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Abstract. Antimalarial drugs are key tools for the control and elimination of malaria. Recent decreases in the global
malaria burden are likely due, in part, to the deployment of artemisinin-based combination therapies. Therefore, the emer-
gence and potential spread of artemisinin-resistant parasites in southeast Asia and changes in sensitivities to artemisinin
partner drugs have raised concerns. In recognition of this urgent threat, the International Centers of Excellence for
Malaria Research (ICEMRs) are closely monitoring antimalarial drug efficacy and studying the mechanisms underlying
drug resistance. At multiple sentinel sites of the global ICEMR network, research activities include clinical studies to
track the efficacies of antimalarial drugs, ex vivo/in vitro assays to measure drug susceptibilities of parasite isolates,
and characterization of resistance-mediating parasite polymorphisms. Taken together, these efforts offer an increasingly
comprehensive assessment of the efficacies of antimalarial therapies, and enable us to predict the emergence of drug
resistance and to guide local antimalarial drug policies. Here we briefly review worldwide antimalarial drug resistance
concerns, summarize research activities of the ICEMRs related to drug resistance, and assess the global impacts of the
ICEMR programs.

INTRODUCTION

Despite important gains in some areas, malaria remains a
major problem in most of the tropical world, and it continues
to cause hundreds of millions of illnesses and hundreds of
thousands of deaths each year.1 Most serious illnesses and
deaths from malaria and also most drug-resistant infections are
due to infection with Plasmodium falciparum, the most virulent
human malaria parasite. In addition, there is increasing appre-
ciation of the importance of Plasmodium vivax, the other com-
mon human malaria parasite, as a cause of serious illnesses,
and its resistance to antimalarial drugs is now well described.2

The control and eventual eradication of malaria depend on
a small set of tools. For control of anopheline mosquito vectors
the values of insecticide-impregnated bednets and indoor resid-
ual spraying of insecticides have been clearly demonstrated,3

but their efficacy will be limited without coincident efforts
directed against malaria parasites. An effective vaccine against
malaria would be extremely valuable. Unfortunately, although
the RTS,S vaccine, which has offered modest protection against
malaria in African children,4 may be available in a few years,
no highly effective vaccine is on the horizon. Thus, appropriate
use of antimalarial drugs remains a cornerstone of malaria
control. Drugs have two key roles for malaria control. First,
prompt and effective treatment of malaria prevents progression
to severe disease and limits the development of gametocytes,
thus blocking transmission to mosquitoes.5 Second, drugs can
be used to prevent malaria in endemic populations, including
various strategies of chemoprophylaxis, intermittent preventive
therapy, and mass drug administration.6

The ICEMR network includes 10 groups focused on malaria
surveillance and related activities in 10 different malaria-

endemic regions. This article discusses current knowledge of
antimalarial drug resistance, including activities of ICEMR
groups to assess and characterize resistance in different regions.

ANTIMALARIAL DRUGS

Antimalarial drugs act principally to eliminate the erythro-
cytic stages of malaria parasites that are responsible for human
illness. Drug regimens for treatment of the two most prevalent
malaria parasites, P. falciparum and P. vivax, are different.
With frequent resistance to older drugs, artemisinin-based
combination therapy (ACT) is now recommended for the
treatment of uncomplicated falciparum malaria in nearly all
areas.7 Chloroquine plus primaquine remains the first-line
regimen for radical cure of vivax malaria in most regions.
ACT consists of a potent artemisinin component, which rapidly
clears most parasites, plus a longer acting partner drug, which
eliminates remaining parasites and limits selection of artemisinin
resistance.7 The ACTs recommended by the World Health
Organization (WHO) are artemether/lumefantrine, artesunate/
amodiaquine, artesunate/mefloquine, dihydroartemisinin/piper-
aquine, artesunate/pyronaridine, and artesunate/sulfadoxine–
pyrimethamine. ACTs are also effective against erythrocytic
stages of non-falciparum malaria parasites. Multiple drugs
are used to prevent malaria. Recommendations for travelers
from nonendemic to endemic areas generally advocate use of
atovaquone/proguanil (Malarone), mefloquine, or doxycycline
in chemoprophylactic regimens.8 In Africa, intermittent preven-
tive therapy is advocated in some high-risk populations, including
sulfadoxine/pyrimethamine during pregnancy and amodiaquine/
sulfadoxine–pyrimethamine as seasonal malaria chemoprophy-
laxis in the Sahel subregion, where there is little resistance to
these drugs.6

