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ABSTRACT 

This paper presents a methodology for the analysis of activity 

patterns based on a classification procedure in which the set of 

measurements that define human movement is represented by an N­

dimensional pattern vector. Transformation techniques are then 

applied to the pattern vectors to develop a taxonomy for the pattern 

space. Subsequent inversion of the transformed patterns yields 

representative activity patterns and leads to attendent transformation 

of the results of analysis to the real world. Pattern recognition 

theory is demonstrated to be an effective means by which complex 

activity/travel patterns can be transformed into a structurally simpler 

space for purposes of analysis. 



1. INTRODUCTION 

The analysis of activity patterns is a classification problem in 

which the input is a set of measurements that define human movement, and 

the output is the classification of this movement into a finite set of 

either 11 natural 11 or predetermined categories. The time-geographic 

approach to human movement (Hagerstrand, 1974) has been adapted in the 

depiction of human activity as a continuous, piecewise smooth surface in 

the soace/time continuum. Since the attendant dimensionality of such a 

space-time-activity representation is quite large, it becomes necessary 

to reduce the complexity of the measurement vector while maintaining the 

corresponding information content for pattern comparison. 

Pattern recognition theory has been utilized in several fields as a 

method of image analysis and character recognition (Andrews, 1971). It 

is convenient to conceptualize the process in three successive 

stages--(1) pattern soecification, (2) feature extraction, and (3) 

pattern classification. The three-dimensional representation of human 

activity is first decomposed into corresponding two-dimensional temporal 

patterns, then further ,reduced to dual pattern vectors through sampling 

the temporal variation. Various transformation techniques may then be 

utilized to construct a simpler feature space with reduced 

dimensionality, which enables the third stage to be performed in a more 

efficient, high information, reduced space. Subsequent inversion of the 

classification results leads to the identification of representative 

patterns. 

2. THEORETICAL DEVELOPMENT 

In this section some of the procedures of pattern recognition theory 

that appear to be of use in activity pattern analysis are outlined. A 
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more detailed and formal treatment of these (and other) procedures is 

presented by Young and Calvert (1974), on which much of the material in 

this sec ti on is based. The set of measurements that define human 

movement is represented by an N-dimensional vector ~, which is labelled 

a "pattern vector." The components of x are the N measurements and 

the taxonomy of activity patterns into "natural" categories depends on 

the vector ,l, i.e., 

C = o (,l) (1) 

where C represents the category to which !_ belongs, and o(~) is the 

decision function. The set of all possible values that x may assume is 

defined by Qx' the activity pattern space. For example, Qx may com­

prise all points in time and space that an individual could reach from 

some arbitrary starting point during a continuous twenty-four hour period. 

Activity pattern analysis may then be described as finding a rule that 

divides the pattern space nx into a set of decision regions. Since the 

values of !_, are determined by the set of N measurements that represent 

human movement, measurement selection defines the pattern space nx. 

The dimensionality of the measurement vector will, in general, be 

large (e.g., ~ may consist of the spatial location and activity type 

participation of the individual at each 10-minute interval throughout a 

24-hour period) and may span information superfluous to efficient 

classification of activity patterns. Consequently, it is advantageous to 

reduce the complexity of the measurement vector ~ while retaining as 

much of the information content of x relevant to its classification as 

possible. This may be accomplished by dividing activity pattern analysis 

into two sequential stages--feature extraction and classification. This 

process is shown schematically in Figure 1. 
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The feature extractor is a linear or nonlinear transformatio~ that 

maps the N-dimensional vector x in nx into an M-dimensional vector 

( 2) 

where M < N and~ hence o-1(~) is not unique, i.e., some information 

is lost in the feature extraction process. The selection of o must be 

based on some combination of preserving the information content of ~ 

while decreasirig its dimensionality. 

The simplest type of feature extractor is the linear transformation 

defined by the MxN matrix T, 

z = Tx (3) 

where T has rank M. The feature soace n
2 

in this case is a subspace 

of nx. 

