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ABSTRACT OF THE DISSERTATION

Cardiac Memory in the Genesis of Arrhythmias

by

Julian William Landaw

Doctor of Philosophy in Biomathematics

University of California, Los Angeles, 2019

Professor Zhilin Qu, Chair

Dynamical instabilities in the heart promote arrhythmias and sudden cardiac

death (SCD), one of the most common causes of death in individuals with car-

diovascular disease. Beat-to-beat changes in electrophysiological properties at

the cellular level can promote arrhythmogenesis at the whole-heart level, yet the

precise mechanisms are not well understood.

Cardiac cells possess memory, whereby certain physiological properties depend

on the prior history. Here, we analyze the effects of short-term cardiac memory

from two sources: the slow recovery of ion channels and the slow accumulation

of ion concentrations over time. We demonstrate that under diseased conditions,

namely early repolarization syndrome and long QT syndrome, action potentials

become unstable during fixed pacing due to enhanced effects of memory on action

potential duration. We develop new iterated map models that explicitly incor-

porates the effects of memory on action potential duration, and show that the

dynamics of the iterated map models match very closely to the dynamics of de-

tailed action potential models. Using the iterated map models, we propose new

techniques of controlling action potential instability under the influence of memory

and confirm their efficacy in the detailed action potential models.
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Finally, we show that action potential instability at the cellular level can gener-

ate arrhythmias at tissue-scale levels. In a model of early repolarization syndrome

driven by activation of small-conductance Ca2+-activated K+ (SK) channels, ac-

tion potential instability promotes phase 2 reentry. Spiral wave dynamics become

unstable due to early repolarization driven by the transient outward K+ current

(Ito), suggesting that action potential instability induced by memory is a mecha-

nism of arrhythmias like ventricular fibrillation.
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CHAPTER 1

Introduction to Cardiac Electrophysiology,

Modeling, and Memory

The human heart beats about once every second, and so in the course of a

normal life span totals about 2-3 million heartbeats. Normally, each heartbeat

causes muscular contraction of the heart, pumping oxygenated blood from the

left atrium and ventricle to the rest of the body and deoxygenated blood from the

right atrium and ventricle to the lungs. Fundamentally, contractions of the heart

are initiated by a complex electrical network of heart cells, or myocytes.

Sudden cardiac death (SCD) is one of the most common causes of death in

individuals with cardiovascular disease. Roughly 1 in 4 people in the United States

die each year due to heart disease [NC13], and of those, about 50% are due to

SCD [AKSA+18, MJ12, GBC+11]. In SCD, the heart abruptly loses its ability

to pump blood efficiently, either due to sino-atrial node (SAN) malfunction or

due to electrical turbulence in the ventricles [QHGW14]. While much has been

done in the past half-century to understand, prevent, and treat SCD, much is

still unknown. Problems in understanding the mechanisms of SCD stem from the

fact that it is a multi-disciplinary problem in biology and medicine, physics, and

mathematics [Win83, QHGW14]. In addition, there are many different conditions

and diseases that cause lethal arrhythmias and SCD.

Cardiac electrophysiology studies the electrical system of the heart, and ad-

vances in the field have led to a clearer understanding of disease mechanisms and

treatments of arrhythmias. Foundations of cardiac electrophysiology began as
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early as 5th century BC in China, but most progress in the field occurred in the

last 100 years [Lüd09]. Here, before diving into the definition of cardiac mem-

ory and the main findings in the thesis, we will briefly go over basics of cardiac

electrophysiology, define precisely what we mean by “cardiac memory,” and cur-

rent methods used to study the cardiac electrical system using tools in computer

simulation and mathematical modeling.

1.1 Cardiac Electrophysiology

Contractions of the heart are caused by electrical stimuli originating in the

sino-atrial node (SAN). The electrical impulses propagate first to the left and

right atria and then to the left and right ventricles via the atrial-ventricular node

(AVN) (Fig. 1.1(a)). Normally, this process of electrical excitation leading to a

synchronous contraction of the heart occurs every beat and is adaptive to changes

in heart rate, stress, sympathetic surges, etc.

Cardiac tissue is made of rod-like cells known as myocytes. With some excep-

tions (e.g. fibroblasts), myocytes are electrically active. During a heart beat, each

myocyte undergoes a change in voltage or membrane potential known as an action

potential. An action potential is caused by active changes in ionic currents flowing

into the cell (inward currents) or out of the cell (outward currents). In the next

section, we will go over what sorts of changes occur during an action potential,

which will ultimately pave the way for an understanding of cardiac memory.

1.1.1 Action Potentials

Preceding a heart beat, each electrically active cell in the network maintains a

negative potential or voltage, known as the resting membrane potential, between

the inside and outside of the cell. During a heartbeat, each cell undergoes an

action potential (AP), a change in electrical potential over time, in which the

2



Figure 1.1: From Qu et al. [QHGW14]. Anatomy and action potentials of the heart. (a).

Structure of the heart. RA = right atrium, LA = left atrium, RV = right ventricle, LV =

left ventricle. (b). Image of a ventricular myocyte. (c). Representative action potentials

from different areas of the heart. SA nodal action potentials are generated automatically and

repetitively via cellular oscillations, while all other action potentials are elicited from external

stimuli from neighboring cells. (d). A representative electrocardiogram (ECG). The ECG

records the net electrical activity of the human heart, and can be used to diagnose diseased

states.
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voltage transiently increases and then decreases back to resting state. Some cells,

for example those in the SAN, generate action potentials by undergoing intrinsic

voltage oscillations. These cells are known as pace-maker cells, as they are able

to generate action potentials without any external driving. Other cells in the

heart, like those in the ventricles (Fig. 1.1(b)) are externally driven and depend

on electrical excitation from neighboring cells.

Cells from different regions of the heart may elicit action potentials with differ-

ent morphologies from one another (Fig. 1.1(c)). Myocytes in the SAN and AVN

are oscillatory or pace-maker cells, and so the morphologies of the action poten-

tials are different compared to non-oscillatory cells. In pace-maker cells, voltages

vary between −60 and 40 mV, while resting membrane potentials of atrial and

ventricular myocytes are around −80 mV [QHGW14].

1.1.2 The Hodgkin-Huxley Model

It was not until the 20th century that properties of APs in neurons began to be

well understood. In the early 20th century, it was only just postulated that APs

were due to changes in the permeability of neural axon membranes to ions such

as Na+ and K+ [Ber02]. Arguably the biggest breakthrough in electrophysiology

occurred with the findings by Hodgkin and Huxley, which were published in 1952

[HH52] and led to them winning the Nobel prize in Physiology and Medicine in

1963. In their model, the Hodgkin-Huxley (HH) model, the cell membrane of a

squid giant axon is modeled as a capacitor in an electric circuit, where embedded

proteins in the cell membrane called ion channels modulate the conductance of

ionic current through the membrane. Labeling Iion as the net sum of currents

flowing through the cell membrane, then the change of voltage of the cell follows

the following differential equation:

Cm
dV

dt
= −Iion, (1.1)
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where Cm is the capacitance of the cell membrane. The negative (-) sign in front

of Iion in Eq. (1.1) is by convention: a current of positive ions is considered positive

if it is flowing out of the cell, which would cause a negative change in voltage.

Hodgkin and Huxley first identified three currents: a sodium (Na+) current INa, a

potassium (K+) current IK, and a leak current (Il) of, at the time, unknown ions

(later determined to be of chloride, Cl−). Each current flows through ion channels

with a certain conductance, and via Ohm’s Law:

INa = gNa(V − ENa), IK = gK(V − EK), Il = gl(V − El), (1.2)

where gNa, gK, and gl are values of the conductances of the respective ion channels,

and ENa, EK, and El are the Nernst potentials of the respective ions, which satisfy

EX = −RT
zF

ln
[X]i
[X]o

, (1.3)

where R is the gas constant (≈ 8.314 J ·mol−1 ·K−1), T is the temperature, and

for ion X, z is the valence or charge, and [X]i and [X]o are the concentrations of X

inside and outside the cell. Under normal physiological conditions, ENa ≈ 70 mV

and EK ≈ −95 mV. Therefore, when activated, INa is an inward current that will

tend to depolarize the cell to higher voltages, and IK is an outward current that

repolarizes the cell to negative voltages.

Setting Iion = INa + IK + Il as the sum of the currents, Eqs. (1.1) and (1.2)

model a resistorr-capacitor (RC) circuit (Fig. 1.2(a)). What comes next is how

to determine the conductances gNa, gK, and gl. Hodgkin and Huxley [HH52]

determined that the conductances are variable, and not only do they change in

time but are also are voltage-dependent. Fig. 1.2(b) shows experimental results

from Hodgkin and Huxley, demonstrating how the conductance gK changes when

the voltage is depolarized to 25 mV and then repolarized back to resting membrane

potential. The higher voltage causes the conductance to increase and saturate to

a certain level, and when repolarized back to resting state the conductance drops
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Figure 1.2: From Hodgkin and Huxley 1952 [HH52]. The Hodgkin Huxley model. (a). Model

of an action potential as a circuit with the cell membrane acting as a capacitor with capacitance

Cm and ionic currents INa, IK, and Il flowing through resistors with Nernst potentials ENa, EK,

and El, respectively. (b). Conductance of the K+ current, IK, with the voltage depolarized to

25 mV and then brought back to resting membrane potential.

and exponentially decays towards 0. They determined that gK can be modeled as

gK = ḡKn
4, (1.4)

where ḡK is a constant that is the maximum conductance of the IK, and n is

variable satisfies a differential equation

dn

dt
=
n∞ − n
τn

, (1.5)

where n∞ = n∞(V ) is a voltage-dependent steady state value of n at a given

voltage V . n is known as a gating variable and modulates the conductance through

ion channels. The power of 4 in Eq. (1.4) was determined in a purely statistical

manner by fitting curves to the data as in Fig. 1.2(b), but turns out to have

predicted the existence of four voltage-sensitive domains or “gates” in K+ channels

[SGS05], in which all 4 gates must be open in order for a particular K+ channel

to be permeable to K+.

The conductance of INa turns out to be a bit more difficult:

gNa = ḡNam
3h, (1.6)
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where m and h are two independent gating variables that satisfy the differential

equations
dm

dt
=
m∞ −m

τm
,

dh

dt
=
h∞ − h
τh

. (1.7)

The gating variable m, like n, is an activation gating variable which increases at

higher voltages. However, unlike seen in the conductance for IK, there is also a

gating variable h which is an inactivation gating variable that decreases at higher

voltages.

1.1.3 Beyond Hodgkin-Huxley and Cardiac Action Potential Model-

ing

Hodgkin and Huxley provided a framework for explaining and modeling action

potentials. Via Eq. (1.1), the changes in voltage during an action potential are

governed by changes in the ionic currents, Iion. Hodgkin and Huxley examined

three particular currents in a squid giant axon, INa, IK, and Il, and determined

that while voltage is governed by the flow of ionic currents, the ionic currents

themselves depend on voltage via the voltage-dependent gating variables n, m,

and h.

Since then, a wide variety of ion channels were discovered and investigated

not only in neurons but also in cardiac myocytes. Many differences exist between

the electrophysiological properties of neurons and cardiac myocytes, but arguably

the biggest difference is the existence of complex calcium (Ca2+) cycling required

for excitation-contraction (EC) coupling. EC coupling via Ca2+ is fundamentally

the link between the electrical activity of the heart and contraction of the heart

[Ber08] in order to pump blood to the rest of the body. The L-type Ca2+ channel,

ICa,L, is essential for EC coupling [BTN89, FAP97, Reu85, SC73, LHX04]. ICa,L

is a voltage-gated Ca2+ channel which has the effect of not only allowing Ca2+ to

enter the cell from the outside (and utimately trigger a cascade of events allowing
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contraction of the cell), but it also provides an inward current that, in cardiac

tissue, prolongs the duration of action potential.

The action potential duration, or APD, is a measurement of how long a cell is

depolarized during an action potential before the cell repolarizes back to resting

membrane potential. While in neurons the APD tends to be on the order of 1 ms,

in cardiac tissue the APD is much longer and on order of 100 ms. The APD is a

fundamental concept in cardiac electrophysiology. For example, APD in cardiac

ventricular tissue determines the QT interval on electrocardiogram (ECG), and

abnormalities in the QT interval (either due to genetic abnormalities or drug

interactions) can be a marker for arrhythmias [JM92, QXO+13, GZM08, Rod06,

WSS+95, CR01, TM99]. We will return to APD in the next section.

After Hodgkin and Huxley, action potentials in cardiac myocytes have been

modeled following a very similar strategy. Iion in Eq. (1.1) has been modified and

extended to include many different ionic currents, i.e., [QHGW14]

Iion = INa + ICa,L + IKs + IKr + IK1 + INCX + INaK + . . . , (1.8)

where each current in general follows similar Hodgkin-Huxley formulations as

in Eqs. (1.2)-(1.7). Since the first cardiac action potential model in Purkinje

fibers formulated by Denis Noble in 1962 [Nob62], many different action po-

tential models have been developed specific to different areas of cardiac tissue

(e.g. SAN cells versus ventricular cells) as well as to different animal species

[LR91, LR94, tTNNP04, tTP06, MSS+08, OVVR11]. In what are termed “first

generation models” [QHGW14], the action potential models have a fairly limited

number of ionic currents, with intracellular ionic concentrations [K+]i and [Na+]i

held constant and [Ca2+]i changing only due to Ca2+ currents (ignoring complex

intracellular Ca2+ cycling). However, while perhaps not the same physiologically

accurate, these models such as the Luo-Rudy I (LR1) model [LR91] are still com-

monly used since they are fairly simple and action potential properties in these
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models can be more easily scrutinized. A later model, the Luo-Rudy 1994 (LRd)

model [LR94], is perhaps the prototypical “second-generation models” [QHGW14]

which includes many more currents as well as intracellular Ca2+ compartments

responsible for complex intracellular Ca2+ cycling.

Finally, it is important to point out that although the models thus far are

for single cells, it is possible to add a spatial component and combine many cells

together in a 1D, 2D, or 3D tissue. By extending onto Eq. (1.1), tissues of coupled

myocytes can be modeled by the following partial differential equation:

∂V

∂t
= −Iion

Cm
+D∆V. (1.9)

∆V is the Laplacian operator which sums over all second partial derivatives with

respect to each spatial dimension. D is the diffusion coefficient, which models the

conductance of currents between neighboring cells via gap junctions. Through

Eq. (1.9), one can study cardiac tissue-scale phenomenon while also having control

over single-cell properties.

1.2 Nonlinear Dynamics of Action Potential Duration and

Calcium Cycling

In the previous section, we went over the basics of cardiac electrophysiology at

the single cell level, giving an overview of what an action potential is and how car-

diac action potentials are modeled via Hodgkin-Huxley formulations. Ultimately,

the goal of mathematical and computational modeling is to accurately represent

the real, physical and biological world and make predictions. Can mathemati-

cal and computational models of cardiac action potentials provide mechanisms of

disease and arrhythmias in cardiac tissue?

Under diseased conditions, beat-to-beat changes in action potentials are the

underlying cause of arrhythmias. We describe here two forms of cellular insta-
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bilities that can occur and that have been widely - voltage instabilities or action

potential duration (APD) instabilities, and Ca2+ instabilities.

1.2.1 APD Restitution and Instability

The APD of a cardiac myocyte can vary dependent on the heart rate, or how

rapidly the cell is stimulated to trigger an action potential. This phenomenon

of APD varying due to the rate of stimulation, or pacing cycle length (PCL), is

known as APD restitution [QHGW14]. For the most part, APD shrinks under

fasting pacing. This is because under fast pacing, voltage-dependent gates have

less time to recover during the diastolic interval (DI), which is the interval of time

between the end of one action potential and the initiation of the next one.

The APD restitution can be measured experimentally in isolated ventricular

myocytes via an S1S2 pacing protocol. A cell is paced periodically under a fixed

pacing rate (S1) for several beats so that the action potentials and APD will

equilibrate and reach steady state. Then, a premature stimulus (S2) is applied

some interval of time after the end of the preceding AP (Fig. 1.3(a)). By doing

this, the DI is controlled, and one can measure the APD of the action potential

triggered by the premature stimulus. This procedure determines a one variable

function of APD on DI:

APD = f(DI). (1.10)

Eq. (1.10) is known as an APD restitution curve (Fig. 1.3(b)).

Given the APD restitution curve in Eq. (1.10), one can examine APD stability.

Under constant periodic pacing (i.e. the heart is pacing at a fixed heart rate)

with T the fixed pacing cycle length (PCL), then APD + DI = T after any given

stimulus. We can then write

an+1 = f(dn) = f(T − an), (1.11)

where an and an+1 are the APDs of action potentials triggered by the nth and
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Figure 1.3: From Qu et al. [QHGW14]. The APD restitution. (a). The S1S2 restitution

protocol. A cell is paced periodically for several beats (S1), followed by a premature stimulus

(S2). The APD of the action potential from the S2 stimulus recorded. (b). APD restitution

curve. By varying the timing of the S2 stimulus in the S1S2 restitution protocol, APD versus DI

can be measured. Experimental results from a rabbit ventricular myocyte [GXD+05]. (c). APD

restitution curves under two different S1 pacing periods. Results from Franz et al. [FSS+83].

11



(n+ 1)st stimulus, respectively, dn is the DI of the nth beat (after the nth stimulus

but before the (n+1)st stimulus), and T = an+dn. The equation an+1 = f(T−an)

provides a discretized, 1-dimensional iterated map of APD. Given a0, then a1 =

f(T − a0), a2 = f(T − a1), a3 = f(T − a2), and so on.

The APD fixed point a∗, with the corresponding DI fixed point d∗, satisfy

a∗ = f(d∗) = f(T − a∗). As first noticed by Nolasco and Dahlen in 1968 [ND68],

denoting α = df
dan

∣∣
a∗,d∗

to be the derivative of the APD restitution curve at the

fixed point, then the fixed point is unstable provided

|α| > 1. (1.12)

In other words, if the magnitude of the slope or derivative of the APD restitution

curve at the APD/DI fixed point is greater than one, then the fixed point is

unstable.

With a magnitude of the derivative greater than 1, small perturbations of APD

about the fixed point will exponentially diverge away from the fixed point over

several iterations under f . For a brief proof: suppose again that a∗ is the APD

fixed point that satisfies a∗ = f(T − a∗), and suppose that a0 = a∗ + ε, where

|ε| � 1 is a small perturbation away. Then,

a1 = f(T − a0) = f(T − a∗− ε) = f(T − a∗)− εf ′(T − a∗) + o(ε) = a∗−αε+ o(ε),

(1.13)

where the third equality comes from Taylor expanding f(T −a∗− ε) about T −a∗.

o(ε) involves higher powers of ε, which is negligible compared to ε when ε is close

to zero. Neglecting o(ε), then a1 − a∗ = −αε. Originally, a0 deviated from the

fixed point ε away, and after one iteration is −αε away. Over n iterations, the

deviation becomes (−1)nαnε. If |α| > 1, APD will exponentially diverge away

from the fixed point, and therefore the fixed point is unstable. Conversely, if

|α| < 1, then the deviation will decay to 0 and APD will get closer and closer to

the fixed point with every additional iteration. Therefore, APD is stable.
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The APD fixed point can be either stable or unstable. If the S1S2 restitution

curve is monotonically increasing (i.e. APD increases as DI increases) and the

APD fixed point is unstable, then APD will oscillate about between two values

above and below the APD fixed point. This phenomenon is known as APD al-

ternans, and it can manifest in the human heart as T-wave alternans (TWA),

which is a finding on electrocardiogram (ECG) that often preceeds arrhythmias

under different diseased conditions [QXGW10]. If the S1S2 restitution curve is

non-monotonic, then much more complex dynamics can occur, including chaos.

These complex dynamics of APD have been seen in experiments [WOGJ95] and

in action potential models [QWG97, XHS+07].

1.2.2 Intracellular Ca2+ Instability

APD instability is one form of instability that can occur in cardiac action

potentials. Since voltage is coupled to many different processes in the system,

APD instability can cause other instabilities to occur as well.

However, it is also possible that other intracellular processes to be unsta-

ble even with the voltage system stable. One such system is the Ca2+ cycling

system. Ca2+ is regulated not only by ionic Ca2+ currents such as the L-type

Ca2+ current, ICa,L, but also by complex intracellular Ca2+ cycling involving

the sarcoplasmic reticulum (SR). The SR contains stores of Ca2+ at very high

concentrations. During an action potential, Ca2+ enters the cell via ICa,L and

triggers calcium-induced-calcium-release (CICR), which causes the SR to release

large amounts of Ca2+ from the SR into the cytoplasm of the cell. This positive

feedback, whereby a small amount of Ca2+ triggers even more Ca2+ to enter the

intracellular space, can cause instabilities in Ca2+ cycling including Ca2+ alter-

nans [QHGW14]. Ca2+ alternans has been observed experimentally even when

APD is fixed [CGG+99, DEO02, DOE04]. Spatially discordant instabilities in

Ca2+ cycling including Ca2+ waves have also been seen in experimental studies
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[DEO02, KB02, XW09, ASK+09, GBAC09, TKL12].

Much has been done to demonstrate and analyze Ca2+ instabilities in cardiac

myocytes. To give one example of a mathematical model used to study Ca2+

cycling instability, Qu et al. [QSW07] developed an iterated map model providing

a mechanism for Ca2+ alternans due to steep fractional release of SR Ca2+. As

postulated by Eisner et al. [ECD+00], Ca2+ is caused by a very steep or sensitive

relationship between SR Ca2+ release (due to CICR) and SR Ca2+ at the time

of stimulus of the next action potential. In the iterated map model, Qu et al.

developed the relationship

ln+1 = ln − g(ln) + h(cpn+1), (1.14)

where ln is the SR Ca2+ load right at the next stimulus, g describes the relation-

ship between the SR Ca2+ load and how much Ca2+ is released from the SR, cpn+1

is the peak Ca2+ concentration in the intracellular space during the next action

potential, and h represents how much Ca2+ reenters the SR after the action poten-

tial (via the SERCA pump). They assume that cpn+1 is simply the amount Ca2+

in the intracellular space (b) plus how much Ca2+ is released from the SR into the

space (g(ln)) and minus how much Ca2+ is taken up back into the SR (ln), i.e.,

cpn+1 = b+ g(ln)− ln. (1.15)

Together, Eqs. (1.14) and (1.15) give the following one-dimensional iterated map:

ln+1 = ln − g(ln) + h [b+ g(ln)− ln] . (1.16)

As in the stability analysis of the APD restitution curve (Eq. (1.11)), stability of

the map can be determined by calculating the derivative of the map at the fixed

point. In so doing, the map is unstable provided

|(1− g′)(1− h′)| > 1, (1.17)

where g′ = dg
dln

∣∣
l∗

and h′ = dh
dcpn+1

∣∣
l∗

are the derivatives of g and h evalulated when

ln = l∗, the SR Ca2+ fixed point.
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1.3 The Role of Cardiac Memory

In the APD restitution model of APD dynamics, it is assumed that APD is

solely a function of the previous beat’s DI. In many cases, this assumption is

perfectly valid, and performing stability analyses of APD restitution curves (i.e.

evaluating derivatives of the curves at the APD fixed points) provide mechanisms

for APD instability and arrhythmogenesis in cardiac tissue.

However, during an action potential, many other dynamical variables besides

APD and DI occur. In fact, APD restitution curves can change dependent on the

S1 pacing period of the S1S2 pacing protocol (Fig. 1.3(c)). There may be many

cellular processes going on that depend on the cell’s prior pacing history. Though

many ion channels have gating variables with very rapid kinetics that reach a

steady state equilibrium by the end of an action potential, some ion channels

have very slow activation or recovery. One example is the slow delayed rectifier

K+ current IKs. Experimental studies have demonstrated that IKs activates with

a time constant of about 1000 ms and deactivates with a time constant between

100 and 400 ms [JPV07, VIO+01]. Denoting x to be a gating variable of IKs, then

dx

dt
=
x∞ − x
τx

, (1.18)

where τx is 100 to 400 ms at low voltages near resting membrane potential, and

about 1000 ms when the cell is depolarized. Compared to other gating kinetics,

e.g. that for INa, IKs is very slow and can have a different behavior depending on

whether the cell is paced rapidly or slowly.

In addition to slow recovery of ion channels, there is also slow accumulation

of ion concentration. From one beat to the next, [K+]i, [Na+]i, and [Ca2+]i may

change due the flow of currents, but in any given action potential the amount of

ions flowing into or out of the cell will not substantially affect the intracellular

concentrations. However, over a course of, say, dozens or hundreds or thousands

of action potentials, the intracellular ion concentrations may increase or decrease
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substantially, thereby changing conductances of the ion channels.

The phenomenon by which the prior pacing history affects action potential

properties is called short-term cardiac memory [FSLS88]. To model memory, one

may consider the dependence of APD not just on the previous DI (as in the case

of the APD restitution curve), but also add dependencies to APDs and DIs even

further back [CLS04, KTS+05]:

an+1 = f(dn, an, dn−1, an−1, . . . ). (1.19)

One may also introduce a phenomenological memory variable, such as by

Chialvo et al. [CMJ90] and Fox et al. [FBGJ02]:

Mn+1 = e−
dn
τ

[
1− (1−Mn)e−

an
τ

]
an+1 = (1− αMn+1)f(dn) (1.20)

M describes the effect of memory from the slow recovery of K+ channels. In

various studies using the iterated map model in Eq. (1.20) or similar ones incor-

porating memory, it has been shown that memory suppresses instabilities [CMJ90,

FBGJ02, KTS+05, OGJ97, TSGK03, FRD+03, TRGG04, CF04, BQK+07, GCGJ+13,

MJT08, WMT15]. However, we demonstrate that under diseased conditions, the

memory effect can be enhanced and actually promote instabilties and complex

action potential dynamics.

1.4 Thesis Outline

Chapters 2-4 focus on action potential dynamics at the single-cell level. Chap-

ter 2, titled Memory-Induced Nonlinear Dynamics of Excitation in Cardiac Dis-

eases, investigates the effects of memory from two sources: slow recovery of K+

channels and slow accumulation of Ca2+. Under two diseased conditions - early

repolarization syndrome and long QT syndrome - we show that the effects of
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memory are enhanced and induce complex action potential dynamics under fixed

pacing.

Chapter 3, titled Control of Voltage-Driven Instabilities in Cardiac Myocytes

with Memory, demonstrates that action potential dynamics induced by memory

are very difficult to control. We propose three pacing controlling methods to

suppress action potential instabilities and analyze their efficacies.

Chapter 4, titled Induction of Action Potential Dynamics by the Accumulation

of Calcium and Sodium in Cardiac Myocytes, analyzes the effects of both Ca2+ and

Na+ in promoting a phenomenon known as intermittent EAD behavior. As shown

in prior experiments and simulations, action potential duration (APD)-to-Ca2+

positive feedback produces a bistable system, and Na+ accumulation functions

as a bistable switch that periodically switches the system between having action

potentials with EADs (long APDs) and having action potentials without EADs

(normal APDs) for a certain number of beats. We recapitulate the findings in

experiment and simulation, and develop an iterated map model incorporating

the effects of Ca2+ and Na+. Analysis of the iterated map model demonstrates

that intermittent EAD behavior arises due to a supercritical Hopf bifurcation.

Our findings using the iterated map model are confirmed using a detailed action

potential model.

