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Predicting the N400 ERP component using the Sentence Gestalt model trained on
a large scale corpus

Alessandro Lopopolo (lopopolo@uni-potsdam.de)
Milena Rabovsky (rabovsky@uni-potsdam.de)

Department of Psychology, University of Potsdam,
Karl-Liebknecht-Str. 24-25, 14476, Potsdam, Germany

Abstract

The N400 component of the event related brain potential is
widely used to investigate language and meaning processing.
However, despite much research the component’s functional
basis remains actively debated. Recent work showed that the
update of the predictive representation of sentence meaning
(semantic update, or SU) generated by the Sentence Gestalt
model (McClelland, St. John, & Taraban, 1989) consistently
displayed a similar pattern to the N400 amplitude in a series
of conditions known to modulate this event-related potential.
These results led Rabovsky, Hansen, and McClelland (2018)
to suggest that the N400 might reflect change in a probabilistic
representation of meaning corresponding to an implicit seman-
tic prediction error. However, a limitation of this work is that
the model was trained on a small artificial training corpus and
thus could not be presented with the same naturalistic stim-
uli presented in empirical experiments. In the present study,
we overcome this limitation and directly model the amplitude
of the N400 elicited during naturalistic sentence processing
by using as predictor the SU generated by a Sentence Gestalt
model trained on a large corpus of texts. The results reported in
this paper corroborate the hypothesis that the N400 component
reflects the change in a probabilistic representation of meaning
after every word presentation. Further analyses demonstrate
that the SU of the Sentence Gestalt model and the amplitude
of the N400 are influenced similarly by the stochastic and po-
sitional properties of the linguistic input.
Keywords: N400; sentence processing; semantic prediction;
modelling; Sentence Gestalt Model; artificial neural networks;
naturalistic stimuli.

Introduction
The N400 event-related potential (ERP) component is a
negative deflection at centro-parietal electrode sites peaking
around 400 ms after the onset of a word or another poten-
tially meaningful stimulus. Its amplitude has been shown to
be affected by a wide variety of linguistic variables. For in-
stance, N400 amplitudes tend to decrease over the course of
a sentence (van Petten & Kutas, 1990). Smaller amplitudes
are observed for targets after semantically similar or related
as compared to unrelated primes, and for repeated words as
compared to a first presentation (Bentin, McCarthy, & Wood,
1985). The N400 shows larger amplitude to congruent con-
tinuations with lower as compared to higher cloze probability
(Kutas & Hillyard, 1984). In general, the amplitude of the
N400 seems to be sensitive to the stochastic properties of the
word, both in terms of lexical frequency and surprisal (van
Petten & Kutas, 1990; Parviz, Johnson, Johnson, & Brock,
2011; Frank, Otten, Galli, & Vigliocco, 2015), with lower
amplitudes observed for high frequency words and for words

with lower surprisal. Despite the large body of data on N400
amplitude modulations and the agreement that the N400 is
related to meaning processing, the computational principles
and processing mechanisms underlying N400 amplitude gen-
eration are as yet unclear. Various theories propose, e.g., that
the N400 reflects, among others, lexical-semantic access or
semantic integration processes (Kutas & Federmeier, 2011).

Recent studies linking the N400 to computational mod-
els in order to better understand the underlying mecha-
nisms can be ascribed to two broadly defined categories,
(neuro)cognitively motivated small scale models linking the
N400 to internal processes in the models and large-scale natu-
ral language processing (NLP) based models computing sur-
prisal. As examples of the latter type, Frank et al. (2015);
Aurnhammer and Frank (2019); Merkx and Frank (2020)
have shown that the N400 amplitude is significantly influ-
enced by word-level surprisal, computed by a variety of lan-
guage model implementations trained on a next-word pre-
diction task. An advantage of these models is that they are
trained on large linguistic datasets, approximating human lan-
guage exposure so that they can be directly linked to empiri-
cal N400 data. However, the measure that is used to predict
N400 amplitudes, surprisal, is an output measure of the mod-
els that can be computed in many different ways and thus does
not directly speak to the internal cognitive processes and neu-
ral activation dynamics underlying N400 amplitudes, which
is our main interest here.