Available antimalarial drugs can be divided into multiple
classes (Table 1). The 4-aminoquinoline, chloroquine, was the
gold standard for the treatment of uncomplicated malaria for
many years, but it is no longer appropriate for the treatment
of falciparum malaria in nearly all areas because of drug resis-
tance. In Indonesia, increased resistance to chloroquine in
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P. vivax prompted a policy change to ACTs for vivax malaria.9

Amodiaquine appears to be subject to the same resistance
mechanisms as chloroquine, but due to improved potency it
provides adequate efficacy against many chloroquine-resistant
parasites, and it is a component of thewidely usedACTartesunate/
amodiaquine.A third 4-aminoquinoline, piperaquine, was widely
used to treat and prevent malaria in China a few decades ago,
but it then fell into disfavor because of increasing drug resis-
tance.10More recently, piperaquine has become a component of
another ACT, dihydroartemisinin/piperaquine. The 8-amino-
quinoline, primaquine, has some activity against erythrocytic
parasites, but it is used principally to eliminate parasite liver
stages, including the exoerythrocytic forms that precede erythro-
cytic infection in all species and the hypnozoites that cause latent
infections with P. vivax and Plasmodium ovale. Primaquine also
acts against gametocytes, thereby lowering transmission of para-
sites to mosquito vectors. Quinine is an arylamino alcohol that is
the oldest antimalarial drug, used as cinchona bark since the
1600s and in its pure form since 1820.11 Quinine is quite hard to
tolerate, and its use is best limited to the treatment of severe
malaria. Important malaria-related drugs are mefloquine and
lumefantrine, components of the ACTs artesunate/mefloquine
and artemether/lumefantrine.
Antifolates target parasite dihydrofolate reductase (DHFR)

and dihydropteroate synthase (DHPS). Sulfadoxine/pyrimeth-
amine has the distinct advantage of single-dose therapy, but
its treatment efficacy is seriously limited by drug resistance.
The naphthoquinone atovaquone acts against the mitochondrial
cytochrome bc1 complex. Combined with the DHFR inhibitor
proguanil as Malarone, it offers effective albeit expensive therapy
and chemoprophylaxis for falciparum malaria, although it is
noteworthy that the synergy of this combination appears to be
independent of inhibition of folate synthesis. Several antibiotics
that are prokaryotic protein synthesis inhibitors have antimalarial
activity because of action against the protein synthesis machinery
of the apicoplast organelle.12 Doxycycline is used for chemopro-
phylaxis against malaria, and doxycycline or clindamycin are com-
bined with quinine to treat falciparum malaria.
The most important new class of antimalarials is the

artemisinins, which were developed from a natural product
remedy in China.13 Artemisinin is a potent antimalarial, but the

derivatives artesunate, artemether, and dihydroartemisinin are
most widely used as components of ACT regimens. Indeed, the
use of artemisinins outside combination regimens is strongly dis-
couraged by the WHO because of fear of selecting for resis-
tance to this important class of drugs. Artemisinins are highly
effective against acute malaria, but short acting, so combination
with longer-acting drugs in ACTs allows short (3-day) courses
of treatment that protect against the selection of resistance to
the artemisinin component.7 Because of its rapid action, intrave-
nous artesunate is also the new gold standard for the treatment
of severe falciparum malaria, with documented survival advan-
tages compared with intravenous quinine.14,15

ANTIMALARIAL DRUG RESISTANCE

The efficacies of many antimalarial drugs are limited by drug
resistance, and recent evidence suggests that parasites are becom-
ing resistant to the newest agents. However, the extent of resis-
tance varies, such that in many cases drugs with resistance
concerns are nonetheless offering good effectiveness for the
treatment and control of malaria. Resistance has been described
for nearly all available drugs, as is discussed below. For many
drugs the extent of resistance is uncertain and mechanisms of
resistance are unknown, and thus the opportunity to glean data
from the 10 ICEMR surveillance sites is highly valuable. Resis-
tance can be assessed by clinical trials comparing antimalarial
efficacies of different agents, ex vivo/in vitro assessment of sensi-
tivities of cultured P. falciparum, evaluation of genetic polymor-
phisms associated with resistance, or by assessing the selective
pressure of antimalarial treatment on subsequent infections.
Studies considering all of these factors have shed light on the
extent of resistance and onmechanisms of resistance.
Resistance mediated by transporter mutations. The P.

