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Abstract
We present a dynamic process model for workload, developed
according to a conducted experiment, which recorded the pupil
dilation during an air traffic controller simulation. We describe
how we built such a dynamic system based on the collected
data. Logged events that happened in our simulation were used
as system input and the recorded pupil dilation as output. Af-
terwards, we used the MATLAB system identification toolbox
to identify the transfer function between input and output. The
identified model is validated with a validation data set that has
been excluded from the identification process. Results show
that we are able to explain nearly 50% of the variance of the
recorded pupil dilation data in the air traffic controller simu-
lation. Moreover, the model explains some contrary results of
the statistical analysis from our experiment.
Keywords: Dynamic process model; System theory; Work-
load; Pupillometry; Air traffic controllers

Introduction
According to current statistics, the amount of airline pas-
sengers will continue its positive development over the next
years, with expected annual growth rates of up to five percent
(IATA, 2017; Boeing, 2017). To maintain the resulting needs
and ensure smooth and safe traveling, the duty of air traffic
controllers (ATCs) is of high importance. However, tasks like
this are rather complex and put high demands on the available
resources of such job holders (Mogford, Guttman, Morrow, &
Kopardekar, 1995). Beyond this, it is proven that predefined
factors like traffic volume or frequency congestion influence
ATCs’ mental workload (Mogford et al., 1995).

As discussed by Gopher and Donchin (1986), the concept
of mental workload enfolds various dimensions and facets.
Although it has been broadly inspected, deriving a clear def-
inition forms a rather difficult matter. Nevertheless, there are
two constituting aspects that build a common ground in most
cases. While task difficulty results from the demands required
to successfully solve a task in a given time (Galy, Cariou,
& Mélan, 2012), resource supply refers to the information
processing capacity available for this purpose. In this vein,
mental workload comprises the difference between required
capacities of the information processing system to achieve
satisfying task performance and available capacity at a given
time (Gopher & Donchin, 1986; Wickens, 2008). Based on
the assumption that tasks with increased difficulty require ad-
ditional resources, a significant decrease in performance due

to the lack of resources should appear as soon as resource
demands exceed resource supply (Wickens, G., Banbury, &
Parasuraman, 2013).

There are different possibilities to estimate human work-
load (Prewett, Johnson, Saboe, Elliott, & Coovert, 2010;
Beatty & Lucero-Wagoner, 2000; Reiner & Gelfeld, 2014)
and build workload models (Gopher & Braune, 1984; Wick-
ens, 2008). Beatty and Lucero-Wagoner (2000) described
nonreflexive phasic pupillary movements as indicators for
brain processes that underlie dynamic, intensive aspects of
human cognition. In several research investigating the cog-
nitive functions, task-evoked responses of the pupil (TERPs)
(Beatty, 1982; Beatty & Lucero-Wagoner, 2000) were used
to measure cognitive effort, workload and cognitive load
(Haapalainen, Kim, Forlizzi, & Dey, 2010; Wierwille, 1979;
Paas, Tuovinen, Tabbers, & Van Gerven, 2003). Therefore, in
our approach we used the measured TERPs to model and val-
idate a dynamic workload model to investigate and simulate
workload in ATC tasks.

Experiment

We collected data from 25 volunteers located at the campus
of University Pompeu Fabra (MAge = 28.12; SD = 5.67, 64%
male). The majority of 84% participants had no prior ex-
perience in ATC tasks (including, but not limited to, video
games).

Figure 1: Experimental procedure with preparation phase,
practice session and two different conditions. Measures on
personality (BFI) and mood (MDMQ) are not reported in this
paper.
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Experimental Design
In our 2 (workload condition) x 3 (events) within-subjects de-
sign, each participant completed a simulated ATC task. The
simulation was divided into a practice session and two condi-
tions of 4 min, a low workload condition (LWC) with a lower
degree of difficulty and a high workload condition (HWC)
with a higher degree of difficulty. In the LWC, participants
had to manage and control less airplanes appearing at a lower
frequency (airplanes appeared every 4–8 s). This results in
an easy task difficulty with lower time pressure, since partic-
ipants had more time to handle each airplane. In the HWC,
participants had to manage a greater number of airplanes ap-
pearing in a higher frequency (airplanes appeared every 1–5
s), which resulted in higher task difficulty and time pressure
to avoid collisions between airplanes.

