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Alice S. Tang® "2/, Katherine P. Rankin'?, Gabriel Cerono?, Silvia Miramontes',
Hunter Mills', Jacquelyn Roger®', Billy Zeng', Charlotte Nelson?,

Karthik Soman*, Sarah Woldemariam®', Yaqiao Li', Albert Lee', Riley Bove ®*,
Maria Glymour®, Nima Aghaeepour ® *®7, Tomiko T. Oskotsky ®°,

Zachary Miller?, Isabel E. Allen?, Stephan J. Sanders''°, Sergio Baranzini®* &
Marina Sirota®'"

Identification of Alzheimer’s disease (AD) onset risk can facilitate
interventions before irreversible disease progression. We demonstrate that
electronic health records from the University of California, San Francisco,
followed by knowledge networks (for example, SPOKE) allow for (1)
prediction of AD onset and (2) prioritization of biological hypotheses, and
(3) contextualization of sex dimorphism. We trained random forest models
and predicted AD onset on a cohort of 749 individuals with AD and 250,545
controls with amean area under the receiver operating characteristic of
0.72 (7 years prior) to 0.81 (1 day prior). We further harnessed matched
cohort models to identify conditions with predictive power before AD
onset. Knowledge networks highlight shared genes between multiple

top predictors and AD (for example, APOE, ACTB, IL6 and INS). Genetic
colocalization analysis supports AD association with hyperlipidemia at the
APOElocus, as well as a stronger female AD association with osteoporosis at
alocus near MS4A6A. We therefore show how clinical data can be utilized for
early AD prediction and identification of personalized biological hypotheses.

Neurodegenerative disorders are devastating, heterogeneousandchal-  symptoms are costly and onerous to both patients and caregivers.
lengingto diagnose, and their burdeninaging populationsisexpectedt Approaches to curb thisimpact are moving increasingly to targeting
o continue to grow'. Among these, AD is the most common form of  interventions in at-risk individuals before the onset of irreversible

dementiaafter age 65, and its hallmark memorylo

ssand other cognitive  decline”*. To this end, advancements in AD biomarkers, diagnostic
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tests and neuroimaging haveimproved the detection and classification
of AD, withapproval of disease-modifying treatments, but there is still
no cure and much remains unknown about its pathogenesis>®. This is
in part due to limited availability of longitudinal data or data linking
molecular and clinical domains.

In the past few decades, electronic health records (EHRs) have
become a source of rich longitudinal data that can be leveraged to
understand and predict complex diseases, particularly AD. Prior appli-
cations of EHRs for studying AD include deep phenotyping of AD’,
identification of AD-related associations and hypotheses®, and models
classifying or predicting a dementia diagnosis from clinical data’.
Dataavailablein clinical records can also better representa clinician’s
knowledge of a patient’s clinical history at apoint in time before further
diagnostic studies or imaging, allowing a prediction model to be low
costtoimplementasafirst-lineapplicationinprimary care or for initial
risk stratification'’. While machine learning (ML) has been previously
applied to EHRs for general dementia classification and prediction'™,
these approaches have limitations. These include limited specificity
forthe AD phenotype®, alack of biological interpretability, imprecise
temporal information or reliance on data modalities that may not be
readily available in the EHR to facilitate early prediction (for example,
neuroimaging'®® or special biomarkers'>*°), Sex as abiological variable
isanimportant covariate for AD heterogeneity with potential contribu-
tions to differing risks and resilience, but sex-specific contributions
have often been omitted from prior AD ML models”*2. Here we present
an approach that utilizes vast EHR data for predicting future risk of
AD with consideration of applicability and explainability of models.

Withrecentadvancesininformatics and curation of multi-omics
knowledge, there is increasing interest in integrative approaches to
derive insights into disease. Heterogeneous biological knowledge
networks bring in the ability to synthesize decades of research and
combine humanunderstanding of multilevel biological relationships
across genes, pathways, drugs and phenotypes, with vast potential
for deriving biological meaning from clinical data”. There has been
much AD research leveraging specific datamodalities or combininga
few modalities (transcriptomics®*?, genetics®® and neuroimaging?”),
but there is still a need for meaningful integration that allows for the
understanding of the relationship between pathogenesis and clini-
cal manifestations. Heterogeneous knowledge networks provide an
opportunity to prioritize biological hypotheses from clinical data by
synthesizing knowledge across multiple data modalities to explain
relationships between many shared clinical associations?%.

Inthis paper, we utilize EHR data from the University of California,
San Francisco (UCSF) Medical Center to develop predictive models for
AD onset and generate hypotheses of biological relationships between
top predictorsand AD. We carry out model construction and interpreta-
tion, controlling for demographics and visit-related confounding, to
identify biologically relevant clinical predictors, and repeat with sex
stratification. We demonstrate interpretability using heterogeneous
knowledge networks (SPOKE knowledge graph)*® and validate predic-
tors with supporting evidence in external EHR datasets and through
genetic colocalization analysis. Our work not only has implications
for determining clinical risk of AD based on EHRs, but also canlead to
further research in identifying hypothesized early phenotypes and
pathways to help further the field of neurodegeneration.

Results

From the UCSF EHR database of over Smillion people from1980t0 2021,
2,996 individuals with AD who had undergone dementia evaluation at
the Memory and Aging Center and thus had expert-level clinical diag-
noses were identified and mapped to the UCSF Observational Medical
Outcomes Partnership (OMOP) EHR database. From the remaining
individuals, 823,671 controls were extracted with over a year of visits
and nodementia diagnosis. Afteridentifying anindex time representing
AD onset (meanonset age (s.d.), 74 (5.6) years; Methods) and filtering

Table 1| Demographics of individuals used in models, and
an example matched cohort for the -1-year model

All filtered individuals (pre-test/pre-train split)

Control AD
n 250,545 749
Age of AD onset (s.d.) 74.0 (5.6)
Birth year, mean (s.d.) 1945.5 (10.2) 1933.9 (5.3)
First visitage, mean (s.d.) 51.2 (1.4) 57.0 (10.4)
Sex, n (%)
Female 139,548 (55.7) 468 (62.5)
Male 110,829 (44.2) 281(37.5)
Nonbinary/unknown 168 (0.1)
R&E, n (%)
Asian/NHPI 32,427(12.9) 151(20.2)
Black 17111 (6.8) 62(8.3)
Latinx 15,036 (6.0) 53 (7.)
Other/unknown 28,177 (1.2) 45 (6.0)
White 15,7794 (63.0) 438(58.5)

Matched train individuals for -1-year model

Control AD SMD
n 4,184 523
Birth year, mean (s.d.) 1934.2 (5.6) 1934.0(5.3) -0.042
First visit age, mean (s.d.) 57.2(9.4) 56.9 (10.5) -0.028
AD onset/index time age, 741 (5.8) 741 (5.8) -0.002
mean (s.d.)
Years in EHR, mean (s.d.) 15.9 (7.8) 15.9 (7.9) -0.004
log(n prev visits), mean (s.d.) 3.6 (1.5) 3.7(1.6) 0.065
log(n concepts), mean (s.d.) 31(1.3) 3.3(1.4) 0.108
log(days since first event), 8.5(0.4) 8.5(0.4) 0.043
mean (s.d.)
Sex, n (%) 0.094
Female 2,343 (56.0) 317 (60.6)
Male 1,841(44.0) 206 (39.4)
R&E, n (%) 0.219
Asian/NHPI 705 (16.8) 112 (21.4)
Black 520 (12.4) 35(6.7)
Latinx 280 (6.7) 39(7.5)
Other/unknown 223 (5.3) 32(6.1)
White 2,456 (58.7) 305 (58.3)

The top half of the table shows characteristics of individuals in the UCSF EHR with visits
and concepts over 7 years before index time. Care utilization information can be found in
Supplementary Table 3. The bottom half of the table shows an example of training data
where AD and controls are matched by the listed characteristics. Race & ethnicity (R&E) is a
single variable derived from an algorithm developed by the UCSF Data Equity Taskforce®.
log indicates natural logarithm. s.d. = standard deviation. NHPI = Native Hawaiian or Pacific
Islander. SMD = standardized mean difference.

for availability of at least 7 years of longitudinal data, 749 individuals
with AD and 250,545 controls were identified (dlemographics shown
in Table 1). Of those, 30% were held out for model evaluation and 70%
were utilized for model training (Fig. 1b and Extended DataFig.1). For
each time point and within sex strata, ML models were either trained
for AD onset prediction or trained on the AD cohort and a subset of
propensity score-matched controls for hypothesis generation, where
balancing was performed on demographics (sex, race and ethnicity,
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Fig.1| Overview of participant selection and RF model performance. a,
From the UCSF EHRs and the UCSF Memory and Aging Center (MAC) database,
participant and clinical information was extracted, filtered and prepared for
time points before the index time. All clinical features extracted were one-hot
encoded and trained on random forest (RF) models to predict future risk of AD
diagnosis. Models were evaluated on a30% held-out evaluation set to compute
AUROC/AUPRC and interpreted based on feature importances and using a
heterogeneous knowledge network (SPOKE). Top features were then further
validated in external databases. b, Filtering a consistent set of individuals with

I -5 years [ -1 year

AD and controls from the UCSF EHR for model training and testing. Filtered
participant cohorts are shown in Table 1and split with 30% held-out set for
testing. ¢, Bootstrapped performance of RF models on the held-out evaluation
set (n =300 bootstrapped iterations of 1,000 participants, prevalence of AD on
held-out set = 0.003). Bootstrapped AUROC performance for models trained and
tested on female strata and male strata are also shown. The box shows quartiles
(25th, 50th and 75th percentiles), whiskers extend to 1.5 times the interquartile
range, and the remaining points are outliers.

birth year, age) and visit-related factors (years in EHR, first EHR visit
age, number of visits, number of EHR concepts and days since first EHR
record; see example in Table 1and Supplementary Table 4).

