2. Spine segmentation results. Segmentation results for DendritePA, NeuronIQ 

with TMIP, and NeuronIQ alone. 
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Classification of spines was done with 10-fold cross validation by partitioning the 

data into 10 equal sets.  Each set is used as the test set once while the other 9 are used for 

training.  The experiments were repeated 20 times by randomly shuffling the dataset so 

that the sets are randomly generated.  Each spine was classified as stubby, thin or 

mushroom. While DendritePA is able to classify other phenotypes such as branched 

dendritic spines, it requires a training library with sufficient examples of the class. 

Because our data did not have enough branched spines, we focused our study on the three 

most common phenotypes [88], [118], [119]. Results are compared to a decision tree 

method that uses spine height and width features.  Table 4.3 displays the classification 

results.  The three classifiers using the proposed features outperform the traditional 

decision tree method by over 20%.  The decision tree method was sensitive to small 

measurement errors at this resolution, while our proposed method is robust due to the 

spatiotemporal information in the spine energy images.  While the classification rate of the 

classifiers performs well with all videos, a subset of videos was used to build the classifier 

used in later sections. Table 4.4 displays a confusion matrix of the three classifiers for 

videos 1-7 and Fig 4.8 shows the receiver operating characteristic curve (ROC) of the 

three classifiers for the same videos.  ROC curves are useful in assessing the performance 

of an algorithm’s ability to detect an object.  The larger the area under the curve (AUC), 

the better the classifier is at classifying the specific spine shape.  From the Table 4.3 and 

the ROC plots, KNN slightly out performs the ECOC and DA classifiers.  
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Table 4.3. Classification results. Classification results on ROIs 1-7 using DA, KNN, 

ECOC, and manual decision tree. 

 

 

 

 

Table 4.4. Confusion Matrices. Confusion Matrices for A) Discriminant analysis, B) K-

nearest neighbor, and C) Error-correcting output codes. 
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Fig 4.8. ROC Plots. Receiver operating characteristic (ROC) curves for stubby (blue 

curves), thin (red curves), and mushroom (yellow curves) shaped spines. The ROC plots 

illustrate the ability of each classifier to distinguish the specific class when varying a 

discrimination threshold. A larger area under the curves (AUC) represents a better 

classifier. A) Discriminant analysis (DA) classifier. B) K-nearest neighbor (KNN) 

classifier. C) Error-correcting output codes (ECOC) classifier. K-nearest neighbor 

classifier had the largest AUC, proving to be the most accurate. 
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Upon closer examination of the SEI as shown in Fig 4.9, the SEI can be sorted 

visually into their mode spine class.  Stubby spines tend to have a flat uniform base and a 

sharp apex.  Thins have smaller middle regions and are blurry do to swaying over time.  

Mushrooms are round and have smaller bases.  Fig 4.9 also displays SEIs that were 

misclassified.  SEI seem to be commonly misclassified as stubby if they are triangular, as 

thin if they blurry or have an unusual base, and as mushroom if they are more circular. 

 

Fig 4.9. SEI classification examples. Each row displays spine energy images (SEI) that 

were classified by DendritePA as stubby, mushroom, or thin.  The last two columns 

represent misclassified SEI, where the actual class of the spine track is shown below each 

SEI. 
 

1. Cofilin conditions and spine shape 

Three videos of S3A and three videos of S3D were collected using florescence 

microscopy. Each video has 40 frames and were captured at 40x magnification with 128 

by 128 pixels.  Like the wild-type videos, all S3A and S3D frames were resized to 512 by 

512 using bicubic interpolation. TdTomato was used to label the actin cytoskeleton that 
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make up the structure of the spine and CofilinS3A or CofilinS3D was used to label cofilin 

proteins. Visual observations of S3A show a relatively even distribution of stubby, thin 

and mushroom shaped spines.  The density of spines were uneven across the video with 

some regions very dense and others less dense.  For S3D, most spines were mushroom or 

stubby and had mild spine density.  