falciparum genome encodes multiple predicted transporters.16

Polymorphisms in transport proteins can mediate resistance to
many agents active against cancer and infectious diseases via
enhancing efflux of the drugs from cells.17 It appears that a num-
ber of plasmodial proteins transport different drugs and that poly-
morphisms in these proteinsmay impact on drug sensitivity.18

pfmdr1. Polymorphisms in the P. falciparum multidrug
resistance-1 (pfmdr1) gene, which encodes the P-glycoprotein

TABLE 1
Currently used antimalarial drugs

Class Drug Use

4-Aminoquinoline Chloroquine Treatment of non-falciparum malaria
Amodiaquine Partner drug for ACT
Piperaquine ACT partner drug with dihydroartemisinin as ACT

8-Aminoquinoline Primaquine Radical cure and terminal prophylaxis of Plasmodium vivax and
Plasmodium ovale; gametocytocidal drug for Plasmodium falciparum

Radical cure of P. vivax and P. ovale
Quinine Treatment of P. falciparum and severe malaria

Arylamino alcohol Mefloquine Prophylaxis and partner drug for ACT for treatment of falciparum
Lumefantrine Combination with artemether as ACT

Sesquiterpene lactone
endoperoxides

Artemether ACT: combination with lumefantrine
Artesunate ACT; treatment of severe malaria
Dihydroartemisinin ACT: combination with piperaquine

Mannich base Pyronaridine Combination with artesunate as ACT
Antifolate Pyrimethamine/sulfadoxine Treatment of some chloroquine-resistant parasites; Combination with

artesunate as ACT
Naphthoquinone/antifolate Atovaquone/proguanil Combination for prophylaxis and treatment of P. falciparum (Malarone)
Antibiotic Doxycycline Chemoprophylaxis; treatment of P. falciparum

Clindamycin
ACT = artemisinin-based combination therapy.
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homolog, impact on sensitivity to multiple antimalarial
drugs.19–21 In humans, P-glycoprotein polymorphisms are asso-
ciated with resistance to cancer drugs.22 In P. falciparum, the
function of the pfmdr1 product is unknown, but the protein
localizes to the membrane of the food vacuole, the site of
action of a number of drugs, suggesting that it is a drug trans-
porter.23 Data on associations between pfmdr1 polymorphisms
and drug sensitivity are complex, but overall suggest that
changes in pfmdr1 sequence or copy number alter transport of
multiple drugs in or out of the parasite food vacuole, with indi-
vidual polymorphisms leading to opposite effects on different
drugs.24 Increased copy number of pfmdr1, which is prevalent
in southeast Asia, has been associated with extensive use of
mefloquine.25 Experimental evidence indicates that pfmdr1
amplification also leads to decreased sensitivity to quinine,
lumefantrine, and artemisinin.26 Mutations at pfmdr1 N86Y
and D1246Y (for this and other P. falciparum genes, wild type
sequence is based on the 3D7 reference strain), which are com-
mon in Africa, have been linked to decreased sensitivity to
chloroquine and amodiaquine, but increased sensitivity to
lumefantrine, mefloquine, and artemisinins.27–31 Other poly-
morphisms primarily seen outside Africa (including 1034C and
1042D) are associated with altered sensitivity to lumefantrine,
mefloquine, and artemisinins.26,29,32–34 Considering infections
that emerge soon after prior therapy, amodiaquine-containing
regimens selected for the 86Y and 1246Y mutant alleles35–37

and for parasites with decreased in vitro sensitivity to the active
metabolite monodesethylamodiaquine38 in subsequent infec-
tions. The selective pressure of the related aminoquinoline
piperaquine seems less marked than that of amodiaquine,
but prior use of the drug also selected for the pfmdr1 86Y and
1246Y mutations.31,39 In contrast, therapy with artemether/
lumefantrine selected for the N86 and D1246 wild type alleles
in subsequent infections within 60 days of prior ther-
apy.31,35,36,39–43 Importantly, impacts of pfmdr1 polymorphisms
on drug sensitivity are modest, correlations between particular
polymorphisms and treatment efficacy have not been seen, and
the ACTs artesunate/amodiaquine and artemether/lumefantrine
remain highly efficacious for the treatment of uncomplicated
falciparum malaria in Africa.44,45 However, as seen for chloro-
quine and amodiaquine, pfmdr1 polymorphisms may contrib-
ute, with additional polymorphisms, to resistance to increasingly
used components of ACTs.
pfcrt. Soon after the identification of pfmdr1, it became

clear that polymorphisms in this gene are not the primary
mediators of chloroquine resistance. Subsequently, analysis
of progeny of a genetic cross between chloroquine sensitive
and resistant strains led to the identification of pfcrt,46 which
encodes a food vacuole membrane protein that is predicted
to be a member of the drug/metabolite transporter superfam-
ily.47,48 The function of pfcrt is unknown, but apparently
essential, as disruption of the gene has not been possible.49