ML models based on clinical data can accurately predict AD
onsetup to7yearsinadvance

Random forest (RF) models trained on only clinical features from time
points between 7 years and 1 day prior to AD onset were evaluated
on the held-out dataset with average bootstrapped area under the
receiver operating characteristic (AUROC) curve between 0.72 (median
0.75) for the —7-year time model and 0.81 (median 0.85) for the —1-day
model. The RF models performed with areaunder the precisionrecall
curve (AUPRC) greater than the reference held-out evaluation set AD

prevalence of 0.003 (average/median of 0.05/0.01 for —7-year model
and 0.10/0.06 for —1-day model, Fig. 1c). With addition of demograph-
ics and visit-related features, RF model performance improved with
average bootstrapped AUROC between 0.86 (median 0.89) and 0.90
(median 0.94) and AUPRC between mean 0.06 (median 0.04) and 0.27
(median 0.14) for the —7-year and -1-day models, respectively (Fig.1c).

Top decision features across each time point model included
features across clinical data domains, including vaccines, abnormal
feces content, hypertension, hyperlipidemia (HLD) and cataracts
(Extended DataFig. 2a and Supplementary Data1). Demographic and
visit-related features became predictive for AD onset when added to
the model (Extended Data Fig. 2a). EHR diagnoses mapped to phecode
categories® identified sense organs, circulatory and musculoskeletal
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phecode categories for early models, and mental disorder category
for late models (Extended Data Fig. 2b). Among the top 50 ranked
phecodes, one cluster identified phecode features that maintain high
relative importance throughout the time models (HLD, hyperten-
sion, dizziness, abnormal stool contents), and other clusters contain
features with relative importance at specific time points (Extended
Data Fig. 2c). While some of these features support prior identified
ADrrisk factors, the lack of adjustment may lead to feature identifica-
tion as proxies for age in risk determination but not directly relevant
to disease pathogenesis. Therefore, we proceed to identify disease-
relevant features by training models on matched patients for the goal
of hypothesis generation.

Models trained on matched cohorts can identify hypotheses
for biologically relevant AD predictors

Totrainmodels that are robust for AD prediction for identifying predic-
tors without demographic-related and visit-related confounding, we
trained time point models on amatched set of participantsatal:8 ratio
between AD and controls. Sufficient balance was achieved on numeri-
cal covariates that were highlyimportantinunmatched demographic
models (Extended Data Fig. 3 and Supplementary Table 3).

RF models trained on only clinical features from -7 years to
-1day performed with average bootstrapped held-out evaluation
set AUROC between 0.58 (median 0.57) for the —7-year model and
0.77 (median 0.77) for the —-1-day model. The models performed with
AUPRC greater than the held-out evaluationset AD prevalence of 0.003
with improvement closer to time O (mean/median of 0.02/0.008 for
the -7-year model and 0.08/0.03 for the —1-day model; Fig. 2a). When
demographics and visit-related information were added as features,
the models performed with minimal to no improvement, with aver-
age bootstrapped test set AUROC between 0.61 (median 0.61) for
the —7-year model and 0.71 (median 0.72) for the —1-day model and
similar AUPRC (mean/median of 0.02/0.009 for the -7-year model and
0.05/0.03 for the -1-day model; Fig. 2a). For both the full and matched
cohort models, the relative performances were consistent for balanced
accuracy measures on the held-out evaluation, and a permutation
test demonstrated significance for the —1-day matched cohort model
(Extended DataFig. 7).

Amongtop features sorted by average importance across models,
top featuresinclude amnesia and cognitive concerns, HLD, dizziness,
cataract, congestive heart failure, osteoarthritis and others (Fig. 2b).
Thesetop features are consistently important even when demograph-
icsandvisitinformation were added to the model (Fig. 2b). Compared
to models trained on all individuals, the models trained on matched
cohorts haveincreased importance assigned to features like HLD and
amnesia, while decreasing importance of features like pain intensity
rating scale and essential hypertension (Extended Data Fig. 6).

Because matching allows for the control of the influence of visit-
related and demographic-related information on AD prediction, the
remaining diagnoses features can be identified for hypothesis genera-
tionwith greater specificity for AD onset risk. Top phecode categories
included mental disorders, sense organs and endocrine/metabolic
categories (Fig. 2c). One cluster included features with maintained

predictive importance throughout time models (HLD and conges-
tive heart failure), while other clusters included phecodes that are
relatively predictive several years before AD onset (osteoarthritis,
allergic rhinitis). A cluster of features emerged as important around
-3 years (osteoporosis, dizziness, back pain, hemorrhoids, palpita-
tions) and some features only emerge as important closer to the time
of AD onset (memory loss and vitamin D deficiency; Fig. 2c). Together,
this shows that the model can identify a combination of conditions
that can lead to AD risk identification for a patient of a given age and
hospital utilization burden.

Stratification by sex allows identification of features that are
predictive within asubgroup

Because sex plays arolein AD risk, models were trained within male-
identified or female-identified sex groups to perform sex-specific
prediction andidentify sex-specific predictive features, without and
with matching on demographics and hospital utilization (demograph-
ics in Supplementary Table 4). Models trained on clinical features
performed with average held-out evaluation set AUROC between
0.75 (median 0.76) and 0.71 (median 0.71) for —7-year female and male
models to 0.84 (median 0.86) and 0.82 (0.89) for -1-day female and
male models. For AUPRC, the models performed greater than the
held-out evaluation set prevalence (0.0036 for females, 0.0023 for
males) with performance of 0.056 to 0.11 (median 0.022t0 0.061) and
0.041t0 0.15 (0.015 to 0.056) for female and male -7 year to —1-day
time models, respectively. With addition of demographics and visit-
related features, AUROC/AUPRC improved considerably (Extended
DataFig. 4a). Top features include sense organs and musculoskeletal
phecode categories in female-only models, and circulatory system
and digestive phecode categories as important among male-only
models (Extended Data Fig. 4b).

To identify sex-specific biologically relevant clinical predictors
for hypothesis generation, models were also trained by matching on
demographicand visit-related factors within each subgroup (matching
resultsin Supplementary Table 4). Time point models trained only on
clinical features performed with mean held-out evaluation set AUROC
of 0.60 to 0.68 (median 0.58 to 0.74) and 0.41to 0.75 (median 0.43 to
0.84) for female and male models, respectively (Fig. 2d). For AUPRC,
models performed greater than held-out evaluationset prevalence with
performance ranging from 0.031 to 0.095 (median 0.0076 to 0.046)
and 0.0040 to 0.125 (0.0033 to 0.022) for female and male models,
respectively. Slight improvement in performance was observed with
the addition of demographics and visit-related features (Fig. 2d).

Top phecode categories in the female models included respira-
tory/circulatory system features earlier on, to musculoskeletal features
inthe -5-year model, to sense organs and mental disorders inthe later
models. Top categories in male models included endocrine/metabolic/
circulatory disorders earlier, to digestive and genitourinary disorders,
tomental disordersinthe -1-day model (Extended Data Fig. 4b). When
comparing specific phecodes, some are general across the subgroups
such as HLD, congestive heart failure (early models) and memory/
cognitive symptoms (later models; Fig. 2e and Extended Data Fig. 4c).
Female-driven features across time models included osteoporosis,

Fig.2|Models trained on matched cohorts allow for identification of
hypotheses for AD predictors. a, Bootstrapped performance of models trained
on cohorts matched by demographics and visit-related factors on the full
held-out evaluation set (n =300 bootstrapped iterations of 1,000 individuals,
prevalence of AD on held-out set = 0.003). The box plot shows quartiles (25th,
50th and 75th percentiles), whiskers extend to 1.5 times the interquartile range,
and the remaining points are outliers. b, Top clinical phecode categories for
matched models ranked by the average of the top five importance values for each
phecode category. Sorting is based on this average across time models. ¢, Top 50
phecodes (detailed features) across time models, with features clustered based

onward distance of rankings. d, Bootstrapped performances of sex-stratified
matched models on the held-out evaluation set (n =300 bootstrapped iterations
of1,000 individuals for each sex; reference AUPRC = 0.0036 female, 0.0022
male). Each box shows quartiles (25th, 50th and 75th percentiles), and whiskers
extend to 1.5 times the interquartile range, with remaining points as outliers.