DendritePA was used to segment and analyze videos showing the dendrite spines 

containing wt-cofilin, cofilinS3A, and cofilinS3D.  A discriminant analysis classifier built 

with the ground truth was used to classify the data.  Fig 4.10A shows the percentage of 

each spine class for the wild-type cofilin, cofilinS3A, and cofilinS3D videos.  These 

percentages were significantly different (P < 0.0001 using Chi-squared test) and show that 

dendritic spine shape can be altered by introducing exogenous cofilin. For the case of the 

wild-type condition, most spines are stubby and mushroom, which indicate that spines are 

mostly mature for this condition. With the activation of cofilin in the cofilinS3A 

condition, there is a noticeable increase of thin spines and a decrease in mushrooms.  This 

is consistent with the expectation that cofilin breaks down the F-actin in spines. With more 

cofilin being active the spines become less mature.  Interestingly, we see that in the 

cofilinS3D videos there is a significant decrease in the number thin spines, while the ratio 

of stubby and mushroom spines remains the same.  This indicates that by suppressing 

cofilin activation, it may be possible to induce more mature spines.  Fig 4.10B-4.10D 

shows the percent of cofilin flux for each spine class across the three cofilin mutants.  For 

all three spine classes, the ratio of cofilin flux moving in (cofilin density increases in 

spine, shown in green) or out of spines (cofilin density decreases in spine, shown in red) is 
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consistent for all conditions and did not show significant difference (thin p-value = 0.84, 

stubby p-value = 0.60, mushroom p-value = 0.89).  This indicates that the type of 

exogenous cofilin has little effect on the flow of cofilin.  Also, because the ratio of in and 

out flux is constant within a spine class regardless of cofilin condition, cofilin flux has less 

importance in spine type than cofilin activation.  In the time frame we examined (20 

minutes), we did not notice a difference in the rate in which spine shape changed based on 

cofilin type.  Although this was not our focus, it may be of interest to study in the future 

with longer videos. 

Although endogenous cofilin is present in all three groups, the use of different 

exogenous cofilin is the only variable that is changed between the conditions. These 

exogenously expressed mutant forms of cofilin will affect spine morphology by competing 

with endogenous cofilin for binding to several actin proteins and enzymes. This is done to 

ensure that changes are due to only one alteration in the experimental setup.  Because 

plasmid transfection efficiency is a concern, we measured the mean expression levels in 

all videos.  The mean fluorescence intensity of cofilin S3A-GFP was 20.66 ± 1.20, 

cofilinS3D-GFP was 38.06 ± 12.54, and wt-cofilin was 23.29 ±7.94.  The groups were 

shown to be not significantly different when compared using one-way ANOVA followed 

by Tukey’s multiple-comparison post-tests. 
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Fig 4.10. Cofilin-Spine Graphs.  A) Bar graph of the percentage of detected spines 

classified as mushroom (orange), thin (red), stubby (blue) for each condition: WT, S3A, 

and S3D. The percentages for each condition were significantly different (P<0.0001 

using Chi-squared test). B-D) Bar graphs of the flux direction computed with integrated 

density for B) Thin, C) stubby, and D) mushroom spines.  For all cases, the percentages 

were not significantly different using Chi-squared analysis (thin p-value = 0.84, stubby p-

value = 0.60, mushroom p-value = 0.89), indicating that cofilin flux has less importance 

on spine type. 
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Chapter 5 Conclusions 

Due to developing technologies, cell biology has become a rapidly advancing and 

complex field of research.  Managing the amount of data available to researcher can be 

daunting.  While the introduction of bioinformatics tools and software to cell biology 

applications have greatly reduced the difficulty, there is still an urgent need to develop 

advance techniques, algorithms, and technology to make full use of the data.  In this work 

we have presented three video bioinformatics software packages that examine various 

types of live microscopy data.   