Chapters 5 and 6 focus on tissue-scale arrhythmogenesis promoted by memory-

induced action potential instability. Chapter 5, titled Small-Conductance Ca2+-

Activated K+ Channels Promote J-wave Syndrome and Phase 2 Reentry, demon-

strates that the small-conductance Ca2+-activated K+ channel (SK) current, ISK,

promotes J-wave syndrome and phase 2 reentry under certain conditions. Namely,

when ISK is spiky enough to induce spike-and-dome action potential morphology

similar to the effects of the transient outward K+ current (Ito), then the effects

of memory are enhanced, action potential dynamics become unstable, and the

instability promotes phase 2 reentry in a 1D-cable of ventricular myocytes.
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Chapter 6, titled The Transient Outward Potassium Current (to) Plays a Crit-

ical Role in Spiral Wave Breakup, reveals that Ito promotes APD instability and

spiral wave breakup in 2D tissue models of cardiac ventricular tissue. We show

that when the conductance of Ito is either too small or too large, then spiral waves

are stable. However, when Ito conductance is in a certain range, then spiral waves

breakup. Other currents, such as ICa,L, IKr, IKs, and IK1, comparatively have

little effect on spiral wave behavior. Our findings are consistent in five different

detailed action potential models.
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CHAPTER 2

Memory-Induced Nonlinear Dynamics of

Excitation in Cardiac Diseases

2.1 Introduction

Dynamical instabilities in the heart can promote arrhythmias such as ventric-

ular tachycardia and fibrillation (VT/VF) [Gla96, QW15], which are the lead-

ing causes of sudden cardiac death [ZW98]. Different mechanisms of dynam-

ical instabilities have been demonstrated at both single-cell and tissue scales

[KMC12, Kar13, QHGW14]. In single cells, nonlinear dynamics including period-

doubling bifurcations leading to period-2 (called alternans in cardiac electro-

physiology) and other states of higher periodicity, as well as quasiperiodicity

and chaos have been widely demonstrated [ND68, GGS81, GWSG84, CGJJ90,

KKH+93, WOGJ95, SXS+09]. These dynamics originate from the nonlinearity

in membrane voltage, intracellular calcium (Ca2+) cycling, or coupling of the two

[QHGW14, SSK05].

Low-dimensional iterated maps have been widely used to understand the dy-

namical mechanisms of complex cardiac excitations. The earliest and most widely

used iterated map model was based on action potential (AP) duration (APD)

restitution properties of cardiac myocytes [ND68]. APD restitution is a property

well-known in cardiology and widely measured in experiments [ES83, FSS+83,

RBHH87, DL88, MCR92]. One type of APD restitution is called the S1S2 APD

restitution (see Fig. 2.1(a)), in which the cell is periodically paced (S1) to a steady
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state and then a premature or delayed stimulus (S2) is applied to obtain the depen-

dence of APD on the preceding diastolic interval (DI). The S1S2 APD restitution

can be mathematically defined as

an+1 = f(dn), (2.1)

where an+1 is the APD of the (n + 1)st beat and dn is the DI of the nth beat

(immediately preceding an+1). Under periodic pacing, the APD and DI of the

same beat satisfy the relation an + dn = mT , and so Eq. (2.1) can be rewritten as

an+1 = f(mT − an), (2.2)

where T is the pacing period and mT is the actual excitation period. For example,

m = 1 indicates that every stimulus gives rise to an AP (1:1 capture), m = 2 means

every two stimuli result in an AP (2:1 capture), and so on. Eq. (2.2) or similar ones

have been widely used to investigate APD dynamics under periodic stimulation

[ND68, GWSG84, CGJJ90, KKH+93, WOGJ95, VCMJ90, Kar94, QSW07]. A

period-doubling bifurcation occurs when the slope of the APD-restitution curve

at the fixed point exceeds 1. Chaos may occur when f is either a nonmonotonic

function of DI or a monotonic function with stimulation failure [QSW07]. In this

study, we refer to Eq. (2.2) as the “APD-restitution map model.”

Note that in Eq. (2.1), the APD depends only on its immediately preced-

ing DI, indicating no memory. However, cardiac systems exhibit memory [ES83,

FSLS88, KDT+04], in which the APD depends not only on its immediately pre-

ceding DI, but also on earlier APDs and DIs. Therefore, Eq. (2.2) is no longer

accurate or valid to describe the APD dynamics when memory is present. A

higher-dimensional iterated map is needed to incorporate the memory effect. In

general, one can write

an+1 = f(dn, an, dn−1, an−1, . . . ), (2.3)

and use this map to investigate the nonlinear dynamics caused by memory [KTS+05].

Another way of incorporating memory into the iterated map model is to induce
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phenomenologically a memory variable. One such model was developed by Chialvo

et al. [CMJ90] and Fox et al. [FBGJ02], which is described by the following equa-

tions:

Mn+1 = e−
dn
τ

[
1− (1−Mn)e−

an
τ

]
(2.4)

an+1 = (1− αMn+1)f(dn) (2.5)

where M is the memory variable and τ is the time constant of memory. M

in Eq. (2.4) describes the memory effect mainly from the slow recovery of K+

channels. In a study by Schaeffer et al. [SCG+07], an iterated map model was

developed to describe the memory effect from slow intracellular ion accumulation.

Since M is always positive, the steepness of the restitution function in Eq. (2.5)

is reduced, and thus memory in Eqs. (2.4) and (2.5) always suppresses instability

[CMJ90, FBGJ02]. The effects of memory on cardiac excitation dynamics have

been investigated in many other previous studies [KTS+05, OGJ97, TSGK03,

FRD+03, TRGG04, CF04, BQK+07, GCGJ+13, MJT08, WMT15], which have

also shown that memory suppresses dynamical instabilities.

In a recent study [LGWQ17], we showed that under certain diseased conditions,

memory can induce dynamical instabilities and complex APD dynamics. One such

diseased condition is the presence of a strong transient outward potassium (K+)

current (Ito), which can cause a sudden shortening of APD, the so-called spike-

and-dome AP morphology [GWP+00, SW05, DSPW06] (also see Fig. 2.2(a)). Ito

can induce complex APD dynamics, including alternans and high periodicity as

well as chaos, which have been shown in experiments [LA93] and computer simu-

lations [Hop06, MKMC09, CPM+09, QXGW10]. This condition may occur under

cardiac diseases such as Brugada syndrome and ischemia [LA93, AY15]. Another

condition we studied is the condition of reduced repolarization reserve in which

either the outward currents are reduced or the inward currents are increased from

normal conditions. This causes the lengthening of APD and the genesis of early af-
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terdepolarizations (EADs) [JM92, QXO+13]. This condition may occur in cardiac

diseases such as long QT syndrome [GZM08, Rod06, WSS+95, CR01] and heart

failure [TM99]. In our previous study [LGWQ17], we carried out computer simu-

lations using a simplified AP model, the 1991 Luo and Rudy (LR1) model [LR91],

to simulate the complex APD dynamics under the two conditions. We developed

a novel iterated map model which accurately captures the dynamics from the AP

model and revealed the mechanistic role of memory in promoting these dynamics.

This is contrary to the understanding of the memory effects on cardiac excitation

dynamics from previous studies [KTS+05, CMJ90, FBGJ02, OGJ97, TSGK03,

FRD+03, TRGG04, CF04, BQK+07, GCGJ+13, MJT08, WMT15] which have

shown that memory suppresses dynamical instabilities.

In this study, we extend our previous work to investigate the effects of mem-

ory on APD dynamics. We investigate two sources of memory. In the first one,

memory is from the slow recovery of a K+ channel. In the second one, memory

is from the slow accumulation of intracellular ion concentrations. Since the LR1

model does not have intracellular ion concentration dynamics (they are fixed), we

use the model developed by ten Tusscher et al. [tTNNP04], the TP04 model, to

study the effects of memory due to ion concentration accumulation, namely intra-

cellular Ca2+ concentration ([Ca2+]i) accumulation. We first carry out computer

simulations of the AP models to demonstrate bifurcations and complex APD dy-

namics under the two diseased conditions. We then develop iterated map models

that incorporate memory to accurately capture the complex dynamics and bi-

furcations. Finally, we perform theoretical analyses of the iterated map models

to reveal the underlying mechanisms and the roles of memory in promoting the

complex dynamics.

The article is organized as follows. In Section 2.2, we describe the AP models,

namely the LR1 model and the TP04 model, and our modifications to model the

diseased conditions that exhibit the corresponding APD dynamics. The Results
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section, Section 2.3, is divided into two major sections based on the two sources of

memory. Section 2.3.1 investigates the effects of memory originating from the slow

recovery of K+ channels. We choose to use the LR1 model since it does not exhibit

ion accumulation, so memory originates only from slow ion channel recovery. In

Section 2.3.1.1, we add Ito to the LR1 model to model Brugada syndrome and

show that Ito can unmask or greatly exacerbate the memory effect caused by slow

recovery of the time-dependent K+ current (IK). In Section 2.3.1.2, we show that

adding Ito to the LR1 model can give rise to complex APD dynamics, including

alternans and chaos, which cannot be described by the traditional iterated map

model using the S1S2 APD restitution curve. In Section 2.3.1.3, we develop a new

iterated map model that incorporates the memory effect from the slow recovery of

IK. Since the memory is mainly determined by the slow kinetics of the X-gating

variable, we call the new iterated map model the “X-memory map model.” In

Section 2.3.1.4, we show that the X-memory map model can accurately capture

the complex APD dynamics from the AP model and the presence of memory

results in a nonmonotonic first return map to generate chaos. In Section 2.3.1.5,

we perform a stability analysis of the X-memory map model, investigating the

dependence of the APD dynamics on different parameters, and validate some of

the predictions using the AP model. In Section 2.3.1.6, we investigate the second

diseased condition, long QT syndrome, in which inward currents are increased

and/or outward currents are reduced. We show that memory is also unmasked

or exacerbated and the resulting complex APD dynamics cannot be accurately

captured by the traditional APD-restitution map model. On the other hand, the

X-memory map model can accurately capture bifurcations and the complex APD

dynamics from the AP model.

Section 2.3.2 investigates the effects of memory originating from slow [Ca2+]i

accumulation. We choose to use the TP04 model since it exhibits slow ion accu-

mulation but its ion channel recovery is fast. Following the same approach as in
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Section 2.3.1, we simulated the two diseased conditions: adding Ito to simulate

Brugada syndrome, and increasing inward currents and reducing outward currents

to simulate long QT syndrome. We develop a new iterated map model that incor-

porates the memory effects from slow [Ca2+]i accumulation, and call this model

the “Ca2+-memory map model.” We show that the traditional APD-restitution

map model cannot while the Ca2+-memory map model can accurately capture

the bifurcations and the complex APD dynamics from the AP model. In the final

section, Section IV, we discuss briefly the implications of our findings from the

AP models and the new iterated map models to cardiac arrhythmogenesis and

potential applications to other excitable systems.

2.2 Action Potential Models and Simulation Methods

We carry out computer simulations using two AP models with the voltage (V )

governed by the following differential equation:

Cm
dV

dt
= −Iion + Isti, (2.6)

where Cm = 1 µF/cm2 is the membrane capacitance, Iion is the total ionic current

density, and Isti is the stimulus current density, a square pulse for a set duration

of time. Iion is the sum of the ionic currents, each driven by the flow of Na+, K+,

and/or Ca2+ flowing in and out of the cell. The number of individual currents

and their mathematical formulations depend on specific AP models. The first

model we use is the LR1 model [LR91], which is one of the simplest cardiac

AP models with physiological ionic current formulations. In this model, we use

Isti = 80 µA/cm2 with a 0.5 ms duration. The second model we use is a much

more complex one, a human ventricular AP model developed by ten Tusscher et

al.[tTNNP04]. In this model, we use Isti = 52 µA/cm2 with a 1 ms duration.

Since there is no Ito in the LR1 model, we include an Ito current taken from
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the model by Mahajan et al. [MSS+08],

Ito = gtoxtoyto(V − EK), (2.7)

where gto is the maximum conductance, xto is the activation gating variable, yto

is the inactivation gating variable, and EK is the reversal potential of the K+

channel. We take the formulation of the fast Ito (i.e., Ito,f) from the Mahajan

et al. model. Ito formulations (both slow and fast Ito) are present in the TP04

model. For simplicity and consistency, we remove the two original Ito formulations

and added the above Ito formulation (Eq. (2.7)) to the TP04 model.

A time-adaptive forward-Euler method is used in computer simulations. The

time step is ∆t = 0.05 ms if the change in voltage ∆V < 0.1 mV, otherwise the

time step is ∆t = 0.005 ms. The cell is paced periodically with period T .

2.3 Results

2.3.1 Complex APD Dynamics Caused by Memory Originating from

Slow Recovery of Ion Channels

We first investigate the effects of memory originating from slow recovery of

membrane ion channels. During an AP, ion channels activate and then inacti-

vate/deactivate, and after the AP it takes a certain amount of time for the ion

channels to fully recover. Different ion channels have different recovery times,

ranging from a few milliseconds to seconds or even longer. Memory manifests

from slowly recovering ion channels. One potential source of memory is the slow

component of the delayed rectifier K+ current (IKs) [SJ90, ZLRR95, SR05], which

activates and recovers slowly, on the order of several hundred milliseconds to a

couple seconds. In this section, we use the LR1 model to investigate the effects

of memory induced by slow K+ channel recovery. Since the ion concentrations

are fixed in the LR1 model, one avoids the confluent effects of memory caused by
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slow ion accumulation. In the LR1 model, the time-dependent K+ current (IK) is

a slowly activating and recovering current.

2.3.1.1 Memory Unmasked/Exacerbated by Ito

To demonstrate the effects of Ito on memory, we plot S1S2 APD restitution

curves of the AP model with and without Ito for different S1 pacing periods, TS1S1

(see Fig. 2.1(a) for the S1S2 pacing protocol). The difference in APD restitution

as a result of applying different pre-pacing S1S1 intervals is a measure of the

memory effect.

Fig. 2.1(b) shows S1S2 APD restitution curves of the original LR1 model for

two different S1 pacing periods TS1S1 = 400 ms and 1000 ms. The shorter S1

pacing period results in an APD restitution curve that shifts slightly to the right.

Thus, in the LR1 model without Ito, the effect of memory on APD restitution is

small.

The presence of Ito causes significant changes in AP morphology and the re-

sulting APD restitution curves. Ito is an outward K+ current that spikes during

phase-1 and is almost completely inactivated during phase 2 (Figs. 2.2(a) and

(b)). Fig. 2.2(c) demonstrates the effects on AP morphology by Ito. In the original

model (black trace in 2.2(c)), the phase-1 notch of the AP terminates at roughly

10 mV. Ito causes a more pronounced phase-1 notch. If the Ito conductance is

larger than a critical value, the voltage repolarizes immediately after the notch,

resulting in early repolarization without a phase 2 plateau, known as a spike (red

trace in 2.2(c)). If the Ito conductance is smaller than the critical value, there is

a rebound depolarization during phase 2, known as a spike-and-dome (blue trace

in 2.2(c)).

Ito creates an “all-or-none” behavior leading to so-called spike-and-dome AP

morphology, in which small changes in Ito conductance result in either a spike-
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Figure 2.1: The S1S2 restitution protocol and S1S2 APD restitution curves from the original

LR1 model. (a). APs demonstrating the S1S2 restitution protocol. Here, TS1S1 = 1000 ms,

and the S2 stimulus is applied after the third S1 beat with a diastolic interval DI = 300 ms.

(b). Restitution curves showing the dependence of APD on DI for different S1 pacing periods

TS1S1 = 400 ms and TS1S1 = 1000 ms. Note that the two curves differ only slightly, indicating a

small memory effect.
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and-dome with a long APD or a spike with a short APD, as seen in the blue

and red APs in Fig. 2.2(c). Fig. 2.2(d) shows this sensitive dependence of APD

on gto, the maximum conductance of Ito. Increasing gto initially decreases APD

slightly, then increases APD up to about 500 ms, at which point APD decreases

sharply from 500 ms down to 100 ms. Fig. 2.2(e) reveals the effects of Ito on the

restitution curves in the presence of varying levels of gto. The presence of Ito causes

the restitution curve to have a more sensitive dependence on DI. In particular,

there is a critical value of DI where the dependence of APD is very steep. As gto

increases, the APD restitution curves shift to the right.

Fig. 2.2(f) reveals the effect of changing the S1 pacing period, from TS1S1 =

400 ms to 2000 ms. The longer S1 pacing period causes the APD restitution curve

to shift significantly to the right by about 300 ms. Compare this to the case

without Ito (Fig. 2.1(b)), where instead the shorter pacing period causes a very

slight shift to the right and by only a few milliseconds. This indicates that in the

presence of Ito, there is a significant effect of memory. Since the Ito formulation

we added to the LR1 model is the fast Ito, the time constants are small, typically

less than 100 ms, and thus memory is not directly from Ito itself. The memory

still originates from the slow recovery of IK, but Ito unmasks and exacerbates the

memory effect, causing a large effect on S1S2 APD restitution behaviors.

2.3.1.2 Ito-Induced Complex APD Dynamics

We next demonstrate how APD dynamics are effected by Ito. In the prior

section, we showed that in the absence of Ito, the S1S2 restitution curves remain

nearly identical when the S1 pacing period is either TS1S1 = 400 ms or 1000 ms.

Using the APD-restitution map model (Eq. (2.2)), where the function f is numer-

ically obtained by using the S1S2 APD restitution curves from the simulation of

the LR1 model (e.g. from Fig. 2.1(b)), we can obtain the bifurcation diagrams

showing the global APD dynamics captured by the restitution map.
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Figure 2.2: The effects of Ito on AP morphology and APD. (a). AP with a pronounced phase-

1 notch. (b). Ito activity during the AP in (a). (c). APs in the absence of Ito (black) and in

the presence of Ito inducing a spike (red, gto = 0.3 mS/cm2) and spike-and-dome (blue, gto =

0.28 mS/cm2). (d). Dependence of APD on gto. The pacing period is T = 2000 ms. Initially,

increasing gto decreases APD, then increases APD up to a critical value when APD = 500 ms,

at which point an increase in gto causes a sudden drop in APD to 100 ms. (e). Dependence

of APD restitution curves on gto. The S1 pacing period is TS1S1 = 2000 ms. Without Ito

(black), the restitution curve is flat except for DI < 200 ms. With Ito (red and blue), there

is a sensitive dependence of APD around a critical value of DI. The higher value of gto (blue,

gto = 0.278 mS/cm2) causes a restitution curve that is right-shifted from that of the lower value

(red, gto = 0.24 mS/cm2). (f). Dependence of APD restitution curves on the S1 pacing period

TS1S1, in the presence of Ito with gto = 0.278 mS/cm2. TS1S1 = 400 ms for black trace, 2000 ms

for red trace. We use TS1S1 = 2000 ms instead of 1000 ms (as in Fig. 2.1) in order to avoid

alternans during S1 pacing.
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Figure 2.3: APD dynamics of the LR1 model in the absence of Ito. (a). Bifurcation diagram

of the AP model under constant-T pacing. (b). Bifurcation diagram generated from the APD-

restitution map model (Eq. (2.2)) using the S1S2 APD restitution curve with TS1S1 = 1000 ms

(red curve in Fig. 2.1(b)). The two diagrams are nearly identical.
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The bifurcation diagrams generated from the AP model (Fig. 2.3(a)) and gen-

erated from Eq. (2.2) using the APD restitution curve for TS1S1 = 1000 ms in 2.1(b)

(Fig. 2.3(b)) are nearly identical, both showing 2 : 1 and 3 : 1 stimulation failure

followed by chaos as T decreases. These results show that the APD-restitution

map model (Eq. (2.2)) is sufficient in capturing the global APD dynamics of the

AP model.

In the presence of Ito, we have shown that the S1S2 APD restitution curves

change under different S1 pacing periods. As in the case without Ito, we compare

the bifurcation diagrams generated by the APD-restitution map model (Eq. (2.2))

to the one obtained from the AP model. Fig. 2.4 demonstrates the APD dynamics

in the case where gto = 0.278 mS/cm2 and the steady-state curve of yto,f is shifted

by 8 mV to more negative voltages. The choice of gto and the modification of yto,f

provide an example where stimulation failure does not occur.

In the presence of Ito, complex APD dynamics, including alternans and chaos,

occur at slower pacing periods (Fig. 2.4). The bifurcation diagram of the AP

model, seen in Fig. 2.4(b), shows instability occurring in the range 536 ms ≤ T ≤

1183 ms, and in addition there is a window of chaos for pacing periods between

536 ms and 639 ms. The bifurcation diagrams generated from the APD-restitution

map model (Eq. (2.2)) using restitution curves with TS1S1 = 400 ms (Fig. 2.4(c))

and TS1S1 = 2000 ms (Fig. 2.4(d)) each reveals a window of instability that is

significantly smaller than the window of instability of the AP model. In the

TS1S1 = 400 ms case, instability occurs in the range 534 ms ≤ T ≤ 897 ms, and in

the TS1S1 = 2000 ms case, the instability range is 820 ms ≤ T ≤ 1196 ms. Besides

the narrow range of instability, the APD-restitution map model (Eq. (2.2)) does

not have a chaotic region near the left-most bifurcation point as revealed in the

AP model. This demonstrates that the APD-restitution map model (Eq. (2.2)),

without incorporating memory, cannot correctly capture the dynamics of the AP

model.

31



Figure 2.4: APD dynamics of the LR1 model in the presence of Ito, with gto = 0.278 mS/cm2

and the y-gate shifted by 8 mV to more negative voltages. (a). Sample APs from the model when

the pacing period is (from top to bottom) T = 400 ms (stable APs with spikes), 580 ms (chaos),

800 ms (alternans), and 1200 ms (stable APs with spike-and-domes). (b). Bifurcation diagram

of the AP model. (c). Bifurcation diagram generated from Eq. (2.2) using the S1S2 restitution

curve with TS1S1 = 400 ms, shown in Fig. 2.2(d). (d). Bifurcation diagram generated from the

APD-restitution map model (Eq. (2.2)) using the S1S2 restitution curve with TS1S1 = 2000 ms,

also shown in Fig. 2.2(d).
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To show how Ito affects the APD dynamics, we change the intensity of Ito

by changing its maximum conductance gto and plot a contour map that reveals

the APD dynamics of the model for different pacing periods. Fig. 2.5 shows the

results, demonstrating how increasing the intensity of Ito increases and shifts the

region of instability towards longer pacing periods. Increased levels of gto cause

instability to occur for longer pacing periods until gto reaches a threshold. In

this particular example, when gto = 0.284 mS/cm2 alternans occurs for pacing

periods up to T = 2000 ms, equivalent to 30 beats/min. When gto is larger, the

AP becomes a spike without the spike-and-dome morphology, and no instability

occurs.
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2.3.1.3 An Iterated Map model Incorporating the Memory Effects

In the absence of Ito the APD-restitution map model (Eq. (2.2)) can well

capture the overall APD dynamics, as demonstrated in Fig. 2.3. However, in the

presence of Ito, the iterated map model fails to appropriately capture the APD

dynamics due to a significant effect of memory. To reveal the effects of memory on

APD dynamics, we develop a new iterated map model that explicitly incorporates

memory. As discussed previously, the source of memory in the LR1 model is the

slow activation and deactivation kinetics of the X-gating variable, described by

the following differential equation [LR91]:

dX

dt
=
X∞ −X

τX
, (2.8)

where X∞ ≡ X∞(V ) is the voltage-dependent steady-state of X, and τX ≡ τX(V )

is the voltage-dependent time constant of X. The dependence of X∞ and τX on

voltage is given in the LR1 model, and is shown in Fig. 2.6(a)-(b). Importantly,

the τX curve shows that the time constant is about 200 ms at resting membrane

potentials of around −85 mV and peaks at around 600 ms, when the cell is depo-

larized. All other gating variables in the model have very fast time constants less

than 100 ms for all voltages, and thus cannot contribute to the source of memory.

Fig. 2.6(c) provides an example showing the relation between X and voltage of

a cell undergoing alternans. X increases during the AP, and then decreases during

the DI. In the example given, an and an+1 are corresponding APDs of short and

long APDs, respectively. The value of X preceding the short AP (xn) is larger

compared to X preceding the long AP (xn+1). In other words, a larger initial X

value gives rise to a shorter AP and vice versa. Physiologically, this corresponds

to a larger repolarization force [SR05] due to a higher open probability of the K+

channels, giving rise to early repolarization. Note that the maximum X value is

much smaller during the short AP than during the long AP.

Since the X-gating variable is responsible for the memory in the LR1 model,
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value of X, xinit. When xinit = 0 the resulting AP exhibits a spike-and-dome, whereas when

xinit = 0.05 the resulting AP is a spike. The AP with a longer APD (spike-and-dome) causes

X to increase for a longer period of time. (c). APD dependence curves on xinit for different

maximal conductance levels gto = 0 mS/cm2 (black), 0.24 mS/cm2 (blue), 0.278 mS/cm2(red).

(d). Without Ito (gto = 0 mS/cm2) APD dependence curves on X for different diastolic intervals

preceding the AP, DI = 50 ms (black), 100 ms (red), 200 ms (blue), 1000 ms (green). (e). Same

as (d), but with Ito (gto = 0.278 mS/cm2).

we develop an iterated map equation describing the relation between xn and xn+1,

and the relation between an and xn. To develop the iterated map equation for

xn, we approximate the AP to be a square wave in which the cell has a constant

voltage Va during the AP and a constant voltage Vd during its diastolic phase.

See Fig. 2.7(a) for a visualization of the square wave approximation of an AP.

Under this approximation, τa ≡ τX(Va) is the time constant of X during the AP,

and τd ≡ τX(Vd) is the time constant during the DI. Similarly, xa ≡ X∞(Va) is

the steady state open probability during the AP, and xd ≡ X∞(Vd) is the steady

state open probability during the DI.
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Let xn be the value of X at the beginning of an AP with APD an and DI

dn (as shown in Fig. 2.6(c)). Assuming the square wave approximation with the

time constants and steady state values given, Eq. (2.8) can be integrated exactly.

Assuming that at equilibrium X is completely deactivated during the resting

potential, so that xd ≡ 0, this gives rise to the following map:

xn+1 =
(
xa − (xa − xn)e−

an
τa

)
e
− dn
τd ≡ w(xn, an, dn). (2.9)

Eq. (2.9) provides an iterated map for X from beat to beat, assuming the APD

and DI values an and dn are provided as well. We assume that an is completely

determined by xn, i.e.,

an = g(xn), (2.10)

where g provides the APD-dependence on the memory variable xn. And since the

pacing period T satisfies the equation mT = an + dn, then

dn = mT − an, (2.11)

where m is the number of stimuli before giving a new beat.

Together, Eqs. (2.9)-(2.11) form a complete 1-dimensional iterated map. We

next determine the function g in Eq. (2.10), which captures the dependence of

APD on the value of X at the beginning of the AP, xinit. In a similar fashion to

the S1S2 restitution protocol which serves to find the dependence of APD on DI,

here we use another simulation protocol to determine the dependence of APD on

xinit. At a fixed pacing period, e.g. T = 1000 ms, after a certain number of N pre-

paced beats we change the value of xinit at the time of the (N + 1)st stimulus and

record the resulting APD. Fig. 2.7(b) provides examples of APs when xinit = 0 and

xinit = 0.05, in which 100 pre-paced beats were used. xinit = 0 results in an AP

with a spike-and-dome and an APD of about 400 ms, whereas when xinit = 0.05

the resulting AP is a spike with a shortened APD of about 100 ms.