e, Overlap of top matched model features for models trained on all individuals,
female stratified individuals, and male stratified individuals, with model cutoff
importance (RF average impurity decrease) greater than1x 107¢. Specific
features are listed, with bold features indicating top features across all five time
models and non-bolded features indicating top features across four time models.
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palpitations, allergic rhinitis, myocardial infarction, major depressive
disorder and abnormal stool contents. Male-driven features included
chest pain, hypovolemia, sexual disorder, tobacco use disorder and

neoplasms (Fig. 2e).
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Fig.3|SPOKE provides biological prioritization of hypotheses associated
with shared clinical phenotypes. Combined SPOKE network of all shortest
paths to AD node (Disease Ontology ID:10652) for the top 25 input features
(bolded) from matched AD model at every time point. Network is organized

Eccentricity
based on the number of time point model occurrences (y axis) and eccentricity
of anodeinthe subnetwork (x axis). Specific time point model occurrences are
colored by the pie chart within each node.

regression at the same time points (Supplementary Table 5) and identi-
fied decision features with nonlinear relationships with AD (for exam-
ple, RFidentified osteoporosis). Balanced accuracy measures for all the
RF models supported similar trends in performance between models,
including lower overall performance for matched cohort models, and
improvement in model performance closer to AD onset (Extended
DataFig.7aand Supplementary Table 6). As an example to evaluate the
extent that clinical features meaningfully predict AD, RF models were
retrained on permutations of the ground truth label (-1-day model,
40 permutations), and the trained model AUROC was significantly
higher compared to the permutation distribution performance
(P=0.024, Extended DataFig. 7b).

Use of aknowledge graph allowed prioritization of potential
biological explanations underlying predictive features

Next, we utilized the SPOKE knowledge graph™ to utilize existing knowl-
edge to explain biological relationships between groups of top clinical
modelfeatures and AD. We identified biological features (for example,

genes, proteins and compounds) between the top 25 clinical predictors
(mapped to disease nodes) and AD nodes for each model (Methods).

Genesthatappear in the shortest path networks among matched
modelsacross multiple time pointsincluded APOE, AKT1,INS,ALB, IL1B,
TNF,IL6 and SOD1,and compoundsincluded atorvastatin, simvastatin,
ergocalciferol, progesterone, estrogen, cyanocobalamin and folic
acid (Fig. 3). These genes and compounds also shared relationships to
multiple occurring model input nodes, particularly familial HLD and
osteoporosis among allmodels across time (Fig. 3). Notable nodes that
appeared over at least two models included C9orf72, TREM2, APP and
MAPT with relationships to input nodes of musculoskeletal and joint
disorders, deafness and depression (Fig. 3).

Hyperlipidemiais validated as a top predictor of AD in
external EHRs and a genetic link confirmed in APOE locus

To further validate the utility of models to identify predictive
disease associations, we followed up on hyperlipidemia (HLD) as atop
feature that was a consistent predictor across all models. Utilizing a
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variant phenotype associations with Pvalue < 0.05 from the UK Biobank. The red
lineindicates a Bonferroni-corrected significance level of 0.05 (191 phenotypes,
Bonferroni Pvalue = 0.00026), and the arrow direction represents the beta
direction of effect of the alternative allele. d, Plot of APOE protein expression
colocalization with H4 (probability two associated traits share a causal variant)
from Open Targets Genetics. Each dot represents a specific phenotype
categorized based on trait (x axis). Each color represents an APOE molecular trait
measured from blood plasma from refs.100,101.

retrospective cohortstudy designinthe EHR of five hospitals across the
University of California system (University of California Data Discovery
Platform (UCDDP)) with exclusion of UCSF, HLD-diagnosed individu-
als (exposed group, n = 364,289) had a faster progression to AD event
compared to matched unexposed individuals (n = 364,289, matched
demographicsin Supplementary Table 7; Fig. 4a and Extended Data Fig.
8a,log-rank test Pvalue < 0.005). This was further confirmed with a Cox
proportional hazards analysis (hazard ratio (HR) 1.52 (95% confidence
interval (Cl) 1.46-1.57), visit/demographic-adjusted hazard ratio (aHR)
1.26 (1.21-1.31), Pvalue < 0.005; Extended Data Fig. 8c).

To investigate potential relationships between HLD and AD, the
HLD-specific knowledge network prioritized shared gene associations

with LSS, APOE, INS, SMAD3, ALB and GFPTI (Fig. 4b). Locus intersec-
tions between high low-density lipoprotein (LDL) cholesterol and AD
among two independent genome-wide association studies (GWAS)
across 408,942 individuals with AD fromref. 32 and 94,595 individuals
with high LDL cholesterol fromref. 33, respectively, identified multiple
shared variants, including chr19:44892362(hg38):A > G (rs2075650)
and chr19:44905579(hg38):T > G (rs405509). Phenome-wide asso-
ciation studies (PheWAS) for rs2075650 on the UK Biobank verified
significant associations with cholesterol levels, HLD, AD and family
history of AD (Fig. 4c). Colocalization H4 probability, a measure that
determines the probability two traits are associated at a locus based
on prior studies, supports a causal link with locus variants for APOE
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protein quantitative traitloci (QTL) and both HLD traits and AD traits
(Fig.4d).

Female-specific predictor of osteoporosis is validated in

an external EHR with potential explanations in SPOKE and
genetic colocalization analysis

Osteoporosis was identified as an important feature in the matched
models as afemale-specific clinical predictor of AD. Inthe UCDDP, oste-
oporosis-exposed individuals (n = 68,940) showed a quicker progres-
sion to AD compared to matched unexposed individuals (n = 68,940,
matched demographicsin Supplementary Table 8; Fig. 5a and Extended
DataFig.8b, two-sided log-rank test Pvalue < 0.005). When stratified by
sex, this progression was significant when comparing female individu-
als with osteoporosis (n =57,486) versus female controls (n = 58,636,
two-sided log-rank test P value < 0.005). Cox proportional hazards
analysis further supported osteoporosis as a general risk feature for
AD (HR1.81(95%Cl1.70-1.92),aHR 1.59 (1.45-1.70), P < 0.005; Extended
DataFig. 8d).

Osteoporosis-specific SPOKE network prioritized shared gene
associations with IL6, SMAD3, TNF, HSPG2, GATA1, GFPTI, HFE, INS
and ALB (Fig. 5b). Based on previous GWAS studies across 472,868
individuals with AD from ref. 32 and 426,824 participants with low
heelbone mineral density (HBMD) fromref. 34, ashared risk locus was
foundinchromosome 11 between HBMD and AD among the MS4A gene
family, with the closest gene as MS44A6A. A comparison of prior GWAS
of up to 71,880 individuals with AD from ref. 35 and sex-stratified low
HBMD GWAS (111,152 female, 166,988 male) of UK Biobank participants
(https://www.nealelab.is/uk-biobank/) supports a female-specific
association at the shared locus (Fig. 5¢). Colocalization analysis sup-
ports a link between MS4A6A and AD (H4 = 0.987), female-specific
HBMD with AD, and phenotypes with MS446A gene expression (Fig.
5d; AD versus female HBMD H4 = 0.998, MS4A6A gene expression
versus female HBMD H4 = 0.997). This statistical significance was not
replicated for male-specific HBMD GWAS (Fig. 5d; AD versus male
HBMD H4 = 0.00263, MS4A6A gene expression versus male HBMD
H4 =0.00266). MS4A6A weighted associations with other phenotypes
from the Open Targets Genetics platform found locus associations
with many inflammatory phenotypes including C-reactive protein,
lymphocyte percentage and neutrophil count (Fig. 5e).

Discussion

While thereis great potential for ML on clinical data, balancing clinical
utility and biological interpretability can be challenging. To address
this, we used thousands of EHR concepts to develop prediction models
for expert-identified AD diagnosis and selected an index time sug-
gesting AD onset. Cohort selection and data preprocessingis acrucial
first step to identify available clinical measures and optimal ground
truth thatis close to biological AD and avoid overly optimistic model
performance due to nonspecific AD orimproper data preprocessing®.
Our prediction model shows predictive power up to 7 years before the
defined index time of AD onset with AUROC of 0.72 (and up to AUROC of
0.86 with additional demographic and care utilization features), which

is comparable with other models inliterature that utilize clinical data
to predict less specific dementia or AD diagnosis™*. An application
of the full model includes determining early disease risk in primary
care settings before time-consuming and costly detailed neuropsy-
chological, biomarker or neuroimaging assessments (after which
imaging or biomarker classification models can be utilized"™). This
canaid inidentification of at-risk patients for follow-up or inclusion
inearlyintervention ortrials, with the 1-day prior model as suggesting
possible AD onset to be considered at that visit to facilitate earlier AD
diagnosis. Furthermore, interpretable models, such as RF models,
can identify common decision point features and allow clinicians to
understand what clinical features were used in determining prediction
probability and assess the model output with greater trust compared
to ‘black box’ models.