Workload Measurement Since Beatty and Lucero-
Wagoner (2000) reported a significant increase in pupil di-
lation due to an increase in workload, we recorded the pupil-
lary response during each condition. We used the mobile eye
tracking headset from Pupil Labs with a sample rate of 60 Hz
and analyzed the TERPs by calculating the mean pupil dilata-
tion during an 1.5 s window for three classes of events that
were assumed to trigger an increase in workload. The time
window of 1.5 s was chosen in line with Beatty and Lucero-
Wagoner (2000), who identified that TERPs are recognized
due to an increase in mental workload between 1-2 s after the
presentation of a stimulus.

One class of events included all collisions caused by
the participant, another one included participants actions of
changing height or direction of an airplane. The third class of
events included system-induced occurrences of a new couple
of airplanes. All events were logged by a self-programmed
protocol system, which was part of the simulated scenario.
The obtained log files included timestamps for each pupil-
lary response, which were sent to the system via a wlan-
connection, as well as simultaneously recorded timestamps
for each event occurrence.

Procedure
The study was conducted in a virtual reality room, called
XIM, and participants were recruited directly from the cam-
pus plaza. After completing the consent forms, they were
invited to enter the XIM. For each participant, the experi-
ment started with a preparation phase, where the eye track-
ing glasses were put on, the Big Five Inventory (BFI) was
completed and some instructions regarding the virtual real-
ity room were given (see Figure 1). In addition, there was
a calibration phase that also ensured stable light conditions
with and without planes presented on the screen. Afterwards,
the practice session started, in which participants received an
instruction on how to structure their commands to change
airplane routes (see Fig. 2) and how to avoid collisions be-
tween airplanes. Following this instructions, participants had
to manage the airplanes appearing at the screen on their own.

Figure 2: Experimental setup with eye-tracking device.

This section was finished as soon as participants were able
to manage the scenario, measured by 10 correct answers in a
row. After the practice section, participants were exposed to
two trial sections presented in static order, the LWC followed
by the HWC.
In each section, the airspace was divided in several airspace
areas, whereof the subjects were responsible for the middle
airspace (green rectangle). At a predefined frequency (HWC:
1–5 s; LWC: 4–8 s) two airplanes with a given number and
a random height appeared from both sides or from top and
down heading to the same randomized point in the responsi-
ble airspace. During the whole experiment, participants had
to keep in mind that airplanes, which do not collide in a 3D
space, could appear at the same screen location due to the
2D display. This indirect 3D perception demands informa-
tion processing resources as well (Wickens et al., 2013), but
since all participants were exposed to comparable require-
ments, we did not expect additional effects on the measured
level of workload. For avoiding collisions, participants had
to use control commands with a similar structure compared
to real ATC commands (see Figure 3). In detail, they had
to provide to the number of the chosen airplane plus the in-
formation about what they want to change, for instance the
direction or height of the airplane. The experimenter in the
back adopted the role of the pilot, controlling the airplanes by
sending special keyboard sequences to the simulation. Each
session comprised a break as well. During this time span, par-
ticipants reported their mood state by completing the Multi-
dimensional Mood State Questionnaire (MDMQ). After fin-
ishing the LWC and HWC, the experimenter removed the eye
tracker glasses.

Data Analysis and Model Preparation
After conducting the experiment and preparing the pupil di-
lation data, we analyzed the data statistically and computed a
dynamic model of workload over the task with an identified
and fitted dynamic system (Isermann & Münchhof, 2011).
With reference to the latter, we developed some hypotheti-
cal assumptions based on the curve progressions of figure 6
in Beatty (1982). We assumed that dealing with appearing
airplanes and setting a command will increase participants’
workload (see Fig. 4). If a collision happened, we expected
participants to immediately recognize their mistake and think
about. However, at the same time the complexity of the air
space should be reduced due to the reduced number of air
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Figure 3: Schematic representation how participants had to
change the height of an airplane.

planes on the screen. On this account, we assumed an initial
increase in workload after collisions, directly followed by a
decrease caused by the reduced amount of airplanes.

Data preparation
To calculate the mean pupil dilation, the recorded data had
to be cleaned from artifacts, blinks and other undesired pat-
terns in the data stream (Beatty & Lucero-Wagoner, 2000).
Therefore, we used MATLAB-functions to implement stan-
dard methods for cleaning and analyzing pupil dilation data.
First, we deleted all blinks in the signal, which are character-
ized by zero values in the data stream. Then, we interpolated
the missing values and used a median filter in order to clean
the signal from outliers. Participants with more than 18%
blinks or zeros in the data stream were excluded from the sta-
tistical analysis, as the filtering functions and the evaluation
could be falsified by very noisy signals. For the statistical
approach, we calculated the respective level of workload for
the events ”collision”, ”disappear” and ”appear” as mean of
all occurred TERPs after the system had logged the collision
or the appearance of airplanes. Due to the fact that our simu-
lation only recognized if an airplane changed its direction or
height, we measured the level of workload for the event ”ac-
tion” from TERPs calculated during an 1.5 s window before
the change happened. Within our statistical analyses, we cal-
culated the mean of the pupil dilation of LWC and HWC as
measure of workload for the particular condition.