A special case of the linear feature extractor defined by 

Equation (3) is 11 feature selection, 11 in which the M features selected 

are a subset of the N measurements. For this case each of the ~ rows 

of T consists of a non-zero element valued at one and (N - 1) 
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zero-elements, with the positions of the one-elements determined a priori 

by some criterion. A more systematic way of selecting T, given M, is 

to minimize the mean-square error in approximating the N-dimensional 

activity pattern vector !, by the set of M vectors that span n
2

• 

This can be achieved by the expansion of ~ in terms of a set of 

eigenvectors associated with the covariance matrix, known as the 

Karhunen-Loeve expansion (see e.g. Young and Calvert (1974)). Then, the 

linear feature extractor is defined by 

( 4) 

with 

{5) 

where l!,_1, •.• ,l!., M are the eigenvectors associated with the M largest 

eigenvalues of the covariance matrix. 

While the linear extractor based on the Karhunen-Loeve. expansion is 

optimal in the sense of maintaining the information content of !,, 

implementation is hindered by the need to diagonalize rather large 

covariance matrices. Eigenvectors defined by other systems may be useful 

in defining a feature selection rotation matrix and are readily 

implementable. Two such transforms, Fourier and Walsh, are promising as 

feature extractors in activity pattern an al ysi s for several reasons: 

1) rapid implementation algorithms are available--Fast Fourier (Cooley 

and Tukey, 1956) and Fast Walsh (Whelchel and Guinn, 1968) Transform 

algorithms, 2) an information theoretic justification has been advanced 

(Pearl, 1971) based on rate distortion theory and 3) the transforms can 

be applied to continuous functions, x(t). 
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The well-known Fourier sinusoidal transforms are based on 

transformation of x(t) in terms of an infinite series of orthogonal 

trigonometric functions. The corresponding feature vector z in this 

case would have as components the first M coefficients an, bn of 

the Fourier expansion. 

Alternatively, the Walsh transform is based on binary functions 

(known as Walsh functions) which form a complete basis and are defined by: 

cal ( i , e ) = wal ( 2i , 0 ) l - 1/2 ~ e < 1/2 
s al ( i , e ) = wal(2i - 1, e ) 

wal ( 2i, e ) = wal (2i - 1, e ) = o 
' 

( 6) 

e < -1/2 or e > 1/2 

where the difference equation defining wal(k,e) is 

\'Jal (2k + q, e) = (-1)2k+l [wal (k, 2 0 + 1/2) (7) 

+ (-l)k+q wal (k, 2 e - 1/2) 

with 

-- {al,, w( o, e ) 
-1/2 ~ e < 1/2 

e < 1 /2 , e ~ l /2 
(8) 

and 

q=O,l, k=O, 1, 2, .•• (9) 

The corresponding Walsh-Fourier series expansion of x(t), defined over 

-1 /2 < t ~ 1 /2 i s 

where 

00 

x(t) = a
0 

wal(O,t) + :E [ac(n) cal (n,t) + as(n) sal (n,t)J (10) 
n=l 

1/2 

a(O) = J x(t) dt 

-1/2 
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1 /2 

ac(n) = J x ( t) ca 1 ( n, t) dt (12) 

-1/2 

1/2 

as(n) = J x ( t) s a 1 ( n, t) rlt ( 13) 

-1/2 

The corresponding feature vector z would have as components the first 

M coefficients a(O), ac(n), as(n). 

The three-dimensional (time-snace-activity type) activity pattern can 

be depicted by two corresponding images in two-dimensional space. A 

space/time continua and an activity/time continua detail individual 

location and activity participation over time and become comnlementary 

pattern vectors for feature extraction. 

An example of such a representation for a hypothetical activity 

pattern is shown in Figure 2 where the activity pattern is decomposed 

into its projections on the time/space and time/activity continua. It is 

noted that activity types are nominally scaled; no metric is implied. 