To identify early clinical predictors that may be biologically rel-
evant for AD diagnosis, we trained models on individuals matched
by pre-identified confounding variables such as demographics and
visit-related features to account for their influence in AD prediction.
ML models still retain the ability to predict AD diagnosis with mean
AUROC over 0.70 after the —3-year model for RF models. Demograph-
ics and visit-related features minimally improved model performance,
as matching increased the specificity of the task to predict AD onset
controlled on demographics and visit-related features. In terms of
clinical utility, the models trained on matched individuals provide
predictive power foragivenclinical scenario between two individuals
with similar pre-test probability of AD risk (for example, same age and
diseaseburden), with application of thismodel as a tool for determin-
ing post-test probability of future AD risk. Furthermore, by balancing
on pre-identified confounders, top features may be interpreted with
more biological relevance. For example, while we identified essential
hypertensionas animportant feature in the models trained on the full
cohort, this diagnosis became less importantinthe models trained on
matched cohorts, suggesting hypertension may be nonspecific for AD
and may instead be more directly related to aging or disease burden.

Our models trained on matched cohorts identify or strengthen
known or suggested hypotheses for early predictors of AD, such as
HLD as a feature for all time models. We also elucidate the relative
importance of features years in advance, such as allergic rhinitis and
atrial fibrillation as early predictors, osteoporosis and major depres-
sive disorder as non-neurological predictors, and cognitive impair-
mentand vitamin D deficiency as late predictors of AD. Some of these
prior predictors, such as depression and vitamin D deficiency, have
been previously implicated in AD risk®**°, These findings potentially
support hypotheses suggesting AD can be associated with general
aging or frailty, which might present in non-neurological body sys-
tems either before or concurrent with AD*~*. Furthermore, interpre-
tation of these models allows for the identification of higher-order
groups of predictors that may contribute to disease heterogeneity or
together, contribute to AD risk. Nevertheless, while these models can
identify hypotheses of predictive features, EHR data can still capture
clinical biases or misdiagnoses, and further studies caninvestigate the
influence of behavioral bias versus biological relevance.

Fig. 5| The association between osteoporosis and AD is validated externally
with MS4A6A as a potential female-specific shared genetic link. a, Kaplan-
Meier curve on UC-wide EHR for osteoporosis as the exposure (error bands
show 95% CI). Two-sided log-rank test is significant for all osteoporosis-exposed
individuals versus controls (P =1.4 x 10"**) and osteoporosis-exposed female
individuals versus controls (P=7.2 x 1077?), but not male osteoporosis-exposed
individuals versus controls (P=0.46).*P< 0.005.b, First-degree and second-
degree neighbors of osteoporosis node on the network representing all shortest
paths from the top 25 features per time model. ¢, P-P plots between summary
statistics of AD GWAS (Pvalue computed as described in ref. 35, n = 455,258) and
sex-stratified HBMD GWAS (female n =111,152, male HBMD n = 166,988, Pvalue
computed as described in Neale’s Lab GWAS version 3) of variants around the

MS4Alocus (left and middle plots) at region 60050000-60200000 of chrll
(locus plot onright). d, MS4A6A gene expression (cis-eQTL, Pvalues computed as
described inref.104) association with AD GWAS (P value computed as described
inref. 35) and association with sex-stratified low HBMD (Pvalue computed as
described in Neale’s Lab GWAS version 3). e, Open Targets Genetics associated
phenotype graph for M§4A6A with association score computed based ona
weighted harmonic sum across evidence (described in https://platform-docs.
opentargets.org/associations#association-scores/). Purple words indicate
diseases, while black words indicate measurements. Circles are phenotypes
colored by the association score, and boxes represent the most general
categories. NS, not significant.
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We further trained models on sex-stratified subgroups (female
versus male), with and without matching on demographics and visit-
related covariates, to identify sex-specific clinical predictors. Given

evidence that sex may influence different pathways to AD diagno-
sis?***# it is important to consider how patient heterogeneity may
impact the training, utility and interpretation of a prediction model.

a b
Osteoporosis exposure and AD diagnosis risk A Mood disorderA
1.00 -| A .
— Control A Cognitive
== Osteoporosis A disorder
0.99 Protein-energy gestiveheart A
malnutrition failure Familial
0.98 hyperlipidemia
0.97
ALB L6
g 0.96
2 . GFPT1 SMADS s
\g 0.95 | “P<0.005 TNF
= T T T T T T T
g 0 2 4 6 8 10 12 X '
Z HSPG2 Cardiomyopathy HFE Essential
(_% 1.00 1 - o 'A 4 ° A hypertension
= Arthritie ~ Colonic disease °
0.99 - = v X-linked
=1 N Osteoarthr "‘SAtheimer's monogenic disease
0.98 1 = Arthropathy disease
0.97 1 = NS o,
ovement GATAT
0.96 | Females Males Sensorineural disease =
: — — S AULE Osteoporosis
Control X Control X hearing loss Cyanaocobalamin
0.95 4 == Osteoporosis Osteoporosis Folic acid
T T T T T T T T T T T T T T
{ ] ESTROGENS,
0] 2 4 6 8 10 12 O 2 4 6 8 10 12 .
) . ) Pyridoxine ¢ oocaiciferat o . CONJUGATED
Years from first osteoporosis diagnosis
A Input node Gene Gene_associates_disease
QO Intermediate node @ Disease Compound_treats_disease
O AD node Compound [Node]_downregulates_gene
[Node]_upregulates_gene
(]

AD and low HBMD genetic variant P-P Plot

7 n 1510792263 1572924626 16
o .
—_ [ 172924659°® | 575974650 /b o154930338 : N
g 6 } e | fa; . Locus plot: chromsome 11
E | e | = CTRTE BT T IR
5 rsngzarzal | g 1
\Q_.’ | 111824734
> I <
L4 } 2 T60.100 K J60,150 K [60.200 K
[a) | - 08
o
% 8 } = LINC02705 i—H——t MS4A4E
I 9 } % MS4A2 HHHE XR_950141.1 il XR_950142.1 | MIR6503
% i®) o 04 YWHAZP9 @ HHH MsaAeA
£ 4 = . 20
5} = e
w .o
0 0
(0] 2 4 6 8 10 12 0 2 4 6 10 12
AD log(P value) AD log(P value)
d MS4A6A AD eQTL MS4A6A Heel BMD eQTL
250 . } . CX 250 o ,.3 (;.,‘..
. % } . .
o 200 ! g 200
= | o
© | >
>
a 150 } o 150 R R
gl . | g o bo i,
kel 100 o } L2 00 . % ®
— oo ) = Fae
= " sse, W@ = ey ©
(¢} o | % ¢
© 5o | 50 Qe
|
SSieee I ool - .
0 Cl.lr«.l."."' e ® } 0 e @ ‘g0 . " o . . .
o 2 4 6 8 10 12 ¢} 1 2 3 4 5 6 7 O 0.5 1.0 15 2.0

AD log(P value)

e Open targets MS4A6A gene-phenotype overall association scores

General
Inflammatory bowel disease
Alzheimer’s disease
Leukocyte count

HBMD log(P value)

female male

Specific

HBMD log(P value)

Gastrointestinal disease
Immune system disease

Genetic, familial or congenital disease

Nervous system disease
Psychiatric disorder
Measurement

Bone density
Bone quantitative ultrasound
Galectin-3-binding protein
Family history of Alzheimer’s disease
Factor VII
C-reactive protein
Blood protein
Fibrinogen
Total blood protein
© sTREM-2

@® Heel bone mineral density

Lymphocyte % of leukocytes
Myeloid white cell count

Neutrophil count Neutrophil % of leukocytes

Lactadherin

Association score

Nature Aging | Volume 4 | March 2024 | 379-395

387


http://www.nature.com/nataging

Analysis

https://doi.org/10.1038/s43587-024-00573-8

From the matched cohort models, we identified clinical features in
each subgroup that were consistent with the general models, such as
HLD asimportantin every modeland memoryloss asimportantinlate
models. Furthermore, we identified features that were sex specific,
such as osteoporosis, major depressive disorder, allergic rhinitis and
abnormal stool contents as predictors enriched among women, and
chest pain, hypovolemia, prostate hyperplasiaand sensorineural hear-
ing loss as predictive among men. Further work can seek to disentan-
gle the biological meaning of these sex-specific predictive features:
whether they reflect sex-specific non-neurological manifestation of
prodromal states, contributing risk factors or even sex biases in clini-
cian evaluation and treatment (for example, bone density evaluation
may arise more often after afall). These models also demonstrate that
for a heterogeneous disorder like AD, subgroup composition, like
sex ratio of a cohort, can influence the performance and the features
that are identified as important. Differences in subgroup size and AD
prevalence may contribute to greater predictive performance among
female stratamodels. AUPRC is particularlyimpacted by AD prevalence
and can influence interpretation of the positive predictive value of
models within each sex stratum. In terms of identified features, the
higher preponderance of females leads to a sex-specific predictive
factor, osteoporosis, being identified as a general predictive variable
in the general group. This further indicates that both generalizable
models and subgroup-specific models can provide valuable insight,
both generaland personalized, for acomplex disease. Furthermore, in
the context of ML fairness, the performance and identified features of
generalmodels may be influenced by the demographic make-up of the
training population, just like how greater number and AD prevalence
among femalesinfluence greater female-strata performance andiden-
tification of osteoporosis in our general models.