Statistical Results
We conducted a repeated measures analysis of variance
(ANOVA), to validate TERPs as predictor for workload.
Event (”collision” vs. ”appear” vs. ”disappear”) and work-
load condition (LWC vs. HWC) were regarded as inde-
pendent variables and the recorded TERPs as indicator of
workload were defined as dependent variable. Mauchly’s
test indicated a violation in the assumption of sphericity
for the main effect of event, χ2(5) = 73.049,p < .001, as
well as the interaction between condition and event, χ2(5) =
42.331,p < .001, thus degrees of freedom were corrected
using Greenhouse-Geisser estimates of sphericity for event,
ε= .388, and the interaction, ε= .573. We found a significant
main effect for event, F(1.17,19.79) = 12.394, p < .05,η2

p =
0.42, but no significant main effect of workload condition.
Post-hoc pairwise comparisons with Bonferroni correction

Figure 4: Assumed schematic curve progression of TERPs
during different events.

pointed out that the workload after an action (p < .001) and
after a collision (p< .05) was significantly higher than the av-
erage workload in the whole condition. However, the work-
load after the appearance of an airplane was significantly
lower (p < .05). Moreover, a significant interaction effect
between condition and event showed up, F(1.72,29.24) =
3.701, p < .05,η2

p = .18, indicating a difference in the work-
load between events in both conditions. Since we had a static
order, the level of workload in the HWC could have been in-
fluenced by the LWC. To control for this effect, we computed
pupil dilation means during a 1 s window at the beginning
of the LWC and HWC and conducted a paired-samples t-test.
It did not show significant results, t(19) = −1.927, p > .05,
thus we can assume that there was no influence on workload
evoked by the static order.

Workload Model
We assume that different levels of workload in both condi-
tions result from task difficulty and the different events cor-
responding to the behavior of simulation and participants.
Therefore, each simulated event as well as the spoken com-
mands should have a direct influence on the level of work-
load in each condition, resulting in different TERPs. Thus,
in the dynamic approach, the pupil dilation as level of work-
load is described as output that is dependent on the events,
which are described as inputs. If there was a stable unique
relation between input and output, we should be able to find
a mathematical model for the temporal behavior of the work-
load (TERPs) from the measured input of the events.

System Description
In system theory, such model can be described as multiple
input and single output model (MISO), at which appearance,
disappearance and collisions of airplanes as well as actions
commanded by the participants are inputs, whereas the ob-
tained TERPs are regarded as output. In detail, we measured
a continuous time signal, with pupillary response and the re-
lated events as impulse responses appearing in each condi-
tion. An impulse response can be defined as the output of
a process being excited by an impulse (δ(s)) (Isermann &
Münchhof, 2011).

δ(t) =

{
∞ for t = 0
0 for t 6= 0

(1)
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For a better understanding, while the step response or impulse
response can be measured easily in many cases, we modeled
our input events as step functions, whereas a step (σ(s)) can
be obtained by integrating the impulse with respect to time t
(Isermann & Münchhof, 2011).

σ(t) =

{
1 for t ≥ 0
0 for t < 0

(2)

To estimate important system parameters, such as settling
time or the the damping coefficient and other characteristic
values, we can use the following generic transfer function

G(s) =
y(s)
u(s)

=
b0 +b1(s)+bm−1(s)m−1 +bm(s)m

a0 +a1(s)+am−1(s)m−1 +am(s)m (3)

which is the Laplace transformation of an ordinary differen-
tial equation (ODE) for a lumped parameter system (for fur-
ther details see Isermann and Münchhof). Since we model
our input data with step responses, we can directly take some
individual characteristic values from the calculated step re-
sponse of the system, which might be used to determine co-
efficients of special transfer functions by means of simple
calculations (Isermann & Münchhof, 2011). With the sys-
tem identification toolbox, MATLAB offers a great database
of identification methods to solve such process identifica-
tion problems. Therefore, we used MATLAB to identify our
workload model based on the data we collected during the
experiment.