Ito causes shifts in the APD-dependence curves on xinit, as demonstrated in

Fig. 2.7. Without Ito (gto = 0 mS/cm2) the APD has a maximum at 375 ms when
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xinit = 0 and smoothly decreases as xinit increases. When Ito is included, there

appears a critical xinit value in which APD sharply declines from over 300 ms to

less than 100 ms, indicating a sensitive dependence of APD on xinit. For values

less than the critical xinit value, the APD is temporarily increasing as a function

of xinit, but is then decreasing beyond the critical value. In Fig.2.7(c), the red

and blue curves show the APD dependence on xinit for gto = 0.24 mS/cm2 and

gto = 0.278 mS/cm2. When the conductance of Ito is weaker (red curve), the

critical value occurs around xinit = 0.08, while when the conductance is stronger

(blue curve), the critical value occurs around xinit = 0.02. In general, the critical

xinit value shifts to the left as gto increases, due to a change in the balance of

Ito-induced early repolarization.

We next test how accurately xinit alone affects APD. To do so, we check the

APD dependence on xinit when the DI itself varies as well. Fig. 2.7(d)-(e) each

shows four different curves for different values of DI, 50 ms, 100 ms, 200 ms, and

1000 ms, without and with Ito. In both cases, the curves shift to the left for

decreasing values of DI, but is more pronounced when DI = 50 ms and 100 ms. The

curves corresponding to DI = 200 ms and DI = 1000 ms vary by only about 0.002.

Therefore, this indicates that the recovery of other ionic currents visibly affects

the APD only when DI < 100 ms. As shown in Fig. 2.4, dynamical instabilities

occur for DI � 100 ms, indicating that recovery of IK plays the major role in

causing instability in the presence of Ito. This also justifies not incorporating

DI as an explicit variable in the iterated map model in Eq. (2.12). For the same

reason, in this study, we ignore the APD dynamics at very fast pacing and plot our

bifurcation diagrams for T > 200 ms (except for Figs. 2.3 and 2.16). In general,

one can rewrite Eq. (2.12) as an = g(xn, dn) to include contributions from the

recovery of other ionic currents, which could be important for APD dynamics at

fast heart rates.
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2.3.1.4 Memory-Induced Instabilities and Complex APD Dynamics in

the X-memory Map Model

The X-memory map model (Eqs. (2.9)-(2.11)) explicitly incorporates memory

and its coupling with APD, in contrast to the APD-restitution map model using

the S1S2 restitution curve as in Eq. (2.2). As shown in Fig. 2.4, when Ito is

included, the APD-restitution map model (Eq. (2.2)) does not adequately capture

the APD dynamics in the AP model. We here show that the X-memory map

model (Eqs. (2.9)-(2.11)) does in fact accurately capture the APD dynamics and

bifurcations of the AP model.

We first use the same model parameters and modifications that were used to

generate Fig. 2.4, in which gto = 0.278 mS/cm2 and the yto-gate steady state in

the formulation for Ito was shifted by 8 mV to more negative voltages. Under the

square-wave assumption used to generate Eq. (2.9), we set the map parameters

xa = 0.6, τa = 600 ms, and τd = 200 ms. Computationally, we determine the APD

dependence on X, the function g in Eq. (2.10). By varying the cycle length T

in Eq. (2.11) we generate a bifurcation diagram by iterating together Eqs. (2.9)-

(2.11).

The resulting bifurcation diagram is shown in Fig. 2.8. The diagram is very

similar in topology to the bifurcation diagram obtained directly from the AP

model, as seen in Fig. 2.4(b). In particular, both diagrams have windows of chaos

near the initial period-doubling bifurcation point near T = 500 ms, which was

completely absent in the bifurcation diagrams generated from the APD-restitution

map model, as in Fig. 2.4(c)-(d).

The APD dependence on xinit shown in Fig. 2.7(c) is nonmonotonic, in which

as xinit increases, the value of APD increases until around xinit = 0.02 when

the curve suddenly drops to APD values less than 150 ms. Similarly, the S1S2

restitution curves are nonmonotonic. As shown previously, a nonmonotonic APD
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Figure 2.8: Bifurcation diagram of the APD dynamics captured by the X-memory map model,

Eqs. (2.9)-(2.11), with xa = 0.6, τa = 600 ms, τd = 200 ms, and g provided by interpolating the

blue curve in Fig. 2.7(c).

restitution curve can give rise to chaos [QSW07], as is shown in Fig. 2.4(c)-(d). To

avoid the confluent effect of nonmonotonicity on the genesis of chaos, we changed

the parameters of the LR1 model to result in monotonic APD restitution curves,

which is shown in the next example below.

The parameter changes are the following: gto = 0.21 mS/cm2, Gsi = 0.1035 mS/cm2,

GK1 = 1.330 34 mS/cm2, and τx → 5τx. In addition, the yto steady state curve was

shifted by 8 mV to more positive voltages (in the prior case, the curve was shifted

to more negative voltages). Note that setting τX → 5τX , so that the voltage-

dependent time constant of the X-gating variable was increased 5-fold, effectively

amplifies the effect of memory by requiring 5 times the amount of time for X to

reach equilibrium.

The results under these different parameter changes and modifications are

shown in Fig. 2.9. Figs. 2.9(a)-(b) show that indeed the restitution curves and

the APD dependence on xinit are now monotonic. Because each restitution curve is
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monotonic, the APD-restitution map in Eq. (2.2) would only give rise to alternans

(Fig. 2.9(c)-(d)). However, as seen in Fig. 2.9(e), the bifurcation diagram of the

AP model shows very complex behavior, including very clear period-doubling

bifurcation routes to enter and exit chaos.

Since we made the modification τX → 5τX , we also appropriately change the

iterated map values τa and τd in the X-memory map model. Since τa = 600 ms

and τd = 200 ms in the original case, here we multiply these values 5-fold so

that τa = 3000 ms and τd = 1000 ms. xa = 0.6 as before. The dynamics of the

X-memory map model is shown in the bifurcation diagram in Fig. 2.9(f). The

behavior of the X-memory map model matches very closely with the behavior of

the AP model, as the bifurcation diagram also reveals period-doubling bifurcation

routes to enter and exit chaos, and share other characteristics including large

period-2 (alternans) and period-3 windows.

The X-memory map model accurately matches the dynamics of the AP model,

even under crudely approximating an AP as a square wave. In contrast, the

APD-restitution map in Eq. (2.2) does not capture the complex behavior and

underestimates the regions of instability. This demonstrates that the effects of

memory produce more complex behaviors.

2.3.1.5 Theoretical analysis and predictions of the X-memory map

model

The X-memory map model (Eqs. (2.9)-(2.11)) has model parameters xa, τa, τd,

and g, the APD dependence on curve. We assume here that g takes on the form

of a Hill function, so that

an = g(xn) = amin +
amax − amin

1 +
(
xn
kx

)h , (2.12)

where amin and amax are the minimum and maximum APDs, h is the Hill co-

efficient, and kx is the half-max value. A Hill function was chosen to match
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Figure 2.9: Complex APD dynamics captured by the X-memory map model (Eqs. (2.13)-

(2.15)), with the following parameter modifications of the AP model: gto = 0.21 mS/cm2, Gsi =

0.1035 mS/cm2, GK1 = 1.330 34 mS/cm2, τx → 5τx, and the yto steady state curve shifted

by 8 mV to more positive voltages. (a). S1S2 restitution curves of the AP model with S1

pacing periods TS1S1 = 300 ms and 1000 ms. (b). APD dependence on X. (c). Bifurcation

diagram of the APD-restitution map model (Eq. (2.2)) using the black curve in (a). (d).

Bifurcation diagram of the APD-restitution map model (Eq. (2.2)) using the red curve in (a).

(e). Bifurcation diagram of the AP model. (f). Bifurcation diagram of the X-memory map

model (Eqs. (2.9)-(2.11)), with xa = 0.6, τa = 3000 ms, τd = 1000 ms, and g provided by

interpolating the curve in (b).

42



the sigmoid-like shapes of the APD dependence curves on X, for example in

Fig. 2.9(b). So now, Eqs. (2.9), (2.11), and (2.12) form an iterated map model,

written together below:

xn+1 = w(xn, an, dn) =
(
xa − (xa − xn)e−

an
τa

)
e
− dn
τd , (2.13)

an = g(xn) = amin +
amax − amin

1 +
(
xn
kx

)h , (2.14)

dn = mT − an. (2.15)

This produces a 1-dimensional iterated map for X since

xn+1 = w(xn, an, dn) = w(xn, g(xn),mT − g(xn)) ≡ W (xn). (2.16)

And in addition, via the function g, there is a one-to-one correspondence between

xn and an. In particular, the inverse of g is obtained via the following formula:

xn = g−1(an) = kx

[
amax − an
an − amin

] 1
h

, (2.17)

so that

an+1 = g(xn+1) = g(W (xn)) = g(W (g−1(an))) ≡ H(an) (2.18)

Eq. (2.18) is the APD return map for the X-memory map model. Sample

return maps are provided in Fig. 2.10 when varying the Hill parameter h, the

pacing period T , and the time constant τd. When varying h (Fig. 2.10(a)), the

slope of the return map near the fixed point gets steeper as h increases. An

iterated map is unstable when the slope (or derivative) at the fixed point has

absolute value exceeding unity, and thus h is a key factor in determining stability.

In addition, as seen in Fig. 2.10(b)-(c), increasing T or decreasing τd tends to shift

the return map to the right, and therefore shifting the fixed point. Fig. 2.10(d)

shows a return map from a chaotic region in the actual AP model. Note that

the Hill function is monotonic and so is the S1S2 APD restitution curve. For a

nonmonotonic APD restitution function, the first return map from Eq. (2.2) is still

43



nonmonotonic. However, the addition of the memory equation into the iterated

map model results in a nonmonotonic map, agreeing with the one from simulation

of the AP model. This indicates that memory plays a key role in promoting chaos

by converting a monotonic APD return map to a nonmonotonic one.

Fig. 2.10(e) provides a sample bifurcation diagram from the X-memory map

model, using the default map parameter values xa = 0.6, τa = 3000 ms, τd =

1000 ms, h = 25, kx = 0.07. Just as for the full AP model, the diagram shows

period-doubling bifurcation routes to enter and exit chaos, with rather large

period-2 and period-3 windows. See Fig. 2.9(c) to compare with the bifurcation

diagram from the AP model.

We now perform a stability analysis of the fixed point of the X-memory map

model. The APD fixed point, denoted a∗, satisfies a∗ = H(a∗) so that

a∗ = H(a∗) = g

[(
xa − (xa − x∗)e−

a∗
τa

)
e
−T−a∗

τd

]
, (2.19)

where x∗ = g−1(a∗) is the corresponding X fixed point. To analyze the stability

of the fixed point, we find H ′(a∗), the derivative of H in Eq. (2.18) evaluated at

the fixed point a∗.

H ′(a∗) = g′(x∗)

[(
1

τd
− 1

τa

)
x∗ + e

−T−a∗
τd

(
e−

a∗
τa

g′(x∗)
+
xa
τa

)]
, (2.20)

where

g′(x∗) = − h

x∗
(amax − a∗)(a∗ − amin)

amax − amin

. (2.21)

The map is unstable whenever |H ′(a∗)| > 1.

Based on Eq. (2.11), for |H ′(a∗)| > 1, a large g′(x∗) is needed, indicating that

a sensitive response of APD on X is necessary. The presence of Ito results in such

a steep response to promote the instability. However, the stability also depends

on other parameters, such as τa and τd. Since it is not obvious from Eq. (2.20) to

assess their roles, we simulate the X-memory map model directly to show their

effects. Fig. 2.11 provides some relationships between the model parameters T , τd,
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Figure 2.10: Return maps of the X-memory map model (Eqs. (2.13)-(2.15)) and of the AP

model. Default parameter values are xa = 0.6, τa = 3000 ms, τd = 1000 ms, h = 25, kx = 0.07,

T = 500 ms. (a). Return maps for h = 10 (black) 20 (red), 40 (blue). (b). Return maps for

varying T = 250 ms (black), 500 ms (red), 750 ms (blue), 1000 ms (magenta). (c). Return maps

for τd = 250 ms (black), 500 ms (red), 1000 ms (blue), 2000 ms (magenta). (d). Return map

from the AP model as in Fig. 2.9(c) in a chaotic region with T = 530 ms. (e). Bifurcation

diagram of the X-memory map model (Eqs. (2.13)-(2.15)), with parameter values xa = 0.6,

τa = 3000 ms, τd = 1000 ms, h = 25, kx = 0.07.
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τa, and h, and the overall stability of the X-memory map model. The periodicity

of the iterated map is provided for different parameter values of T , τd, τa, and h,

with white regions indicating stability (P1), blue regions indicating period-2 (P2),

and yellow, green, and red regions indicating higher orders of periodicity (P3, P4,

and chaos).

Fig. 2.11(a) shows the APD dynamics in the parameter space of the time

constant τd and the pacing period T , with constants τa = 3000 ms and h = 25

fixed. There is a linear relationship between τd and T on stability, in which an

increase in τd causes both an expansion and a shift to the right of the instability

region for varying values of T . Fig. 2.11(b) shows the APD dynamics in the

parameter space of h and T , with constants τa = 3000 ms and τd = 1000 ms fixed.

As one would expect, an increase in h causes the window of instability to increase

and expands the chaotic regimes until h is very large. Fig. 2.11(c) shows the APD

dynamics in the parameter space of h and τd while keeping constants τa = 3000 ms

and T = 500 ms fixed. Again as expected, increasing h increases the regime of

instability and chaos, while at the same time increasing τd reduces the instability

region. Finally, Fig. 2.11(d) shows the APD dynamics in the parameter space of

the time constants τa and τd while keeping constants h = 25 and T = 500 ms

fixed. Similar to that seen in Fig. 2.11(a), there is at first a linear relationship

between τa and τd, in which an increase in τa causes an increase in the instability

region for various values of τd. However, when both τa and τd get too large, the

instability region wraps around and closes.

The previous analysis using the X-memory map model examines the effects of

different parameters on stability, in particular on the parameters τd and τa that

affect the activation and inactivation kinetics of IK. We now test our results on

the AP model. Since τd affects only the inactivation of IK during the DI, changing

τd will ideally have little effect on AP morphology (in contrast to changing τa).

We change the model formulation of τX to equal a set value τd during the DI, as
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Figure 2.11: Stability maps when varying parameters of the X-memory map model

(Eqs. (2.13)-(2.15)). Default parameter values are as follows: xa = 0.6, τa = 3000 ms,

τd = 1000 ms, h = 25, kx = 0.07. (a). Contour map showing stable and unstable regions

when varying the time constant τd and pacing period T . (b). Stable and unstable regions when

varying the Hill coefficient h and T . (c). Stable and unstable regions when varying h and τd.

(d). Stable and unstable regions when varying the APD and DI time constants τa and τd. (e).

Stable and unstable regions of the modified AP model using the τX modification in Eq. (2.22),

with the following parameter modifications: gto = 0.21 mS/cm2, Gsi = 0.1035 mS/cm2, GK1 =

1.330 34 mS/cm2, τx → 5τx, and the yto steady state curved shifted by 8 mV to more positive

voltages.
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follows:

τX =


τd V < −75 mV

τX otherwise

. (2.22)

τX is the original formulation of τX in the AP model, for example that shown in

Fig. 2.6(a). τd is now a new parameter in the AP model, and as before we vary τd

as well as the pacing period T for stability analysis. Fig. 2.11(e) shows the results

using the AP model with the same parameter and formulation modifications to

generate Fig. 2.9, including τX → 5τX . The figure shows a clear resemblance to

Fig. 2.11(a), showing that increasing τd results in a shift and expansion of the re-

gion of instability. The theoretical prediction matches closely with the simulation

results.

2.3.1.6 The Memory Effects on EAD-Induced Complex APD Dynam-

ics

Short-term memory is also nontrivial for the excitation dynamics in the set-

ting of long QT syndrome. Long QT syndrome is a cardiac disease with a high

risk of syncope and sudden death, caused by genetic mutations or drugs that ei-

ther decrease outward currents or increase inward currents, prolonging the APD

[Sch06, Rod06]. One of the consequences of APD prolongation is the occurrence

of EADs (Fig. 2.12(a)), which are abnormal depolarizations during the AP. In

previous studies [TSY+09, SXS+09, SXN+10], we have shown that the presence

of EADs can lead to chaotic excitation dynamics. Fig. 2.12(b) is a bifurcation di-

agram against the pacing period T from a simulation of the LR1 model, showing

a period-doubling bifurcation leading to complex excitation patterns and chaos.

Fig. 2.12(c) is a higher resolution bifurcation diagram around the first bifurcation

point, demonstrating with more detail the period doubling leading to chaos. The

underlying mechanism of chaos was attributed to steep and nonmonotonic APD

restitution functions [SXS+09]. However, a detailed comparison between the bi-
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furcation from the AP model and that from the iterated map model has not been

carried out until our recent study which showed that memory plays a key role

[LGWQ17].

Following the same pacing protocol as we have done for the case of Ito (there

is no Ito presence in this case), we calculate the S1S2 APD restitution curves for

two different S1 pacing periods (Fig. 2.13(a)). The S1S2 APD restitution curves

exhibit a staircase type increase against DI, with each higher step corresponding

to an extra EAD in the AP. Faster S1 pacing causes the APD restitution curve

to shift to the right (note that this is in contrast to the case in the presence of

Ito, in which the APD restitution curve shifts to the left under faster S1 pacing,

as shown in Fig. 2.2(f) and Fig. 2.9(a). Fig. 2.13(b) and (d) show the bifurcation

diagrams obtained using the APD-restitution map model (Eq. (2.2)) and the S1S2

APD restitution curves. However, higher resolution bifurcation diagrams around

the onset of instability (Figs. 2.13(c) and (e)) show sudden transitions for sta-

ble APD to APD alternans, completely missing the supercritical period doubling

bifurcation sequences of the AP model.

We then use the same method as in the case with Ito and measure the X-

dependence curve of APD. Fig. 2.14(a) shows a staircase dependence of APD on

xinit. Using the X-memory map model (Eqs. (2.9)-(2.11)) with the X-dependence

curve of APD in Fig. 2.14(a), we generate a new bifurcation diagram (Fig. 2.14(b)),

which shows almost exactly the same bifurcation sequence as in the AP model.

Fig. 2.14(c) shows the bifurcation sequence around the first instability point, which

clearly demonstrates period doubling leading to chaos in a very similar manner

as in the AP model (compare to Fig. 2.12(c)). These results indicate that mem-

ory plays an important role in generating the complex EAD-related excitation

dynamics.
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Figure 2.12: EAD and APD dynamics in the LR1 model with τX → 10τX and without Ito

included. All other parameter values are taken from the original model formulation. (a). An

S1S2 protocol resulting in an EAD on the S2 beat, with TS1S1 = 1500 ms, and DI = 1000 ms

before the S2 beat. (b). Bifurcation diagram of the AP model. (c). Close up of the bifurcation

diagram around the first bifurcation point.
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Figure 2.13: EAD dynamics predicted by S1S2 APD restitution curves. (a). S1S2 restitution

curves for two S1 pacing periods TS1S1 = 500 ms and 1500 ms. (b). Bifurcation diagram using

the APD-restitution map model (Eq. (2.2)) and the restitution curve with S1 pacing period

TS1S1 = 500 ms (black curve in (a)). (c). Close up of the bifurcation diagram around the first

bifurcation point. (d). Bifurcation diagram using the APD-restitution map model (Eq. (2.2))

and the restitution curve with S1 pacing period TS1S1 = 1500 ms (red curve in (a)). (e). Close

up of the bifurcation diagram around the first bifurcation point.

51



Figure 2.14: Bifurcation diagrams from the X-memory map model (Eqs. (2.9)-(2.11)) in the

presence of EADs. (a). The dependence of APD on xinit. (b). Bifurcation of the X-memory

map model (Eqs. (2.9)-(2.11)), using the curve in panel (a) for g and model parameters xa = 0.6,

τa = 6000 ms, and τd = 2500 ms. (c). Close-up of the bifurcation diagram in (b) around the

first bifurcation point.
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2.3.2 Complex APD Dynamics Caused by Memory Originating from

Intracellular Ion Concentration Accumulation

Besides slow recovery of ion channels, it also takes a certain amount of time for

intracellular ion (Na+, K+, and Ca2+) concentrations to reach new steady states

after a change, such as after a sudden change in the heart rate [FR00], causing

memory in the system. Here, we demonstrate the effects of memory caused by slow

[Ca2+]i accumulation. We use a human ventricular cell model developed by ten

Tusscher et al. [tTNNP04], the TP04 model, to investigate the effects of memory

originating from intracellular ion concentration accumulation. For consistency, we

remove the original Ito (both fast and slow Ito) and replace them with the same

Ito formulation as before from Mahajan et al. [MSS+08].

We use the TP04 model because all ionic gating variables have relatively fast

time constants during the diastolic phase. In particular, the two slowly activating

potassium currents, IKr and IKs, rapidly deactivate during the diastolic phase.

The two gating variables of IKr, Xr1 and Xr2, and the gating variable of IKs, Xs,

have time constants τxr1 < 130 ms, τxr2 < 2 ms, and τxs < 5 ms at voltages lower

than −75 ms. And so, while the gating variables of these currents do have long

time constants as high as 1200 ms in the model for voltages higher than −40 mV,

the gating variables deactivate rapidly during the diastolic interval. In contrast,

[Ca2+]i as well as intracellular Na+ and K+ concentrations ([Na+]i and [K+]i)

accumulate very slowly.

Since [Na+]i and [K+]i accumulation is much slower than [Ca2+]i accumulation,

to avoid any confluent effects we fixed the concentrations [Na+]i = 12 mM and

[K+]i = 138 mM in the TP04 model so that the memory effect is primarily driven

by the accumulation of [Ca2+]i.
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2.3.2.1 Memory and complex APD dynamics caused by ion concen-

tration accumulation

We begin our analysis as before, by examining the APD restitution curves of

the TP04 model with and without Ito and comparing the bifurcation diagrams

of the APD-restitution map model (Eq. (2.2)) using the restitution curves with

those of the AP model.

Fig. 2.15 shows the APD restitution curves of the AP model with and without

Ito, in each case using two different pacing periods. Without Ito (Fig. 2.15(a)),

the restitution curves using S1 pacing periods TS1S1 = 750 ms and TS1S1 = 3000 ms

are both monotonically increasing, similar to the restitution curves generated from

the LR1 model without Ito (Fig. 2.1(b)). There is an upward shift in the curves by

about 5 ms for the larger S1 pacing period (TS1S1 = 3000 ms), indicative of some

underlying source of memory in the TP04 model but that has minimal effect on

restitution.

In the presence of Ito, with maximum conductance gto = 0.18 mS/cm2, the

APD restitution curves show some similarity to the restitution curves generated

from the LR1 model in the presence of Ito (Fig. 2.2(d)), namely that they are

nonmonotonic, have steep regions with a sensitive dependence of APD on DI,

and the larger S1 pacing period shifts the restitution curve to the right. Here

however, the shift in the two curves is substantial, in which an S1 pacing period

of TS1S1 = 9000 ms leads to a restitution curve that is about 6000 ms right-shifted

from the restitution curve using an S1 pacing period of TS1S1 = 250 ms. Note that

using an S1 pacing period as large as TS1S1 = 9000 ms is necessary in order to

avoid instability in the APs of the pre-paced beats.

Fig. 2.16(a) shows the bifurcation diagram of the AP model in the absence

of Ito. For almost all pacing periods the AP model shows stability, except for a

brief region around T = 275 ms showing chaotic APD dynamics where there is a
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Figure 2.15: APD restitution curves of the modified TP04 model without and with Ito. (a).

APD restitution curves in the absence of Ito, for S1 pacing periods TS1S1 = 750 ms (black)

and TS1S1 = 3000 ms (red). (b). APD restitution curves in the presence of Ito with gto =

0.18 mS/cm2, for S1 pacing periods TS1S1 = 250 ms (black) and TS1S1 = 9000 ms (red).

transition between 1:1 and 2:1 block. There is also a transition between 2:1 block

and 3:1 block around T = 125 ms.

Now, we examine the stability of the APD-restitution map model (Eq. (2.2))

using the APD restitutions in Fig. 2.15. Using the APD restitutions generated

from the AP model without Ito, the resulting bifurcation diagrams are shown in

Fig. 2.16(b). Two bifurcation curves are generated using the two APD restitution

protocols for the S1 pacing periods TS1S1 = 750 ms (black trace) and TS1S1 =

3000 ms (red trace). The red curve is shifted upward from the black curve due

to the slight upward shift seen in the APD restitution curves as in Fig. 2.15(a).

For the most part the two diagrams show stability with very small instability

occurring at the transitions between 1:1 and 2:1 block and between 2:1 block and

3:1 block. Overall, the two diagrams show very similar characteristics with the

bifurcation diagram of the AP model.

We now examine what happens in the presence of Ito. The bifurcation diagram

of the AP model is shown in Fig. 2.17(a). Vastly different from the bifurcation

diagram of the model without Ito, there is a large instability window with several

chaotic windows, interspersed with periodic windows. The first period-doubling
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Figure 2.16: Bifurcation diagrams of the AP model and of the APD-restitution map model

(Eq. (2.2)), without Ito. (a). Bifurcation diagram of the AP model without Ito. (b). Bifurcation

diagrams of the APD-restitution map model (Eq. (2.2)) using the APD restitution curves in

Fig. 2.15(a). Black trace corresponds to TS1S1 = 750 ms, red trace corresponds to TS1S1 =

3000 ms.

bifurcation point occurs around T = 330 ms, and for even very slow pacing periods

up to T = 9000 ms there is still APD alternans and higher periodicity including

chaos.

Using the APD-restitution map model (Eq. (2.2)), we develop bifurcation di-

agrams generated from the APD restitution curves in Fig. 2.15(b) with different

S1 pacing periods. The rightward shift in restitution by about 6000 ms produces

two bifurcation curves with very different regions of APD instability, as seen in

Figs. 2.17(b)-(c). With the restitution curve generated from an S1 pacing period

TS1S1 = 250 ms, the range of instability occurs between pacing periods T = 400 ms

and 600 ms, while with the restitution curve generated from an S1 pacing period

TS1S1 = 9000 ms, the range of instability is between T = 6650 ms and 6850 ms.

The regions of chaos and instability with periods greater than 2 are due to the

nonmonotonicity of the APD restitution curves, just as in the case with the LR1

model in the presence of Ito (see Fig. 2.4(c)-(d)).

The bifurcation diagrams generated from the APD-restitution map model

(Eq. (2.2)) in the presence of Ito reveal windows of instability about 200 ms in
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Figure 2.17: Bifurcation diagrams of the AP model and of the APD-restitution map model

(Eq. (2.2)), in the presence of Ito with maximum conductance gto = 0.18 mS/cm2. (a). Bifur-

cation diagram of the AP model. (b). Bifurcation diagram of the APD-restitution map model

using the black trace (TS1S1 = 250 ms) in the APD restitution curves in Fig. 2.15(b). (c). Bi-

furcation diagram of the APD-restitution map model using the red trace (TS1S1 = 9000 ms) in

Fig. 2.15(b).

length. However, the bifurcation diagram of the AP model reveals an instabil-

ity window that is much greater, with several chaotic windows. It is clear in

this case that the APD-restitution model in Eq. (2.2) does not at all predict the

APD dynamics of the AP model. The memory in the TP04 model driven by the

slow accumulation of [Ca2+]i produces massive effects on the AP model dynamics,

leading to a much greater window of instability and chaos.

2.3.2.2 An Iterated Map Model Incorporating the Memory Effects

In the previous section, we discussed the role of the X-gating variable of IK

with a model formulation that was fairly simple and purely voltage-dependent, and

using a square wave approximation of the AP led to the derivation of the iterated
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map in Eq. (2.9). However, the formulations of [Ca2+]i in the TP04 model are

rather complicated and depend on various other model variables including the

sarcoplasmic reticulum (SR) Ca2+ concentration. A phenomenological model of

the effects of ion accumulation on APD was used in Schaeffer et al. [SCG+07],

but due to the complex effects of [Ca2+]i on APD dynamics in the TP04 model,

we must rely on further computer simulation results, which are described in detail

below.