This nominal scale presents no analytic problem since the associated 

pattern recognition problem is basically one of label identification 

rather than measurement. The transformation decomposes each label into 

corresponding "transform building blocks." 

Performance of an activity incurs no spatial displacement throughout 

its duration, thus the measurement vector x(t) is a constant. For the 

activity/time continua, x (t) is a pure 11 step-functi on, 11 however non-zero 

slope segments link sequential activities in the space/time continua, 

corresponding to spatial displacement during travel. The nature of this 

decomposition provides a potential advantage of the Walsh over the 
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Fourier transform, as the binary Walsh functions better represent the 

piece-wise constant characteristic of the patter vectors. Alternatively, 

with the Fourier sinusoidal transformation, transitions between travel 

and activity participation become less distinguishable in the feature 

space then in the pattern soace. 

If the temporal dimension is divided into R grid points with each 

po'int i assig_ned values X(i,l), X(i,2) corresponding to the 

individual's distance from home and activity participation at time i, 

respectively, the image depicted in Figure 2a can be represented as the 

Rx 2 array [X(i,j)J. Generalizations to more complex representations 

of the activity pattern (e.g., the expansion of the spatial dimension to 

conventional two-dimensional coordinate values or inclusion of the number 

of other persons accompanying the individual) are easily effected by 

increasing the dimensionality of this array; i.e., by representation as 

the Rx Q array [X(i,j)J, where Q represents the number of salient 

characteristics associated with the individual's activity pattern. A 

general transformation of this R x Q image can be written as 
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Z(k,l) 

R-1 Q-1 

= _l L L X(i,j) W(i,j,k,1) 

,/RQ i=O j=O 
(14) 

where W(i,j,k,1) is some weighting function. If the weighting function 

is assumed separable on the two axes~ Equation (14) can be rewritten as 

R-1 Q-1 
Z(k,l) = b :E :E b(k,i) x(i,j) a(j,l) (15) 

V RQ i=O j=O 

or, in matrix form 

(16) 

A transformation based on the Walsh functions described previously is 

generated from a Hadamard matrix (Hadamard, 1893) and is known as the 

Walsh/Hadamard transformation. The Hadamard matrix is a square array of 

plus and minus ones whose rows and columns are Walsh functions which are 

orthogonal to each other. The simplest Hadamard matrix is 

(17) 

and any Hadamard matrix G of order 2N can be constructed from a 

Hadamard matrix H of order N by 

(18) 

The Walsh/Hadamard transform of an N x N image [x(ij)J is given by 

[z(k,1)] = ~ [h(k,i)][x(i,j)][h(j,i)] (19) 

or, in matrix form, 
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(20) 

A unique feature of the Walsh/Hadamard transformation is that the original 

image can be reconstructed from the transformed image as 

If N 

where 

X = l HZH 
N 

the transform may be written in series form as 

N-1 N-1 
Z(k,l) =*I: I: x(k,j)(-l)o(i,j,k,1) 

i=o j=o 

n-1 

p(i ,j ,k,1) = L (ks is + \js) 
s=o 

(21) 

(22) 

(23) 

and J. denote the s-th bit in the binar_y repre­s 
sentations of k, i, 1, and j respectively, i.e., 

(24) 

In this series representation the elements are not ordered in any 

useful manner as in the Fourier sinusoidal transform in which the 

elements are ordered according to increasing frequency. Walsh functions 

are ordered typically according to the number of zero crossings of the 

function over the period, called the sequency. The corresponding ordered 

form of the transformation in which the sequency of each row is greater 

than that of the previous row is given by: 
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N-1 N-1 
[z(k,l)] = L L x(i,j)(-l)q(i,j,k,l) (25) 

i=o j=o 

where 

N-1 
q(i,j,k,l) = L [gs(k)is + gs(l)js] (26) 

s=o 

in which 

go(k) = k n-1 

gl(k) = kn-1 + k 2 n-
(27) 

g2(k) = k n-2 + k 3 n-

. 
gn-1 (k) = kl + ko 

As in the one-dimensional case discussed previously, the 

Walsh-Hadamard transformation is particularly appealing in activity 

pattern analysis because of its ability to maintain distinctions between 

classes of activity and travel. 