On the other hand, cognitively motivated computational
models of sentence comprehension that have been used to
model the N400 (Brouwer, Crocker, Venhuizen, & Hoeks,
2017; Brouwer, Delogu, Venhuizen, & Crocker, 2021; Fitz
& Chang, 2019; Rabovsky et al., 2018; Rabovsky & McClel-
land, 2020; Rabovsky, 2020) link N400 amplitudes to inter-
nal hidden layer activation processes and dynamics, thereby
providing computationally explicit (neuro)cognitive theories
of the processes giving rise to the N400. Most of these mod-
els were trained to map sequentially incoming words to esti-
mated sentence meaning, which is arguably an important part
of human language comprehension. On the downside, these
cognitively motivated models proposed to account for N400
amplitudes have as of yet been only trained on small artificial
language corpora, which makes the relationship to empirical
N400 data somewhat abstract.

Here, we aim to combine the advantages of both ap-
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proaches by training a cognitively motivated model of lan-
guage processing that has been used to model the N400,
the Sentence Gestalt (SG) model (Rabovsky et al., 2018;
Rabovsky & McClelland, 2020; Rabovsky, 2020), on a large-
scale language corpus, to directly test our computationally
explicit (neuro)cognitive theory of the processes underlying
N400 amplitudes on single trial empirical ERP data.

Specifically, Rabovsky et al. (2018) proposed an explana-
tion of the N400 ERP component in terms of update of a prob-
abilistic representation of meaning as captured by the change
of the inner states of the SG model, a connectionist model of
language processing that maps a sentence to its correspond-
ing event (McClelland et al., 1989). At every given moment
during sentence processing, this representation not only con-
tains information provided by the words presented so far, but
also an approximation of all features of the sentence meaning
based on the statistical regularities in the model’s environ-
ment internalized in its connection weights. Rabovsky et al.
(2018) showed that the SG model update simulates a num-
ber of N400 effects obtained in empirical research including
the influences of semantic congruity, cloze probability, word
position in the sentence, reversal anomalies, semantic and as-
sociative priming, categorically related incongruities, lexical
frequency, repetition, and interactions between repetition and
semantic congruity. These results foster the idea that N400
amplitudes reflect surprise at the level of meaning, defined as
the change in the probability distribution over semantic fea-
tures in an integrated representation of meaning occasioned
by the arrival of each successive constituent of a sentence.

In the present study, we attempt to directly predict the am-
plitude of the N400 generated during sentence processing by
using as predictor the update of the inner representation of a
SG model trained on a large corpus of naturalistic texts. We
used EEG data collected while subjects were asked to read
sentences extracted from narrative texts. Such stimuli were
not designed to elicit specific conditions, but to be close to
everyday conditions faced by humans.

The hypothesis that N400 amplitudes reflect the change
in a probabilistic representation of meaning after every word
presentation is supported by the results reported in the present
study, which show that the SG model update successfully
predicts N400 amplitudes. Moreover, in order to further in-
vestigate the relations between the inner dynamics of the SG
model and the N400, we conducted analyses aimed at assess-
ing whether the update of the inner representation generated
by the model and the amplitude of the N400 component are
influenced in the same way by the word frequency, surprisal
and position of the words making up the stimulus.

The Sentence Gestalt Model

As a model of language processing, the SG model maps sen-
tences to a representation of the described event approxi-
mated by a list of role-filler pairs representing the action, the
various participants (e.g., agent and patient) as well as in-
formation concerning, for instance, the time, location, and

Fig. 1: The architecture of the Sentence Gestalt Model,
with the update network on the left hand-side and the
query network on the right hand-side.

the manner of the event described by the sentence itself
(McClelland et al., 1989).

(1) The boy ate soup during lunch
agent action patient time

For instance, when processing Sentence 1, the SG model
recognizes that ate is the action, and that the boy and soup
are its agent and patient respectively and that at lunch is a
modifier specifying the moment when the event takes place.