We examine the interrelationship between APD and cinit, the [Ca2+]i at the

beginning of the AP. There are two things to consider, one is the change in [Ca2+]i

during an AP with a known APD, and the other is the dependence of APD on

cinit. For the former, we fix square wave APs with a given APD a1 with a pacing

period T until equilibrium has been reached, and then switch to square wave APs

with a given APD a2. A snapshot of this protocol is shown in Fig. 2.18(a), where

T = 1000 ms, a1 = 350 ms, and a2 = 50 ms. Before time 0, the system is at

equilibrium and the dynamics of [Ca2+]i (the dotted-red tracing) is exactly the

same during each AP, with cinit = 0.125 µM.

After time 0, the APDs switch to the lower duration of a2 = 50 ms, and imme-

diately there is a drop in cinit of the successive APs (solid red dots of Fig. 2.18(a)).

Fig. 2.18(b) shows a time series of cinit as a function of beat number, where cinit

at time 0, in Fig. 2.18(a), corresponds to the 0th beat. After the APD switch,

there is an exponential trend of cinit towards a new equilibrium of approximately

0.04 µM. Notice that it takes about 45 beats, or 45 s, for the system to reach

this new equilibrium, indicative of very slow [Ca2+]i dynamics. This is in sharp

contrast to the slow X-gating variable dynamics in the LR1 model, with a time

constant on the order of about 1 s.

Assuming that the time series takes on an exponential trend towards an equi-

librium initial [Ca2+]i, c
∗, then we have

cn+1 − c∗ = (cn − c∗) exp [f(an)] , (2.23)
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where cn is the initial [Ca2+]i of the nth AP, an is the APD of the nth AP, and f(an)

is an APD-dependent function dictating the rate at which the system reaches equi-

librium. c∗ is also APD-dependent, as shown in Figs. 2.18(a) and (b). Rearranging

Eq. (2.23) gives

cn+1 = cn exp [f(an)] + c∗ (1− exp [f(an)]) , (2.24)

and for simplicity we neglect the c∗ (1− exp [f(an)]) term to remove the depen-

dence of c∗. Our justification is that this term is negligible so long as f(APD)� 1,

which with very long time constants is the case as shown in Fig. 2.18(b). This

yields the following simplified iterated map:

cn+1 = cn exp [f(an)] . (2.25)

We next analyze the function f(an) using computer simulation results. We

use the bifurcation diagram in Fig. 2.17(c) to pick out pacing periods in chaotic

regions that result in multiple (ideally, infinite) APDs. For each AP, we record

the APD and initial [Ca2+]i of the current AP (cinit) as well as of the succeeding

AP (cinit+1). Eq. (2.25) gives the relationship f(an) = log
(
cn+1

cn

)
, so we perform

a log-transform of the ratios of initial [Ca2+]i, log
(
cinit+1

cinit

)
. This expression is a

measurement of the net cytosolic Ca2+ gain from and loss into the extracellular

space and the SR during an AP. A value greater than zero is indicative of net

[Ca2+]i gain, and a value less than zero is indicative of net [Ca2+]i loss. If the

value equals zero, then there is no net gain or loss of [Ca2+]i during an AP, and

equilibrium is reached.

The results are shown in Fig. 2.18(c). The pacing periods T = 1704, 2649, 3600, 4875, 5602,

and 7600 ms give rise to chaotic APD dynamics, resulting in hundreds of unique

APD values that give rise to different values of log
(
cinit+1

cn

)
. The figure shows

that, generally speaking, log
(
cinit+1

cinit

)
increases as APD increases. In addition,

increasing the pacing period T reduces log
(
cinit+1

cinit

)
. These two results are not
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surprising. A longer APD results in longer Ca2+ influx due to ICa,L, and a longer

pacing period, for a fixed APD, results in a longer DI that allows for longer Ca2+

efflux due to INCX. From observation, the dependence of log
(
cinit+1

cinit

)
is roughly

linear with respect to both APD and T , hence giving the relationship

log

(
cinit+1

cinit

)
= f(APD) ≈ γaAPD− γTT + δ, (2.26)

where γa and γT are the coupling coefficients for APD and T respectively, and δ

is a constant. Substituting this expression for f in Eq. (2.25) gives

cn+1 = cn exp [f(an)] = cn exp [γaan − γTT + δ] (2.27)

We now switch our focus to the dependence of APD on cinit. Again, we use

the data used to generate the bifurcation diagram in Fig. 2.17(c), where for each

AP we record the APD as well as cinit. For all data points with T > 2000 ms, we

do a scatter plot of APD against cinit, and the results are shown in Fig. 2.18(d).

The restriction T > 2000 ms avoids any other memory effects and assures that the

APD is dependent only on cinit. Strikingly, there is a clear one-to-one dependence

of APD on cinit in which any particular cinit gives rise to a unique APD value,

without ambiguity. Thus, we may write a functional relationship between APD

and cinit:

APD = g(cinit), (2.28)

so that in the nth AP, the APD an depends on the initial [Ca2+]i cn via

an = g(cn). (2.29)

And together, Eqs. (2.27) and (2.29) give rise to a complete iterated map model:

an = g(cn) (2.30)

cn+1 = cn exp [γaan − γTT + δ] . (2.31)

We refer to this iterated map model as the “Ca2+-memory map model.” The

function g is obtained by linearly interpolating the data in Fig. 2.18(d). The
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Figure 2.18: APD and [Ca2+]i dynamics of the AP model. (a). Ca2+ transients responding

to square-wave APs with T = 1000 ms, with durations switching from APD = 350 ms (for all

times t < 0 ms) to APD = 50 ms (starting at time t = 0 ms). (b). Response of cinit after

the APD switch. (c). Dependence of log
[
cinit+1

cinit

]
on APD. The data points were chosen from

pacing periods T = 1704 ms (black), 2649 ms (red), 3600 ms (blue), 4875 ms (magenta), 5602 ms

(green), 7600 ms (dark blue), that result in chaotic behavior resulting in APs with hundreds of

unique APDs. (d). Dependence of APD on cinit. Data chosen from all APs generating the

bifurcation diagram in Fig. 2.17(c) for T > 2000 ms.

constants γa, γT , and δ are obtained from observing the data in Fig. 2.18(c). We

obtain the values γa = 2× 10−4 ms−1, γT = 3.625× 10−6 ms−1, and δ = −0.0275.

As usual, by varying T we create a bifurcation diagram of the Ca2+-memory

map model, and the result is shown in Fig. 2.19. The diagram shows stunning

similarity to the bifurcation diagram of the AP model shown in Fig. 2.17(c),

revealing numerous period-doubling bifurcation routes to chaos interspersed with

periodic windows. In addition, the complete region of instability ranges from

about 200 ms to 8500 ms, which is nearly the same as in the AP model.

Fig. 2.20 compares return maps between the AP model and the Ca2+-memory
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Figure 2.19: Bifurcation of the Ca2+-memory map model (Eqs. (2.30) and (2.31)), with

function g, the APD dependence on cinit, the linear interpolant of the data in Fig. 2.18(d), and

parameter values γa = 2× 10−4 ms−1, γT = 3.625× 10−6 ms−1, and δ = −0.0275.

map model (Eqs. (2.30) and (2.31)) used to generate the bifurcation in Fig. 2.19.

Fig. 2.20(a) provides two return maps of the AP model undergoing chaotic APD

dynamics with T = 3250 ms and 6600 ms, and Fig. 2.20(b) are two return maps

of the Ca2+-memory map model using the same pacing periods T = 3250 ms and

6600 ms. Matching the pacing periods between the two graphs, the return maps in

the Ca2+-memory map model are very similar to the return maps in the AP model.

Panel (b) contains more information due to the iterated map being continuous

and the chaotic dynamics in the AP model not attaining all possible APDs. For

example, for T = 6600 ms (the red curves in Fig. 2.20), in the AP model, APDs

below about an = 110 ms and between an = 230 ms and 280 ms do not occur.

The return map shows only one discontinuity, or jump between large and small

APDs, occurring around an = 300 ms. However, the corresponding return map

from the Ca2+-memory map model shows two additional discontinuities occurring

at an = 100 ms and 250 ms.

Properties of the Ca2+-memory map model incorporating memory effects from

[Ca2+]i accumulation closely match those of the AP model. This provides clear ev-
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Figure 2.20: Comparing return maps between the AP model and Ca2+-memory map model

(Eqs. (2.30) and (2.31)). (a). AP model return maps in chaotic regimes for T = 3250 ms and

6600 ms. (b). Return maps of the Ca2+-memory map model for the same pacing periods T =

3250 ms and 6600 ms, where the function g is the linear interpolant of the data in Fig. 2.18(d),

and parameter values γa = 2× 10−4 ms−1, γT = 3.625× 10−6 ms−1, and δ = −0.0275.

idence that the Ca2+-memory map model sufficiently matches the APD dynamics

of the AP model.

2.3.2.3 Theoretical Analysis and Predictions of the Ca2+-Memory Map

Model

In the previous section we used the Ca2+-memory map model (Eqs. (2.30) and

(2.31)), in which Eq. (2.31) is an explicit equation with parameters γa, γT , T , and

δ, but the function g in Eq. (2.30) was a linear interpolation of data provided by

simulations of the AP model. In this section, we do as before in the case of the

X-memory map model and set the function g in Eq. (2.28) as a Hill function of the

form APD = g(cinit) = amin+ amax−amin

1+( cinitkc
)
h , where amin and amax are the minimum and

maximum APDs attainable, kc is the half-max cinit, and h is the Hill coefficient.

This gives the following complete iterated map model:
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an = g(cn) = amin +
amax − amin

1 +
(
cn
kc

)h (2.32)

cn+1 = f(cn, an) = cn exp (γaan − γTT + δ) = H(cn). (2.33)

Eqs. (2.32) and (2.33) together give a complete 1-dimensional map whose steady

state stability is determined by the derivative of the function H at steady state:

H ′(c∗) = [1 + c∗γag
′(c∗)] eγag(c

∗)−γTT+δ, (2.34)

where c∗ is the steady state of H (i.e. H(c∗) = c∗). For the period-doubling

bifurcation to occur (H ′(c∗) < −1), it requires a steeply decreasing function g

with respect to cn, i.e., a large negative g′(c∗) is needed so that

c∗γag
′(c∗) < −2 (2.35)

can be satisfied. Increasing γa can also potentiate the inequality in Eq. (2.35) and

thus instability. Once Eq. (2.35) is satisfied, increasing δ or decreasing γT will

potentiate the instability.

We now examine the model directly by iterating the map in Eqs. (2.32) and

(2.33) for specific parameter values. Based on simulation results from the AP

model shown in Fig. 2.18, we estimate the parameter values γa = 2× 10−4 ms−1,

γT = 3.625× 10−6 ms−1, and δ = −0.0275. To model the function g in Eq. (2.33),

we estimate a Hill function that closely matches the dependence of APD on cinit

from the AP model, as shown in Fig. 2.18(d). No Hill function will perfectly

fit it since the graph is nonmonotonic with a jump discontinuity. Our chosen

parameter values are amin = 125 ms, amax = 350 ms, kc = 4.1456× 10−2 µM, and

h = 500. The bifurcation diagram of this model is shown in Fig. 2.21(a), and

shows period-doubling bifurcation routes to enter and exit chaos, similar to the

bifurcation diagram of the AP model (Fig. 2.17(c)) as well as the bifurcation

diagram of the X-memory map model in the previous section (Fig. 2.9(f)). The
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Figure 2.21: Dynamics of the Ca2+-memory map model (Eqs. (2.32) and (2.33)), with pa-

rameters amin = 125 ms, amax = 350 ms, kc = 4.1456× 10−2 µM, h = 500, γa = 2× 10−4 ms−1,

γT = 3.625× 10−6 ms−1, and δ = −0.0275. (a). Bifurcation diagram. (b). Return maps for

pacing periods T = 250 ms, 3000 ms, 7000 ms, and 11 000 ms. The dotted black line is the fixed

point line an+1 = an.

region of instability is between pacing periods T = 550 ms and 10 500 ms, which

is roughly similar to that seen in the AP model. In Fig. 2.21(b) we provide four

return maps with different pacing periods. The return maps are very similar to

the ones from the X-memory map model, shown in Fig. 2.10(b). An increase in

T tends to shift the return map to the right, shifting the fixed point of APD to

more positive values.

To confirm our predictions of the effects of γT and δ on the stability of the

model, we modify these parameters in the Ca2+-memory map model using the

linear interpolant of the data in Fig. 2.18(d) to model the function g in Eq. (2.32).

We make the changes γT → 1.25γT and δ → δ + 0.005. The results are shown in

Fig. 2.22. Indeed, comparing Fig. 2.22(a) and (b), there is a shift in the region of

instability by about 1380 ms. The left bifurcation points shifts from about 270 ms

to 1650 ms, and the right bifurcation point from about 8430 ms to 9810 ms. And

by increasing γT by 25% we expect the left and right bifurcation points to decrease

by 20%. Indeed, the left bifurcation point shifts from about 270 ms to 215 ms and
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Figure 2.22: The effects of δ and γT on APD dynamics in the Ca2+-memory map model

(Eqs. (2.30) and (2.31)). (a). Bifurcation under control conditions, using the linear inter-

polant of the curve in Fig. 2.18(d) for g and other parameters γa = 2.4× 10−4 ms−1, γT =

3.625× 10−6 ms−1, and δ = −0.0275. (b). Bifurcation diagram with δ → δ + 0.005 = −0.0225.

(c). Bifurcation diagram with γT → 2γT = 7.25× 10−6 ms−1.

the right bifurcation point shifts from about 8430 ms to 6745 ms.

Finally, we return back to the AP model and examine the effects of changing

parameters in the model on APD dynamics. Two key regulators of [Ca2+]i are the

L-type Ca2+ current, ICa,L, and the Na-Ca exchanger, INCX. Each have maximum

conductance parameters gCa,L and gNCX, which we change in the model. Fig. 2.23

shows bifurcation diagrams of (a) control conditions, (b) gCa,L reduced by 2%,

and (c) gNCX reduced by 10%. The diagrams show that the reduction of ICa,L and

INCX conductance shifts the bifurcation points significantly to the right by about

3500 ms. We currently ignore the left bifurcation point because, in the AP model,
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many sources could contribute to APD dynamics besides [Ca2+]i accumulation at

such fast pacing periods.

To examine how reducing ICa,L and INCX can cause a 3500 ms shift in the right

bifurcation point, we do as before and compare the dependences of log
(
cinit+1

cinit

)
to APD, which corresponds to the function f in Eq. (2.25). To get as many

data points as possible, we choose a pacing period T = 3600 ms that results in

chaotic APD dynamics in control and ICa,L × 0.98 conditions, and period-3 APD

dynamics in the INCX× 0.9 condition. Fig. 2.23(d) shows the results. Indeed, the

data corresponding to ICa,L and INCX reduction lie above the data points under

control conditions by about a value of 0.05, which corresponds to an increase in

−γTT + δ in Eq. (2.25), so that either δ increases, γT decreases, or a combination

of both. In either case, the theoretical analysis suggests that decreasing ICa,L

or INCX causes an increase in δ and/or a decrease in γT , which shifts the right

bifurcation point to the right, just as we see in the simulation results.

2.3.2.4 EAD-Induced Complex APD Dynamics in the Presence of

[Ca2+]i Accumulation

Similar to the case of the LR1 model, we also generate EADs in the TP04 model

in the absence of Ito (Fig. 2.24(a)). To do so, we set the maximum conductances

of ICa,L, IKr, and IKs to be gCa,L = 6× 10−4 mS/cm2, gKr = 0.01 mS/cm2, and

gKs = 0.036 mS/cm2, and introduce a late Na+ current by performing the following

changes to the formulations of the steady-state h- and j-gates in INa:

h∞ = γ + (1− γ)h∞

j∞ = γ + (1− γ)j∞, (2.36)

where h∞ and j∞ are the steady state formulations of the two gates in the TP04

model, and γ is a “pedestal” parameter that determines to what extent the h-

and j− gates deactivate. Here, we set γ = 0.01.
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Figure 2.23: The effects of changing ICa,L and INCX on the APD dynamics of the AP model.

(a). Bifurcation diagram under control conditions. (b). Bifurcation diagram when gCa,L is

reduced by 2%. (c). Bifurcation diagram when gNCX is reduced by 10%. (d). The effects of

reducing ICa,L by 2% and INCX by 10% on the dependence of log
(
cinit+1

cinit

)
on APD. In each

case, simulations use a pacing period T = 3600 ms, where Control and ICa,L × 0.98 conditions

result in chaotic APD dynamics and the INCX×0.9 condition results in period-3 APD dynamics.
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Fig. 2.24(b) is a bifurcation diagram against the pacing period T from the

simulation of the TP04 model. Between each transition leading to an extra EAD

(i.e. 0 EADs to 1 EAD, 1 EAD to 2 EADs, etc.), there is a period doubling

bifurcation route to enter chaos as T increases. Fig. 2.24(c) shows a close-up of

the bifurcation diagram around the first transition between 0 EADs and 1 EAD,

more clearly illustrating period doubling leading to chaos.

We calculate the S1S2 APD restitution curves for two different S1 pacing pe-

riods, TS1S1 = 2000 ms and 6000 ms (Fig. 2.25(a)). Just as in the LR1 model with

EADs, the S1S2 restitution curves show staircase dependences of APD against

DI. The bifurcation diagrams obtained using the S1S2 APD restitution curves

and Eq. (2.2) are given in Figs. 2.25(b) and (d), with corresponding close-ups

around the first bifurcation points in Figs. 2.25(c) and (e), respectively. The bi-

furcation diagrams differ largely from those from the AP model, indicating that

APD restitution alone cannot capture the complex excitation dynamics.

We then plot APD versus cinit and log
(
cinit+1

cinit

)
versus APD from the AP

model the same way as we did in the Ito case (Figs. 2.26(a) and (b)). Using these

functions and the Ca2+-memory map model (Eqs. (2.30) and (2.31)), we obtain

a bifurcation diagram (Fig. 2.26(c)) which is nearly identical to the one obtained

from the AP model (Fig. 2.24(c)). This shows that the memory from [Ca2+]i

accumulation plays an important role in generating the complex APD dynamics

induced by the occurrence of EADs in the AP model.

2.4 Discussion and Conclusions

In this study, we investigated the effects of short-term cardiac memory on

excitation dynamics under two diseased conditions, early repolarization syndrome

[AY15] and long QT syndrome [Rod06]. The memory originates from two sources,

slow ion channel recovery and slow [Ca2+]i accumulation. We show that contrary
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Figure 2.24: Complex APD dynamics induced by EADs in the TP04 model, with gCa,L =

6× 10−4 mS/cm2, gKr = 0.01 mS/cm2, gKs = 0.0036 mS/cm2, and γ = 0.01 in Eq. (2.36). (a).

APs showing EAD alternans, T = 7000 ms. (b). Bifurcation diagram of the AP model. (c).

Close-up of the bifurcation diagram around the first bifurcation point, transitioning from no

EADs to one EAD in the AP.
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Figure 2.25: Bifurcation diagrams from the APD-restitution map model (Eq. (2.2)) and

S1S2 APD restitution curves from the TP04 model in the context of long QT syndrome. (a).

S1S2 restitution curves for S1 pacing periods TS1S1 = 2000 ms (black) and 6000 ms (red). (b).

Bifurcation diagram of the APD-restitution map model (Eq. (2.2)) using the black trace in

(a). (c). Close-up of the bifurcation diagram in (b) around the first bifurcation point. (d).

Bifurcation of the APD-restitution map model (Eq. (2.2)) using the red trace in (a). (e).

Close-up of the bifurcation diagram in (d) around the first bifurcation point.
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Figure 2.26: APD dynamics predicted by the Ca2+-memory map model (Eqs. (2.30) and

(2.31)) in the presence of EADs. (a). Plots of log
(
cinit+1

cinit

)
vs. APD from the AP model for

5 different pacing periods leading to chaotic EAD dynamics. T = 6430 ms for black points,

6805 ms for red points, 7190 ms for blue points, 7395 ms for magenta points, 7710 ms for green

points. (b). Plot of APD vs. cinit in the AP model. (c). Bifurcation diagram of the Ca2+-

memory map model (Eqs. (2.30) and (2.31)). The paramters in Eq. (2.31) were chosen to be

γa = 1.2× 10−4 ms−1, γT = 2.5× 10−5 ms−1, and δ = 0.05845, based on approximating the

data in panel (a). The function g in Eq. (2.31) is the linear interpolant of the data in panel (b).
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to many previous studies which have shown that memory suppresses dynamical

instabilities [CMJ90, FBGJ02, KTS+05, OGJ97, TSGK03, FRD+03, TRGG04,

CF04, BQK+07, GCGJ+13, MJT08, WMT15], under these diseased conditions,

memory can induce or potentiate complex excitation dynamics, including chaos.

In addition to memory, the all-or-none behaviors (dome vs. no dome or EAD

vs. no EADs) in the diseased conditions, which result in steeply changing APD

restitution curves, are also key to the genesis of the complex APD dynamics.

We developed new iterated map models that properly incorporate memory from

the two different sources, which can well describe the complex dynamics and

recapitulate the bifurcation sequences from the AP models. Using the iterated

map models, we unraveled the mechanisms underlying memory-induced chaos and

complex APD dynamics induced by Ito or EADs.

The role of chaos in the genesis and maintenance of cardiac arrhythmias has

been investigated previously [SXS+09, XHS+07, Qu11]. Different mechanisms of

chaos and complex excitation dynamics have been demonstrated in cardiac my-

ocytes. In this study, we reveal a novel mechanism of chaos of cardiac excitation,

which may provide further understanding of the role of chaos in arrhythmogenesis

in the presence of short-term cardiac memory.

In this study, we investigated the effects of memory originating from slow

recovery of ion channels and slow accumulation of [Ca2+]i. We fixed [Na+]i and

[K+]i in our simulations in order to avoid memory effects from slow accumulation

of these ions. However, it is well known that, in particular, [Na+]i accumulates

very slowly, and thus it can impact the APD dynamics in an even longer time scale,

i.e., longer-term memory effect. These effects have been already investigated in

recent simulation studies [XLG+15, KMC17]. It will be of importance to develop

an improved iterated map model that incorporates the memory caused by slow

[Na+]i accumulation, which is our next task of revealing the mechanisms of short-

term cardiac memory on excitation dynamics.
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Finally, we would like to point out that the mechanistic insights gained from

the present study may not only be limited to complex ecitation dynamics in cardiac

myocytes, but also to those in other electrically excitable cells. For example,

the bursting dynamics in neurons [RE98, RA98, SR03, AC09] and pancreatic

β-cells [KS98] are irregular, which can result from either random ion channel

openings or dynamical chaos. Since the bursting dynamics are also governed by

fast-slow dynamics [TSY+09, KS98, NHCG98, Izh00, SCC05] similar to the EAD

dynamics in cardiac myocytes, the same mechanism of memory-induced chaos

may be applicable to irregular bursting dynamics in these cases.
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CHAPTER 3

Control of Voltage-Driven Instabilities in

Cardiac Myocytes with Memory

3.1 Introduction

Cardiac arrhythmias and sudden cardiac death are known to be associated with

dynamical instabilities in the heart [Gla96, QHGW14, KMC12, Kar13]. Control

of dynamical instabilities in cardiac systems has been widely studied [GSDW92,

CC96, DSI+00, CRC+06, HG02, HCT+97, RFK99, TRGG04, KMKR+10, CSM+01,

EK02, AWS+13] and is considered a potential therapeutic strategy. Different con-

trolling methods have been proposed and shown to be effective in controlling the

instabilities in computer simulations and experiments.

Among the different controlling methods, the method proposed by Hall et al.

[HG02, HCT+97] has been widely used [TRGG04, KMKR+10, CSM+01, EK02],

in which a perturbation was applied to the pacing period T , i.e.

T ′ = T +
α

2
(an − an−1) , (3.1)

where α is the parameter describing the strength of control, and an is the APD

of the nth beat. This method is a form of delayed feedback control, which we call

Delayed Negative Feedback Control (DNFC). Another widely studied method was

proposed by Jordan and Christini [JC04] and by Wu and Patwardhan [WP04,

WP06], called constant diastolic interval (DI) control, in which the cardiac my-

ocyte or tissue is paced with the DI set as a constant. Recent studies [MKMT14,
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Che17, Ota17, ZJT17] also investigated this method.

In cardiac myocytes, there is a well-known property called APD restitution. In

the absence of memory, APD restitution is mathematically described as [GWSG84,

ND68, QSW07]

an+1 = f(dn) = f(T − an), (3.2)

where an+1 is the APD of the (n+1)st beat and dn is its immediate proceeding DI.

It is well known that instabilities can occur when the slope of the APD restitution

function is greater than 1. Substituting T by T ′ in Eq. (3.2), and performing a

linear stability analysis, one obtains the following stability criterion:

f ′(d∗)− 1

f ′(d∗)
< α <

2

f ′(d∗)
, (3.3)

where d∗ is the steady state DI. In other words, under DNFC, the system is

conditionally controllable so long as α is bound by Eq. (3.3). On the other hand,

with constant-DI control, the system is unconditionally controllable since once DI

is fixed, then APD is fixed in Eq. (3.2).

However, it is well known that complex APD dynamics can originate from

Ca2+-driven instabilities or the coupling of Ca2+ and voltage [QSW07, SSK05], and

it is understood [JC04, Qu04] that constant-DI pacing might fail to control this

instability. This is obvious from experiments in which Ca2+ alternans occur under

voltage or AP clamp conditions in which both DI and APD are fixed [CGG+99,

DEO02, DOE04]. In an experimental study [WP06], Wu and Patwardhan showed

that alternans occurred under both constant-cycle-length pacing and constant-DI

pacing, indicating that constant-DI pacing failed to suppress alternans in the real

heart. Based on the fact that constant-DI pacing may stabilize voltage-driven

instabilities but may fail in stabilizing Ca2+-driven instabilities, it was proposed

to use this method to distinguish voltage-driven instabilities from Ca2+-driven

instabilities [Che17].

Besides Ca2+-driven instabilities, Eq. (3.2) does not include memory effects
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since Eq. (3.2) assumes APD depends only on its immediately preceding DI. In

the presence of memory, the APD also depends on previous APDs and DIs, i.e.,

an+1 = f(dn, an, dn−1, an−1, . . . ). (3.4)

If one fixes DI by setting dn = dn−1 = . . . = d0, then Eq. (3.4) becomes

an+1 = f(d0, an, an−1, . . . ). (3.5)

In theory, alternans and complex dynamics can still occur in Eq. (3.2) if the

function f exhibits a steep dependence on APD, and thus constant-DI control

may fail to stabilize voltage-driven instabilities in the presence of memory. It is

also not clear how effective are the other control methods, such as the DNFC

method, in controlling the APD dynamics in the presence of memory.

Most of the previous studies on cardiac memory effect [TRGG04, CGJJ90,

OGJ97, FBGJ02, TSGK03, KTS+05, FRD+03, CF04, BQK+07, SCG+07, GCGJ+13,

MJT08, WMT15] showed that memory itself suppresses voltage-driven instabil-

ities, but studies have also shown that memory may promote APD instabilities

[OGJ97, SAGB95]. If memory suppresses APD instabilities, then it is not difficult

to imagine that control may become easier in the presence of memory. However,

a recent study by Otani [Ota17] discussed the possibility of constant-DI pacing

failure in controlling the voltage-driven instabilities if a steep APD dependence

on the memory variable exists. As shown in a study by Sun et al. [SAGB95], the

presence of memory drives alternans and more complex behaviors in AV nodal

conduction. Our recent studies [LGWQ17, LQ18b] showed that the steep de-

pendence can indeed exist under certain diseased conditions, i.e., the all-or-none

behaviors caused by the diseases reult in steep APD dependence on the memory

variables, which causes complex APD dynamics.