pfcrt is highly polymorphic, but one single nucleotide poly-
morphism (SNP), K76T, is the primary mediator of chloro-
quine resistance.49,50 The 76T mutation appears to act
principally by increasing the export of chloroquine from the
food vacuole, but the mechanism of pfcrt 76T-mediated
chloroquine resistance is incompletely understood.49 Other
pfcrt SNPs always accompany 76T in field isolates, and these
likely encode compensatory mutations that allow parasites
containing 76T to maintain adequate fitness; some other
SNPs may also contribute directly to the drug resistant phe-

notype. The 76T mutation also mediates decreased sensitivity
to monodesethylamodiaquine, and studies with genetically modi-
fied parasites have shown it to mediate increased susceptibility
to mefloquine and artemisinins,51 suggesting the same reciprocal
relationship between sensitivities to aminoquinolines and other
drugs as described for certain pfmdr1 polymorphisms.
Pfmrp1. Plasmodium falciparum multidrug resistance protein-1

(Pfmrp1) is a member of the ABC transporter superfamily.24

In studies of culture-adapted P. falciparum, SNPs in pfmrp1
were linked to decreased sensitivity to chloroquine and qui-
nine.16 Two SNPs that appear to be common in African para-
sites, I876V and K1466R, were selected by prior treatment
with artemether/lumefantrine52 and sulfadoxine/pyrimethamine,53

respectively, although these SNPs were not associated with altered
drug sensitivity in African isolates.31 pfmrp1 mutations appear to
differ between continents; some SNPs in northeast Myanmar iso-
lates were associated with reduced susceptibilities to chloroquine,
mefloquine, pyronaridine, and lumefantrine.54 Disruption of the
pfmrp1 gene yielded parasites with diminished growth and
increased sensitivity to chloroquine and other drugs, suggesting
a role for this protein in the efflux of antimalarial drugs from the
parasite and in parasite fitness.55

Sodium transporters. Quantitative trait locus analysis identi-
fied three genes predicted to play roles in the responsiveness of
P. falciparum to quinine, pfcrt, pfmdr1, and pfnhe1, which
encode a putative sodium–hydrogen exchanger and are highly
polymorphic.56 pfatp4 encodes a P. falciparum plasma mem-
brane protein that appears to be a sodium efflux pump.57

Recent studies have shown that three different classes of potent
antimalarial compounds, spiroindolones, pyrazoleamides, and
dihydroisoquinolones, all target pfatp4.57–59 Mutations in pfatp4
have been linked to altered sensitivity to these candidate anti-
malarials.58–60 In addition, screening of the “Malaria Box”
chemical library identified 28 compounds of diverse chemo-
types that affected parasite Na+ and pH regulation in a manner
consistent with PfATP4 inhibition.61 A recent clinical trial of
the spiroindolone KAE609 demonstrated excellent efficacy
against falciparum and vivax malaria.62

Resistance to quinine. Resistance to quinine, the oldest
antimalarial drug, was reported first in Brazil63 and later in
southeast Asia.64,65 Quinine resistance is associated with poly-
morphisms in several transporters. As stated earlier, SNPs in
pfmdr1, pfcrt, and pfmrp1 are linked to decreased sensitivity
to quinine. In addition, pfmdr1 gene amplification can also
lead to quinine resistance.66 Recent studies evaluating associa-
tions between polymorphisms in a pfnhe1 microsatellite,
in vitro parasite sensitivity, and clinical responses to various
drugs have been inconsistent, but these polymorphisms appear
to have a modest impact on sensitivity of parasites to quinine,
and possibly other drugs.67–72 In vitro allelic exchange to reduce
the expression of pfnhe1 by ~50% led to a 30% increase in qui-
nine sensitivity in some, but not other parasite strains.73

Resistance to antifolates. The parasite-specific antimetabo-
lite, pyrimethamine, is usually discussed in combination with
its partner drug sulfadoxine (known as SP or Fansidar). Pyri-
methamine was first used as an individual drug, but resistance
was seen within a year in both P. vivax and P. falciparum.74,75