In chapter 2, we introduced StemCellQC, video bioinformatics toolkit for 

analyzing cell processes, evaluating cell quality, and discovering biomarkers. It is 

designed for use with pluripotent stem cell colonies in culture and is adaptable to other 

cell types. It can be used retrospectively or on-the-fly to solve numerous problems. There 

are at least four applications for StemCellQC. First, core facilities that culture pluripotent 

cells for distribution to research labs could monitor cell quality using non-invasive 

morphological tools to guarantee that distributed cells meet an acceptable uniform 

standard from day-to-day. This is especially important when the results of a research 

study may ultimately affect a patient’s health. Second, StemCellQC can serve as a quality 

control tool in future clinics that deliver therapies based on pluripotent stem cells. Such 

clinics will need to maintain and differentiate cells that meet future FDA criteria for 

transplantation to patients. A record of cell quality produced by StemCellQC would be an 

important part of a patient’s medical record and could be mined after cell transfer to 
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patients to better understand those features that work best for patient treatment. Third, 

hPSC can differentiate into specific cell types that can be used for studying genetic 

disorders, such as Huntington’s disease [120]. StemCellQC can monitor the behavior of 

cells/colonies in disease-in-a-dish models to determine how cells respond to drug 

treatments [121]. Fourth, StemCellQC could be used in laboratories that perform drug 

testing or that monitor chemical toxicity. Multiplexing data enhances the discovery of 

toxicants and biomarkers. hESC provide an excellent model for prenatal development, a 

process that cannot be studied experimentally in humans [24] and which is generally 

sensitive to environmental chemicals [122]. 

We are currently using StemCellQC with other pluripotent cell types and 

experimental conditions and found that it performed very well. We have found clear cut 

effects on processes such as growth, motility, death and morphology using StemCellQC 

with cells grown in optimal and suboptimal media, indicating StemCellQC will be useful 

for recognizing culture conditions that are not satisfactory. As more treatments are used, 

we anticipate that other processes or effects may be observed. In the future, StemCellQC 

software can be enhanced by adapting it to single cells and including features that 

correlate to cell processes such as stress, differentiation, and pluripotency. More 

classifiers can be added, and additional biomarkers will likely be discovered with new 

applications of the software. 

In chapter 3, we present a machine learning software for the 3D reconstruction of 

phase contrast images called PhaseR4D.  By using fluorescence data as the ground truth, 
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the system was able to train various regression models to compute a depth map.  From 

this depth map, a 3D reconstruction can be generated which can detect objects that are 

unlabeled in fluorescence.  Unlike other 3D phase contrast methods, the proposed system 

does not require custom hardware. Also, unlike other methods, our system only requires 

one angle to be imaged and it can be used by any research group with a microscopy 

system capable of imaging in both phase and fluorescence.  Once trained, PhaseR4D may 

be used for 3D reconstruction phase contrast volume without the corresponding 

fluorescent volume.  This is highly beneficial into showing 3D phase contrast images 

over time, as cells do not need to be fixed for fluorescent labeling.  In addition, 3D 

features are shown to be capable of automatically classifying biological conditions such 

as toxicological treatments inducing alterations in cell morphology and behavior.  

Toxicological screening using animal systems are considered unethical and highly 

regulated in some countries. Therefore, non-invasive evaluation of cancer-causing agents 

(environmental toxicants such as tobacco, etc.) or anticancer drugs on cells in vitro is 

beneficial. Expanding feature profiling to 3D features can improve pattern recognition 

algorithms. Also, it can aid in the detection of morphological changes not visible in 2D, 

such as height, volume, and shape index, and functional features such as degree of cell-

to-cell contacts. PhaseR4D has the ability to monitor the progression of 3D cultures over 

time, and can be applied to automatically classify experimental conditions, or ensure 

culture quality. In conclusion, our open-access software can advance science on many 

fronts, facilitating the paradigm shift from 2D to 4D (3D over time) imaging and 

analytical methods. 
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In chapter 4, we present a pattern recognition software called DendritePA to 

analyze protein trafficking in neuronal florescence microscopy videos.  Using 

spatiotemporal information, the DendritePA is able to enhance low contrast/low resolution 

images by computing a temporal maximum intensity projection which is used to improve 

the signal-to-noise ratio in every frame.  Dendrite spines were automatically segmented 

using an improved kernel convolution method.  Temporal dynamics of spines were used to 

generate a spine energy image, which is useful in classifying different spine shapes.  