Finally, a linear transform of potential use in activity pattern 

analysis is the Haar Tran sf ormati on (Haar, 1910). Unlike the transf arms 

considered previously, this transform provides a domain which is both 

locally and globally sensitive, that is, the functions sample the input 

image at progressively finer intervals, starting with the lowest 

resolution and increasing in powers of two. This feature is useful in 

the study of linkages between activities, such as chaining, and the 

transformation is easily obtained in a manner analogous to Eq. (19). 
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3. APPLICATION 

The theoretical concepts supporting the transformation from the 

pattern space, through the feature space, into the classification space 

are examined in aoplication to actual activity oatterns. Travel/activity 

diaries of 664 inrlividuals from Orange County, California were randomly 

selected from the 1976 Southern Cal if orni a Association of Governments 

(SCAG) and California Department of Transportation (CALTRAfllS) Urban and 

Rural Travel Survey. The results of a sirnpl e 1 inear feature extractor 

and of an application of the Walsh-Hadamard rotational transform are each 

utilized in a clustering classification algorithm to identify 

representative patterns. 

3.1. FEATURE SELECTION 

The simplest of the linear feature extractors, feature selection, 

involves the subjective, a priori choice of pattern features, divided 

among spatial and temporal aspects of the activity pattern (Table 1). A 

heuristic procedure was utilized to identify those attributes which best 

distinguished among sample patterns, and indices describing these 

attributes were constructed. The choice sample was cluster analyzed 

using a modified Ball and Hall algorithm (Ball and Hall, 1968) with 

standardized values of the salient aspects identified. A comparison of 

pseudo F-ratios revealed five distinct groupings; however, the absence of 

activity-specific aspects 1 imit the interpretation of the results. 
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Spatial 

Temporal 

Table 1 

Identification of Activity Pattern Indices 

NEX: 

TDIST: 

TDISTM: 

TLAP: 

TEXRATIO: 

AVG: 

STD: 

AREA: 

TBAR: 

SKEW: 

PEAK: 

TRATIO: 

Number of trips made by the individual 

Total distance traveled during these trips 

Mean trip length (TDIST/NEX) 

Total length of activity pattern in space-time 

Ratio of number of tours executed to most 

efficient activity pattern 

Mean range of activity pattern 

Standard Deviation of mean range of activity 

pattern 

Total area of the activity pattern 

Temporal centroid of the activity pattern 

Temporal skewness of the activity pattern 

Temporal peakedness of the activity pattern 

Ratio of total time performing activities to 

total time spent traveling 

TNHRATIO: Ratio of total time performing non-home 

activities to total time spent traveling 

TNHACTM: Mean non-home activity duration 

The five groups are characterized by distinct differences in activity 

pattern parameters. Group 1 consists of individuals who travel long 

distances to a fewer number of activities with realtively long durations, 

thus devoting a greater proportion of time accessing non-home 

activities. Activity patterns associated with individuals in Group 2 

(44.2 percent of the sample) are characterized by a large number of 

efficiently organized short trips (i.e., chained trips) to activity sites 

of short duration. Group 3 is comprised of individuals who travel very 

short distances, earlier in the day, to one (or a few) activity sites 

with relatively long duration. The extreme negative value of the 

efficiency index, TEXRATIO, for this group is caused primarily by values 

of -1 asigned to this index for "single trip" activity patterns. 

Individuals in Group 4 exhibit characteristics similar to those of 
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Group 1, but activities in general are closer to home. Patterns of 

individuals in Group 5 are characterized by a small number of very short 

trips, made later in the day, to activity sites v.Jith short duration. 