In this study, we investigate the efficacy of the DNFC method and the constant-

DI pacing control in controlling the voltage-driven instabilities under two diseased
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conditions in which the memory effect is exacerbated. We also propose a sim-

ple feedback pacing control method to control instability which we call Negative

Feedback Control (NFC). The first diseased condition is called early repolarization

which occurs in Brugada syndrome, J-wave syndrome, and short QT syndrome

[AY15]. In this case, enhanced outward currents and/or reduced inward currents

cause an abrupt shortening in APD. The second diseased condition is reduced re-

polarization reserve which occurs in long QT syndrome [Rod08, Rod06] and heart

failure [LLD+02, LLLN04, TZ04]. In this case, enhanced inward currents and/or

reduced outward currents promote early afterdepolarizations (EADs), causing an

abrupt lengthening in APD. In both cases, the steep APD response combined with

the memory effect results in complex APD dynamics, which are purely voltage-

driven instabilities [LGWQ17, LQ18b]. We show that under normal conditions in

which the memory effect is minimal, all three controlling methods can effectively

stabilize instabilities caused by steep APD restitution. However, under diseased

conditions, constant-DI pacing control is the least effective controlling algorithm,

almost completely failing to stabilize the APD. The DNFC method can stabilize

the instabilities for certain pacing period T with properly control strength α, but

fails to eliminate instabilities. In other words, even for an optimal α, complex

APD dynamics still occur for certain pacing periods. The NFC method is most

effective, which can eliminate instabilities for a certain range of control strength

α. Under a very strong memory effect, all three methods fail. We demonstrate

these results using computer simulations of AP models and theoretical analyses

of iterated map models. Our results imply that under these diseased conditions,

pacing control may only be marginally effective in stabilizing the voltage-driven

instabilities due to memory and the steep APD response arising from all-or-none

behaviors.
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3.2 Methods

We carry out computer simulations using two AP models with the voltage (V )

governed by the following differential equation:

Cm
dV

dt
= −Iion + Isti, (3.6)

where Cm = 1 µF/cm2 is the membrane capacitance, Iion is the total ionic current

density, and Isti is the stimulus current density applied for a given duration.

The first action potential model we use is the phase I Luo and Rudy (LR1) 1991

model [LR91], which is one of the simplest cardiac AP models with physiological

ionic current formulations. Since there is no Ito in the LR1 model, to model the

condition of early repolarization or Brugada syndrome, we add an Ito to it, which

is the formulation of the fast Ito (i.e., Ito,f) from the model by Mahajan et al.

[MSS+08]:

Ito = gtoxtoyto(V − EK), (3.7)

where gto is the maximum Ito conductance, xto is the activation gating variable, yto

is the inactivation gating variable, and EK is the reversal potential of K+. In this

model, the pacing stimulus we use is Isti = 80 µA/cm2 for a 0.5 ms duration. With

the addition of Ito, we refer to this model as the LR1+Ito model. We set gto =

0.21 mS/cm2 and make the following parameter and model changes [LGWQ17]:

Gsi = 0.1035 mS/cm2, GK1 = 0.133 034 mS/cm2, the voltage-dependent time con-

stant of the X-gating variable of IK is increased 5-fold (τX → 5τX), and the

steady-state curve of yto,f is shifted by 8 mV to more positive voltages.

We also use our recently developed iterated map model that incorporates mem-

ory from the slow K+ channel recovery [LGWQ17, LQ18b] to investigate the ef-

ficacy of the different control methods. The model is described by the following
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equations:

xn+1 = w(xn, an, dn) =
[
xa − (xa − xn)e−

an
τa

]
e
− dn
τd (3.8)

an = g(xn) (3.9)

dn = p(an) = mT − an, (3.10)

where xn is the variable describing the memory effect from the slow recovery of

the K+ channel, more specifically the X-gating variable of IK in the LR1 model.

The function g describes the dependence of APD on the memory variable X. In

this manuscript we assume that m = 1, so there is always 1:1 capture. We call this

model the X-memory map model. In our previous studies[LGWQ17, LQ18b], we

determined parameter values xa = 0.6, τa = 3000 ms, and τd = 1000 ms to match

closely with results seen in the LR1+Ito model. The function g was determined by

simulating the LR1+Ito model at a fixed pacing period T = 1500 ms, and at the

time of the last stimulus the value of X is changed to a new value xinit. The APD

of the resulting AP is then recorded for different values of xinit. The dependence

of APD on xinit is shown in Fig. 3.1(f), and a linear interpolation of the data is

used for g in the X-memory map model (Eq. (3.9)).

The second AP model we use is a much more complex one, a human ventricular

AP model developed by ten Tusscher et al. [tTNNP04], denoted as the TP04

model in this study. Ito formulations (both slow and fast Ito) are present in the

TP04 model, so for simplicity and consistency we remove the two original Ito

formulations and add the Ito formulation in Eq. (3.7). In this model, the stimulus

current is Isti = 52 µA/cm2 for a 1 ms duration.

Since memory in the TP04 model is mainly caused by slow intracellular ion

concentration accumulation, we previously developed another iterated map model

to describe its memory effects and dynamics [LQ18b], which is described by the
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following equations:

cn+1 = w(cn, an, T ) = cne
γaan−γTT+δ (3.11)

an = g(cn) (3.12)

dn = mT − an, (3.13)

where Eq. (3.11) is the iterated map describing the memory effect from the slow

accumulation of the intracellular Ca2+ concentration. We refer to this model

as the Ca2+-memory map model. Note that under constant-T pacing with 1:1

capture (m = 1), T = an + dn, so Eq. (3.11) becomes cn+1 = w(cn, an, dn) =

cne
(γa−γt)an−γT dn+δ. Results from simulations of the TP04 model and of the

Ca2+-memory map model are in the Supplementary Material section. In our

previous study[LQ18b], we determined parameter values γa = 2× 10−4 ms−1,

γT = 3.625× 10−6 ms−1, and δ = −0.0275.

Numerical simulations of the AP models are carried out using an adaptive

forward-Euler method in which the time step ∆t = 0.05 ms. If at any step the

change in voltage would be greater than 0.1 mV, i.e., ∆V > 0.1 mV, the time step

is then ∆t = 0.005 ms. For every AP, the APD is calculated to be the duration

of time such that V > −75 mV.

3.3 Results

3.3.1 Stability Analysis of a General Iterated Map Model

To analyze in general the APD stability of the system under different control

methods, we consider the following general iterated map model, similar to the
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Figure 3.1: The S1S2 APD restitution and memory. (a). Schematic plot of the S1S2 pacing

protocol. A cell is paced with an S1-pacing period T , followed by a premature stimulus (S2)

after a given DI, and the resulting APD is recorded. (b). S1S2 APD restitutions of the LR1

model without Ito for S1-pacing periods T = 400 ms and 1000 ms. (c). S1S2 APD restitutions

of the LR1+Ito model for S1-pacing periods T = 300 ms and 1000 ms. (d). Action potentials of

the LR1+Ito model plotted against the gating variable X during APD alternans. (e). Effects

of initial X values, xinit, on APD. When xinit = 0, the resulting AP has a spike-and-dome with

a prolonged APD. When xinit = 0.05, the resulting AP has a spike with a shortened APD. (f).

Plot of APD against xinit. The curve was generated by simulating the LR1+Ito model at a fixed

pacing period T = 1500 ms, and at the time of the next stimulus the value of X is changed, as

illustrated in (e). The resulting APD is then recorded. This curve is used as the function g in

the X-memory map model (Eq. (3.9)).
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method used by Otani [Ota17]:

zn+1 = w(zn, an, dn) (3.14)

an = g(zn) (3.15)

dn = p(an, an−1, . . . ). (3.16)

Both the X-memory map model (Eqs.(3.8)-(3.10)) and the Ca2+-memory map

model (Eqs.(3.11)-(3.13)) are specific applications of the general iterated map

model. The function w = w(z, a, d) determines the growth or decay of the memory

variable z dependent on the previous beat’s APD (a) and DI (d). For example, in

the LR1+Ito model, the memory variable X activates (increases) during the APD

and deactivates (decreases) during the DI. The dotted-red curve in Fig. 3.1(d)

shows that between xn and xn+1, the APD is short and the DI is long, resulting

in a net decrease in X and thus xn+1 < xn. Eqs.(3.8) and (3.11) provide explicit

expressions for w in the X-memory map model and the Ca2+-memory map model,

respectively. For the X-memory map model, z = x, and for the Ca2+-memory

map model, z = c. The function g determines the dependence of APD on the

memory variable.

The function p determines the method of “control,” which is a constant for

constant-DI control or a function of APD for the other control methods. In other

words, p determines the period of time between repolarization of the previous AP

and the next stimulus. Different control methods have p depend on a variable

number of prior APDs. For example, in constant-DI control, dn = d0 so p is a

constant independent of APD.

Together, Eqs.(3.14)-(3.16) simplify to

an+1 = g(zn+1) = g(w(g−1(an), an, p(an, an−1, . . . )) ≡ H(an, an−1, . . . ), (3.17)

so an+1 depends explicitly on prior APDs via the map H. The dimensionality of

the iterated map depends on the control function p. If p is constant or depends
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on only the previous APD an, then Eq. (3.17) is 1-dimensional. If, however, p

depends on the previous m > 1 APDs so that p = p(an, an−1, . . . , an−m+1), then

Eq. (3.17) is an (m− 1)-dimensional iterated map.

Under constant-T pacing, the nth DI satisfies

dn = p(an) = T − an. (3.18)

Since p = p(an) depends only on the prior APD, the return map H in Eq. (3.17)

is 1-dimensional. Denoting the return map under constant-T pacing as HT , the

APD fixed point as a∗, and z∗ = g−1(a∗) the corresponding memory fixed point,

then the derivative of the iterated map at the fixed point is

H ′T ≡ H ′T (a∗) =
∂w

∂z
+ g′(z∗)

(
∂w

∂a
− ∂w

∂d

)
= ρ− σ (ξ + ω) , (3.19)

where

σ = −g′(z∗), ρ =
∂w

∂z
, ξ =

∂w

∂a
, ω = −∂w

∂d
. (3.20)

σ measures the dependence of APD on the memory variable z, and ω measures

how slowly z changes during the DI. We make a number of constraints on the

variables ρ, ξ, and ω to be physiologically realistic. Firstly, ω > 0 (i.e. ∂w
∂d

<

0) since the memory variable decays during the DI. For example, the X-gating

variable of IKs deactivates during the DI, and Ca2+ is effluxed out of the cytoplasm

during the DI via the sodium-calcium exchanger (NCX). Similarly, ξ > 0 since

the memory variable accumulates in the DI. For example, the X-gating variable

activates during the AP, and Ca2+ accumulates in the cytoplasm via the calcium

window current (ICa,L) and the SERCA pump during the AP. Finally, ρ must be

constrained to |ρ| < 1, so that when the APD and DI are fixed, z stabilizes to z∗.

In other words, restraining |ρ| < 1 assures that when voltage is stable, e.g. under

voltage clamp conditions, memory is also stable. We are primarily interested in

how σ and ω – the APD dependence on memory and the kinetics of memory –

determine APD instability under constant-T pacing and under control. Thus, we
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consider ρ and ξ as fixed constants. For the DNFC and NFC methods, we are

also interested in α, which determines the strength of the two control schemes.

Under constant-T pacing, the APD fixed point is stable when |H ′T (a∗)| < 1,

which leads to
ρ− 1

ξ + ω
< σ <

ρ+ 1

ξ + ω
. (3.21)

For illustrative purposes, we provide an example stability region of σ and ω in

Fig. 3.2(a) for fixed values of ρ and ξ. The stability boundary lines σ = ρ±1
ξ+ω

are

plotted. The APD fixed point is stable under constant-T pacing provided σ is

not too large (or too negative). A smaller ω tends to help stability, but only to

an extent. In particular, if σ > ρ+1
ξ

then the fixed point will always be unstable,

independent of ω.

Under constant-DI pacing, dn = d0, so the function p in Eq. (3.16) is a constant

independent of prior APDs and the return map is 1-dimensional. Denoting the

return map under constant-DI pacing as HDI , then its derivative evaluated at the

APD fixed point is

H ′DI ≡ H ′DI(a
∗) = ρ− σξ. (3.22)

Note that H ′DI = H ′T +σω. Constant-DI pacing will stabilize the APD fixed point

provided
ρ− 1

ξ
< σ <

ρ+ 1

ξ
. (3.23)

This stability criterion is nearly identical to the constant-T pacing stability cri-

terion (Eq. (3.21)), but the ω term in the denominators are absent here. The

inequalities in Eq. (3.23) are independent of ω, and so stability depends solely

on σ. Namely, if σ is too large (or too negative), constant-DI pacing will fail to

stabilize the fixed point. In Fig. 3.2(b), the boundary lines σ = ρ±1
ξ

are plotted.

Compared to the stability region for constant-T pacing (Fig. 3.2(a)), constant-DI

pacing is more stable, but the effectiveness of constant-DI pacing diminishes as ω

gets smaller. More specifically, the upper stability limit of σ for constant-T pacing
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is ρ+1
ξ+ω

compared to ρ+1
ξ

for constant-DI pacing. In the region ρ+1
ξ+ω

< σ < ρ+1
ξ

,

constant-DI pacing will stabilize the fixed point where constant-T pacing fails,

and this region shrinks as ω gets small. In the presence of memory, constant-DI

pacing no longer stabilizes the fixed point unconditionally, and its efficacy of con-

trol may strongly depend on the memory effect, despite the fact that the APD

instability is completely voltage driven.

Next, we consider the effectiveness of the DNFC method. Under the DNFC

method, the pacing period T changes to a new pacing period T ′, as described in

Eq. (3.1). Setting dn = T ′ − an in Eq. (3.1) gives

dn = p(an, an−1) = T − an +
α

2
(an − an−1). (3.24)

Note that setting α = 0 is equivalent to constant-T pacing. Under steady state

dn = d∗ = T − a∗, so T = a∗ + d∗ is the steady state pacing period.

Because p = p(an, an−1) depends on the prior two APDs, the iterated map in

Eq. (3.17) is 2-dimensional such that an+1 depends on both an and an−1. The

Jacobian of the iterated map under DNFC is

JDNFC ≡

ρ− σ [ξ + (2−α)ω
2

]
−ασω

2

1 0

 . (3.25)

The fixed point is stable if and only if the two eigenvalues of JDNFC have magni-

tude less than 1. This leads to the following stability criteria:

− 2 < σ (ξ + ω)− ρ− 1 < ασω < 2. (3.26)

All three inequalities in Eq. (3.26) have to be met to guarantee stability. Fig. 3.2(c)

and (d) show the boundaries of the stability region of the DNFC method for α

fixed, varying σ and ω (panel (c)) and for ω fixed, varying σ and α (panel (d)).

If σ is sufficiently large such that σ > ρ+3
ξ+ω

, the DNFC method will always fail to

stabilize the APD fixed point. This condition is equivalent to H ′T < −3, so that if

the derivative of the iterated map under constant-T pacing is sufficiently negative
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(less than −3), the DNFC method will always fail to stabilize the fixed point. In

Fig. 3.2(c), for a fixed α, the curves σ (ξ + ω)−ρ−1 = ασω and ασω = 2 meet at

the point (σ, ω) =
(
ρ+3− 2

α

ξ
, 2ξ
α(ρ+3)−2

)
, and choosing α = 2ξ+2ω

ω(ρ+3)
will maximize the

range of σ that will stabilize the fixed point. This value of α is precisely the point

of the cusp seen in Fig. 3.2(d), where the fixed point is stable up to σ ≈ 2× 104.

However, despite the limitations of the DNFC method, the method is in general

superior to constant-T and constant-DI pacing, as the region of stability increases

(so long as α is chosen appropriately). For example, under constant-T pacing the

fixed point is stable provided σ < ρ+1
ξ+ω

, whereas the DNFC method can stabilize

the fixed point so long as σ < ρ+3
ξ+ω

.

Finally, we consider NFC. This is a new control method we propose in this

study in which the pacing period T is perturbed by the following:

T ′ = T + α(an − a∗), (3.27)

where a∗ is the APD fixed point under constant-T pacing. This is a form of

negative feedback control. For example, under APD alternans, if an > a∗ so that

an+1 would be smaller than a∗, then the pacing period is lengthened to facilitate

an+1 to be closer to a∗. Conversely, if an < a∗ so that an+1 would be larger than

a∗, the pacing period is shortened to decrease an+1 and be closer to a∗. Setting

dn = T ′ − an gives

dn = p(an) = T − an + α(an − a∗). (3.28)

Note that Eq. (3.28) is equivalent to dn = κ0 + (α − 1)an where κ0 = T − αa∗.

Although the APD fixed point a∗ may not be known in advance in Eq. (3.28), κ0

may be varied freely. Setting α = 0 is equivalent to constant-T pacing, and setting

α = 1 is equivalent to constant-DI pacing (since dn = T−an+1·(an−a∗) = T−a∗

is a constant independent of an).

Because p = p(an) depends only on the previous APD, the iterated map is

1-dimensional. Denoting HNFC as the APD return map under NFC control, then
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its derivative is

H ′NFC ≡ H ′NFC(a∗) = ρ− σ [ξ + (1− α)ω] , (3.29)

Stability of the fixed point is satisfied provided

ρ− 1 < σ [ξ + (1− α)ω] < ρ+ 1. (3.30)

See Fig. 3.2(e) and (f) for an example stability region under NFC. In contrast to

the DNFC method, the NFC method can always stabilize the system provided a

proper α is chosen. In particular, setting α = 1+ ξ
ω
− ρ

σω
≡ ᾱ makes H ′NFC = 0 and

the fixed point is stable regardless of how large or small σ and ω are. However,

the range of α that stabilizes the fixed point may be very narrow so that stability

is very sensitive to the exact choice of α. In particular, the fixed point is stable

provided |α− ᾱ| < 1
σω

, and so when σ gets large the range of α that stabilizes the

fixed point gets narrower.

We have estabilished stability criteria of the APD fixed point under constant-

T pacing (Eq. (3.21)), constant-DI pacing (Eq. (3.23)), DNFC (Eq. (3.26)), and

NFC (Eq. (3.30)). Among all control methods, NFC is most effective at stabilizing

the APD fixed point, and in particular is the only method that can stabilize the

fixed point regardless of the parameters of the iterated map. However, there are

still limitations, namely that if σ is sufficiently large so that σ >> 1
ω

, then the

stability of the fixed point is very sensitive on the NFC parameter α. In other

words, a small deviation from an optimal α that stabilizes the fixed point may

destabilize the fixed point.

In the following sections, we carry out computer simulations using iterated

map models and AP models to examine the general theoretical predictions of the

efficacy of the three control methods.
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Figure 3.2: Stability of constant-T pacing (a), constant-DI pacing (b), DNFC (c) and (d),

and NFC (e) and (f) dependent on the parameters σ = −g′(z∗), ω = −∂w∂d , and α. We set

ρ = 0.67368 and ξ = 1.190168 × 10−4 fixed, which match closely to simulation results of the

LR1+Ito model with T = 515 ms. In panels (c) and (e), we fix α = 2.4; in panels (d) and (f), we

fix ω = 7 × 10−5, which also matches closely to simulation results of the LR1+Ito model with

T = 515 ms.
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3.3.2 Controlling Voltage-Driven Instabilities Due to Slow K+ Chan-

nel Deactivation in the Presence of Ito

3.3.2.1 Constant-T vs. Constant-DI pacing

For both the LR1 and LR1+Ito models, we perform constant-T and constant-

DI pacing under various pacing periods and DIs, and plot the corresponding APDs.

Bifurcation diagrams are shown in Fig. 3.3. Without Ito, the system is unstable

under very fast pacing (T < 300 ms – see Fig. 3.3(a)). The constant-DI method

is able to completely stabilize the system (see Fig. 3.3(b)). This is because the

S1S2 APD restitution of the LR1 model has minimal dependence on prior pacing

periods, i.e. the memory effect is minimal so that APD depends mainly on the

immediate preceding DI (see Fig. 3.1(b)).

In the LR1+Ito model, instability occurs at much slower pacing periods (see

Fig. 3.3(c)), and there is a period-doubling bifurcation route to enter and exit

chaos around pacing periods T = 325 ms and T = 950 ms. In this scenario,

constant-DI pacing fails to stabilize the system for most pacing periods (see

Fig. 3.3(d)). The region of instability does shrink, as constant-DI control stabi-

lizes APD instability around the pacing periods between 325−380 ms and between

940 − 950 ms. However, the constant-DI method fails to stabilize the system for

the pacing periods between 380−940 ms. This agrees with the general theoretical

analysis above that constant-DI pacing can only stabilize a small range of param-

eters when the memory effect is large. Fig. 3.4 shows two examples, one in which

constant-DI pacing does successfully stabilize APD dynamics (T = 373 ms), and

on which constant-DI pacing fails to stabilize (T = 515 ms).

Findings from the X-memory map model are consistent with the simulation

results of the LR1+Ito model. From Eqs.(3.8), we have

σ = −g′(x∗), ω =
x∗

τd
. (3.31)
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Figure 3.3: APD bifurcation diagrams of the LR1 (first row) and LR1+Ito (second row) models

under constant-T pacing (left panels) and constant-DI pacing (right panels).

From the previous section, we have shown that in general, constant-DI pacing is

more stable compared to constant-T pacing. However, the efficacy of constant-DI

pacing depends on σ and ω. As we have shown, constant-T pacing is unstable if

σ > ρ+1
ξ+ω

, while constant-DI pacing is stable when σ < ρ+1
ξ

. Therefore, when APD

has too steep of a dependence on memory (σ large) and/or the system has a long

memory (ω small), constant-DI pacing control may fail.

Fig. 3.5 shows bifurcation diagrams of APD dynamics of the X-memory map

model under both methods of pacing. We used a g-function that was measured

from the LR1+Ito model using the same parameters as for Fig. 3.4 (i.e. the curve

shown in Fig. 3.1(f)). For a narrow range of pacing periods (396 − 438 ms and

990 − 1000 ms), constant-DI pacing stabilizes APD. However, for most pacing

periods (438 − 990 ms), constant-DI pacing fails to stabilize APD. These results

agree well with the simulation results of the LR1+Ito model shown in Fig. 3.4(c)

and (d). The failure of constant-DI pacing in stabilizing the fixed point is because
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Figure 3.4: Dynamics of the LR1+Ito model when switching between constant-T pacing and

constant-DI pacing. (a) APD vs. beat number for T = 373 ms. At beat number 0, the

system switches from constant-T pacing to constant-DI pacing. After about 5 beats, the APD

is stabilized to about 150 ms. (b). APD vs. beat number for T = 515 ms. Constant-DI pacing

switches the chaotic APD dynamics to period-3, failing to stabilize the system. (c). APs before

and after the switch from constant-T pacing to constant-DI pacing for T = 373 ms, leading to

stable APs.
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Figure 3.5: APD dynamics of theX-memory map model in Eqs.(3.8)-(3.10) under (a) constant-

T pacing and (b) constant-DI pacing. Arrows point to the bifurcation points.

σ is too large. Based on Fig. 3.1(f), the maximum value of σ, i.e. the maximum

slope of the curve in Fig. 3.1(f), is 1.5×105, which is much larger than the critical

σ shown in Fig. 3.2(b).

3.3.2.2 The DNFC method

We next simulate the LR1+Ito model with the DNFC method, and the results

are shown in Fig. 3.6. Fig. 3.6(a) shows the stability region of the model for

various values of pacing period T and DNFC parameter α. The DNFC method

can stabilize the model at some pacing periods, but for pacing periods in the range

of 400 − 900 ms the DNFC method fails to stabilize the fixed point. Fig. 3.6(b)

shows a bifurcation diagram of the model when α = 1, indicating that though the

instability region has shrunk compared to constant-T pacing (as in Fig. 3.5(a)),

there is still a period-doubling bifurcation route to enter and exit chaos. Fig.

3.6(c) shows an example of APD dynamics when the DNFC method does work

at T = 373 ms, whereas Fig. 3.6(d) shows that the DNFC method fails when

T = 515 ms.

Using the X-memory map model (Eqs.(3.8)-(3.10)), Fig. 3.7 shows the stability

region of the DNFC method of the iterated map. For some pacing periods, the
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Figure 3.6: APD dynamics of the LR1+Ito model when implementing the DNFC method.

(a). Stability region of the model for different values of pacing period T and DNFC parameter

α. (b). Bifurcation diagram with α = 1. (c). APD vs. beat number setting T = 373 ms. The

DNFC method begins at beat number 0, and before that the model is paced with constant-T

pacing. The model stabilizes to a fixed APD after about 100 APs. (d). APD vs. beat number

setting T = 515 ms. The DNFC method fails to stabilize.
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Figure 3.7: Stability region of the X-memory map model (Eqs.(3.8)-(3.10)) when implementing

the DNFC method (Eq. (3.24)). The dark region is where the APD fixed point is unstable.

DNFC method can successfully stabilize APD dynamics. Up to α = 1.5 the

region of instability decreases to pacing periods between 500−980 ms. For pacing

periods between 396 − 500 ms the DNFC method is effective and can stabilize

APD dynamics. However, when α is too large, (e.g. α > 1.5) the APD fixed

point becomes unstable again. The shape of the instability region is very similar

to that seen in the LR1+Ito model in Fig. 3.6(a). The iterated map model can

well capture the behavior of the action potential model.

3.3.2.3 The NFC method

Finally, we perform simulations of the LR1+Ito model under the NFC method.

The results are shown in Fig. 3.8. As shown in Fig. 3.8(a), APD dynamics can be

stabilized for every pacing period by the NFC method for a sufficient choice of α.

When α is too large the ionic model becomes unstable again. This is consistent

with our prior stability analysis and criterion in Eq. (3.30). Fig. 3.8(b) shows APD

dynamics before and after implementation of the NFC method with T = 515 ms.

With constant-T pacing, the APDs are undergoing chaotic dynamics. When the

NFC method is implemented with α = 2.4, the APD slowly increases from one
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beat to the next until the APD stabilizes to about 180 ms. The APs of this

behavior is shown in the next panel, Fig. 3.8(c).

We next consider the regions of stability of the NFC method using the X-

memory map model (Eqs.(3.8)-(3.10)). The results are shown in Fig. 3.9. Con-

sistent with the stability criterion in Eq. (3.30), every pacing period T can be

stabilized by the NFC method using some choice of α. In fact, there is a very

narrow choice around α = 2.4 which will stabilize APD dynamics for all pacing

periods. For α > 2.4, a new region of instability emerges. These results are con-

sistent with our prior analysis that although the NFC method can successfully

stabilize APD dynamics, the range of α can be quite narrow. As we have shown,

this range depends on 1
σω

, and so with σ sufficiently large the map is stable for

only a narrow range of α.

3.3.3 Efficacy of Controlling Voltage Instabilities Due to Ion Concen-

tration Accumulation

As shown in our previous work [LQ18b], in the TP04 model, slow Ca2+ concen-

tration accumulation causes APD dynamics and instability. APD depends very

sensitively on Ca2+, and Ca2+ concentration equilibrates with a time constant on

the order of several seconds. In contrast, the X-gating variable in the LR1+Ito

model equilibrates with a time constant of about one second.