The SG model consists of two components: an update net-
work (encoder) and a query network (decoder), as described
in Fig. 1. The update network sequentially processes each
incoming word to update activation of the SG layer, which
represents the meaning of the sentence after the presentation
of each word as a function of its previous activation and the
activation induced by the new incoming word. The query net-
work, instead, extracts information concerning the event de-
scribed by the sentence from the activation of the SG layer.
The sentence comprehension mechanism is implemented in
the update network. The query network is primarily used for
training.

In the present study, the update network of the SG model
is composed of an input layer, which generates a vectorial
representation ~wt for each input word it of the incoming sen-
tence, and a recurrent layer implemented as a long short-term
memory (LSTM) unit generating a SG representation ~sgt as
a function of ~wt and previous gestalt ~sgt−1 (Hochreiter &
Schmidhuber, 1997). LSTM have the advantage of being bet-
ter at processing long and complex sentences compared to
traditional recurrent layers, and being still simpler in struc-
ture and number of parameters compared to even more per-
formative types of deep learning components (e.g. Trans-
formers). In the original formulation of the update network,
the SG representation ~sgt is obtained from the activity of a
hidden layer which combines the previous SG representation
~sgt−1 and the vector of the current word ~wt . The adoption of
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LSTM in the present implementation of the SG model is jus-
tified by the significantly more complex nature of the training
material as compared to the original implementation of the
model which was trained on short and artificially generated
sentences. Nonetheless, the basic principles of the update
network are retained in this novel formulation, since in both
cases the network is essentially a recurrent neural network en-
coding a string of words as a function of the current presented
word and the words preceding it. The query network instead
has the same structure as the original SG model implemen-
tation. Its hidden state~ht is generated by combining the SG
vector ~sgt and probe vectors ~pi. The output ~̂oi of the query
network is generated from the hidden state~ht .

The task the SG model is asked to perform is to map a sen-
tence to its corresponding situation or event, defined as a list
of role-filler pairs representing an action or state, its partici-
pants (e.g. agent, patient, recipient), and eventual modifiers.
A sentence is defined as a sequence of words, each repre-
sented as an integer it , defined on a vocabulary associating a
unique index to every word. Figure 2 exemplifies the map-
ping from words to event performed, word-by-word, by the
SG model.

Fig. 2: Example of how the SG model processes the sen-
tence he opened the door. The model is trained on identi-
fying the roles and fillers constituting the event described
in the sentence. Here, for reasons of space, we focus only
on mapping filler to role patient, but the model also es-
timates the agent and action of the event. Sentences are
presented word-by-word. Initially (a), the model is first
presented only with word he, leading to a list of wrong
predicted patient fillers. Subsequently (b), the model is
presented with word opened, causing the prediction of po-
tentially correct fillers. Finally (c), when the model is pre-
sented with the whole sentence, it converges on the correct
patient of the described event: door.

As shown in Fig. 3.a, the event consists of a set of role-
filler vectors ~oi, each of which consists of the concatenation
of the feature representation of a word and a one-hot vector
of the role of that word in the context of the event described
by the sentence. Sentence 1 above consists of a sequence
of 7 one-hot word representation vectors. Its event contains
4 role-filler combinations representing each role of its event
(agent, action, patient, time) with its corresponding concept
filler (boy, eat, soup, lunch).

Fig. 3: The role-filler vector ~oi (a), and its corresponding
two types of probes ~pi (b) and (c). The left hand-side of
the vectors correspond to the embedding representation
of the filler concept, whereas the right hand-side to the
one-hot representation of the thematic role played by the
filler. When probing for the thematic role, probe (b) is
presented. When probing for the filler instead, probe (c)
is presented. In both cases the SG model is expected to
produce the full role-filler vector (a).