Figure 3 illustrates the feature profiles for each group, plotting 

deviation from the sample mean, for each of the indices as developed, for 

each representative profile. No representative activity pattern, per se, 

results from this technique. 

TDIST . I 

TLAP 

TRATIO 

PROFILE 1- AREA 
PROFILE 2----
PROFILE 3-- TSAR 

PROFILE 4 -··- AVG 
PROFILE 5 ········· STD 

SKEW ··············. 

p~: ,/ ;-, '.,-,;···-····-·--·->'· 
: I 

TEXRATIO (_ f T--:<··~~) __ ,, , 

TDISTM _/j< ......._ :• 
TNHACTM <" ( . X 'I 
TNHRATIO \ ' I 

◄ ~ ~ ~ 0 1 2 3 4 
DEVIATION UNITS FROM THE SAMPLE MEAN 

FIGURE 3. INDEX CLASSIFICATiml ON THE BASIS OF FIVE GROUPS 

3.2. ROTATIONAL TRANSFORMATION 

A modified Walsh-Hadamard transformation algorithm was developed and 

applied to a dual pattern vector representation of the sample activity 

patterns. The three dimensional (time-space-activity) image 

characterizing each individual's behavior was split into two 

interrelated, two-dimensional images--the temporal variations of distance 

from home and of activity parti ci pati on. The dual pattern vectors were 

constructed by sampling the temporal variation in patterns over the 
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19-hour analysis day (5 :30 AM to 12 :30 AM) at approximately 9-minute 

intervals, a value determined by the transformation algorithm's 

restriction of 2N sample points and comoutational efficiency 

(yielding 128 sample points at 8.9 minute intervals). 

Activities were classified into five major categories (including 

travel) of which two were further divided into subcategories of similar 

activities (Table 2). The categories were ordinally ranked 

(subjectively) according to assumed temporal/spatial characteristics, 

with the total distance between subcategories equal to half that between 

categories. This apparent interval scaling constitutes an attempt to 

minimize classification errors after transformation. The purpose of the 

pattern recognition formulation is simply to distinguish among labels and 

nor further meaning in scale is implied. Travel is positioned at the 

extreme opposite of the scale to emphasize its dissimilar nature. 

TABLE 2. ACTIVITY CLASSIFICATION 

Category Activity Scale Value 

1. Home 9.0 

2a. Work 7.0 
2b. Work re 1 ated 6.5 
2c. Education 6.0 

3. Shopping 4.0 

4a. Social/entertainment 2.0 
4b. Recreation 1.5 
4c. Other 1.0 

5. Travel -9.0 
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As a preliminary, a randan sample of images was selected for 

transformation into Wal sh-Hadamard space. These transformed images were 

subsequentlv inverted, retaining only a subset of the complete set of 

transform coefficients, and the mean square error between the inverted 

image and the original image was calculated. The mean of the mean square 

errors for random samples of various numbers of coefficients retained is 

shown in Figure 4 for both the "distance" and "activity" images. Results 

indicate that with 30 to 50 coefficients, the original image can be 

reconstructed to within limits of error which are tolerable. On the 

basis of these experimental findings 50 transform coefficients were 

retained for each image. This reduced the analysis problem of 256 bits 

of information in real space to an equivalent problem of 100 bits in 

transformed space (a reduction of over 60 oercent). 

5 
A. DISTANCE 

~1 
g§ l-.1....-....l-__i_---1.--1_i-:=::i::::::r::::r:=.i...J 
w 

~ 15 
<( 
::, 
0 
U) 

:z 
t5 10 
:E 

5 

B. ACTIVITY 

10 50 100 
NUMBER OF COEFFICIENTS RETAINED 

· f!CURE 4. IMAGE RECENERATlml ERRORS 

The dual feature vectors, composed of the first ~o coefficients of 

each of the pattern vectors, were cluster analyzed in Wal sh-Hadamard 

transformation space. The results (pseudo F-ratio) indicated that the 
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respondents were best classified into 9 distinct groups in transformed 

space. 