We utilized a heterogeneous knowledge network (SPOKE) toiden-
tify shared biological hypotheses underlying model-identified top
clinical predictors and AD. By combining the shortest paths in SPOKE
between top predictorsand AD, we can prioritize nodes (for example,
genes) that are consistently relevant for the higher-order combination
of humandata derived top clinical predictors and AD and give insight
viaprioritizationand combination of relationships. First, we were able
to identify known genetic associations with dementia based upon
top diagnoses, such as through identification of known autosomal
dominant early AD genes such as APPand PSEN1/PSEN2 (ref.48). Other
genes identified with known associations with AD include APOE, HFE
and HSPG2 variants that impact AD risk**~>>. An example of insight
gained through SPOKE integration includes ACTB relating to AD***,
sensorineural hearing loss*®, arthropathy and arthritis®. The predic-
tionmodel allows for the prioritization of ACTB for individuals with the
common comorbidities of sensorineural hearing loss and arthropathy/
arthritis with risk of AD (where the SPOKE informed connection linking
sensorineural hearing loss, arthropathy, arthritis and AD all together
through ACTBhas not been previously implicated in literature).

The SPOKE network can also be leveraged to propose biologi-
cal explanations based on common nodes and shared associations
between clinical predictors identified from human data and AD. For
example, ALB is identified through SPOKE as a shared genetic asso-
ciation between congestive heart failure, malnutrition, HLD and AD.
While prior relationships have beenidentified between ALBand many
individual diseases, each of those diseases also have many implicated
geneticrelationships. Leveraging human data through the predictive
models allows for the prioritization of abundant gene connection with
multiple disease predictors. Given gene ALB roles in pathways such
as heme biosynthesis (Reactome R-HSA-189445), HDL remodeling
(Reactome R-HSA-8964058) and insulin-growth like factor regulation
(Reactome R-HSA-8964058), prioritization of mechanistic hypoth-
eses linking ALB-related pathways with the pathophysiology of EHR-
derived predictors (congestive heart failure, malnutrition, HLD) can be
exploredin future studies. Another example insight includes INS as a

shared association between osteoporosis®, hypertension®, HLD®° and
AD®%?, Prior studies have identified potential mechanisms underly-
ing the relationship between energy utilization, lipid levels, nutrition
and neurodegeneration (for example, Reactome R-HSA-1266738 and
R-HSA-16368)% %, and this analysis allows for prioritization of mecha-
nistic hypothesestobe further explored. While these associations are
included inthe SPOKE network derived fromevidencein theliterature,
the association of these genes with specific early clinical predictors is
less established; thus, this analysis allowed us to identify a constella-
tion of phenotypes and underlying genetic relationships observable
inaclinical setting that, together, can lead a clinician to suspect future
ADrrisk, prioritize molecular pathways for testing or personalized treat-
ment, and guide biological hypotheses generationin AD pathogenesis
for future studies.

Tovalidate afew top clinical predictors, we utilized a hypothesis-
driven approach to support the relationship between two identified
features (HLD and osteoporosis) and progress to AD diagnosis in an
external database across the University of California EHR system.
For both phenotypes, the UC-wide EHR database supports a poten-
tial increased AD diagnosis risk due to evidence of decreased time to
AD and increased hazard of AD diagnosis in patients exposed to the
predictor of interest. The association between HLD and AD has been
identified in prior clinical studies and systematic reviews®® . In par-
ticular, APOE is awell-established associated geneticlocus’™, and APOE
polymorphismis known to modify AD risk, particularly inindividuals
carrying the 4 allele”. Many studies have also shown the association
of APOE with elevated lipid levels and cardiovascular risk factors’>’>,
The validation of these well-known associations shows not only that
our MLmodelson clinical data can pick up HLD as arisk factor, but also
that by utilizing the SPOKE network, we canintegrate known relation-
shipsin the literature to potentially explain the association between
HLD and AD and identify the APOE locus as a potential shared causal
mechanism as demonstrated in the colocalization results. Beyond
the ability to identify known relationships, the SPOKE network also
proposes biological explanations of higher-order shared associations
between clinical predictors, suchas ALB as ashared genetic association
between congestive heart failure, malnutrition, HLD and AD, or INS as
ashared association between osteoporosis, hypertension, HLD and
AD. Prior studies have identified potential mechanisms underlying
therelationship between energy utilization, lipid levels, nutrition and
neurodegeneration®®>’, although specific hypotheses of mechanistic
relationships are an area for explorationin future studies.

The association between osteoporosis and AD is also validated
toalesser extentin clinical studies and meta-analysis™’¢, with unclear
but possible sex modification of this effect. Our study identifies osteo-
porosisasapredictor for AD among females before AD but shows less
of arelative predictive effect for males compared to other clinical
features. Nevertheless, it is still possible that shared relationships
between osteoporosis and AD exist in males. A bone mineral density
GWAS analysis of female patients shows a significant association with
AD GWAS around the MS4A family locus, and thisis further supported
by MS4A6A eQTL colocalization with both AD and HBMD in females.
These findings of osteoporosis as a potential sex-specific predictor
of AD, with shared relationships through MS4A464, is an unknown and
unexpected result identified from single-hypothesis-driven follow-up
from our prediction models. Prior studies have established the MS4A
geneclusterasarisk for AD, with one study identifying the cluster based
onMendelian randomization”’, and another that identified a stronger
female-specific effect size for MS446A7°. Some studies investigating
therole of the MS4A family suggest mechanisms thatinvolveimmune
function, particularly among microglia’. While this gene may not
have been identified in SPOKE, SPOKE did capture direct pathways
through known genes involved in inflammation such as /L6 and TNF,
and we also observed MS4A46A as being highly associated with measure-
ments of immune cells in the blood. Further studies will be needed to
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validate the exact associative mechanism between osteoporosis and
AD, although some prior hypotheses suggest the potential impact of
genetic variants on osteoclast function, amyloid clearance or oxidative
stress response®®®’, While we utilized knowledge networks to leverage
knowledge to explainrelationships between groups of predictors, we
performed hypothesis-driven analysis onindependent EHRs and genet-
ics to further explore and validate a few chosen predictors (HLD and
osteoporosis) with AD. Hypothesis-driven approaches canbe applied
toany other selected predictor or phenotypeidentified by the models
to understand their relationships with AD onset that may not yet be
represented by the knowledge graphs.

This study has several limitations. First, EHR data complexity and
quality can affect prediction models, and it is challenging to distin-
guish the influence of clinician/patient behavior, sociological factors
or underlying biology on identification of features. Matching can
improve interpretability by removing the influence of non-biological
covariates, but follow-up validation of hypotheses across omics data
types is needed. Due to changing patient demographics and societal
factors, prediction models should be continuously trained, updated
andevaluatedifimplementedin the clinical setting to ensure effective
utilization and account for biases that may have been learned from
the data. Model utilization should investigate the impact of cohort
selection biases and matching methods on model generalizability,
and model retraining and calibration should be a continual aspect of
model application to account for possible data drifts and changing
clinical practice approaches that would arise in the future. Second,
clinical EHR data are sometimes sparse and provide asuperficial inter-
val snapshot of a patient’s health, so the absence of a record may not
necessarily reflect the absence of a condition and prior health infor-
mation may not be available in the EHR. Therefore, the EHR provides
arepresentation of aninterval of a patient’s health history and is more
likely to pick up diagnosis of chronic or common conditions, as well
as common drugs or measurements. Future work can investigate the
impact of variations in data representation that can account for data
sparsity, continuous laboratory result outcomes, and best tempo-
ral assignment of diagnosis onset beyond binary representation or
considering drug prescriptions for assignment of diagnoses. Third,
survival models have extensive right censorship and do not consider
competingrisks. Fourth, because AD is heterogeneous and differential
diagnosis is nuanced and subjective even in expert hands, predictive
performance can be limited by label quality and the signal from clini-
cal features can be noisy, limiting performance and generalizability.
Future work investigating heterogeneity may identify subgroup-
specific features where subgroups can be divided based on biotype,
dementia syndromes, racialization, and so on. Future applications with
hierarchical models, transfer learning or fine-tuning on a subpopula-
tion can increase personalization of models. Fifth, our sex-stratified
analysiswasrestricted toindividuals who identified as female or male.
Future studies could explore AD patterns among intersex individuals.
Lastly, predictive features identified are relevant before AD onset,
and future work is needed to identify diagnostic-relevant AD comor-
bidities, or conditions that can occur after AD progression. Because
predictive features are identified as hypotheses, the direct mecha-
nism and causal pathway relating a phenotype to AD are unknown.
Future work caninvestigate causality with Mendelian randomization or
mechanistic studies.

In this study, we demonstrate how formulation of prediction mod-
els caninfluence utility for predictive application or biological interpre-
tation. We show how models can be used to identify early predictors,
and utilize SPOKE to explain relationships viashared biological associa-
tions. Lastly, we show that our models can pick up known associations
with HLD through APOE, and identify a lesser-known association with
osteoporosis through MS4A6A that may be female specific. This study
contributes to the field of EHR integrative research that can inform
future directions in both AD care and research.

Methods

Ethical approval

This study complieswith all relevant ethical regulations and is approved
by the Institutional Review Board of UCSF (IRB 20-32422).