During training, the model is presented with sentences
(fed word by word to the input layer) such as ‘The boy ate
soup during lunch’. Every time a word is presented, the
model is probed concerning the event described by the sen-
tence. The model is probed concerning the complete event,
even if the relevant information has not yet been presented at
the input layer. A probe consists of a vector ~pi of the same
size of a corresponding role-filler vector ~pi, but with either
the thematic role identifier zeroed (Fig. 3.b) – if probing for
roles –, or filler features zeroed (Fig. 3.c) – if instead prob-
ing for fillers. Responding to a probe consists therefore of
completing the role-filler vector. When probed with either
a thematic role (e.g., agent, action, patient, location, or sit-
uation; each represented by an individual unit at the probe
and output layer) or a filler, the model is expected to out-
put the complete role-filler vector. Fillers are represented us-
ing word embeddings obtained by binarizing Fasttext, a com-
putational semantic model representing 1 million words and
trained on both the English Wikipedia and the Gigaword 5
corpora (Bojanowski, Grave, Joulin, & Mikolov, 2017). The
discrepancies between the observed role-filler vector ~oi and
generated output ~̂oi is computed using cross-entropy and is
back-propagated through the entire network to adjust its pa-
rameters in order to minimize the difference between model-
generated and correct output. Binarization of the filler seman-
tic feature representations was performed in order to allow
for a probabilistic interpretation of the model generated acti-
vation of semantic feature units afforded by the cross-entropy
error used during training.

1065



Fig. 4: This study aims to model the amplitude of the N400 as a function of the update of a probabilistic semantic repre-
sentation (SU) generated by a SG model trained on a large scale corpus of naturalistic texts. N400 amplitudes elicited by
reading a sentence (e.g., the boy ate soup...) are matched by the SU generated by the model.

Materials and methods
Previous implementations of the SG model have been trained
on artificially generated sentences, constructed in order to
sample basic word and role-filler combinations. In the present
study, the model is trained on a large-scale training corpus ap-
proximating the real life language experience of human par-
ticipants. This approach allows for simulation of empirical
experiments with the exact same stimuli on a single-trial ba-
sis.

Training corpus and hyper-parameters
The SG model was trained on the British National Cor-
pus section of the Rollenwechsel-English (RW-eng) corpus
(Sayeed, Shkadzko, & Demberg, 2018). The RW-eng cor-
pus is annotated with semantic role information based on
PropBank roles (Palmer, Gildea, & Kingsbury, 2005) and ob-
tained from the output of the SENNA semantic role labeller
(Collobert et al., 2011; Collobert, 2011) and the MALT syn-
tactic parser (Nivre, 2003). Each sentence annotation con-
sists of the list of event frames it describes. An event frame
is defined by its main predicate (usually a finite verb) and its
arguments. Following PropBank, RW-eng frames can contain
arguments of 26 types spanning from agent, patient, benefac-
tive, starting and end point and a series of modifiers describ-
ing the temporal, locational, causal, final and modal circum-
stances of the event. Therefore, the SG model in this study is
trained on mapping each RW-eng sentence to its PropBank-
style event structure as provided in the RW-eng corpus. For
more detail on the argument structure proposed by PropBank
we refer to Palmer et al. (2005). A sentence can contain mul-
tiple event frames.

The parameters of the SG model were optimized using
Adamax (Kingma & Ba, 2015) with learning rate equal to
0.0005. The data was split in mini-batches of 32 sentences

each. Training was conducted for a maximum of 400 epochs
on 90% of the batches, the remaining 10% was kept for val-
idation. Only sentences having between 4 and 25 words and
having a maximum of 10 frames were used for training. Sen-
tence length and number of frames were constrained in or-
der to limit the number of complex subordinate events and
to facilitate the mini-batch training. That yielded a total of
64017 training batches (2048544 sentences) and 7113 valida-
tion batches (227616 sentences).

The size of the hidden layers (including the SG layer) was
2400, whereas the input layer generates per-word embeddings
of size 600 for the 8000 word forms accepted. The probe and
output layers had size 337 due to the concatenation of the
300-size binarized embedding vector, the frame number and
the argument type.

EEG dataset

The elecrophysiological recordings of the N400 were ob-
tained from an EEG dataset provided by Frank et al. (2015).
The dataset consists of data collected from twenty-four par-
ticipants (10 female, mean age 28.0 years, all right handed
and native speakers of English) while they were reading sen-
tences extracted from English narrative texts.

The stimuli consisted of 205 sentences (1931 word tokens)
from the UCL corpus of reading times (Frank, Monsalve,
Thompson, & Vigliocco, 2013), and originally from three lit-
tle known novels. The sentences were presented in random
order, word by word. The N400 amplitude for each subject
and word token was defined as the average scalp potential
over a 300-500 ms time window after word onset at electrode
sites in a centro-parietal region of interest.