The combination of sulfa drugs and pyrimethamine proved to
be potent in the laboratory, as well as in the field against
chloroquine-resistant uncomplicated malaria but, again, resis-
tance appeared rapidly in the Asia Pacific regions in the late
1970s, as well as in South America.76–79
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Molecular genetic studies attribute pyrimethamine and sulfa
resistance to mutations in the genes coding for the target
enzymes DHFR and DHPS.80,81 These markers have been use-
ful for tracking sulfadoxine/pyrimethamine resistance across the
globe, and show particular promise with new multiplex strate-
gies.82 In the 1990s, sulfadoxine/pyrimethamine found increas-
ing use in Africa to treat widespread chloroquine-resistant
malaria, before sulfadoxine/pyrimethamine resistance followed.
Molecular epidemiology studies utilizing DNA microsatellite
sequences flanking the dhfr gene point to transfer of pyrimeth-
amine resistance from Asia to Africa, possibly from a single
ancestor and possibly before sulfadoxine/pyrimethamine use
even began in Africa.83 In contrast, resistance to sulfa partners
through dhps mutations seemed to occur through de novo
events both in sub-Saharan Africa and in Asia.84,85 Sulfadoxine/
pyrimethamine is no longer recommended as a first-line drug
for the treatment of P. falciparum. However, it continues to be
used in ACTcombinations in most parts of India,86 for intermit-
tent preventive therapy in pregnant women in Africa,87 and for
seasonal malaria chemoprevention in children in the sub-Sahel
of Africa,88 although widespread resistance limits these inter-
ventions.89,90 Perhaps not surprisingly, sulfadoxine/pyrimeth-
amine resistance in P. vivax appeared in Asia and the Pacific
Islands, whereP. falciparum andP. vivax coexist.91–94

Resistance to artemisinin family drugs. Since artemisinins
play an indispensable role in current malaria therapies,
artemisinin resistance has received wide recent attention. In
the Cambodia–Thailand border region of southeast Asia, an
epicenter of antimalarial drug resistance, declining efficacy of
the artesunate/mefloquine combination was noted,95 and clini-
cal resistance to artesunate, manifested as delayed clearance of
parasitemia after therapy, but not generally as full-blown treat-
ment failure, was documented in 2008.96–98 The delayed para-
site clearance phenotype does not correspond to increased
artemisinin half maximal inhibitory concentration (IC50) values,
as determined by standard in vitro assays, but does correspond
to decreased susceptibility assessed 72 hours after a pulse of
dihydroartemisinin using the new ring-stage survival assay.99,100

Attempts to select resistance to artemisinins in vitro using
constant or pulsed drug selection pressure initially identified
pfmdr1 amplification and increased antioxidant levels in
selected parasites.101,102 In field-based studies, genome-wide
association studies identified regions on chromosome 13 linked
to delayed parasite clearance.103,104 Using a combined resistance
selection and genomic approach, Ariey and others105 identified
mutations in the propeller domain of the P. falciparum kelch
(K13) gene (PF3D7_1343700) associated with delayed para-
site clearance after artemisinin therapy in southeast Asia.

Very recently, using clinical and molecular data, the extent
of artemisinin resistance has been delineated, with delayed
clearance and K13 mutations common in parts of Cambodia,
Thailand, Myanmar, and Vietnam, but not in other areas of
Asia or Africa.106–108 Other reports from Cambodia have shown
recrudescent infections after treatment with dihydroartemisinin/
piperaquine, raising the concern that resistance to artemisinin
partner drugs has been facilitated by the spread of artemisinin
resistance.109 In African parasites, although K13 gene polymor-
phisms are common, including some mutations in the propeller
domain, the specific mutations associated with artemisinin resis-
tance in southeast Asia have not been seen.110–112 Parasites with
introduced K13 mutations showed enhanced survival after a
dihydroartemisinin pulse, confirming the role of these mutations
in resistance.113 The transcriptomes of resistant parasites showed
increased expression of unfolded protein response pathways
and prolonged ring-stage development, offering insights into the
mechanism of artemisinin resistance.114

Resistance to Malarone. Atovaquone is a potent inhibitor
of electron transport, and studies identified the target of this
drug as the critical quinone-binding sites of cytochrome
b.115,116 When the drug is used alone, resistance develops
rapidly and recrudescence after therapy is common. Resis-
tance is conferred by single-point mutations in the cyto-
chrome b (Pfcytb) gene. Pfcytb mutations 268S and 268N
were associated with Malarone treatment failure.117,118 How-
ever, treatment failure has also been reported in the absence
of these mutations.119–121