Participantidentification

Individuals with AD were identified based on UCSF Memory and Aging
Center database containing over 9,000 participants mapped to the
UCSF OMOP-format EHR. These individuals have undergone dementia
evaluationatthe Memory and Aging Center and thus had expert-level
clinical diagnoses. In clinical settings, since AD is often a syndromic
diagnosis indicating general dementia for memory or cognitive con-
cerns®>®, we aimed to identify a highly accurate cohort diagnosed
by neurodegeneration specialists to obtain an AD diagnosis that is
closer to the biological ground truth®. The remaining control partici-
pants were obtained from the rest of the UCSF EHR, with over 1 year
of records and no existing records of dementia diagnosis among the
G[123]* International Classification of Diseases 10th Revision (ICD-10)
categories (Supplementary Table 1). These controls include patients
seenat the UCSF Memory and Aging Center with EHR data, but without
adementiadiagnosis given.

To best build models for prediction of AD onset, an index time
was determined to identify input model features before first clinical
indication of dementia. This was defined among the AD cohort as
the first time of any AD diagnosis, dementia diagnosis or prescrip-
tion of cognitive drug (ATC codes NO6D; Supplementary Table 2) to
be the first time point of possible biological AD manifestation. This
approachwas utilized because individuals with AD may be prescribed
ananticholinesterase inhibitor or given an alternative dementia diag-
nosis before a formal confirmation of an AD diagnosis. For controls,
the index time was defined as 1 year before the last recorded visit
date, with no dementia diagnosis given within that year. To maintain
a consistent patient population for training and evaluation of ML
models, the final AD and control cohort was identified by including
participants who are at least 55 years of age at the index time and have
existing clinical visits and concepts 7 years before the index time.
These participants were then split into 70% for model training and
tuning, while the remaining 30% were held-out for model evaluation
(Extended DataFig.1). For sex stratification, we utilized sex as reported
in the UCSF EHR (male, female), excluding nonbinary and other cat-
egories due to low sample size, as a proxy for representing sex as a
biological variable.

Data extraction and preparation

Demographics (birthyear, gender, race and ethnicity), clinical concepts
(conditions, drug exposures, abnormal measures) and visit-related
features (age at prediction, first visit age, years in UCSF EHR) were
extracted before the index time for the AD and control cohort from
the UCSF OMOP EHR database. Race and ethnicity is a single variable
derived from an algorithm developed by the UCSF Data Equity Task-
force to codify aggregated sociopolitical categorizations based on
EHR self-reported identifiers®. To train models in advance of theindex
time, clinical information was extracted for each participant includ-
ing all clinical data up to a time point X before the index time, where
Xincludes -7 years, =5 years, -3 years, -1 year and -1 day. These time
points represent the knowledge of a participant’s clinical history lead-
ing up to time X before time. All existing clinical features (conditions,
drug exposures, abnormal measurements) were one-hot encoded.
Abnormal measures were extracted from the OMOP measurement
table based on the numeric value falling either above range_high or
below range_low, and abnormal measures were binary encoded based
on abnormal flagging, following the approach from ref. 29. If a clini-
cal feature did not exist or if the clinical measure was within normal
range, theencodingisrepresented asa 0 and therefore assumed to be
normal. Asthe UCSF database only captures aninterval of a participant’s

Nature Aging | Volume 4 | March 2024 | 379-395

389


http://www.nature.com/nataging

Analysis

https://doi.org/10.1038/s43587-024-00573-8

interaction with the healthcare system, prior non-chronic conditions
may not be captured within the EHR.

Demographic and visit-related features (prediction age, first visit
age, years in UCSF EHR, log(number prior visits), log(number prior
concepts), log(days since first clinical event)) were scaled between
0 and 1 on the training data, where log indicates natural logarithm
and feature scaling allows for multiple ML model approaches. Age at
prediction is defined at the age of the participant at which the model
isapplied (forexample, ifaparticipantindex timeis atage 70, then the
age of prediction for the —5-year model s 65). All features with no vari-
ance were removed for each model, with the total number of features
ranging from 5,211 features (-7-year model on matched cohorts) to
23,760 features (-1-day models on unmatched cohorts). Information
aboutinput features, specific OMOP concepts and select top feature
prevalences canbe found in Supplementary Data 1.

ML preparation and training

Binary classification time point models for AD were trained using the
participant representation at each time point before the index time.
We divided the datainto two sets—70% for model creation and 30% for
evaluation. Training and optimal model selection (with hyperparam-
eter tuning) was performed onthe 70% split with cross-validation, and
30% was held out for evaluation and not seen during model training and
selection in any way. Final selected model evaluation was performed
on the 30% held-out evaluation set as the common dataset to obtain
and compare the performance of all final models (diagram in Supple-
mentary Fig.1). Models were trained with clinical features only (clinical
model) and with clinical features plus demographics and visit-related
information (clinical plus demographics/visits model). Models were
also trained on samples matched by demographics and hospital utili-
zation to account for biases and confounding in prediction. In these
models, control participants were matched to individuals with AD at
a 1:8 ratio on demographics (birth year, race and ethnicity, sex) and
visit-related features (age, first visit age, years in EHR, log(number
of prior visits), log(number of prior concepts), log(days since first
clinical event)) utilizing propensity score matching® (propensity score
estimated based upon a logistic regression model, nearest-neighbor
matching without replacement). While propensity score is often uti-
lized to balance treatment probabilities in cohort studies, it has also
been utilized for sample selection®**?, exposure likelihood® or for
outcome-based case-control studies’.

RF models were primarily utilized for both predictive performance
andinterpretability that take into account the high collinearity between
clinical variables. RF models were trained using the scikit-learn pack-
age’?, with balanced class weight parameter. Hyper-parameters were
tuned (grid search) based on cross-validation performance (5-fold)
of AUROC on the 70% model training set to determine parameters of
n_estimators (n_features, n_features x 2, n_features x 3), max_depth
(3,5,7,9) and max_features (sqrt, log,). The number of estimators and
maximumdepth were tuned to balance between performance and over-
fitting, while a subset of features (max_features) was utilized per tree
tohelp account for high correlation between features’*”*. Models were
evaluated onbootstrapped subsamples (300 iterations, 1,000 samples)
ofthe30% held-out evaluation set to determine AUROC and AUPRC for
model comparability. Balanced accuracy scores were also computed on
the30% held-out evaluation set. Anelastic net logistic regression model
wasalso trained on both the fulland matched cohorts for comparison.
We performed apermutation test on the —1-day matched cohort model
todetermine the significance of AUROC compared to anull distribution
of AUROC scores of models trained from permuted ground truth labels
(40 permutations) to determine the extent to which clinical features
can be predictive of AD.

Stratification. Both models for full participant cohorts and matched
cohorts were re-performed in sex strata using the same method based

upon sex reported in the UCSF EHR to augment the OMOP database.
Models were trained on two sex subgroups—female and male—due to
lack of other subgroups labeled inthe EHR. For each stratum, individu-
als with AD were re-matched to controls within each stratum for the
matched participant trained models. Models were evaluated similarly
based on AUROC/AUPRC on the same bootstrapped held-out evalua-
tion set, stratified by sex.

Top feature interpretation

RF models were investigated for feature interpretation due to the
combined interpretable nature of the models (compared to neural
networks) and the ability to capture nonlinear relationships (compared
to logistic regression models)®. Average gini impurity decrease for
each feature was utilized to evaluate the importance of each feature
in the RF models (feature importance). The average importance for
each feature was takenacross each time point model (-7 years, -Syears,
-3 years,-1year and -1day) to obtain anacross-modelimportance for
each model type, and normalized by the maximum importance value
across all time point models within each model type (for example, RF)
and group (for example, female strata). Feature importances were
then ranked within each model to obtain relative importance within
each of the time points.

Asapatient’s exposure toamedication or alaboratory test is often
aresult of adiagnosis, we pursued interpretability based on diagnostic
features that have been mapped to phecodes, which is a semi-manual
hierarchical aggregation of meaningful EHR phenotypes®. This allows
for a lossy categorization of detailed OMOP features (OMOP IDs) to
phecodes (OMOPID » SNOMED - ICD-10 » phecode) and phecode cat-
egory. SNOMED IDs were mapped to ICD-10 based upon recommended
rule-based mappings from the National Library of Medicine September
2022 release (https://www.nlm.nih.gov/healthit/snomedct/us_edi-
tion.html).ICD-10 codes were then mapped to phecodes based onthe
release fromref. 96. To obtain theimportance withineach phecode or
phecode category, the average importance for the top five detailed
OMOP features per phecode or phecode category was computed, and
ranked between phecodes or categories. For phecodes across all mod-
els and sex-stratified models, the ranking of importance of phecodes
across each time model was hierarchically clustered with Ward linkage.

To compare top phecodes between sex-stratified models to iden-
tify sex-specific features, top RF features over an average importance
threshold of 1 x 10" were identified per time model trained on matched
participants. Upset plots were then generated for each time point based
uponthis overlap. Female-driven features were defined as features that
existinboth the fullmodel and female models, or only female models,
and male-driven features were defined analogously.