Controlling APD instability proves very difficult in the TP04 model and the

Ca2+-memory map model (Eqs.(3.11)-(3.13)). As we have shown previously [LQ18b],

the Ca2+-memory map model can accurately capture the bifurcations of the TP04

model. Here, we only evaluate the efficacy of the control methods using the iter-

ated map model. Bifurcation diagrams and stability maps of the Ca2+-memory

map model under the different control methods are shown in Figs. S3-S5in the

Supplementary Material section. Under constant-T pacing, APDs are unstable
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Figure 3.8: APD dynamics of the LR1+Ito model using the NFC method. (a). Stability

region for various values of pacing period T and NFC method parameter α. The dark region is

where the APD fixed point is unstable. (b). APD vs. beat number before and after the NFC

method is implemented with α = 2.4 and T = 515 ms. Once the control method is implemented,

it takes about 25 APs before the APD stabilizes to 180 ms. (c). APs before and after the NFC

method is implemented, corresponding to the data shown in panel (b).
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Figure 3.9: Stability region of the X-memory map model (Eqs.(3.8)-(3.10)) under the NFC

method (Eq. (3.28)). The x-axis is the pacing period T , and the y-axis is the control parameter

α. The dark region is where the APD fixed point is unstable.

for all pacing periods up to T = 8420 ms. The constant-DI method fails to control

instabilities for nearly all pacing periods, with the exception of a small range of

pacing periods between 8410 − 8420 ms (Fig. 3.12). This is due to the fact that

in the model, ω is very large and so constant-DI pacing is only effective in a very

narrow range.

The DNFC method also has limited efficacy, only successfully stabilizing APD

dynamics under rapid pacing (Fig. 3.13). The NFC method is able to successfully

stabilize APDs, but only when the NFC control parameter is in a very narrow

range around α = 55.1 (Fig. 3.14) The controllability of APD dynamics under

the Ca2+-memory map model is incredibly sensitive to changes in α; for example,

setting α = 55 instead of 55.1 fails to stabilize APD dynamics for most pacing

periods (Fig. 3.14(b)). The range of α that stabilizes the iterated map depends

on 1
σω

, and since σ is very large, stability is very sensitive on α.
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3.3.4 Efficacy of Controlling Voltage Instabilities Induced by EADs

As shown previously [LGWQ17, LQ18b], we use the LR1 model and modify

IK by increasing the voltage-dependent time constant of the X-gating variable

10-fold (τX → 10τX) to promote EADs. Using our X-memory map model in

Eqs.(3.8)-(3.10), with parameter values xa = 0.6, τa = 6000 ms, and τd = 2000 ms,

we can well capture the bifurcations of the LR1 model in the presence of EADs.

Again, we can use this iterated map to evaluate the efficacy of the different control

methods on stabilizing the fixed point.The function g was determined in exactly

the same fashion as the function g was determined using the LR1+Ito model, but

instead using the LR1 model in the presence of EADs.

Bifurcation diagrams and stability maps of the iterated map model under the

different control methods are provided in Figs. 3.15 and 3.16. Under constant-

T pacing at T = 1250 ms, a period-doubling bifurcation point occurs where

the APs are stable with 0 EADs (T < 1250 ms) to complex APD alternans

(T > 1250 ms) soon leading to complex APD dynamics with EADs (Fig. 3.15(a)).

Under constant-DI pacing (Fig. 3.15(b)), the bifurcation point shifts slightly to

T = 1280 ms, and so constant-DI pacing successfully stabilizes APD dynamics

for pacing periods between 1250− 1280 ms. However, the method fails to control

APD dynamics under all pacing periods greater than 1280 ms.

The DNFC and NFC methods have little success in controlling APD instability

(Fig. 3.16). As shown in Fig. 3.16(a), the DNFC method has limited success to

control instability up to α = 1 near the bifurcation point around T = 1250 ms

and at the bifurcation points corresponding to transitions from 1 EAD to 2 EADs

(T = 1750 ms) and from 2 EADs to 3 EADs (T = 2050 ms). As expected, the

NFC method (Fig. 3.16(b)) does successfully stabilize APD dynamics, but under

very narrow choices of α around α = 1.6.
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3.4 Discussion and Conclusions

In this study, we investigated the efficacy of three pacing control methods in

stabilizing voltage-driven instabilities in ventricular myocytes under two diseased

conditions. The three control methods include two previous widely studied meth-

ods [HG02, HCT+97, JC04] and a new one proposed in this study. We show that

under the normal condition in which there is no or little memory effect, all three

methods can successfully stabilize the voltage-driven instabilities caused by steep

APD restitution curves. However, under the two diseased conditions, constant-DI

pacing almost completely fails to stabilize the voltage-driven instabilities, while

the other two methods can suppress the instabilities with the simple feedback

pacing being the most effective. Note that in the absence of the memory effect

(Eq. (3.2)), under constant-DI pacing, the system is unconditionally controllable,

while under the other two methods, the system is conditionally controllable. The

failure of constant-DI pacing in stabilizing voltage-driven instabilities agrees with

the prediction by Otani [Ota17] using a generic iterated map model. The con-

trollability of the system depends on the strength of the memory effect and the

steepness of the APD dependence on the memory variables. As shown by Hall

et al. [HCT+97] who used an experimental model in which alternans was likely

promoted by the memory effect [SAGB95], alternans can be controlled by the

time-delayed feedback pacing algorithm. As shown in this study, under the dis-

eased conditions, the strong memory effect and the all-or-none behaviors make the

controlling to be difficult. Moreover, the instabilities tend to occur at multiple

scales with multiple causes and mechanisms [QW15], one would expect that more

sophisticated controlling methods are needed to control the instabilities under the

diseased conditions. In addition, since the instabilities shown in our models are

purely voltage-driven, constant-DI pacing may not be appropriate in differenti-

ating voltage-driven instabilities from Ca2+-driven instabilities as suggested by

Cherry [Che17].
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Finally, we would like to point out that we only studied two sources of memory:

the slow recovery of the K+ channel and the slow accumulation of intracellular

Ca2+ concentration. However, there are many sources of memory in the heart,

from seconds to minutes. Memory from the K+ channel is due to the slow com-

ponent of the delayed K+ current IKs [SJ90, ZLRR95, SR05], which activates and

recovers slowly on the order of several hundred milliseconds to a couple of seconds.

The memory effect in the LR1 model is mainly caused by the K+ current, which

only takes a couple of beats to recover after a sudden change in pacing period

(Fig. 3.10). Another major source of memory is from the slow accumulation of

intracellular ion (Na+, K+, and Ca2+) concentrations, which can take minutes to

re-equilibrate after a sudden change in heart rate [FR00]. In our study of the

TP04 model, since we set Na+ to be a constant, the memory effect is caused only

by Ca2+ accumulation which takes 10 to 20 beats (i.e. 10 to 20 s) to reach steady

state after a sudden change in pacing period (Fig. 3.11) In the experimental study

by Franz et al. [FSLS88], it took about 120 s for the APD to reach a new steady

state after a sudden change in pacing period. In a series of experimental studies

by Kunsyz et al. [KGS95, KMS95, KSG97], they showed that in spontaneous

beating chicken heart aggrevates, it took tens of seconds for the aggregates to go

back to steady state after overdrive pacing. The memory time constant in the

TP04 model is in the same order of magnitude as in the experiments despite the

exclusion of memory from Na+ accumulation. If Na+ is not clamped in the TP04

model, the time constant of memory will be significantly longer. Recent studies

have shown that slow accumulation may also promote interesting action potential

dynamics [XLG+15, KMC17]. As shown in our general iterated map analyses, it

will be more difficult to control the instabilities for a longer memory time con-

stant. Although in theory the NFC method that we propose in this study is able

to control the instabilities when the memory effect is strong, it may depend too

sensitively on the strength of control signal to be practically useful (see Fig. 3.14)
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Therefore, better control algorithms are needed for the control of the instabilities

under the diseased conditions in which strong memory effects exist.

3.5 Supplementary Material

Figure 3.10: APDs of the LR1+Ito model before and after switching from rapid pacing,

T = 300 ms, and slow pacing, T = 1000 ms. Before the switch at beat number 0, APDs are

stable at 122 ms. After the switch, it takes about 5 beats to reach a steady state APD of 356 ms.

Figure 3.11: APDs of the TP04 model before and after switching from rapid pacing, T =

300 ms, and slow pacing, T = 9000 ms.
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Figure 3.12: APD bifurcation diagrams of the Ca2+-memory map model under (a) constant-T

pacing and (b) constant-DI pacing.

Figure 3.13: Stability of the Ca2+-memory map model under the DNFC method. The x-axis

is the pacing period T , and the y-axis is the control parameter α. The dark area is where the

APD is unstable.
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Figure 3.14: Dynamics of the Ca2+-memory map model under the NFC method. (a). APD

stability region for different pacing cycles T and control parameters α. The dark region is where

the APD is unstable. (b). APD bifurcation diagram with α = 55. (c). APD bifurcation

diagram with α = 55.1.

Figure 3.15: APD bifurcation diagrams of the LR1 EAD model under (a) constant-T pacing

and (b) constant-DI pacing.
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Figure 3.16: Stability of the LR1 EAD model under (a) the DNFC method and (b) the NFC

Method.
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CHAPTER 4

Induction of Action Potential Dynamics by the

Accumulation of Calcium and Sodium in

Cardiac Myocytes

4.1 Introduction

Many biological systems exhibit complex oscillatory behaviors, such as burst-

ing dynamics in neurons [DNHCG98, KS98, Izh00, SCC05, TSY+09, Rul02] and

in pancreatic β-cells [KS98]. These complex behaviors emerge as a result of inter-

actions between fast variables, which undergo rapid responses to stimuli, and

slow variables or memory, which undergo slow changes over larger time win-

dows. The role of memory itself in inducing complex dynamics has been widely

studied in many scientific fields of research in biology, chemistry, and physics

[Kan01, ASR98, YBS95, XFJ03].

In cardiac myocytes, fast and slow time scales can give rise to early afterdepo-

larizations (EADs) from a similar Hopf-homoclinic bifurcation mechanism as in

neurons and β-cells [TSY+09]. Simplified iterated maps of action potential (AP)

dynamics have been used and studied to reveal underlying mechanisms. The AP

duration (APD) restitution is perhaps the simplest iterated map model used, in

which

an+1 = f(dn), (4.1)

where an+1 is the APD of the (n + 1)st AP, and dn is the diastolic interval (DI)
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of the preceding beat, defined to be the duration of time between the end of the

previous AP and the initiation of the next AP. For a periodically driven cell with

period T , T = an + dn, and so

an+1 = f(T − an). (4.2)

Eq. (4.2) has been widely used to investigate APD dynamics under periodic stim-

ulation [CGJJ90, VCMJ90, WOGJ95, GWSG84, Kar94, QSW07]. However, this

model neglects the effects of short- and long-term memory effects. The effects of

memory on cardiac alternans have been investigated in previous studies, which

have shown that memory can suppress alternans [OGJ97, FBGJ02, KTS+05,

TSGK03, FRD+03, TRGG04, CF04, BQK+07, GCGJ+13, MJT08, WMT15]. In

recent studies, we have shown that memory can actually promote instabilities

[LGWQ17, LQ18b, LQ18a].

Experiments [SXN+10, PC90] and simulations [SXN+10, LKMGG07] have

demonstrated that APs can have spontaneous fluctuations of EADs and no EADs.

In these demonstrations, a sequence of consecutive APs will have EADs for a cer-

tain number of beats, followed by consecutive APs without EADs for another

number of beats. A study by Xie et al. [XLG+15] proposes a mechanism by

which this so-called intermittent EAD behavior can occur. Namely, positive feed-

back between APD and intracellular calcium concentration ([Ca2+]i) results in

two stable states - one state with stable APs without EADs, and the other with

stable EADs. Simultaneously, negative feedback between APD and intracellular

sodium concentration ([Na+]i) acts as a bistable on-off switch, transitioning the

system from one stable state to the other. It is postulated that intermittent EAD

behavior occurs since [Na+]i changes very slowly on a much longer time scale com-

pared to changes in [Ca2+]i. A study by Krogh-Madsen et al. [KMC17] show that

intermittent EAD behavior due to slow [Na+]i accumulation can lead to spiral

wave reentry and arrhythmogenesis.
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In this study, we analyze complex excitation patterns in a cardiac AP model

with EADs, demonstrating intermittent EAD behavior. We develop a simplified

two-dimensional iterated map model of [Ca2+]i and [Na+]i that well captures the

behaviors from the AP model. Stability analyses show that the degree of APD-to-

Ca2+ feedback and the time constant of [Na+]i accumulation dictate the complex

dynamics of the model via a Hopf bifurcation. Finally, we show that a key miti-

gator in controlling feedback with [Ca2+]i is the sodium/calcium exchanger, INCX,

and controlling the degree of INCX will modify EAD dynamics. Reduction of

INCX activity can lead to negative APD-to-Ca2+ feedback and result in a period-2

doubling bifurcation.

4.2 Methods

Simulations of APs were carried out in a single cell with the equation of voltage

(V ) as

Cm
dV

dt
= −Iion + Isti, (4.3)

where Cm = 1 µF/cm2 is the membrane capacitance, Iion is the total ionic current

density, and Isti is the stimulus current density, which is a 2 ms square pulse

of amplitude −52 µA/cm2. Iion = INa + IK1 + Ito + IKr + IKs + ICa,L + INCX +

INaK + IpCa + IpK + IbCa + IbNa, in which the formulations of the currents are from

the 2004 ten Tusscher et al. (TP04) model [tTNNP04]. We made a number of

changes to the TP04 model in order to induce EADs. We remove Ito and IKr (i.e.

by setting the maximum conductances Gto = GKr = 0 mS/cm2) and reduce the

maximum conductance of IKs to GKs = 0.125 mS/cm2. The formulation of ICa,L

is substituted by the formulation described by Huang et al. [HKK+16], in which

ICa,L = GCa,L · d · f · fCa · iCa,L, (4.4)

where GCa,L = 0.000 14 mS/cm2, fCa = 1
1+

ci
0.6

is the intracellular Ca2+-dependent

inactivation gating variable taken from Zeng et al. [ZLRR95], and iCa,L is the
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unitary current of the channel. Intracellular potassium concentration [K+]i is set

and clamped at 138 mM. The maximum conductance of INCX is set to kNCX =

5 nA/pF.

Single cell simulations were performed using a custom-made integration solver

in C++ using a time-adaptive forward Euler method. The time step is ∆t =

0.05 ms if the change in voltage ∆V < 0.1 mV, otherwise the time step is ∆t =

0.005 ms. APD is defined numerically as the duration of time an AP’s voltage

V > −75 mV. Cells are paced periodically with period T , so that Isti is applied

every T s.

4.3 Results

At a pacing period of T = 2.4 s, the AP model undergoes intermittant EAD

behavior. Fig. 4.1(a) shows APD as a function of the beat number. APD cycles

about every 75 beats, where 25 of those beats are consecutive APs with EADs

(APD > 0.8 s) and the other 50 are consecutive APs without EADs (APD < 0.8 s).

The inlets in Fig. 4.1(a) show representative APs with and without EADs.

Fig. 4.1(b) is a bifurcation diagram of the AP model, with the x-axis the pacing

period T and the y-axis is APD. Pacing periods T < 2.35 s give rise to stable APs

without EADs, whereas T > 3.4 ms give rise to stable APs with EADs. In the

intermediate range 2.35 ms < T < 3.4 s, the AP model is unstable and undergoes

intermittant EAD behavior. Instability arises via a subcritical Hopf bifurcation.

Based on our earlier work [LQ18b], we deduced that APDs in the [Na+]i−clamped

TP04 model depend on diastolic [Ca2+]i in which

an = g(cn), (4.5)

where an is the APD of the nth beat, and cn is diastolic [Ca2+]i immediately

preceding the nth AP. Here, [Na+]i is unclamped, so we consider the dependence
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of APD on [Na+]i in addition to [Ca2+]i, i.e.,

an = g(cn, sn), (4.6)

where an and cn are as before, and sn is diastolic [Na+]i immediately preceding

the nth AP.

We determine the dependence of APD on [Ca2+]i and [Na+]i based on results

from the AP model. Fig. 4.1(c) shows a contour plot illustrating the dependence of

APD on diastolic [Ca2+]i and [Na+]i. [Na+]i, in mM, is on the x-axis, and [Ca+]i,

in nM, is on the y-axis. Colors closer to yellow/red indicate larger APDs, and the

contours indicate curves of equal APDs. Four equi-APD curves are highlighted:

0.62, 0.65, 0.70, and 0.75 s. Since the equi-APD curves are nearly straight lines

(with some small deviations), we consider APD to be dependent on a variable Z

that is a linear combination of [Ca2+]i and [Na+]i:

Z = [Na+]i − α[Ca2+]i, (4.7)

where Z is a constant that uniquely determines each equi-APD curve. Based on

the data, we approximate α = 0.013, and suppose there is a function g such that

APD = g(Z) = g
(
[Na+]i − α[Ca2+]i

)
. (4.8)

Fig. 4.1(d) shows the dependence of APD on Z. The data from the AP model

is nearly one-to-one, showing that nearly every unique value of Z corresponds to

one APD. In addition, at around Z = 10.9, there is a sharp transition from longer

APDs (Z < 10.9) to shorter APDs (Z > 10.9). Since APD is nearly everywhere

a decreasing function of Z, when α > 0, an increase in [Ca2+]i causes APD to

increase. Conversely, when α < 0, an increase in [Ca2+]i causes APD to decrease.

In other words, α determines the feedback between APD and Ca2+: α > 0 models

positive feedback and α < 0 models negative feedback.

Next we determine how [Ca2+]i and [Na2+]i accumulate or decay from one AP

to the next. Generally, [Ca2+]i and [Na+]i tend to accumulate during the AP
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Figure 4.1: Dynamics and properties of the AP model undergoing EADs. (a). APD series

under constant pacing with period T = 2.4 s. APs cycle between a series of 25 consecutive

EADs (APD > 0.8 s) followed by a series of 50 APs without EADs (APD < 0.8 s). (b). APD

bifurcation diagram. (c). Contour plot showing the dependence of APD on diastolic [Na+]i and

[Ca2+]i. Contours are equi-APD curves where the APD is constant. Equi-APD curves at 0.62,

0.65, 0.70, and 0.75 s are highlighted. (d). Dependence of APD on Z = [Na+]i − α[Ca2+]i with

α = 0.013. There is a nearly one-to-one correspondence between APD and Z.
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and decay during the DI, so we assume that longer APDs will tend to increase

the concentrations. Furthermore, as had been demonstrated previously [LQ18b], a

sudden switch from a small APD to a large APD will cause the ionic concentrations

to increase exponentially towards a larger steady state. We model this in the

following form:

cn+1 − c̄(an) = (1− βc)(cn − c̄(an)), (4.9)

sn+1 − s̄(an) = (1− βs)(sn − s̄(an)), (4.10)

where c̄(APD) and s̄(APD) are steady state [Ca2+]i and [Na+]i levels for a given

APD, and βc and βs are rate parameters which determine how rapidly or slowly

[Ca2+]i and [Na+]i accumulate (or decay) towards steady state concentrations. As

βc or βs approaches zero, the accumulation rate decreases. Setting βc or βs to zero

is equivalent to the corresponding concentration being held constant, or clamped.

In general we assume 1 > βc � βc > 0 since [Ca2+]i change is much faster than

[Na+]i change. We approximate c̄ and s̄ to be linearly dependent on APD, so that

c̄(APD) = c1APD + c0 (4.11)

s̄(APD) = s1APD + s0, . (4.12)

Based on results from the AP model, we set parameter values to

c1 =
0.2

T + 2.1
, c0 = 0, s1 =

0.03

T + 2.8
, s0 = 7,

βc = 0.32, βs = 0.01, α = 0.13, (4.13)

where T is the pacing period (in seconds). The inverse relations between T and

s1 or c1 are consistent with a larger pacing period decreasing ionic concentrations

due to there being a larger DI. It is worthwhile to also denote

τs ≡
1

βs
. (4.14)

In τs beats, if τs is large enough, then [Na+]i is approximately 1
e

= 36.79% closer

to steady state. In the model, τs = 1
0.01

= 100.
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Putting everything together, we have the following two-dimensional iterated

map of APD, [Ca2+]i, and [Na+]i:

Z = sn − αcn (4.15)

c̄ = c1an + c0 (4.16)

s̄ = s1an + s0 (4.17)

an = g(Z) (4.18)

cn+1 − c̄ = (1− βc)(cn − c̄) (4.19)

sn+1 − s̄ = (1− βs)(sn − s̄). (4.20)

We first use a function g that matches the data in Fig. 4.1(d) by choosing a

linear interpolation of points manually chosen in the data set to assure a one-to-

one correspondence between APD and Z. Fig. 4.2 shows results of the iterated

map model (Eqs. (4.15)-(4.20)). Fig. 4.2(a) shows a bifurcation diagram of APD

against T , which closely resembles the bifurcation diagram from the AP model

(Fig. 4.1(b)). Setting T = 2.5 s, we plot APD, [Ca2+]i, and [Na+]i against beat

number from the iterated map model (Fig. 4.2(b)), and compare with results from

the AP model with the same T (Fig. 4.2(c)). In both cases, APD cycles between

large values (APs with EADs) and smaller values (APs without EADs). Both

APD and [Ca2+]i increase or decrease together, confirming positive APD-to-Ca2+

feedback. Concurrently, [Na+]i increases with larger APDs and decrease with

smaller APDs, changing directions precisely when APD switches from low to high

or high to low. This suggests that, indeed, [Na+]i acts a “switch” that modulates

when APD goes from the high APD region to the low one, and vice versa. When

EADs are occurring, [Na+]i slowly accumulates until some point when the larger

[Na+]i causes the APs to lose EADs and have smaller APDs. With the reduction

in APD, [Na+]i now slowly decays, until another point when the smaller [Na+]i

causes the APs to have EADs again and have larger APDs. This cycle continues

indefinitely.
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We next perform a stability analysis of the iterated map model to understand

how interactions between APD and the ionic concentrations can give rise to inter-

mittent EAD behavior. For simplicity, we model g in Eq. (4.8) as a Hill function:

g(Z) = amin +
amax − amin

1 +
(
Z
Kd

)h , (4.21)

where amin and amax are values of the minimum and maximum values of APD, and

Kd is the half-max value for Z, and h is the Hill coefficient. Based on Fig. 4.1(d),

we approximate amin = 0.6 s, amax = 1.0 s, and Kd = 10.9, and initially set

h = 500.

The Jacobian of the iterated map at steady state is

J =

1− βc − c1αβcg′ c1βcg
′

−s1αβsg′ 1− βs + s1βsg
′

 (4.22)

where g′ = g′(s∗ − αc∗) is the slope of g evaluated at the fixed point. The trace

and determinant are

τ = tr J = 2− βc − βs + [s1βs − c1αβc] g′ (4.23)

∆ = det J = (1− βc)(1− βs)+

[s1(1− βc)βs − c1α(1− βs)βc] g′, (4.24)

and the eigenvalues of J satisfy λ = τ
2
±
√(

τ
2

)2 −∆. The iterated map is stable

at the fixed point provided |λ| < 1 for both eigenvalues.

Fig. 4.3(a) shows bifurcation diagrams of the iterated map model (left panel)

compared with the AP model (right panel) of APD versus [Na+]i. For the iter-

ated map, [Na+]i was fixed at different values and “clamped” by setting βs = 0.

Fixed points were calculated, and stability of the fixed points were determined by

computing the eigenvalues.

Results indicate the existance of a supercritical Hopf bifurcation. In the range

of [Na+]i values between 11.32 and 11.4 mM, the map has 2 stable fixed points
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(black line) and 1 unstable fixed point (blue dotted line). Outside that range, the

map has 1 stable fixed point. This agrees with results from the AP model (right

panel of Fig. 4.3(a)), showing that APDs are also bistable for a certain range of

[Na+]i values. The curves were generated by setting and clamping [Na+]i in the

AP model first at 11 mM and slowly increasing the concentration 0.01 mM every

100 beats, then setting [Na+]i at 11.5 mM and slowly decreasing the concentration

0.01 mM every 100 beats.

Because the model is undergoing a Hopf bifurcation, at the bifurcation point

the eigenvalues have complex eigenvalues of the form λ = a ± bi with |λ| = 1.

Since the map is two-dimensional, the determinant ∆ is 1 at the bifurcation point,

and thus

λcrit =
τ

2
± i
√

1−
(τ

2

)2
. (4.25)

From Eq. (4.24) ∆ = 1 also gives the relation

− g′ = S ≡ βc + βs − βcβs
c1α(1− βs)βc − s1(1− βc)βs

. (4.26)

Fig. 4.3(b) plots the stability of the iterated map model dependent on −g′ and

τs. The red curve is from Eq. (4.26), which is the Hopf bifurcation curve. Since

g′ < 0, when −g′ ≥ S the map is unstable. Along the bifurcation curve,

τ

2
= 1− βc

2
− βs

2
+

s1βs − c1αβc
s1βs(1− βc)− c1αβc(1− βs)

βc + βs − βcβs
2

. (4.27)

Taking λcrit in the form λcrit = e±iθ, then θ = cos−1
(
τ
2

)
. At the bifurcation point,

θ is the frequency of oscillation, and so

Pcrit =
2π

cos−1
(
τ
2

) (4.28)

is the period of oscillations at the Hopf bifurcation point.

We also calculate the period of the iterated map (Eqs. (4.15)-(4.20)) under

the assumption that g is a step function, when h → ∞ in Eq. (4.21). In this

scenario, −g′ → ∞ at the fixed point when it is unstable. Here, g(Z) = amax
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Figure 4.3: Properties of the iterated map model and AP model under positive APD-to-Ca2+

feedback. (a). APD bifurcation diagrams of the iterated map model (left panel) and AP model

(right panel) under clamped [Na+]i values. In both cases, bistable APD regions emerge for a

certain range of [Na+]i. (b). Stability of the iterated map model dependent on −g′ and τs
100 .

The red curve is the Hopf bifurcation curve, from Eq. (4.26). (c). Period of APD oscillations of

the iterated map model (blue line) and AP model (blue curve), and from theoretical calculations

of the Hopf bifurcation in Eq. (4.28) (red curve) and from Eq. (4.31) (purple curve). For the

AP model, the period is plotted against fVol, the factor controlling the volume of the cell (see

Eq. (4.32)). For the other curves, the period is plotted again τs
100 . At control, τs

100 = fVol = 1.

(d). APD, [Ca2+]i, and [Na+]i versus beat number of the AP model with fVol = 10 (10x volume

in the control model). (e). Same conditions as (d), but fVol = 1 (volume in the control model).
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when Z < Kd, and g(Z) = amin when Z > Kd. Assuming the map is undergoing

oscillations between high APDs at amax and low APDs at amin, we denote N1 to

be the number of iterations with high APDs and N2 the number of iterations at

low APDs. We also assume that at the transition from high APDs to low APDs,

Z = Kd, and [Ca2+]i has reached steady state at c̄(amax), since [Ca2+]i dynamics

are much faster than that for [Na+]i. Similarly, Z = Kd and [Ca2+]i = c̄(amin) at

the transition from low APDs to high APDs.