ICEMR DATA CONCERNING ANTIMALARIAL
DRUG RESISTANCE

Data from ICEMR sites, collected both before and during
enactment of the ICEMR programs, offer insight into global
drug resistance trends. Research activities at different ICEMR
sites entail clinical studies, ex vivo/in vitro assays, and molecu-
lar studies (Table 2).
Clinical observations. Clinical trials in west Africa, Uganda,

south Asia, and Papua New Guinea (PNG) have generally
shown excellent antimalarial efficacy for the ACTs artemether/
lumefantrine, artesunate/amodiaquine, and dihydroartemisinin/
piperaquine (Supplemental Table 1). In high transmission set-
tings, new infections after ACT therapy may be common, but
true recrudescences after treatment have been very uncom-
mon. In India, particularly in the northeast along the Myanmar
border, where artesunate/sulfadoxine–pyrimethamine combi-
nations are being discontinued, there have been excellent

TABLE 2
Drug resistance surveillance activities in ICEMRs and ICEMR regions

ICEMR Drug efficacy trials Parasite clearance data Ex vivo drug sensitivity* In vitro drug sensitivity† Drug resistance polymorphisms

West Africa Yes Yes Yes Yes Yes
Southern Africa No Yes No No Yes
Malawi Yes Yes No No Yes
Uganda Yes Yes Yes Yes Yes
South Asia Yes‡ Yes No Yes Yes
Southeast Asia Yes Yes No Yes Yes
PNG Yes No Yes No No

ICEMR = the International Centers of Excellence for Malaria Research; PNG = Papua New Guinea.
*Characterization of sensitivity in fresh samples from infected subjects.
†Characterization of sensitivity in culture-adapted parasites.
‡Conducted by ICEMR partners.
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responses to artesunate/mefloquine, artesunate/amodiaquine,
and dihydroartemisinin/piperaquine (Supplemental Table 1).
Even in low-endemicity areas at the China–Myanmar border,
where artemisinins have the longest history of use, excellent
efficacy of the ACTs for treatment of falciparum malaria has
been seen.122 On the other hand, an effectiveness study in
Uganda showed a failure rate of 31% after treatment with qui-
nine.123 In regions of P. falciparum/P. vivax co-endemicity,
P. falciparum typically shows rapid responses to control efforts,
whereas P. vivax prevalence subsides more slowly. In northeast
Myanmar, follow-ups of P. vivax cases after chloroquine/
primaquine treatment indicated an increase in cases with recur-
rent parasitemia within 28 days compared with a prior report,124

suggesting the emergence of chloroquine resistance.125 Ongoing
clinical efficacy studies at the ICEMR sentinel sites will be
important to offer a longitudinal appreciation of drug efficacy
and provide a scientific basis to guide local drug policy (Table 3).
Ex vivo and in vitro studies. Studies on ex vivo (parasites

studied immediately after collection from infected patients)
or in vitro (parasites studied after culture adaptation) anti-
malarial drug sensitivity of P. falciparum have been conducted
by ICEMR groups from west Africa, Uganda, south Asia,
southeast Asia, and PNG (Supplemental Table 2). Ex vivo
studies have the advantage of testing samples directly from
patients without potential selection biases due to constraints
of culturing and cryopreservation. However, the results may
be confounded by the presence of multiple clones of parasites
that differ in sensitivities to the test drugs. In vitro assays
performed with culture-adapted parasite clones allow assays
to include multiple biological replications and provide better
opportunities for subsequent genetic analysis. In general,
these studies have shown that African parasites have varied
sensitivities to chloroquine and amodiaquine, and good sensi-
tivities to dihydroartemisinin, the active metabolite of all
artemisinin derivatives, and to the ACT partner drugs
lumefantrine, mefloquine, and piperaquine.31,126,127 In Uganda,
increased deployment of artemether/lumefantrine was linked to
some decrease in in vitro susceptibility to lumefantrine.31

In Thailand, reduced lumefantrine susceptibility might have
resulted from extensive use of mefloquine, another amino-
alcohol.128 Clinical and in vitro resistance to quinine has
been seen in southeast Asia, but not consistently in Africa. In
Senegal and Uganda, for example, P. falciparum parasites
appeared to be susceptible to quinine in vitro.126,129 In compar-
ison, data from southeast Asia showed a mean IC50 greater
than 500 nM.68 Similar to African parasites, southeast Asian
isolates were generally sensitive to artemisinins and the ACT
partner drugs lumefantrine and mefloquine.130 Yet, longitudinal
studies revealed gradual decrease of susceptibility to pipera-
quine, and a high correlation between chloroquine and
piperaquine IC50 values.131 However, only limited results are
available, and considerations of ex vivo/in vitro results is com-

plicated by varied methodologies used by different groups,
difficulties of interpreting results for polyclonal infections, and
uncertain correlations between in vitro findings and clinical
efficacy. Commonly used ex vivo/in vitro assays measure the
parasite histidine-rich protein-2 by enzyme-linked immunosor-
bent assay, replication of parasite DNA by isotope incorpora-
tion, or use of a fluorescent dye such as SBYR Green I.132,133