UC-wide validation analysis with hypothesis-driven
retrospective cohort analysis

Two top clinical features were selected from the matched all-partici-
pant model (HLD) and matched sex-specific models (osteoporosis) and
further followed up onanexternal EHR database to validate the feature
as predictive and conferring risk for AD diagnosis. With these features
defined as exposures, hypothesis-driven analysis was performed with
aretrospective cohort study design on the University of California
hospital EHR database (UCDDP) with exclusion of any patients seen
at UCSF, so with included institutions consisting of UC Davis, UC Los
Angeles, UC Riverside, UC San Diego and UC Irvine. Exposed partici-
pantswereidentified with the exposure (HLD or osteoporosis), which
were identified by string-matching and mapping to all descendants
or related concepts based on the OMOP relationship tables, and final
SNOMED codes are shown in Supplementary Tables 6 and 7. Controls
were identified among the remaining participants. Recruitment age
was defined as the age of exposure diagnosis (for exposed cohort) or
thefirst visit age inthe visit_occurrence table (for unexposed or control
cohort), which was then matched to represent the start of the cohort
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study timeline. All participants were then filtered to have at least 2 years
ofrecordsinthe EHR, and last visit age was utilized for right censorship.

The outcome of interest was AD diagnosis, which was identified
based on SNOMED codes 26929004, 416780008 and 416975007 (Sup-
plementary Table 5). Exposed and control (unexposed) groups were
then matched based on demographics (gender, race and ethnicity),
birth year and recruitment age (propensity score estimated based
upon a logistic regression model, nearest-neighbor matching with-
out replacement). We utilized the gender_id column to identify sex,
as the standard documentation intend for this column to represent
biological sex (https://ohdsi.org/web/wiki/doku.php?id=document
ation:vocabulary:gender/). Note that only two options exist (female
concept_id =8532 and male concept_id = 8507), and that accurate sex
and gender information may be limited depending on the institution
or EHR collection of sex information.

Analysis of time to AD diagnosis includes utilization of Kaplan-
Meier survival curves fitted with 95% Cls and two-sided log-rank test
to compare survival curves between groups. Sex-stratified curves were
also fitted. Cox proportional hazard models were utilized to obtain
unadjusted HRs and aHRs by demographics and/or visit information,
with and without stratification by recruitment age or birth year, and
with 95% Cls.

Heterogeneous network analysis

Heterogeneous knowledge networks, such as SPOKE, integrate known
relationships across biological and phenotypic data realmsin databases
and literature. Such anetwork could provide hypotheses to explainrela-
tionships between groups of phenotypes that may not be immediately
known®*%, We proceeded with interpretation on the matched models,
with the top 25 model features taken for each time point and mapped
to SPOKE nodes based on ref. 29. Note that mappings may not be1to
1. All shortest paths were then computed from each input node to the
ADnode (DOID:10652), and the shortest paths were filtered to exclude
certainnode types (Anatomy, SideEffect, AnatomyCellType,Nutrient)
and edges (CONTRAINDICATES_CcD, CAUSES_CcSE, LOCALIZES DIA,
ISA_AiA, PARTOF_ApA, RESEMBLES _DrD).Edges were alsofiltered based
on the following criteria: TREATS_CtD at least phase 3 clinical trial,
UPREGULATES_KGuG/DOWNREGULATES_KGdG Pvalueat most1x10™,
PRESENTS DpS enrichmentat least 5and Fisher Pvalue atmost1x107*,

If multiple detailed OMOP features map to the same node, the
importance of the node was obtained by the average of OMOP feature
importances. Networks for all time models were combined into a sin-
gle network (union of nodes and edges), and total node importance
was determined by the maximum across time. Network metrics were
then computed with the Cytoscape ‘Network Analyzer’ function”. The
combined time model networks were thensorted by eccentricity metric
onthexaxis (representing maximum distance to all other nodes, with
thelower number representing higherimportance) and the number of
individual time model network occurrencesin the yaxis (showing node
importance persistence across time). With this layout, highly traversed
nodesinthe shortest paths between multiple EHR informed top model
features and AD can be identified and prioritized for hypothesis gen-
erationand furtherinvestigation. Note that due to the heterogeneous
nature of edges and lack of edge weighting, distances in the figures are
not meaningful.

Tofocusontwo selected features for the fullmatched model (HLD)
and the female-specific matched model (osteoporosis), the combined
network was filtered based on first-degree and second-degree neigh-
bors of the starting feature of interest. This allows for visualization of
associated genes and AD, as well as relationships with other top model
features found from the clinical models.

Validation with genetic datasets
We further explored the association between clinical predictors and
AD by identifying shared genetic loci between top model phenotypes

and AD, based on colocalization probability and weighted evidence
associationscores computed from Open Targets Genetics®® (https://
genetics.opentargets.org/). Colocalization analysis is a method that
determinesiftwoindependentsignals atalocus shareacausal variant,
which helpsincrease the evidence that the two traits (for example, HLD
and AD, or protein expression and AD) also share a causal mechanism.
Itis aBayesian method which, for two traits, integrates evidence over
all variants at a single locus to evaluate the following hypothesis that
two associated traits share a causal variant. This is the H4 probability.

We firstidentified shared loci between the selected phenotypes
(HLD or osteoporosis) and AD by identifying the genetic intersection
between AD and related phenotypes in Open Targets Genetics.

For HLD and AD, we utilized the Open Targets Genetics platform
to identify overlapping variants and shared loci between LDL cho-
lesterol and family history of AD or phenotype AD (https://genet-
ics.opentargets.org/study-comparison/GCST002222?studylds=G
CST90012878/). PheWAS between a shared genetic variant and UK
Biobank phenotypes were plotted and extracted from the Open Targets
Genetics platform. Colocalization analysis tables between the gene,
molecular RNA or protein expression, and phenotypes were extracted,
withapolipoprotein E protein QTL for APOE gene specifically identified
based on blood plasma quantity data fromrefs.100,101.

Similarly for osteoporosis and AD, we utilized the Open Genetics
platform to identify shared loci between HBMD (proxy for osteopo-
rosis) and family history of AD or phenotype AD (https://genetics.
opentargets.org/study-comparison/GCST006979?studylds=G
CST90012877/). Tofurther investigate the shared locus, we extracted
GWAS summary statistics from ref. 35 for AD and sex-stratified GWAS
summary statistics for low HBMD from Neale’s Lab GWAS round 2,
phenotype code: 3148, based on data from the UK Biobank (www.
nealelab.is/uk-biobank/)'°2. We then conducted colocalization analysis
using the coloc method described in ref. 103, from R package coloc
5.1.0.Summary statistics for MS4A6A cis-eQTLin blood were extracted
from eQTLGen'", and colocalization analysis was performed between
AD, sex-stratified low HBMD and MS446A eQTL on the locus region
60050000-60200000 of chromosome 11 (locus image from NCBI
Genome Data Viewer). To investigate further associations with the
locus, M§4A6A associations with all other phenotypes were extracted
from Open Targets Genetics platform with inclusion of weighted
literature evidence association scores.

Statistics and reproducibility
All analyses were performed on datasets where data collection was
completed previously. While randomization is not possible in obser-
vational datasets like the EHR, we used propensity score matching, an
approach in causal inference to match by probability of group mem-
bership, to enable identification of matching case and control groups
and mimic randomization. Quality of matching can be assessed with
standardized mean difference of relevant covariates. Blinding is not
applicable to this study. Inclusion and exclusion of participants are
described in the above sections and summarized in Fig. 1b to ensure
specificity of groups and observed time frames. No further data were
excluded from analyses.

No statistical method was utilized to predetermine sample size.
For all statistical analysis, non-parametric tests were used if normality
isnotassumed about the datadistribution, otherwise normal distribu-
tion was assumed but not formally tested.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
EHR concepts and identification approaches are described in the
Methods, and concepts are derived from the OMOP common data
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model structure (Supplementary Tables 1 and 2). Model inputs and
importances can be found in Supplementary Data 1. Phecodes can be
downloaded at https://phewascatalog.org/phecodes_icd10 or https://
phewascatalog.org/phecodes, and mappings between ICD-10 codes
and SNOMED can be accessed at https://www.nlm.nih.gov/healthit/
snomedct/us_edition.html. Data for UK Biobank phenotype GWAS sum-
mary statistics can be found at https://www.nealelab.is/uk-biobank/,
and eQTL data can be downloaded from https://www.eqtlgen.org/.
For the P-P and eQTL plots, documentation for the Open Targets
APl canbe found at https://www.genetics.opentargets.org/api/.
Access to EHR databases and participant-identifiableinformation are
controlled due to the sensitive nature of the data. The UCSF EHR data-
base canbe accessed by UCSF-affiliated individuals by contacting UCSF
Clinical and Translational Science Institute (ctsi@ucsf.edu) or UCSF’s
Information Commons team (info.commons@ucsf.edu). If thereader
isunaffiliated with UCSF, they canset up an official collaboration with
aUCSF-affiliated investigator by contacting the principal investigator,
M.S. Participant datafrom the UCSF Memory and Aging Center can be
requested at https://memory.ucsf.edu/research-trials/professional/
open-science/or througha collaboration witha principal investigator
affiliated with the UCSF Memory and Aging Center. Requests should
be processed within a couple of weeks. UCDDP is only available to
UC researchers who have completed analyses in their respective UC
first and have provided justification for scaling their analyses across
UC health centers (more details at https://www.ucop.edu/uc-health/
departments/center-for-data-driven-insights-and-innovations-cdi2.
html or by contacting healthdata@ucop.edu). The SPOKE knowledge
network canbeaccessed at https://spoke.rbvi.ucsf.edu/neighborhood.
html. More details about the network can be foundin ref. 30 and map-
pings to EHR concepts can be found in ref. 29.