Based on these assumptions, the values of N1 and N2 are

N1 =
1

ln
(

τs
τs−1

) ln

[
1− smin−αcmax

Kd

1− smin−αcmin

Kd

]
(4.29)

N2 =
1

ln
(

τs
τs−1

) ln

[
smax−αcmin

Kd
− 1

smax−αcmax

Kd
− 1

]
, (4.30)

where cmin = c̄(amin), cmax = c̄(amax), smin = s̄(amin), and smax = s̄(amax). Sum-

ming N1 and N2 gives the period under the condition that g is a step function: of

oscillations:

Pstep =
1

ln
(

τs
τs−1

) ln


(

1− smin−αcmax

Kd

)(
smax−αcmin

Kd
− 1
)

(
1− smin−αcmin

Kd

)(
smax−αcmax

Kd
− 1
)
 (4.31)

Fig. 4.3(c) plots the period of oscillations in the iterated map model (black

curve) with the theoretical predictions in Eq. (4.28) (red curve) and Eq. (4.31)

(purple curve) as a function of τs. To test how [Na+]i accumulation rates determine

oscillations in the AP model, we modify the differential equation in the TP04

model by adding a parameter fVol:

d[Na+]i
dt

= −C INa + IbNa + 3INaK + 3INCX

(fVolVc)F
, (4.32)

where C is the membrane capacitance, Vc is the volume of the cell, and F is

Faraday’s constant. Setting fVol = 1 is equivalent to the original model. Increasing

fVol has the effect of increasing the volume of the cell, and the absolute rate of
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change of [Na+]i decreases. This is analogous to increasing τs (or decreasing βs)

in the iterated map model, since increasing τs will slow the rate of accumulation

of [Na+]i.

We plot the periods of APD oscillation in the AP model with fVol in the red

curve of Fig. 4.3(c). Indeed, increasing fVol increases the period of oscillations

roughly linearly. The plots of the period vs. τs in the iterated map model match

fairly closely with the period vs. fVol in the AP model, especially when τs
100

and

fVol are greater than 5. Fig. 4.3(d) and (e) show APD versus beat number of

the AP model with fVol = 10 (panel (d)) and fVol = 1 (panel (e)). The period

of oscillations is about 190 when fVol = 10 and about 60 when fVol = 1. As

predicted by the iterated map model, the accumulation and decay rate of [Na+]i

affect the period of oscillations, and therefore [Na+]i accumulation is critical in

APD dynamics. The theoretical predictions in Eq. (4.28) and (4.31) provide a

lower and upper bound of the oscillation periods.

Our analysis thus far has assumed positive APD-to-Ca2+ feedback. We have

demonstrated that in this setting, APD is bistable, and [Na+]i accumulation can

cause APD to oscillate between the two locally stable regimes. We next investi-

gate how changing the feedback between APD and [Ca2+]i. In the iterated map,

feedback is controlled by α. Fig. 4.4 (a)-(c) demonstrate the effects of changing α.

Fig. 4.4(a) shows a stability phase plot of α against T , where the black regions in-

dicate the iterated map is unstable. Two unstable regions emerge: the top region

where α > 0.008, and the bottom region where α < −0.025.

The top region, where α > 0, is the positive feedback regime, and APD under-

goes oscillations (Fig. 4.4(b)) in a similar manner as the AP model in Fig. 4.3(d)

and (e). In the bottom region, α < 0, so APD is negatively coupled with [Ca2+]i.

In this region, APD and [Ca2+]i undergo rapid beat-to-beat oscillations. In con-

trast to the Hopf bifurcation occurring in the positive feedback scenario, here the

map is undergoing a period-2 doubling bifurcation, as seen in simulations of the
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map model (Eqs. (4.15)-(4.20)) dependent on the feedback parameter α and T . (b). APD,

[Ca2+]i, and [Na+]i versus beat number with α = 0.013 and T = 2.5 s. (c). Same as (b) but
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the maximum conductance of INCX. (e). APD versus Z = [Na+]i − α[Ca2+]i with α = −0.025

from the AP model with kNCX = 1 nA/pF. There is a fairly good one-to-one mapping of APD

on Z. Since α < 0, there is negative APD-to-Ca2+ feedback.
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TP04 model with [Na+]i clamped [LQ18b].

We now test the effects of APD-to-Ca2+ coupling on APD dynamics in the

AP model. The degree of feedback between APD and [Ca2+]i can be controlled

by modifying the maximum conductance of INCX, kNCX. Larger values of kNCX

increase the activity of INCX and increase APD-to-Ca2+ coupling. And conversely,

decreasing kNCX will decrease coupling. We vary kNCX from 0 to 6 nA/pF in the AP

model and plot APD, with T = 2.5 s. A bifurcation diagram of APD versus kNCX is

shown in Fig. 4.4(d). Two unstable regions emerge, one with kNCX > 2 nA/pF, and

the other with kNCX < 1.8 nA/pF. The right region corresponds to intermittent

EAD behavior, in which slow [Na+]i accumulation causes a switch in APD from

one bistable region to another, just as in Fig. 4.4(b). In the left region, APD

undergoes rapid oscillations via a period-2 doubling bifurcation. With kNCX =

1 nA/pF, APD is plotted against Z = [Na+]i − α[Ca2+]i with α = −0.025 in

Fig. 4.4(e). There is a nice one-to-one mapping between APD and Z, and α < 0

suggests that indeed there is negative APD-to-Ca2+ feedback.

4.4 Discussion

In this study, we investigated the roles of Ca2+ and Na+ concentration ac-

cumulation on action potential dynamics in cardiac myocytes under the con-

dition of EADs. We confirm previous experimental and computational studies

suggesting that intermittent EAD behavior, in which APs cycle between having

EADs for a period of time followed by having no EADs, may be modulated by

positive APD-to-Ca2+ feedback in conjunction with slow accumulation of [Na+]i

acting as a bistable switch. Recent studies have shown that slow [Na+]i accu-

mulation may also promote complex action potential dynamics and arrhythmias

[XLG+15, KMC17].

From a simplified iterated map model that well capitulates findings in a dif-
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ferential equation model of APs, we demonstrated that intermittent EAD be-

havior arises due to a supercritical Hopf bifurcation, in which the APD fixed

point becomes unstable, and a limit cycle arises with oscillations in [Ca2+]i and

[Na+]i. The rate constant of [Na+]i accumulation determines the frequency of

oscillations, i.e., if [Na+]i more slowly, then the series of consecutive APs having

EADs (or lacking EADs) is larger. Finally, removing positive APD-to-Ca2+ feed-

back makes intermittent EAD behavior impossible, and negative APD-to-Ca2+

feedback can cause period-2 doubling bifurcations. Under negative APD-to-Ca2+

coupling, [Na+]i plays no role, and complex APD dynamics can be explained by

a simple 1-dimensional map model of Ca2+ and APD [LQ18b].
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CHAPTER 5

Small-Conductance Ca2+-Activated K+ Channels

Promote J-wave Syndrome and Phase 2 Reentry

5.1 Abstract

Background: Small-conductance calcium (Ca2+)-activated potassium (SK)

channels play complex roles in cardiac repolarization and arrhythmogenesis under

both physiological and pathophysiological conditions. However, the underlying

mechanisms are not well understood. As SK channels are gated by intracellular

Ca2+ only, we hypothesize that the conductance of SK channels tracks the intra-

cellular Ca2+ transient, and thus the SK current (ISK) behaves functionally like

a transient outward K+ current (Ito) to promote J-wave syndromes and arrhyth-

mias.

Methods: Computer simulations of single cell and tissue models were used to

investigate the role ISK in promoting arrhythmias relevant to J-wave syndromes

Results: We show that if ISK rises and decays rapidly during an action poten-

tial in a spike-like pattern in response to the intracellular Ca2+ transient (either

because the whole-cell Ca2+ transient is inherently spike-like or because SK chan-

nels partially sense submembrane Ca2+), it can mimic the functional behaviors

of Ito to promote J-wave syndromes and related arrhythmias. Specifically, under

the right conditions, ISK can cause the all-or-none spike-and-dome action potential

morphology and promote action potential duration alternans and complex chaotic

dynamics in single cells. At the tissue-scale, ISK can promote phase 2 reentry ei-
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ther in the absence or presence of Ito. Our simulation results can account for

the recent experimental finding that pharmacological activation of ISK induced

a J-wave syndrome and its arrhythmogenic consequences in rabbit hearts, and

raise the possibility that ISK may contribute to arrhythmogenesis in other forms

of J-wave syndromes as well.

Conclusions: When the intracellular Ca2+ transient waveform sensed by SK

channels is spike-like, ISK can play functionally the role of Ito, which alone or

combined with Ito can promote J-wave syndromes and the related arrhythmias,

such as T-wave alternans and phase 2 reentry.

5.2 Introduction

Small-conductance Ca2+-activated K+ (SK) channels are widely expressed in

a variety of cell types and play multiple biological roles, particularly in the ner-

vous system where they regulate neuronal firing [FS03, AMS12]. The SK current

(ISK) is also present in atrial and ventricular myocytes under normal and diseased

conditions [TXT+05, SPD+14, CCM+11, CTL+13, CHH+13, ZLC15, QDB+14].

Depending on experimental conditions [QDB+14], both proarrhythmic and an-

tiarrhythmic effects of ISK have been identified in experiments using apamin, a

selective SK channel blocker. However, the underlying mechanisms are not well

understood.

ISK is activated by Ca2+ with a fast time constant on the order of a few

milliseconds [HMAM98, XFR+98, BST+04, PMR+01], and thus its activation

and deactivation time course tracks the intracellular Ca2+ transient. Depending

on the profile of the Ca2+ transient, ISK can rise and then decreases rapidly during

the action potential (AP), making it behave functionally like a transient outward

K+ current (Ito). As shown in many previous studies, Ito can promote all-or-none

early repolarization [GWP+00], complex arrhythmogenic AP dynamics such as
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AP duration (APD) alternans and chaos [CR02, QXGW10, LGWQ17, LQ18b,

LA93, MZL+06], and phase 2 reentry (P2R) [MCKM14, MKMC09, CPM+09,

PCE10, BOCEF15] that are hallmarks of J-wave syndromes such as Brugada

syndrome [AY15]. Ito can also facilitate the genesis of early afterdepolarizations

when repolarization reserve is reduced [ZXW+12, CLT+18, NSX+15]. In a recent

experimental study, Chen et al. [CXW+18] discovered that rabbit hearts exposed

to a drug that activates ISK while simultaneously inhibit the INa developed a J-

wave syndrome leading to P2R and ventricular arrhythmias. Since Ito is very small

in rabbits at normal heart rates, we hypothesized that this arrhythmogenic J-wave

syndrome was related to the Ito-like properties of the activated ISK current. In

this study, we used computer simulations to test this hypothesis. We carried out

simulations in single myocyte and one-dimensional (1D) cable models. In single

myocytes, we investigated how the features of the intracellular Ca2+ transient

impact the ability of ISK to influence AP morphology and produce complex AP

dynamics. In 1D cable simulations, we defined the conditions under which ISK

can either substitute for or synergize with Ito to produce complex APD dynamics

leading to P2R. Our major conclusion is that when the Ca2+ transient is inherently

spike-like or SK channels predominantly sense the spike-like submembrane Ca2+

transient waveform, the resulting rapid activation and deactivation of ISK plays

a comparable role to Ito in promoting complex AP dynamics and P2R. However,

when ISK is not spike-like and inactivates slowly, it influences repolarization in a

manner similar to other time- and voltage-dependent K+ currents such as IKr.
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5.3 Methods

5.3.1 Action Potential Models

Simulations of single cells were carried out using the following differential equa-

tion:

Cm
dV

dt
= −Iion + Isti, (5.1)

where V is the voltage and Cm = 1 µF/cm2 is the membrane capacitance. We

used two AP models in this study: the human ventricular model by O’Hara et

al. [OVVR11] (the ORd model) and the guinea pig ventricular AP model (a later

version of the LRd model) by Faber and Rudy [FR00]. An ISK current model

was added to both AP models, described below. In addition, for P2R to occur

in tissue, we followed Maoz et al. [MKMC09] to modify the LRd model by using

the Ito formulation from Dumaine et al. [DTB+99], and the ICa,L formulation

from Miyoshi et al. [MMF+03] with the control pCa value 0.000 54 cm/s. Since

replacing ICa,L in the ORd model causes a big change in the AP morphology and

APD, we only replaced the Ito formulation by the formulation from Dumaine et

al. [DTB+99]. However, we were not able to observe P2R in tissue using the

ROd model, and therefore, we only used LRd to simulate P2R in this study. The

stimulus current Isti was a −34 µA/cm2 square pulse for a duration of 2 ms in the

ORd model, and a −38 µA/cm2 square pulse for a duration of 2 ms in the LRd

model.

5.3.2 Modeling ISK

Komendantov et al. [KKJC04] used a ISK formulation to study neuronal firing

as follows:

ISK = GSK
1

1 +
(

Kd
[Ca2+]

)4 (V − EK). (5.2)
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Here we modified the ISK formulation fo Komendantov et al. to include a time-

dependent gating variable, i.e.,

ISK = GSKxSK(V − EK) (5.3)

where GSK is the maximum conductance and EK is the reversal potential. xSK is

the time-dependent gating variable, satisfying

dxSK
dt

=
xSK,∞ − xSK

τSK
(5.4)

where xSK,∞ is a Hill function of Ca2+, i.e.,

xSK,∞ =
1

1 +
(

Kd
[Ca2+]SK

)n (5.5)

where [Ca2+]SK is the Ca2+ concentration sensed by SK channels. In the ORd

model, we used

[Ca2+]SK = α[Ca2+]s + (1− α)[Ca2+]i (5.6)

where [Ca2+]s is the submembrane Ca2+ concentration and [Ca2+]i is the intracel-

lular Ca2+ concentration. α is a parameter that determines a weighted contribu-

tion of the two concentrations. In the LRd model, we set [Ca2+]SK = [Ca2+]i since

the model does not contain a submembrane Ca2+ compartment. In Eq. (5.5), n

is the Hill coefficient, which we set at n = 4, in the range from 2 to 6 measured

in experiments [CCM+11, HMAM98, XFR+98, BST+04, PMR+01, HMAM99].

Thus when τSK = 0, Eq. (5.3) is identical to Eq. (5.2). Based on experiments

[CCM+11, HMAM98, XFR+98, BST+04, PMR+01, HMAM99], Kd is in the sub-

µM range. For example, Chua et al. [CCM+11] found Kd = 0.5 µM for normal

ventricles and Kd = 0.3 µM for failing ventricles. In this study, we used Kd = 1 µM

when implemented in the ORd model and 2 µM in the LRd model (see Discussion

for the higher than experimentally observed Kd used in this study).

As for τSK, we plotted experimental data in Fig. 5.1 from different experiments

(in different symbols) [HMAM98, XFR+98, BST+04, PMR+01]. Using their multi-

state Markovian SK channel model, Hirschberg et al. [HMAM98] showed that τSK
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Figure 5.1: τSK versus intracellular Ca2+ concentration from different experiments and

the mathematical model. Different symbols are data from different experiments [HMAM98,

XFR+98, BST+04, PMR+01]. The line is a plot of the mathematical model of Eq. (5.7) with

τ0 = 5 ms and τ1 = 25 ms.

exhibits and inverse linear relationship with [Ca2+]. In other words, τSK can

be represented by a Hill function with a Hill coefficient of 1. Based on this

observation, we formulated τSK as:

τSK = τ0 +
τ1

1 + [Ca2+]SK
0.1

. (5.7)

A plot of this function for τ0 = 5 and τ1 = 25 is shown in Fig. 5.1, which is well

within the range of the experimental data.

5.3.3 1D Cable Model

1D cables were described by the following partial differential equation for volt-

age:
∂V

∂t
= −Iion

Cm
+D

∂2V

∂x2
, (5.8)
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where D = 0.001 cm2/ms is the diffusion constant describing the strength of gap

junction coupling. The pseudo-ECG was calculated as:

ECG =

∫ 3.75 cm

0

D∇V · ∇
(

1

r

)
dx, (5.9)

where r =
√

(x− xp)2 + y2p, x is a point in the cable, and (xp, yp) = (3 cm, 0.9375 cm)

is the location of the pseudo-ECG electrode.

5.3.4 Numerical Methods

Single cell siulations were performed using a custom-made integration solver in

C++ using a time-adaptive forward Euler method. The time step is ∆t = 0.05 ms

if the change in voltage ∆V < 0.1 mV, otherwise the time step is ∆t = 0.005 ms.

Cable simulations were performed using a custom-made integration solver in

CUDA, a programming language designed for graphical processing units (GPUs),

using a time-adaptive forward Euler method. For each cell, the time step is

∆t = 0.025 ms if the change in voltage ∆V < 0.1 mV, otherwise the time step is

∆t = 0.0025 ms. Each cable consists of 300 cells, and the cell length corresponding

to the spatial step is ∆x = 0.0125 cm. No-flux boundary conditions are imposed.

5.4 Results

5.4.1 Ca2+-Dependent ISK Properties

The ORd model consists of both submembrane and cytosolic Ca2+ compart-

ments. During an AP at a pacing cycle length (PCL) 1000 ms (Fig. 5.2(a)), the

cytosolic Ca2+ concentration (≈ 0.25 µM, Fig. 5.2(b)) is much lower than the

submembrane Ca2+ concentration (≈ 7 µM, Fig. 5.2(c)). When ISK depends on

[Ca2+]i alone (α = 0), the current amplitude is low and the duration is relatively

broad (Fig. 5.2(d)). The Ca2+-dependent activation time constant (τSK) has a
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Figure 5.2: Ca-dependence of ISK properties in the ORd model. (a). Action potential of the

ORd model at PCL = 1000 ms. (b). Cytosolic Ca concentration versus time. (c). Submembrane

Ca concentration versus time. (d). ISK under AP clamp using the AP in (a) for τSK = 0 and

τSK using Eq. (5.7). (e). ISK under AP clamp using the AP in (a) for τSK = 0 and τSK using

Eq. (5.7).

small effect. If a fraction of the SK channels are assumed to be located near L-

type Ca2+ channels in the membrane (α = 0.1, equivalent to 10% of SK channels

sensing submembrane rather than cytoplasmic Ca2+), ISK becomes much larger

in amplitude and narrower (Fig. 5.2(e)), exhibiting a profile very similar to Ito.

The Ca2+-dependent activation time constant also has a much larger effect on

reducing the current amplitude.

The LRd model does not consist of a submembrane Ca2+ compartment but an

intracellular Ca2+ compartment. In the original model (thick lines in Fig. 5.3(a)

and (b)), the intracellular Ca2+ transient has a relatively low amplitude and

broad duration. If we increased the SERCA pump activity three-fold to mimic
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β-adrenergic stimulation, however, the Ca2+ transient increased in amplitude and

became much narrower and spike-like in appearance (thick lines in Fig. 5.3(a)

and (b)), consistent with experimental observations [CZZ+10, BRK+04, KMS+16,

AS14]. APD also lengthened slightly. Similarly, ISK had a low amplitude and

broad duration for the 1 × SERCA case (Fig. 5.3(c)), but became much larger

and narrower when SERCA activity was tripled (Fig. 5.3(d)), resembling the ISK

properties in the ORd model shown in Fig. 5.2.

5.4.2 Effects of ISK on Action Potential Morphology and Duration

We next carried out simulations to show how ISK properties affect the AP

morphology and duration for both the ORd model and the LRd model (Fig. 5.4).

In the ORd model (Fig. 5.4(a)), APD decreased gradually as GSK increased for

the case in which ISK depended solely on the cytoplasmic Ca2+ compartment (i.e.

α = 0). However, when 10% of ISK sensed the submembrane Ca2+ (α = 0.1),

increasing ISK initially increased APD and then abruptly decreased APD to very

short values. This all-or-none early repolarization behavior was associated with a

spike-and-dome AP morphology induced by ISK, similar to the well-known effects

of Ito. In the LRd model (Fig. 5.4(b)), comparable findings were obtained, with

ISK activation causing gradual APD shortening for the control SERCA value, but

all-or-none repolarization when SERCA activity was increased 3-fold.

5.4.3 ISK Promotes APD Alternans and Chaos

When ISK was spike-like, it promoted APD alternans and more complex APD

dynamics in the AP models, in the same way as previously demonstrated for

Ito [QXGW10, LGWQ17, LQ18b, LA93]. Fig. 5.5 shows the simulation results

from the ORd model. When ISK was not spike-like (the α = 0 case), no APD

alternans occurred, and APD decreased gradually as GSK increased (Fig. 5.5(a)).
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with α = 0 (left) and α = 0.1 (right). (b). The LRd model with the control SERCA activity

(left) and 3× SERCA activity (right).

When ISK was spike-like (the α = 0.1 case), however, APD alternans as well as

chaos occurred over a wide range of GSK, from 0.05 to 0.55 mS/cm2 (Fig. 5.5(b)).

As a reference, Fig. 5.5(c) compares the APD dynamics induced by Ito in the

ORd model in the absence of ISK. To systematically evaluate the roles of ISK in

promoting the APD dynamics, we scanned the parameter combinations ofGSK and

Gto for complex APD dynamics under different conditions: α = 0 (Fig. 5.5(d)),

α = 0.1 and τSK = 0 (Fig. 5.5(e)), and α = 0.1 and τSK > 0 (Fig. 5.5(f)). When ISK

was not spike-like (α = 0), no complex APD dynamics could be induced by ISK in

the absence of Ito. Moreover, ISK suppressed the complex APD dynamics induced

by Ito since the black region in Fig. 5.5(e) became smaller as GSK increased. In

contrast, when ISK was spike-like (α = 0.1), complex APD dynamics could be

induced in the absence of Ito. In general, ISK and Ito played complementary

roles in promoting complex AP dynamics, such that when the sum of the two
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currents was in the proper range, complex APD dynamics occurred. When the

sum was too small or too large, APD was stable. To exclude the possibility that

other K+ currents could substitute for ISK, we carried out the same simulations

for parameter combinations of Gto and ∆GKr (Fig. 5.5(g)), where ∆GKr is the

increase in the maximum conductance of IKr from its control value in the original

model. In this case, no complex APD dynamics occurred in the absence of Ito.

We repeated the same simulations in the modified LRd model and observed

the same behaviors (Fig. 5.6): ISK did not promote complex APD dynamics for

the control value of SERCA activity in which the Ca2+ transient and ISK was not

spike-like, but promoted complex dynamics when SERCA was increased 3-fold to

produce a spike-like Ca2+ transient and ISK.

Based on these simulations, we conclude that when ISK is not spike-like, ISK

does not promote complex APD dynamics. In contrast, when ISK is spike-like,

APD alternans and more complex APD dynamics can occur even in the absence

of Ito.

5.4.4 ISK Promotes J-wave Syndromes and P2R

To examine whether the all-or-none early repolarization and complex APD dy-

namics induced by ISK in isolated cells could result in P2R in tissue, we simulated

1D cables of 300 cells. We used both the ORd and LRd models, but since we could

not induce P2R in the ORd model using either Ito or ISK, we only show our results

from the LRd model. We simulated two types of 1D cables: a cable consisting

of cells mimicking ventricular transmural heterogeneity and a cable consisting of

ventricular epicardial cells only.

In the cable simulating transmural heterogeneity, we reduced IKs by 50% in top

half of the cable to mimic the mid-myocardial/endocardial cell layer. Ito or ISK was

added only to the bottom half of the cable to mimic the epicardial layer. The cable
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Figure 5.5: ISK promotes complex APD dynamics in the ORd model. (a). An example

voltage trace (upper panel, GSK = 5 mS/cm2) and APD versus GSK (lower panel) for α = 0 and

τSK = 0. Gto = 0. For each GSK value, APDs from 50 beats are plotted. Since this case, no

APD alternans and other complex APD dynamics, all 50 APDs are identical. (b). Same as (a)

but for α = 0.1 and τSK = 0 (upper panel, GSK = 0.15 mS/cm2). (c). An example voltage trace

(upper panel, Gto = 0.55 mS/cm2) and APD versus Gto (lower panel) in the absence of ISK, i.e.,

GSK = 0. (d). APD dynamics versus GSK and Gto for α = 0 and τSK = 0. The black region

is where APD alternans and other complex dynamics occur. (e). Same as (d) but α = 0.1 and

τSK = 0. (f). Same as (d) but for α = 0.1 and τSK > 0 (Eq. (5.7)). (g). APD dynamics versus

∆GKr and Gto for GSK = 0. ∆GKr is the increase from the control GKr in the model. PCL =

1000 ms.
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Figure 5.6: ISK promotes complex APD dynamics in the LRd model. (a). An example voltage

trace (upper panel, GSK = 0.5 mS/cm2) and APD versus GSK (lower panel) for 1 × SERCA.

τSK = 0, and Gto = 0. (b). Same as (a) but for 3× SERCA. GSK = 0.25 mS/cm2 for the upper

panel. (c). An example voltage trace (upper panel, Gto = 0.5 mS/cm2) and APD versus Gto in

the absence of ISK, i.e., GSK = 0. (d). APD dynamics versus GSK and Gto for 1× SERCA and

τSK = 0. The black region is where APD alternans and other complex dynamics occur. (e).

Same as (d) but for 3×SERCA and τSK = 0. (f). Same as (d) but for 3×SERCA and τSK > 0

(Eq. (5.7)). (g). APD dynamics versus ∆GKr and Gto for GSK = 0. ∆GKr is the increase from

the control GKr in the model. PCL = 1000 ms.
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was paced from the endocardial side (top) and pseudo-ECGs were recorded in the

epicardial side (bottom). The left panel in Fig. 5.7(a) shows ECGs for three Ito

levels in the epicardial region. As the maximum conductance of Ito increased, the

J-point in the ECG became elevated due to the spike-and-dome AP morphology

in the epicardial region (see middle panel). When the maximum conductance

reached a threshold value (Gto > 0.4 mS/cm2), all-or-none early repolarization

occurred in the epicardial region, resulting in P2R (right panel). P2R occurred

for Gto from 0.4 to 1.5 mS/cm2. For larger Gto, no P2R occurred even though

the APD gradient was even larger. When we replaced Ito in the epicardial region

by ISK, we observed nearly identical behaviors (Fig. 5.7(b)) for the 3 × SERCA

case. P2R occurred for GSK from 0.1 to 0.2 mS/cm2. However, when the SERCA

activity was not enhanced (i.e., the control 1×SERCA case), the J-point elevation

is only modest as GSK increased (Fig. 5.7(c)). As the APD in the epicardial region

became much shorter, a large upright T-wave occurred in the ECG. Despite the

large APD gradient, however, no P2R occurred in this case. The same behavior

was observed when IKr was increased in the epicardial region (Fig. 5.7(d)).

In the cable simulating epicardial cells only, we varied the maximal conduc-

tance of ICa,L along the cable from the control value to 1.2 times the control value.

All other currents, including ISK or Ito, were uniform throughout the cable. We

paced all cells in the cable simultaneously, mimicking the simultaneous activation

of the epicardium during a sinus beat. This results in an APD difference of 10 ms

at 1 s pacing in the absence of Ito and ISK. The purpose of simulating this type

of cable is two-fold. First, in an experimental study by Lukas and Antzelevitch

[LA96], P2R occurs in the epicardium, indicating that transmural heterogeneity

may not be necessary for P2R. Second, since we only added a small heterogeneity

in the cable, the large APD gradient inducing P2R is mainly caused by the APD

dynamics facilitated by the small heterogeneity. Fig. 5.8(a) shows an example

in the LRd model of P2R induced by Ito without ISK, while Fig. 5.8(b) shows
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Figure 5.7: ISK promotes J-wave elevation and P2R in 1D cable with transmural hetero-

geneities. The LRd model with 3 × SERCA was used. The cable length is 300 cells. IKs was

reduced by 50% in the top half of 150 cells to mimic the mid-myocardium/endocardial cells. Ito

or ISK was added only to the 150 cells in the bottom half of the cable. The pacing stimulus

was applied to the endocardial end and the pseudo-ECG electrode was placed at the epicardial

side as indicated in (a). (a). Ito induced J-point elevation and P2R Left panel: Pseudo-ECG

traces for three different Gto values as indicated. Arrow marks the J-point. Middle and right

panels: 3D (V-space-time) plots for Gto = 0.3 mS/cm2 and Gto = 0.5 mS/cm2. (b). ISK in-

duced J-point elevation and P2R. Left panel: Pseudo-ECG traces for three different GSK values

as indicated. Middle and right panels: 3D (V-space-time) plots for Gto = 0.3 mS/cm2 and

Gto = 0.5 mS/cm2. (c). Effects of ISK on ECG when ISK is not spiky, i.e., the 1 × SERCA

case. (d). Effects of increasing IKr in the epicardial region on ECG. Note: Reentry cannot

occur in a 1D cable. The extra-excitations labeled as P2R in (a) and (b) are PVCs. As shown

in computer simulations, this type of PVC can degenerate into phase 2 reentry in heterogeneous

tissue [MCKM14, CPM+09, BOCEF15], so we still label it as P2R.