To enhance comparisons among sites, ex vivo/in vitro assays
should consider the inclusion of a standard laboratory strain
(such as 3D7) as an internal control. Further, the new ring-
stage survival assay99 should be adopted in multiple ICEMR
sites to monitor the emergence and spread of artemisinin
resistance. Some ICEMRs also have prevalent transmission of
vivax malaria. Ex vivo drug assays for P. vivax are also being
conducted (Table 3), but the assays are constrained by diffi-
culties of P. vivax culture and the appreciation that assays for
certain drugs (e.g., chloroquine) require a high proportion of
parasites at the ring stage and a high parasitemia.
Genotyping drug resistance–mediating polymorphisms.

Studies of genetic polymorphisms associated with drug resis-
tance are technically much simpler than in vitro studies of para-
site sensitivity, and so results are more widely available. Studies
of P. falciparum genetic polymorphisms have been conducted
by ICEMR groups from west Africa, southern Africa, Uganda,
south Asia, southeast Asia, and PNG (Supplemental Tables 3
and 4). As has already been well documented in past studies,
the prevalence of a number of polymorphisms that impact on
drug sensitivity varies greatly around the world. Also of interest
are changes in polymorphism prevalence over time. In Uganda,
parasites have demonstrated marked changes in the prevalence
of some key polymorphisms over the last decade, coincident
with changes in treatment practices for malaria from chloro-
quine to chloroquine/sulfadoxine–pyrimethamine to artemether/
lumefantrine. Most notably, the prevalence of three wild type
alleles, pfcrt K76, pfmdr1 N86, and pfmdr1 D1246, has all
increased markedly in recent years134 and this increase was
greater in children treated with artemether/lumefantrine for all
episodes of malaria than in those treated with dihydroartemisinin/
piperaquine.39 This is in sharp contrast to the P. falciparum para-
sites at the China–Myanmar border area, where pfcrt 76T and
220S remained almost fixed in a recent study.135 Recently, the
Uganda ICEMR group showed that therapy with artemether/
lumefantrine selects for the wild-type polymorphisms associated
with decreased lumefantrine efficacy and, in ex vivo studies, for
parasites with diminished lumefantrine sensitivity.31 Importantly,
despite these changes, sensitivity to lumefantrine remains quite
good, and artemether/lumefantrine treatment efficacy is excellent.
However, recent unpublished trials (Yeka and others, unpublished
data) showed that in 2013–2014 artemether/lumefantrine was
less efficacious than artesunate/amodiaquine at three different
sites in Uganda, a change in relative treatment efficacy com-
pared with older findings.44,136 These results suggest that

TABLE 3
Studies of Plasmodium vivax

ICEMR/region

Drug efficacy trials

Ex vivo drug sensitivity

Drug resistance polymorphisms

ACT CQ/primaquine pvmdr1 pvdhfr

Southeast Asia No Yes Yes Yes No
South Asia Yes Yes Yes Yes Yes
PNG AL, DP, ART/NQ, ART-SP CQ-SP and AQ-SP, no primaquine No Yes Yes
ACT = artemisinin-based combination therapy; AL = artemether/lumefantrine; ART = artemisinin; AQ = amodiaquine; CQ = chloroquine; DP = dihydroartemisinin/piperaquine; ICEMR =

the International Centers of Excellence for Malaria Research; MQ = mefloquine; NQ = naphthoquine; PNG = Papua New Guinea; SP = sulfadoxine/pyrimethamine.
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recent changes in treatment practices have led to changes in
P. falciparum in Uganda that have mediated decreased anti-
malarial efficacy of artemether/lumefantrine, the first-line
antimalarial drug in the country. An urgent issue that the
ICEMRs are addressing is monitoring of the emergence and/
or spread of artemisinin resistance.110 The identification of
the K13 gene as a molecular marker for artemisinin resis-
tance will facilitate large-scale surveillance.137