For further details regarding the stimuli see Frank et
al. (2013). More detailed information regarding the EEG
dataset, its stimulation paradigm and preprocessing can in-
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stead be found in Frank et al. (2015).

Analyses
In order to assess the hypothesis that the N400 component
reflects the change of the neural representation of predicted
meaning after every word presentation, we fitted a linear
mixed effect model with the aim of predicting the amplitude
of the N400 as a function of the update of the semantic rep-
resentation generated by the SG model during language pro-
cessing (the Semantic Update or SU). The SU is computed as
the mean absolute error between ~sgt and ~sgt−1 generated by
the SG layer of the update network. Fig. 5 presents a graph-
ical summary of our approach. Since the N400 is a negative
deflection of the electrophysiological signal, the SU is multi-
plied by −1.

In addition, we compared two separate models containing
positional and stochastic measures, one predicting the am-
plitude of the N400, the other predicting the SU. The aim
of this second analysis is to investigate whether the SU and
the amplitude of the N400 are influenced in the same way by
the stochastic and positional properties of the sentence. Both
analyses are aimed at investigating the validity of the SU as
approximation of the processing dynamics underpinning the
generation of the ERP component under scrutiny.

Predicting the N400
Tab. 1 contains the results of a linear mixed effect model
(LME) predicting the N400 ERP component amplitude ob-
tained from Frank et al. (2015) as a function of the SU over
the stimulus words. SU is included together with the ERP
baseline (the activity of the 100 ms leading to the onset of
each word), which is not subtracted directly from the depen-
dent variable, but instead included as a variable of no interest
in the model. The model is fit with per-subject and per-word
random intercepts.

β CI. z p
ERPbase -0.11 -012 – -0.10 -21.03 <0.001
SU 0.07 0.05 – 0.08 9.52 <0.001

Tab. 1: Results of a LME model fitted with the SU and
aimed at predicting the amplitude of the N400 component.

The results in Tab. 1 clearly indicate that SU signifi-
cantly predicts the amplitude of the N400 (β= 0.07, z= 9.52,
p < 0.001). Larger word-wise updates of the SG layer repre-
sentation correspond with stronger negative deviation of the
ERP signal in the N400 time segment.

Comparing the effect of surprisal and of SU as
predictors of the N400
In order to assess the contribution of the SU on the ampli-
tude of the N400 above and beyond the effect of surprisal,
we fitted two nested linear mixed effects models, one (called
Null) containing as predictors only surprisal, the other (Full)

Fig. 5: Relation between the amplitude of the N400 and
the SU as estimated by the LME model described in Tab.
1.

containing also SU. Both models were fit with random per-
subject and per-word random intercepts. Table 2 reports the
results of the log-likelihood test between the two models,
showing the difference in model fit to be significant (χ2 =
79.03, p < .0001).

model AIC BIC loglik χ2 Pr
Null 52354 51405 -25671
Full 51277 51336 -25631 79.03 < .0001

Tab. 2: Results of log-likelihood comparison between
Null and Full model.

Table 3 contains the β estimates for the Full model pre-
dictors. Even with the presence of surprisal (β = −0.06,
z = −8.08, p < 0.001), SU makes a significant contribution
to the amplitude of the N400 (β = 0.06, z = 8.90, p < 0.001).

β CI. z p
ERPbase -0.11 -012 – -0.10 -21.03 <0.001
surprisal -0.06 -0.08 – -0.05 -8.08 <0.001
SU 0.06 0.05 – 0.08 8.90 <0.001

Tab. 3: Results of a Full model fitted with both surprisal
and SU and aimed at predicting the amplitude of the N400
component.

Comparing the effect of predictors on SU and N400
Tab. 4 and Fig. 6 contain the results of two linear models,
one predicting SU, and the other predicting the N400 ampli-
tude from Frank et al. (2015). As in the previous section, SU
values were generated using the stimuli contained in Frank et
al. (2015). Both models contain as predictors word position
in the sentence, word frequency, and word surprisal. Word
frequency was obtained from the BNC (Clear, 1993). Sur-
prisal was computed using SRILM (Stolcke, 2002), also on
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Fig. 6: Influence of word position (1st row), frequency
(2nd row), and surprisal (3rd row) on the amplitude of the
N400 (1st column) and on the SU (2nd column).

the BNC. For the model predicting the N400 we also included
the ERP baseline and per-subject and per-word random inter-
cepts, as in the analyses reported in Tab. 1.