Code availability

Code for prediction models canbe found at https://github.com/al1563/
ADprediction_code/. Other code can be made available uponrequest.
Relevant packages include Python scikit-learn version 0.23.2, scipy
version1.2.0,joblibversion1.1.0, lifelines version 0.27.4, tableone ver-
sion 0.7.12 and R coloc version 5.1.0.
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Extended DataFig. 5| Logistic regression models and top coefficients. a.
The full performance of logistic regression models. The bootstrapped AUROC/
AUPRC is determined the 30% held-out evaluation set (n =300 bootstrapped
iterations of 1000 patients). The box shows quartiles (25%, 50%, 75%ile), and
whiskers extend to 1.5*interquartile range, with remaining points as outliers.

b. Top detailed OMOP feature logistic regression coefficients are listed by
importance for allmodel formulations. Top row shows coefficients from the
model trained on all patients, while the bottom row shows coefficients from
the model trained on matched cohorts. c. The full performance of sex-stratified
logistic regression models is shown. The bootstrapped AUROC/AUPRC s

determined by the male or female strata of the initial 30% held-out evaluation

set (n =300 bootstrapped iterations of 1000 patients for each sex). The box
shows quartiles (25%, 50%, 75%ile), and whiskers extend to 1.5*interquartile
range, with remaining points as outliers. d. Top phecode categories across time
models and across strata, determined by the top 10 logistic regression coefficient
magnitudes within each category. e. Top 50 important phecodes clustered by
average logistic regression coefficient across time models and across strata,
where the average logistic regression coefficient is determined by the top 10
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Extended Data Fig. 8 | External EHR validation supportincreased AD
diagnosis with hyperlipidemia and osteoporosis exposure. a. Sex-stratified
combined Kaplan-Meier survival curves with hyperlipidemia (HLD) as the
exposure (curve shows survival fraction, error bands show 95% confidence
interval). Patient attrition is shown in the middle for each subgroup. Below,
two-sided log rank test comparison results are shown. F = female, M = male.

b. Sex-stratified combined Kaplan-Meier survival curves with osteoporosis as
the exposure (curve shows survival fraction, error bands show 95% confidence
interval). Patient attrition is shown in the middle for each subgroup. Two-sided
log rank test comparison results are shown below. c. Hyperlipidemia exposure
cox proportional hazard models for AD as the outcome, shown are the hazard
ratios and 95% confidence intervals obtained from the exposure coefficient for
unadjusted, demographic adjusted (gender, age, race, ethnicity), visit adjusted

(first visit age, log(number of visits)), and demographic/visit adjusted. Right
group shows computed hazard ratios with stratification by recruitment or
starting age (age strata: <55, 55-60, 60-65, 65-70, 70-75, 75-80, >80). P-values are
computed by aWald’s test whose distribution is approximated by a Chi-squared
test (two-sided) with one degree-of-freedom. d. Osteoporosis exposure cox
proportional hazard models for AD as the outcome, shown are the hazard
ratios and 95% confidence intervals obtained from the exposure coefficient

for unadjusted, demographic adjusted, visit adjusted, and demographic/visit
adjusted. Right group shows computed hazard ratios with stratification by
recruitmentor starting age (age strata: <60, 60-65, 65-70,70-75,75-80, >80).
P-values are computed by a Wald’s test whose distribution is approximated by a
Chi-squared test (two-sided) with one degree-of-freedom.
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Data collection  No new data was collected for this study. No software was used for data collection.

Data analysis Code for prediction models can be found at github.com/al1563/ADprediction_code.
Relevant packages:
Python
- joblib version 1.1.0
- scikit-learn version 0.23.2
- scipy version >=1.2.0
- lifelines version 0.27.4
- tableone version 0.7.12
R
- coloc version 5.1.0
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- For clinical datasets or third party data, please ensure that the statement adheres to our policy

EHR data is obtained from the UCSF or UC-wide de-identified data warehouse. These datasets are restricted due to the sensitive nature of the data, but affiliated
individuals can request access, or otherwise set up an official collaboration with an affiliated lab. EHR concepts to identify cohorts and controls are described in
Methods and in Supplemental Tables 1 and 2. Further information about specific concepts utilized in models can be found in Supplemental Data.

Phecodes can be downloaded at phewascatalog.org/phecodes_icd10 or phewascatalog.org/phecodes, and mappings between ICD-10 codes and SNOMED can be
accessed at www.nlm.nih.gov/healthit/snomedct/us_edition.html. Open Targets Genetics can be accessed at genetics.opentargets.org, and molecular QTL data can
be queried by their API to identify the source publication. Data for UK Biobank phenotype GWAS can be found at www.nealelab.is/uk-biobank/ (sex-stratified heel
bone mineral density: phenotype code 3148 _irnt), and cis-eQTL data can be downloaded from www.eqtlgen.org/. Demographics and covariates can be found in the
original publications. The SPOKE knowledge network can be accessed at spoke.rbvi.ucsf.edu/, and more details about the network can be found in Morris et al. and
mappings to EHR concepts can be found in Nelson et al.

Human research participants

Policy information about studies involving human research participants and Sex and Gender in Research.

Reporting on sex and gender This study investigated sex as a biological variable, and identified individuals into sex category based on available EHR data.

Population characteristics Machine learning models are trained on individuals seen at UCSF, and clinical validation done on individuals seen at a
University of California health center represented in the UC-wide database. Demographic information including race and
ethnicity are reported in relevant Tables or Supplement Tables. Further genetic validation was performed on prior published
cohorts (which often includes individuals of European ancestry), with relevant studies referenced in the publication.

Within the UCSF EHR, there are 5,582,007 patients. With filtering, 251,294 patients were utilized for analysis.140,016 (55.7%)
are female identifying, with birth year on average in year 1945 (with average age 62.5 in the -7 year model and 69.5 in the -1
day model). In terms of race and ethnicity, 158,232 (63%) are white-identifying, 17,173 (6.8%) are black-identifying, 32,578
(13%) are asian-identifying, and 15,089 (6%) are categorized as latinx (note that at UCSF, race & ethnicity is a single variable
derived from an algorithm developed by the UCSF Data Equity Taskforce to codify aggregated sociopolitical categorizations
based on EHR self-reported identifiers).

Within the UC-wide data, for hyperlipidemia there are 364,289 patients. 184791 (50.7%) are female. In terms of race and
ethnicity, 36,966 (10.1) are asian-identifying, 18,560 (5.1%) are black-identifying, 221,968 (60.9%) are white-identifying, and
48,582 (13.3%) are categorized as hispanic/latino. The estimated age is 64.3 (10.5 sd) at diagnosis (or study recruitment).
Controls matched on these characteristics (more in Supplementary Table 8).

For osteoporosis, there are 68,940 patients, 59,251 (85.9%) female. 8,420 (12.2%) are asian-identifying, 2,065 (3.0%) are
black-identifying, 44,460 (64.5%) are white-identifying, and 7,021 (10.2%) are categorized as hispanic/latino. The estimated
age is 69.2 (9.1 sd) at diagnosis / recruitment.

Recruitment No recruitment was performed.

Ethics oversight This study was approved by the Institutional Review Board of University of California San Francisco (IRB #20-32422).

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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Sample size No sample size calculation was performed prior to study. Sample size was determined by the number of patients with Alzheimer's Disease in
the UCSF database (2,996 AD and 823,671 controls) and sufficient temporal and informational capture in the EHR (over 7 years with at least a
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clinical visit or record, 749 AD patients and 250,545 controls). Training for matched cohort models was performed on a 1:8 propensity-score
matched cohort to allow for both sufficient patient balancing and represent the rate of AD in the population.

Data exclusions | Controls were excluded if diagnosed with dementia (Supplemental Table 1) to increase confidence in capturing controls without AD or
prodromal AD. Both AD and control patients were filtered to include patients at least 55 years of age at index time to capture sufficient
number of patients and data before AD onset (note that AD diagnosis may be given past index time).

Replication Not applicable. While this study did not replicate, validation was performed in the University of California EHR system and with prior published
genetic/molecular datasets.

Randomization  Notapplicable because this study did not acquire new data and therefore randomization is not possible in observational datasets like the EHR.
Pseudo-randomization was performed with propensity score matching, an approach in causal inference to match by probability of group
membership, to enable identification of matching case and control groups and mimic randomization. Quality of matching can be assessed

with standardized mean difference of relevant covariates and is shown in relevant patient characteristic tables.

Blinding Not applicable because this study did not acquire new data and utilized data acquired from health care use and prior publications.
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