Modeling the input For modeling the system input, we
used the timestamps of appearances and disappearances of
airplanes as well as collisions and actions within the tasks
from participants’ log files. Based on this, we created sev-
eral time series for each event class, which contained a step
response at each event timestamp recorded by the simulation.
Since airplanes stayed on the screen till they disappeared, we
had to take into account that appearance and disappearance of
airplanes have a different influence on the resulting workload
compared to commands and collisions. Thus, the σ-function
of appear is increased by two if an airplane couple appeared
on the screen and the σ-function of disappear is increased by
the number of airplanes which left the air space unharmed.
By contrast, the influence of actions and collisions lasted only
a limited time (an action during the time the participant spoke
and the collision as long as the collision sound was played
and the airplanes disappeared). Therefore, the σ-function of
action was set to 1 for the time frame of 2 s before an ac-
tion happened (see Fig. 5(a)). We chose these time window
because the middle duration of commands was 2 s. Due to
the fact that an airplane collision reported relatively short by
a collision sound, we modeled the σ-function of collision by
setting it to 1 for the time frame of 1 s after a collision hap-
pened (see Figure 5(b)).

Identify the types of transfer functions for events After
modeling the input, we analyzed the behavior of the pupil
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Figure 5: Example step response function of all events.

dilation over 4 s time windows during the recorded events.
The chosen time windows doubled the recommended 2 s time
window (Beatty & Lucero-Wagoner, 2000), as for identifying
the dynamic of the system we had to ensure that the event-
related response was included even with potential reaction
time differences between participants. Moreover, the addi-
tional information of the signal behavior could help to find
the right time constants.

In system theory, there exist several LTI(Linear-Time-
Invariant)-systems, which describe different patterns of be-
havior in signals with linear ODEs. In the mathematical view,
this behavior is described with the transfer function G(s),
which describes how a step response(s) influences the output
signal. For example, a transfer function for an PT1-system
can be described by

G(s) =
y(s)
u(s)

=
b0

1+a1s
= K

1
1+T1s

(4)

in which PT1-system results depend on an step response in an
increase of K during the time T1/T, whereas T is the sampling
rate of the signal. Thus, the time constant T1 describes how
fast the signal reached the value K. In terms of the workload
description such a system would describe how the workload
will be influenced over time. Whereas T1 describes how fast
the workload is increased and K describes the absolute in-
crease or decrease of the workload after an event is recorded.
A more detailed view and the explanation of all types of LTI-
systems are described in Isermann and Münchhof (2011).

Since we focused on developing a general model for each
event and there might be some disturbing influences within
recorded TERPs, we calculated the mean of all TERPs and
regarded this as a baseline within our identification process.
Such disturbing influences could be seen in miscalculated
workload within overlapping, unrecognized or overwhelming
events. By calculating the mean progression of the TERPs
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Mean of pupil dilation during event

(a) Transfer function: Actions.
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Model data (NRMSE: 82.89%)
Mean of pupil dilation during event

(b) Transfer function: Appear.
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Model data (NRMSE: 97.38%) 
Mean of pupil dilation during event

(c) Transfer function: Collision.
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(d) Transfer function: Disappear.

Figure 6: Curve progression of TERPs at different events.

during the events, we assume that disturbing influences might
distracted from the characteristic behavior. In Figure 6, we
show the behavior of the TERPs based on this means (black
lines in each figure). Moreover, it outlines that we identi-
fied transfer functions for the each step function of several
events, therefore the mathematical description of our transfer
function could be seen as the mathematical description of our
TERPs depending on event inputs (colored lines). We iden-
tified a PT2-system for the action, which shows a short ini-
tial decrease in workload, followed by a steep increase. The
under-dumped PT2-system with a death time for the behavior
of collision, shows that there was no significant increase in
workload after a collision but a decrease after 0.5-1.0 s. The
identified system of appear comprises a DT2-system with a
death time, which shows a significant increase in workload
during an spoken command. The signal of disappearance re-
veals that the reaction of this event is very small (signal range
is between 0.08 and -0.05). Potential reasons might be the
lack of reaction in pupil dilation to this event or an ineptly
small size of the chosen time window for identifying a signif-
icant change. Thus, we have to handle the identified PT2Z-
system with death time carefully, since it might be incorrect.
Of course, these identified models are ”ideal” models to the
mean behavior of the TERPs, but they can provide a hint on
the type of underlying system and a clue for the range of the
used time constants. Such applies in particular for collision
and action, since these events are most likely to trigger direct
and fast input-response behavior.
Identify the overall system behavior Based on the identi-
fied dynamic system for the TERPs, we aimed to identify the

Table 1: Identified parameters of the mean curve progression
of all event-based TERPs.

System K T1 T2 Tz Td Tw ζ

Action 1.25 1.84 1.59
Appear .51 .52 .52 −1.4 .59
Collision −10 1.41 .96 .89
Disapp −.2 4 4 −10 .66
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(a) LWC of participant 8.
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(b) LWC of participant 25.