The transf armed images associated with the coefficients centroids 

were inverted by Wal sh-Hadamard inversion formulae to reconstruct the 

actual activity patterns that are representative of the travel/activity 

behavior of individuals in each group. The resulting activity patterns 

represent distinct sets of behavior by which the stud_y population can be 

classified. However, because these patterns are aggregated mean 

resoonses, the definition of the representative patterns is somewhat less 

than that of the original individual patterns. Correspondingly, there is 

some latitude in the interpretation of the results. Results are 

presented in the form of the temporal distributions of the group members' 

distance from home and activity participation during the 19-hour analysis 

day. These two distributions were then combined to produce the 

representative activity pattern of the group. 

For example, figures 5 through 8 illustrate the results for two of 

the cluster groupings. The representative pattern associated with Group 

B {Figure 5) is indicative of 8.4 percent of the respondents. 

Characterized by a traditional work activity approximately 7 miles from 

home and evening shopping activity within 3 miles of home, respondents in 

Group B are primarily employed male household heads (Figure 6). 

The corresponding patterns for Group C {Figure 7), representing 12.5 

percent of the respondents, differs significantly from Group B. This 

group is evenly distributed by sex and consists primarily of school-aged 

children and spouses of household heads (Figure 8). The representative 

pattern reflects the proximity to hlll1e of both schools anrl the employed 

spouse's work place. An evening sojourn to social/entertainment and/or 

recreational activities completes the representative pattern. 
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The results for each representative pattern are summarized in 

Table 3. In addition to travel/activity characteristics and predominant 

group socio-economic attributes, indicators of urban form resulting from 

a multiple discriminant analysis are given. 

TABLE 3. SlW1AAY MEASURES OF REPRESENTATIVE ACTIVITY PATTERNS 

REPRESENTUI VE 
ACT! V !TY PATTERN 

(RAP) 
Number (%) Travel/Activity Characteristics Socio-Economic Characteristics Urban Form 

Single work trio of about 25 miles Predominantly employed, male Low density/ 
A 32 (4.13) No evening travel household heads high income 

Age (25-34) 97% Drivers 

Single work trio of about 7 miles Predominantly employed, male Low density/ 
B 56 (8.4) Evening shoooing trio household heads high income 

Age (35-44) 93% Drivers 

Work/school activity within 3 miles Non-emoloyed soouses and High density/ 
C 83 (12.5) of home, evening social/recreation children, even sex and age low income 

activity distributions 57% Drivers 

Multiole non-work sojourns Predominantly female non- Low density/ 
D 62 (9.3) within 5 mil es of home, emoloyed Age(> 25) high income 

no evening travel 71% Drivers 

Single work trio of about 15 miles Predominantly emoloyed male Low density/ 
E 47 (7 .1) Evening work/school activity household heads high income 

within 2 miles Age (25-54) 96% Drivers 

Single work trio of about 2 miles NA NA 
F 6 (0.9) Multiole non-work evening sojourns 

(no return trio home before 12:00 A.M.) 

Sinqle school/work trip of about Predominantly female 50% High density/ 
G 306 {46.l) 1 mile, no evening travel emoloyed adults 50% school low income 

aged children 47% Drivers 

Single work trio of about 7 miles Predominantly employed even High density/ 
H 66 (9.9) No even fog tr ave 1 sex distribution low income 

Age (25-54) 76% Drivers 

Extremely long travel NA NA 
I 6 (0.9) (not identified) 

Whereas the linear feature extractor was restricted to spatial and 

temporal attributes, the Wal sh-Hadamard transformation explicitly 

incorporates the activity dimension. A cross-classification of cluster 

results depicted in Figure 9 shows how the transformation further 
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discriminates the representative oatterns based on differences in 

activity type. For example, over 80 percent of groups C and D are 

categorized as having the index profile 2, but the transformation results 

further incorporate the multiple sojourn aspects of Group D, and the 

eveninq travel of Group C. 
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4. CON CL US IONS 

Travel behavior research has entered the "third generation" of 

transportation demand analysis, characterized by the integration of the 

full individual activity pattern into the decision-making process. The 

transforms discussed and their application to behavioral research 

represent a significant departure from conventional methods of 

transportation analysis. 