RESISTANCE AND FITNESS

One of the challenges to studying the interplay between par-
asite drug resistance and fitness is the lack of a direct measure
for fitness. Comparison of relative growth rates in vitro or
ex vivo is the commonly used approach, although growth rates
may not represent relative fitness in the natural host. Assess-
ment of parasite survival in the field provides an improved
measure, although analyses are challenging. It has long been
observed that P. falciparum genetic mutations that confer drug
resistance are associated with altered biological fitness of the
parasite.138–140 However, various investigators have reported
both increased141–143 and decreased144–146 fitness in resistant
parasites. The latter would seem intuitive from initial low prev-
alence of innate resistance observed in the field for some anti-
malarials such as mefloquine and atovaquone, presumably
owing to the mutant parasites being outcompeted by the wild
type before start of drug use.117,147,148 More compelling evi-
dence for a fitness cost of resistance has been documented
by reemergence of sensitive parasites, virtually replacing highly
prevalent resistant strains, following withdrawal of drug
(chloroquine or sulfadoxine–pyrimethamine) pressure in the
population.149–154 The rub is that in other areas under similar
conditions, reemergence has occurred much more slowly or
not at all.155–159 Similarly cogent evidence of a fitness cost to
resistance has been demonstrated by decreased prevalence of
resistant parasites after the dry season in west Africa, when
there is relatively little drug selection pressure.160–162 Again,
other studies have had contrasting results.163,164

Global data from the ICEMRs afford an opportunity for a
concerted evidence base on associations between resistance
and fitness, and potentially on the de facto risk factors for
the emergence or suppression of drug resistance in the field.
So far drug selection pressure, herd immunity,153,160 and eco-
logical differences146,165,166 have been shown to impinge on
relative fitness of drug-resistant and drug-sensitive parasites
in the wild. Although combination of antimalarial com-
pounds with opposing resistance mechanisms have been used
to suppress the emergence of drug resistance in laboratory
isolates,167 opposite resistance selection has also been
observed in the field between 4-aminoquinolines (chloro-
quine, amodiaquine) and artemisinins.27,168–170 Data from
Uganda showed significantly lower prevalence of symptoms
among children infected with parasites containing chloro-
quine resistance mutations compared with those infected
with wild-type parasites, consistent with greater virulence for
wild-type parasites.171 Field data from the southern Africa
ICEMR suggest a role for the vector in selecting drug resis-
tance polymorphisms, with significant differences in preva-
lence of SNPs that mediate resistance to aminoquinolines
and antifolates between parasites infecting mosquitoes and
people.172,173 So far, Anopheles arabiensis172,173 and more
recently Anopheles funestus (Matsena and others, unpublished

data) have both been shown to exert selection on drug resis-
tance polymorphisms. This would seem to explain the role of
ecology in governing resistance,165,166 which can differ between
different regions of the same country. The unexpected link
between vector control and prevalence of drug-resistant
malaria parasites in some areas174–177 but not others178 also
seems consistent with vector selection. More detailed data
from multiple ICEMRs will be instrumental in improving our
understanding of the interplay between drug resistance and
fitness, and hopefully the development of more effective
strategies for the containment of drug-resistant malaria.

CONCLUSION AND FUTURE STUDIES

In an evolutionary arms race between malaria parasites
and a series of therapeutic interventions, the parasites have
consistently been able to develop resistance to each new
class of drugs. The emergence of parasites resistant to
artemisinins in southeast Asia and altered sensitivities to
artemisinin partner drugs pose great threats to efforts to con-
trol and, eventually, eradicate malaria. Specifically, previous
failures of the ACTs artesunate/mefloquine and artesunate/
amodiaquine have recently been followed by frequent fail-
ures of dihydroartemisinin/piperaquine in parts of Cambodia,
and decreasing sensitivity to lumefantrine may further threaten
artemether/lumefantrine. It is thus of high priority to continue
surveillance of ACT efficacy, the ex vivo and in vitro activities
of ACT components, and molecular markers that may mediate
resistance to these drugs. For artemisinins, mutations in the
K13 gene offer markers for the delayed parasite clearance
phenotype that is now common in parts of southeast Asia.
Mutations in the putative drug transporters pfmdr1 and pfcrt
mediate altered sensitivity to multiple artemisinin partner
drugs, including amodiaquine, mefloquine, lumefantrine, and
piperaquine, although different drugs are impacted in opposite
directions. Additional parasite polymorphisms are likely
important in drug responsiveness, and an improved under-
standing of the roles of these polymorphisms is an important
goal. Additional studies on the influence of drug resistance on
parasite fitness may enable the identification of optimal dosing
strategies, including, possibly, rotating of regimens. Further,
understanding how mosquitoes mediate the spread of drug
resistance and use of evolution-proof mosquito control mea-
sures may help to deter resistance spread, enabling the
regional elimination and eventual eradication of malaria.
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