Figure 7: Comparison of recorded and modeled pupil dilation
for participants 8 (training data) and 25 (validation data).

underlying dynamic system behavior of pupil dilation for the
whole conditions. We assumed that the measured pupil dila-
tion reflects the sum of responses to the input. For validating
our model, we divided the data in a training data set, contain-
ing 16 participants (80% of the sample), and a validation data
set, containing four participants (20% of the sample). Data
of LWC and HWC were represented as independent experi-
ments and contained the time series of the events (see Fig-
ure 5) and the corresponding recorded measurements of the
pupil dilation. We defined the types of systems and their
possible range of parameters detected in the TERP-analysis
as system structure, to identify the complete model of pupil
dilation behavior. Afterwards, we used the system identifi-
cation toolbox to identify the best model describing change
of pupil dilation over time depending on the event inputs.
Figure 7(a) shows the simulated and the experimental out-
put of the dynamical pupil dilatation system of two examples
of the training and validation data set. We see the typical
increase of the pupil dilation during the conditions of partic-
ipants 8 and 25 (black lines) and the corresponding model
outputs (red lines) with their exponential curve progression.
The goodness-of-fit is calculated by the normalized root mean
square error (P8 = 46.06%,P25 = 45.68) and shows that the
peaks in the pupil dilation are the result of TERPs from ac-
tions and the dips are the result of TERPs from happened
collisions. The fitted model parameters for different transfer
functions are displayed in table 2. As expected, in the fitted
time constants of appear and disappear event-related influ-
ences are very slow (T1ap = 104.2; T1di = 211.2), compared
to action and collision (T1ac = 1.72; T1co = 1.5). Furthermore,
the absolute influence of an action and a collision (Kac = 2.77;
Kco = −9.58) to the workload is greater than the appearance
and disappearance of airplanes (Kap = 0.93; Kdi =−1.0).

Table 2: Identified parameters of event-based TERPs based
on pupil dilation data of the whole conditions.

System K T1 T2 Tz Td
Action 2.77 1.72 1
Appear .93 104.2 .61 −.62 .6
Collision −9.58 1.5 .96 1.14
Disappear −1 211.2 55.65 .74
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Figure 8: Comparison of experiment and fitted model data

Validation of the model The model described above was
identified by data from the LWC and HWC of the first 16
participants. To measure how good our model can represent
the recorded data of participants the model never seen, we
calculated the deviation between model and experiment data
over all participants and conditions by the normalized root
mean square error (NRMSE) and the normalized coefficient
of determination (NR2). In Figure 8 shows the goodness-of-
fit-results of our training data set and the validation data set.
For the NRMSE, we reached mean values of 28.87% for the
validation data set and 32.99% for the training data set. If we
look at the NR2, the model is able to explain 49.42% of vari-
ance in the validation data and 55.10% in the training data.

Discussion

We developed and identified a dynamic model for the TERPs
within a simulated ATC scenario. Corresponding to our ex-
pectations, statistical analyses show a significant increase in
participants’ TERPs due to collisions and actions, indicat-
ing metacognitive reflections about commands or mistakes.
Contradictory results show up with a significant decrease in
TERPs after the appearance of a couple of airplanes that af-
terwards increases again (see Figure 6(b)). These effects are
very slow and the sole calculation of state based statistics is
prone to loose this information. On this account, we built and
validated a dynamic model to predict workload of ATC-Tasks
based on the experimental results. We used different models
for each event logged in the session, and thus can conclude
that not each visual input provides the same TERPs (Beatty
& Lucero-Wagoner, 2000). Furthermore, we show that the re-
sulting workload in our condition is the sum of the responses
of our system to the events. However, the increase is not a
straight line, but rather an exponential increase, which might
occur as well in similar experiments that investigate work-
load. Moreover, we can conclude that there is a stable unique
relation between events in the simulation and the resulting
TERPs, as we were able to find a mathematical model for
the temporal behavior of the pupil dilation. Still, this model
is just an approximation of the dynamic processes of work-
load that might be limited by the underlying linear process
model. Nevertheless, we were already able to explain and
predict nearly 50% of the variance in the resulting workload.

Further steps
In the next instance, we will conduct another experiment with
a duration of 7 min and two conditions, an emotional and a
neutral session. In this vein, we can validate our identified
workload progression for the extended time frame and fur-
thermore investigate how the emotional influence in the sec-
ond condition changes the dynamics of our model. Based on
these results, we will extend our model by an emotional com-
ponent, simulating and predicting the influence of emotions
to the workload and TERPs.
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