The techniques derived and examined in this study form an initial 

framework for the quantitative analysis of complex travel behavior in the 

form of individual activity patterns. No attempt was made to synthesize 

a definitive theory of movement behavior. The intricate mathematical 
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requirements of such an initial examination of complex behavior are not 

yet warranted. The goal of this study was to develop alternate 

techniques to quantitatively rlepict individu~ activity patterns 

facilitating classification of pattern profiles within the population as 

a means of identifying common travel behavior. The techniques presented 

should not be considered an alternate theoretical formulation of travel 

behavior but, rather, tools to describe and explain complex movement. 

The trade-offs between resolution of reoresentative patterns and 

complexity of analysis must be examined in detail. An increase in 

information efficiency in image construction would allow the 

incorporation of additional image characteristic vectors without added 

computational requirements in addition to reducing the loss of 

information involving short duration activities during transformation. 

This latter improvement is also associated with the alternate usage of 

the Haar transform, which favors lost activities and trips in its 

treatment of local and regional correlations in the activity pattern 

image. 

The prospect for utilizing transform elements (Hadamard or Haar) as 

building blocks for activity patterns in transform space is promising. 

This extension enables the transition of the graphical representation of 

activity patterns to functional analysis, greatly simplifying analysis of 

complex behavior. 

Theoretical models of pattern responses are dependent on significant 

advances in the descriptive and explanatory power of pattern recognition, 

classification, and analysis techniques. Those proposed herein represent 

a starting point for such further research. 

- 20 -



ACKNOWLEDGMENT 

This research was supported in part by a contract with the U.S. 

Department of Transportation. 

REFERENCES 

Andrews, H.C. (1971), 11 Multidimensional Rotations in Feature Selection, 11 

IEEE Transactions on Computers, Vol. C-20, No. 9, pp. 1045-1051. 

Ball, G.H. and D.J. Hall (1967), 11 A Clustering Technique for Summarizing 
Multivariate Data, 11 Behavioral Sciences, 12, pp. 153-155. 

Cooley, J.W. and J.W. Tukey (1965), 11 An Algorithm for the Machine 
Calculation of Complex Fourier Series, 11 Math Computation, 19, pp. 297-301. 

Haar, A. (1910), 11 Zur Theorie der Orthogonalen Funktionen Systeme, 11 Math. 
Ann., 69, pp. 331-371. 

Hadamard, J. (1893), 11 Resolution d'une Question Relative aux 
Determinants, 11 Bu 11 • Sci . Math., 2: 17, pp. 240-246. 

Hagerstrand, Torsten (1974), 11 The Impact of Transportation on the Qua 1 ity 
of L ife, 11 Transport in_ the 1980-1990 Decade, European Conference of · 
Ministries of Transport, Athens, Greece. 

Pearl, J. (1971), 11 Basis Restricted Transformations and Performance 
Measures for Spectral Representations, 11 Proceedings of the Fourth Hawaii 
International Conferenc~ on System Sciences, pp. 321-323. 

Recker, W.W., G.S. Root, M.G. McNally, M.J. Cirrincione, and H.J. Schuler 
(1980), 11 An Empirical Analysis of Household Activity Patterns, 11 Final 
Report DOT-RC-92010. 

Whelchel, J.E., Jr., and E.F. Guinn (1968), 11 The Fast Fourier-Hadamard 
Transform and its Use in Signal Representation and Classification," 
EASCON 1968 Record, pp. 561-573. 

Young, T.Y. and T.W. Calvert (1974), Classification, Estimation and 
Pattern Recognition, American Elsevier Publishing Company, Inc., New York. 

- 21 -