Multiple classifiers were used to classify individual spine segmentations as stubby, thin, 

and mushroom. Lastly, we were able to estimate cofilin flux patterns and correlate them 

with the changing spine morphology over time. Mushroom/stubby spine shapes are 

recognized as mature/stable spines, whereas thin spines are classified as 

immature/unstable. By examining S3A and S3D conditions of cofilin, our data suggests 

that the level of activation of cofilin greatly affects the shape of spines.  Highly activated 

cofilin seems to lead to structural instability of the spines. This is consistent with the actin-

severing/remodeling function of cofilin. 

Future advancements of video bioinformatics of living cells would include 

improved segmentation and visualization of cellular structures and processes.  Better 

segmentation and feature extraction would greatly improve confidence in classification, 

regression, and prediction results.  This is applicable at different scales including colonies, 

individual cells, and proteins.  Another avenue of research could focus on developing 

algorithms related to data of high spatial and/or temporal dimensions.  Such data would 

include 3D, time-lapse, and microscopy fusion.  Each provides unique information not 
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present in individual microscopy images.  3D can provide additional structural 

information, time-lapse can provide details of dynamic biological events, and fusing 

multiple microscopy datasets can help analyze the correlation between separate biological 

processes.  Lastly, combining all three data-types could provide a more complete picture 

of cellular dynamics and would be highly advantageous to modern researchers.
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Appendix 

S1 Fig. (A) Diagram showing workflow used to develop StemCellQC™. (B) Diagram 

showing feature selection methods for classification. 

 

S2 Fig. Decision tree showing method for classifying hESC colonies into healthy, 

unhealthy or dying groups. 

Red arrows show decisions resulting in classification of a colony as unhealthy or dying, 

green arrows show decisions resulting in classification as healthy, and black arrows 

indicate points where the classification process was continued. 

 

S3 Fig. Ground truth verification of colony segmentation using ImageJ to manually 

segment 6 representative healthy, 6 unhealthy, and 6 dying colonies. 

(A, B) Normalized area and perimeter values for healthy colonies extracted by 

StemCellQC compared to ground truth using ImageJ. 2-way ANOVA revealed no 

significant differences. (C, D) Normalized area and perimeter values for unhealthy 

colonies extracted by StemCellQC compared to ground truth using ImageJ. 2-way 

ANOVA revealed no significant differences. (E, F) Normalized area and perimeter values 

for dying colonies extracted by StemCellQC compared to ground truth using ImageJ. 2-

way ANOVA revealed no significant differences, except for a portion of the normalized 

area of dying colonies. This corresponds with slight over-segmentation of software due to 

detection of cellular debris ejected from dying colonies after their death at 30hours (* = P 

< 0.05). 

 

S4 Fig. Relationship between features and cell processes. 

 

S5 Fig. Visual descriptors of extracted features related to area. 

 

S6 Fig. Visual descriptors of extracted features related to morphology and area. 

 

S7 Fig. Visual descriptors of extracted features related to motility. 

 

S8 Fig. Visual descriptors of extracted features related to apoptosis. 

 

S9 Fig. List of Extracted Features and Definitions. 

 

S1 Video. Average intensity versus perimeter running plot shown for all individual 

healthy (green), unhealthy (blue), and dying (red) hESC colonies. 

 

S2 Video. Mean-squared displacement versus area running plot shown for all individual 

healthy (green), unhealthy (blue), and dying (red) hESC colonies. 

 

S3 Video. Phase contrast video of a representative healthy colony with the segmentation 

outlined in white. 
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S4 Video. Protrusions feature video of a representative healthy colony with the 

protrusions outlined in red. 

 

S5 Video. Bright-to-total area ratio feature video with the bright dead cells of a 

representative unhealthy colony highlighted in white. 

 

S6 Video. Solidity feature video of a representative dying colony with the convex hull 

shown in white and the colony segmentation outlined in red. 