N400 SU
β z p β z p

pos 0.06 10.30 <0.001 0.71 216.61 <0.001
freq 0.01 0.56 0.313 0.28 61.00 <0.001
surp -0.06 -7.23 <0.001 -0.01 -2.82 0.005

Tab. 4: Influence of word position (pos), frequency (freq),
and surprisal (surp) on the amplitude of the N400 and on
the SU measure.

Word position in the sentence has a significant positive ef-
fect on both variables, indicating that the magnitude of these
variables decreases as a function of the position of the word
it is computed on (N400: β = 0.06, z = 10.30, p < 0.001,
SU: β = 0.71, z = 216.61, p < 0.001). Frequency has a sig-
nificant positive effect on SU, meaning that more frequent
word forms elicit a smaller update of the SG layer represen-
tation (β = 0.28, z = 61.00, p < 0.001). Frequency shows
also a positive, albeit not significant, effect on the amplitude
of the N400 (β = 0.01, z = 0.56, p = 0.313). Please note
however that other ERP studies did find significantly smaller
N400 amplitudes for more high frequent words, which would
be consistent with our modelling results (Rabovsky, Álvarez,
Hohlfeld, & Sommer, 2008). Surprisal has a negative ef-
fect on the magnitude of the SU (β = −0.01, z = −2.82,

p = 0.005), and on the amplitude of the N400 (β = −0.06,
z = −7.23, p < 0.001). This indicates that the more unex-
pected a word is in a given context, the larger is the update of
the inner representation generated by the SG model, and the
larger is the negative deflection corresponding to the N400
evoked potential component. Overall, these results seems to
indicate that both the SU and the N400 respond similarly to
the effects of the position of a word in the sentence, its over-
all frequency and the probability of appearing in a specific
context.

Discussion
Previous studies have already suggested that N400 ampli-
tudes reflect the change of a probabilistic representation of
meaning corresponding to an implicit semantic prediction er-
ror. This was based on showing how the SU responds sim-
ilarly as the N400 amplitude to a series of lexical semantic
manipulations including semantic congruity, cloze probabil-
ity, semantic and associative priming, and repetition, among
others (e.g., Rabovsky et al., 2018). The analyses reported
in this paper showed a significant relation between the ampli-
tude of the N400 component and the update of the probabilis-
tic semantic representation (SU) generated by a SG model
trained on a large scale corpus of naturalistic texts (Tab. 1
and Fig. 5). Further analyses indicate that word position,
word frequency and surprisal have, in relative terms, similar
effects on the SU as they have on N400 amplitudes (Tab. 4
and Fig. 6). Both these analyses suggest that the SU is a valid
approximate of the ERP component under examination. The
fact that the update of a probabilistic semantic representation
(the SU) observed in a corpus-trained SG model predicts the
fluctuation of N400 amplitudes reinforces the intuition that
the model itself is a valid approximation of sentence process-
ing and that the N400 reflects an internal temporal difference
prediction error at the level of meaning.

These results were obtained on electrophysiological data
that was collected on quasi-naturalistic stimuli, i.e. stimuli
that were not explicitly designed to elicit a strong N400 effect,
but that were sampled in order to cover the natural complexity
of linguistic material. This would not have been possible with
the previous small scale implementation of the SG model. In
general, despite advantages in terms of transparency and in-
terpretability, one important limitation of small scale models
trained on synthetic environments is the indirect relation be-
tween model and human data, making the testing of the hy-
pothesis implemented in the model also somewhat indirect
and based on the assumption that the small synthetic environ-
ment adequately captures the relevant statistical properties of
human environments. A model trained on a large scale cor-
pus allows to test the hypothesis implemented in the model in
a much more direct way and thus seems crucial to rigorously
test the model.
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