138



an example of P2R induced by ISK without Ito. To systematically evaluate the

role of ISK in promoting P2R, we scanned the parameter combinations for P2R in

the same manner that we systematically evaluated the role of ISK in promoting

complex APD dynamics in single cells. Since the AP changes are very dynamic,

P2R did not reliably occur after all beats for a given parameter set. Therefore,

we paced 100 beats for each parameter set, and if P2R occurred in any of the

100 beats, we denoted the case as P2R. The results are shown in Figs. 5.8(c)-(f),

demonstrating that when ISK was spike-like (Figs. 5.8(d) and (e)), P2R could be

induced by ISK without the presence of Ito. ISK and Ito again played complemen-

tary roles in promoting P2R. When ISK was not spike-like (Fig. 5.8(c)), however,

no P2R could be induced by ISK in the absence of Ito. In this case, the effect

of ISK on P2R was similar to that of IKr (Fig. 5.8(f)). Note that the parameter

regions of P2R are very similar to those that exhibited complex APD dynamics

in the single cell simulations shown in Fig. 5.6, indicating that the complex APD

dynamics play an important role in the genesis of P2R. Since the baseline APD

heterogeneity was small and since Ito or ISK were uniform throughout the cable,

the large APD gradients during APD alternans and more complex APD dynam-

ics induced by Ito or ISK indicate that a large pre-existing heterogeneity is not

needed. This agrees with the observation by Maoz et al. [MKMC09] that P2R

can occur in a homogeneous 1D cable.

5.5 Discussion

The SK current (ISK) is present in both atrial and ventricular myocytes under

normal and diseased conditions [TXT+05, SPD+14, CCM+11, CTL+13, CHH+13,

ZLC15, QDB+14] and has been shown to be proarrhythmic in some settings and

antiarrhythmic in others [QDB+14]. Recently, pharmacologic ISK activation with

simultaneous INa suppression was shown to induce a J-wave syndrome leading
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Figure 5.8: ISK promotes phase 2 reentry in a cable consisting of epicardial cells only. The

LRd model with 3 × SERCA was used. The cable length is 300 cells and the cells were paced

simultaneously at PCL = 1000 ms. The ICa,L heterogeneity was modeled by altering pCa as

follows: pCa(i) = 0.00054
[
1 + 0.2

1+e−(i−150)/5

]
in which i = 1 to 300 is the index of cells, which

resulted in 10 ms difference in APD across the cable in the absence of Ito and ISK. (a). 3D

(V-space-time) plots showing P2R induced by Ito in the absence of ISK. Gto = 0.5 mS/cm2 and

GSK = 0. Blowup is the beat with P2R. (b). 3D (V-space-time) plots showing P2R induced

by ISK in the absence of Ito. Gto = 0 and GSK = 0.25 mS/cm2 and τSK = 0. Blowup is the

beat with P2R. (c). The window of P2R versus GSK and Gto. The black region is where P2R

occurs as indicated. Since the AP is very dynamic in both space and time, P2R does not occur

at every beat of pacing. We record 100 beats for each parameter set, and if P2R occurs in any

of the 100 beats, we label this parameter set as P2R in the parameter space. Because of this

dynamic nature and the finite time intervals of simulation, the boundary between no P2R and

P2R may not be smooth. For example, the left boundary in this plot would be smoother (more

black dots will show up) if we run our simulations longer. (d). Same as (c) but for 3× SERCA

and τSK = 0. (e). Same as (c) but for 3 × SERCA and τSK > 0 (Eq. (5.7)). (f). The window

of P2R versus ∆GKr and Gto for GSK = 0.
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to ventricular arrhythmias in isolated rabbit hearts [CXW+18]. Although Ito is

thought to play a key role in most J-wave syndromes [AYA+16], rabbits have

almost no Ito at physiological heart rates due to its slow recovery kinetics from

inactivation. This suggests that ISK may have substituted for Ito due to its similar

transient behavior as it tracks the intracellular Ca2+ transient. In this study,

we used computer modeling to investigate the conditions under which ISK may

substitute for Ito to produce Ito’s hallmark arrhythmogenic features of spike-and-

dome AP morphologies, APD alternans and more complex APD dynamics in

isolated cells and P2R in cardiac tissue. We show that when the intracellular Ca2+

transient is sufficiently spike-like to generate an ISK that rises and decays rapidly

like Ito, ISK can generate all of these behaviors, either alone or in combination

with Ito.

Thus, our results support the experimental findings reported in isolated rabbit

hearts that ISK induced an arrhythmogenic J-wave syndrome, despite the func-

tional absence of significant Ito, provided that the Ca2+ transient sensed by the

pharmacologically-activated rabbit SK channels has a spike-like waveform. We

simulated this situation in the ORd model by assigning 10% of ISK to sense the

submembrane Ca2+ compartment and 90% to sense the bulk cytoplasmic Ca2+

compartment. The bulk cytoplasmic Ca2+ transient waveform can also vary de-

pending on the state of SR Ca2+ loading of the cell. For example, experiments

[CZZ+10, BRK+04, KMS+16, AS14] have shown that Ca2+ transients become

much spikier after isoproterenol. We simulated this situation in the LRd model

by increasing the SERCA pump three-fold to mimic the effects of β-adrenergic

stimulation. In both models simulated in this study, ISK became sufficiently spiky

to induce all-or-none early repolarization, APD alternans and complex APD dy-

namics. Which scenario best explains the experimental observations in the iso-

lated rabbit hearts? Those experiments were performed in the absence of beta-

adrenergic stimulation, and isoproterenol suppressed the arrhythmias induced by
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pharmacological activation of ISK. Thus, it seems more likely that a portion of SK

channels in rabbit hearts sense a spike-like Ca2+ transient in the submembrane

space rather than the bulk cytoplasmic Ca2+ transient. This is supported by pre-

vious observations that SK channels are located in close proximity to L-type Ca2+

channels in the sarcolemma [ZCC+18] such that they may be transiently exposed

to much higher [Ca2+] in the submembrane space when L-type Ca2+ channels

open.

Finally, our study raises the possibility that ISK may synergize with Ito to

cause all-or-none early repolarization and its arrhythmogenic consequences in hu-

man early repolarization syndromes such as the Brugada syndrome. Most of

the experimental studies of P2R have been carried out in canine hearts [LA96,

DDA94, ASH+06, PYA17] which have an unusually high Ito density in the right

ventricular epicardium [LA88, ZXS+04]. Experimentally, P2R has been much

more difficult to induce in other species. For example, Park et al. [PCM+15]

attempted unsuccessfully to create a pig model of Brugada syndrome by engi-

neering a human-homologous loss-of-function SCN5A mutation, suggesting that

Ito density in the pig was not high enough to recapitulate the Brugada syndrome

phenotype. Therefore, in the setting of low or reduced Ito, activation of ISK can

promote J-wave syndrome and arrhythmias, as in the rabbit experiments by Chen

et al. [CXW+18].

There are several limitations in the current study. First, although SK channels

have been widely investigated, their kinetics and localizations in cardiac myocytes

are still largely unknown, and therefore, the relatively simple ISK model may not

accurately describe the ISK behaviors in the ventricular myocytes. Second, since

SK channels are activated by Ca2+, the Ca2+ sensed by the channels and thus

ISK profile may strongly depend on the localization of the SK channels. As shown

in our simulations of the ORd model, a small portion of the channels sense the

submembrane Ca2+ can result in a much spiker current profile. Third, in the
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ventricular AP models, the Ca2+ transient behaviors are very different from model

to model, and thus the ISK profile can be very model-dependent. For example, the

AP model by ten Tusscher et al. [tTNNP04] exhibits a very spiky intracellular

Ca2+ transient, while the LRd and ORd models used in this study exhibit much

broader Ca2+ transients. Thus, in this study, to result in a spiky ISK, we sped up

SERCA in the LRd model while letting a small portion of the SK channels sense

the submembrane Ca2+ in the ORd model. Fourth, in our simulations, we used

larger Kd’s than experimentally observed ones. The reason was that for the two

models we used, a smaller Kd makes it more difficult to induce APD alternans and

P2R by ISK alone. Since ISK depends on the Ca2+ transient profile which are very

different in different models, this could be a model-dependent requirement. It is

also possible that since SK channels may colocalize with the L-type Ca2+ channels

where Ca2+ is much higher than bulk cytosolic Ca2+ concentration, their Kd for

half-activation is indeed larger than the ones determined experimentally based on

measurements of the bulk cytosolic Ca2+ concentration. Nevertheless, even if the

Kd is lower than what used in our model, due to its spiky behavior, ISK can still

function in synergy with Ito to promote J-wave syndromes and arrhythmias.

In conclusion, when the intracellular Ca2+ transient waveform sensed by SK

channels is spike-like, ISK can play functionally the role of Ito, which alone or

combined with Ito can promote J-wave syndromes and the related arrhythmias,

such as T-wave alternans and phase 2 reentry.
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CHAPTER 6

The Transient Outward Potassium Current (Ito)

Plays a Critical Role in Spiral Wave Breakup

6.1 Introduction

The leading cause of sudden cardiac death is ventricular arrhythmias. The

main abnormal electrical activities in cardiac ventricular muscle are focal excita-

tions and [ZW98, QW15]. Spiral waves (also called “rotors”) as a form of func-

tional reentry have been widely shown in experiments of animal hearts [DPS+92,

GPJ98, GKV+00, CMB+00, WGB+03, PWM+10, PG15, KWG+06, WLB+04,

VYO+02] and recordings in human hearts [NMC+06, NUF+11, MDC+07]. In

most cases, arrhythmias are manifested by multiple spiral waves. Moreover, the

number of spiral waves does not remain constant but is highly variable over time

and the spiral waves are usually short-lived [CMB+00, KWG+06, CNLS02]. Be-

cause of the spatiotemporal irregularity in spiral wave dynamics, electrocardio-

gram (ECG) signaling is also highly irregular. In human cardiac arrhythmias,

polymorphic ventricular tachycardia (VT) and ventricular fibrillation (VF), two

most dangerous forms of arrhythmias, also exhibit irregular ECG signals, indicat-

ing that unstable spatiotemporal spiral wave dynamics may indeed be responsible

for these lethal forms of human arrhythmias.

It has been well-known that the genesis of complex spatiotemporal spiral

wave dynamics can be caused by tissue heterogeneities or by dynamical insta-

bilities, or the interactions of both [QHGW14]. In the last three decades, a large
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number of computer simulations have been carried out on spiral wave stability

and breakup in cardiac tissue models [Kar93, Kar94, Pan98, QXGW00, QWG99,

QKX+00, QWG00, XQGW01, XQGW02], which investigated the roles of dy-

namical instabilities and tissue heterogeneities, as well as excitability in spiral

wave dynamics. In the early simulations using the Noble model [Kar93, Kar94],

the Beeler-Reuter model [LRV94, Cou96, CW91, FK98], and the 1991 Luo-Rudy

(LR1) model [QXGW00, QWG99, QKX+00, QWG00], or other simplified mod-

els [Pan98, FCHE02, PP01, BWZ+02], it has been shown that the slope of APD

restitution is a major determent of spiral wave stability. One can change the slope

of the APD restitution curve, and thus the spiral wave stability, by adjusting the

maximum conductance of some ionic currents, in particular the maximum conduc-

tance of the calcium (Ca2+) or the potassium (K+) current [QWG00]. However,

in many of the later action potential models [LR94, OVVR11, tTNNP04, tTP06],

spiral waves are stable [SNP09, EC14, CF07, CF08].

Since the spiral waves are highly variable and short-lived as demonstrated in

the mapping studies, dynamical instabilities may play a critical role, and therefore,

it is important to understand the dynamical mechanisms of spiral wave stability

and pinpoint the major biophysical and physiological causes for therapeutic pur-

pose. A key question is which ionic current to target in therapy if one wants

to prevent breakup. Which ionic current plays the primary role in spiral wave

breakup.

6.2 Methods

6.2.1 Action Potential Models

Single cell action potentials follow the following differential equation:

Cm
dV

dt
= −Iion + Isti, (6.1)
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where V is the voltage and Cm is the membrane capacitance. Here, we use five

different models: the guinea pig ventricular AP model (a later version fo the LRd

model) by Faber and Rudy [FR00], the rabbit ventricular model by Mahajan et

al. [MSS+08], the ORd human ventricular myocyte model [OVVR11], the TP04

human ventricular myocyte model [tTNNP04], and the TP06 human ventricular

myocyte model (a later modification of the TP04 model) [tTP06]. In the TP06

model, Cm = 2 µF/cm2; in all other models, Cm = 1 µF/cm2.

For every model, we test the effects of changes in the maximum conductance

Ito. Each model has a different formulation for Ito, but in general satisfies

Ito = ḠtoZ(V − EK), (6.2)

where Ḡto is the maximum conductance, EK is the Nernst potential for K+, and

Z is the product of certain gating variables (different models have different formu-

lations for the gating variables). Each model has a given value for Ḡto, which we

call the “control.” We increase or decrease Ḡto by multiplying the control value a

certain amount. We also do the same for other currents: IKr, IKs, ICa,L, and IK1.

6.2.2 2D Tissue Model of Spiral Waves

Cardiac myocytes are coupled together in a 2-dimensional square lattice. The

voltage of each cell follows the following partial differential equation:

∂V

∂t
= −Iion

Cm
+D∆V, (6.3)

where ∆ = ∂2

∂x2
+ ∂2

∂y2
is the 2-dimensional Laplacian operator, andD is the diffusion

constant describing the strength of gap junction coupling. For the LRd and OHara

models we set the cell lengths dx and dy to be 0.0125 cm, and 0.025 cm in the

other models. The diffusion constant D is 0.001 cm2/ms in the LRd and OHara

models, and 0.001 54 cm2/ms in the other models. No flux boundary conditions

are imposed on the boundary.
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To generate spiral waves, we perform the cross-field protocol. Each cell’s initial

condition is determined by pacing a single cell at a pacing period of T = 500 ms

for 1000 beats, to remove transient behavior. The entire left boundary of cells

in the tissue is then paced, triggering propagation moving to the right towards

the center of the tissue. Once the propagated wave hits the center of the tissue,

all cells in the bottom half of the tissue are depolarized by fixing their voltages

to −30 mV for 2 ms. Afterwards, Eq. (6.3) is integrated for 5 − 10 s. In each

simulation, breakup or stability was determined. APD and cycle length (CL)

were both determined from cells reasonably far away from the spiral tip. To

calculate APD and CL, depolarization of a cell was determined to be when the

voltage V rises past −75 mV, and repolarization the time the voltage falls below

−75 mV. APD is the difference in time between repolarization and depolarization,

and CL is the difference between two successive depolarizations.

6.2.3 Numerical Methods

Spiral wave simulations were performed using a custom-made integration solver

in CUDA, a programming language designed for graphical processing units (GPUs),

using a time-adaptive forward Euler method. For each cell, the time step is

∆t = 0.025 ms if the change in voltage ∆V < 0.1 mV, otherwise the time step is

∆t = 0.0025 ms.

6.3 Results

6.3.1 Ito Promotes Spiral Wave Breakup in the LRd Model

We first simulated spiral wave dynamics in the LRd model using different Ito

levels. Spiral waves in the original LRd model are stable with small variations in

CL (≈ 85 ms) and APD (≈ 65 ms) over time (Fig. 6.1(a)). In this case, the max-
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imum conductance (Gto) of Ito is 0.5 mS/cm2, which was set as the control value

(Gto, Control). When Gto was 2 times the control value (Fig. 6.1(b)), spiral wave

breakup occurred with CL (≈ 70− 150 ms) and APD (≈ 45− 100 ms) varying in

large ranges and irregularly. When Gto was 5 times the control value (Fig. 6.1(c)),

spiral wave breakup still occurred but the wavelength became apparently shorter.

APD remains below 40 ms and CL around 60 ms but can occasionally be very large

(APD ≈ 100 ms and CL ≈ 150 ms). When Gto was 6.5 times the control value,

spiral wave breakup occurred initially with large CL and small APD variances,

but eventually became stable (Fig. 6.1(d)). In this case, after the initial chaotic

spiral wave breakup phase, the spiral waves are all stable, and thus the spiral wave

pattern became temporally periodic. When Gto was 10 times the control value

(Fig. 6.1(e)), no breakup occurred. The spiral wave became stable with a much

shorter APD and CL than in control.

We systematically explored the spiral wave behaviors using different combi-

nations of the maximum conductance of ICa,L and Ito while maintaining other

parameters at their control values, summarized in Fig. 6.1(f). Varying the con-

ductances of both Ito and ICa,L was done for two reasons. First, it is known that

ICa,L plays a role in inducing spiral wave breakup by affecting APD restitution

properties [QWG99]. Secondly, we wish to see whether Ito’s effects on spiral wave

breakup change if ICa,L changes as well. We used the cross-field protocol to in-

duce a single spiral wave in the tissue. If this spiral wave remains intact without

breakup, we label the point as “no breakup” (open circles). If the spiral wave

cannot remain intact, multiple spiral waves occur, whether they finally become

stable (such as the case in Fig. 6.1(d)) or unstable (such as the cases in Figs. 6.1(b)

and (c)), we label the point as “breakup” (solid circles). As shown in Fig. 6.1(f),

spiral wave breakup occurs in a wide range of parameters.

As shown in Fig. 6.1, Ito plays a critical role in spiral wave breakup in the

LRd model. We then ask the question whether spiral wave breakup can occur
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Figure 6.1: Effects of Ito on spiral wave dynamics in the LRd model. (a)-(e). Voltage

snapshots (upper) and cycle length (CL) and APD versus beat number (lower) for the original

(Control) LRd model (a), 2 times control Gto (b), 5 times control Gto (c), 6.5 times control Gto

(d), and 10 times control Gto (e). (f). Spiral wave behaviors versus GCa,L and Gto. The red

circles marks the parameter set of the original LRd model (Control).
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Figure 6.2: Spiral wave dynamics in the LRd model in the absence of Ito. CL and APD versus

the maximum conductance for GCa,L (a), GKr (b), GKs (c), and GK1 (d). Arrows mark the

cases of spiral wave breakup.

in the LRd model by varying the maximum conductance of other ionic currents

in the absence of Ito (Gto = 0). Fig. 6.2 plots APD and CL for different times

of the control maximum conductance of ICa,L (Fig. 6.2(a)), IKr (Fig. 6.2(b)), IKs

(Fig. 6.2(c)), and IK1 (Fig. 6.2(d)). We also plotted in each case the action

potentials for the smallest, the control, and the largest value of the maximum

conductance of an ionic current for reference. We did not observe spiral wave

breakup for GCa,L from 0 to 3 times its control value, for GKr from 0 to 5 times its

control value, and for GKs from 0.5 to 5 times its control value. However, when

increased GK1 to 2.5 times its control value, spiral wave breakup occurred (arrows

in Fig. 6.2(d)).
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Figure 6.3: Effects of Ito on spiral wave dynamics in the UCLA model [MSS+08]. (a). From

left to right, voltage snapshots with 0×, 1×, 2×, and 4×Gto,Control. The spiral wave breaks up

with 2×Gto,Control. In the right most panel, APD and CL are plotted against Gto (× control).

(b). CL and APD versus the maximum conductance of, from left to right, GCa,L, GKr, GKs,

and GK1.

6.3.2 Ito Promotes Spiral Wave Breakup in Other Ventricular AP

Models

We simulated four other models for spiral wave stability: the rabbit ventricular

myocyte model by Mahajan et al. (Fig. 6.3) [MSS+08], the ORd human ventricular

myocyte model (Fig. 6.4) [OVVR11], the TP04 human ventricular myocyte model

(Fig. 6.5) [tTNNP04], and the TP06 human ventricular myocyte model (Fig. 6.6)

[tTP06]. In all 4 models, no spiral wave breakup occurs in their control conditions.

Increasing Ito promoted spiral waves breakup. When Ito is very large, stable spiral

waves occurred.
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Figure 6.4: Effects of Ito on spiral wave dynamics in the ORd model [OVVR11]. (a). From

left to right, voltage snapshots with 0×, 1×, 20×, and 100×Gto,Control. The spiral wave breaks

up with 20 × Gto,Control. In the right most panel, APD and CL are plotted against Gto (×

control). (b). CL and APD versus the maximum conductance of, from left to right, GCa,L,

GKr, GKs, and GK1.
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Figure 6.5: Effects of Ito on spiral wave dynamics in the TP04 model [tTNNP04]. (a). From

left to right, voltage snapshots with 0×, 1×, 40×, and 80×Gto,Control. The spiral wave breaks
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GKr, GKs, and GK1.
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Figure 6.6: Effects of Ito on spiral wave dynamics in the TP06 model [tTP06]. (a). From left

to right, voltage snapshots with 0×, 1×, 100×, and 300 × Gto,Control. The spiral wave breaks

up with 100 × Gto,Control. In the right most panel, APD and CL are plotted against Gto (×
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6.4 Discussion

Action potential instabilities at the cellular level can manifest as arrhythmias

at the whole organ level. Previous studies have suggested the importance of Ito in

inducing action potential dynamics and arrhythmias [LGWQ17, LQ18b, CLT+18,

GYT+11]. Here, we demonstrate that Ito can also play a critical role in inducing

spiral wave breakup. Namely, under a certain regime of Ito intensity, spiral waves

breakup due to APD and CL instabilities.
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CHAPTER 7

Conclusions

This body of work focuses on the role of short-term cardiac memory and its

effects on action potential instability at the single-cell level to arrhythmogenesis at

the tissue-scale level. Early repolarization syndrome causes spike-and-dome action

potential morphology, and long QT syndrome causes early afterdeploarizations

(EADs). In these two diseased syndromes, the action potential abnormalities

cause a sensitive dependence of action potential duration (APD) on the effects of

memory, resulting in APD instability and alternans.

Our findings suggest that cardiac memory promotes, rather than suppresses,

arrhythmogenesis under diseased conditions in cardiac ventricular tissue. Here, we

analyzed two scenarios of early repolarization syndrome inducing phase 2 reentry

(via activation of the SK channels) and spiral wave breakup (via enhanced Ito).

Memory-induced alternans and chaos of APD may be the underlying mechanism

of T-wave alternans, shown to be arrhythmogenic in cardiac diseases including

early repolarization syndromes like Brugada syndrome and in long QT syndrome

[QXGW10, MZL+06, TKN+08, FA08]. In addition, memory-induced chaos of ac-

tion potentials may be the underlying mechanism of synchronization of chaotic

early afterdeploarizations, which has been shown to induce reentry and arrhyth-

mias [XHS+07, SXS+09]. Understanding the roles of memory may provide insights

in future clinical targets for suppressing arrhythmogenesis in cardiac diseases.
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Baxter, and José Jalife. Stationary and drifting spiral waves of ex-
citation in isolated cardiac muscle. Nature, 355(6358):349, 1992.

[DSI+00] William L. Ditto, Mark L. Spano, Visarath In, J. Neff, B. Meadows,
J. J. Langberg, A. Bolmann, and K. McTeague. Control of human
atrial fibrillation. International Journal of Bifurcation and Chaos,
10(03):593–601, 2000.

[DSPW06] Min Dong, Xiaoyin Sun, Astrid A. Prinz, and Hong-Sheng Wang.
Effect of simulated Ito on guinea pig and canine ventricular action
potential morphology. American Journal of Physiology - Heart and
Circulatory Physiology, 291(2):H631–H637, 2006.

[DTB+99] Robert Dumaine, Jeffrey A. Towbin, Pedro Brugada, Matteo Vatta,
Dmitri V. Nesterenko, Vladislav V. Nesterenko, Josep Brugada, Ra-
mon Brugada, and Charles Antzelevitch. Ionic mechanisms responsi-
ble for the electrocardiographic phenotype of the Brugada syndrome
are temperature dependent. Circulation Research, 85(9):803–809,
1999.

[EC14] Mohamed M. Elshrif and Elizabeth M. Cherry. A quantitative com-
parison of the behavior of human ventricular cardiac electrophysiol-
ogy models in tissue. PLoS One, 9(1):e84401, 2014.

[ECD+00] D. A. Eisner, H. S. Choi, M. E. Diaz, S. C. O’Neill, and A. W.
Trafford. Integrative analysis of calcium cycling in cardiac muscle.
Circulation Research, 87(12):1087–1094, 2000.

[EK02] Blas Echebarria and Alain Karma. Spatiotemporal control of car-
diac alternans. Chaos: An Interdisciplinary Journal of Nonlinear
Science, 12(3):923–930, 2002.

[ES83] Victor Elharrar and Borys Surawicz. Cycle length effect on resti-
tution of action potential duration in dog cardiac fibers. Amer-
ican Journal of Physiology - Heart and Circulatory Physiology,
244(6):H782–H792, 1983.

[FA08] Jeffrey M. Fish and Charles Antzelevitch. Cellular mechanism and
arrhythmogenic potential of T-wave alternans in the Brugada syn-
drome. Journal of Cardiovascular Electrophysiology, 19(3):301–308,
2008.

162



[FAP97] Clara Franzini-Armstrong and Feliciano Protasi. Ryanodine recep-
tors of striated muscles: A complex channel capable of multiple in-
teractions. Physiological Reviews, 77(3):699–729, 1997.

[FBGJ02] Jeffrey J. Fox, Eberhard Bodenschatz, and Robert F. Gilmour Jr.
Period-doubling instability and memory in cardiac tissue. Physical
Review Letters, 89(13):138101, 2002.

[FCHE02] Flavio H. Fenton, Elizabeth M. Cherry, Harold M. Hastings, and
Steven J. Evans. Multiple mechanisms of spiral wave breakup in
a model of cardiac electrical activity. Chaos: An Interdisciplinary
Journal of Nonlinear Science, 12(3):852–892, 2002.

[FK98] Flavio Fenton and Alain Karma. Vortex dynamics in three-
dimensional continuous myocardium with fiber rotation: Filament
instability and fibrillation. Chaos: An Interdisciplinary Journal of
Nonlinear Science, 8(1):20–47, 1998.

[FR00] Gregory M. Faber and Yoram Rudy. Action potential and contrac-
tility changes in [Na+]i overloaded cardiac myocytes: A simulation
study. Biophysical Journal, 78(5):2392–2404, 2000.

[FRD+03] Jeffrey J. Fox, Mark L. Riccio, Paul Drury, Amanda Werthman, and
Robert F. Gilmour Jr. Dynamic mechanism for conduction block in
heart tissue. New Journal of Physics, 5(1):101, 2003.

[FS03] E. S. Louise Faber and Pankaj Sah. Calcium-activated potassium
channels: Multiple contributions to neuronal function. The Neuro-
scientist, 9(3):181–194, 2003.

[FSLS88] Michael R. Franz, Charles D. Swerdlow, L. Bing Liem, and Jochen
Schaefer. Cycle length dependence of human action potential du-
ration in vivo. Effects of single extrastimuli, sudden sustained rate
acceleration and deceleration, and different steady-state frequencies.
Journal of Clinical Investigation, 82(3):972–979, 1988.

[FSS+83] Michael R. Franz, Jochen Schaefer, Michael Schöttler, W. Anthony
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