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Abstract
Recent evidence suggests that inflammation plays a pivotal role in the development of lung
cancer. In this study, we used a two-stage approach to investigate associations between genetic
variants in inflammation pathways and lung cancer risk based on genome-wide association study
(GWAS) data. A total of 7,650 sequence variants from 720 genes relevant to inflammation
pathways were identified using keyword and pathway searches from Gene Cards and Gene
Ontology databases. In Stage 1, six GWAS datasets from the International Lung Cancer
Consortium were pooled (4,441 cases and 5,094 controls of European ancestry), and a hierarchical
modeling (HM) approach was used to incorporate prior information for each of the variants into
the analysis. The prior matrix was constructed using (1) role of genes in the inflammation and
immune pathways; (2) physical properties of the variants including the location of the variants,
their conservation scores and amino acid coding; (3) LD with other functional variants and (4)
measures of heterogeneity across the studies. HM affected the priority ranking of variants
particularly among those having low prior weights, imprecise estimates and/or heterogeneity
across studies. In Stage 2, we used an independent NCI lung cancer GWAS study (5,699 cases and
5,818 controls) for in silico replication. We identified one novel variant at the level corrected for
multiple comparisons (rs2741354 in EPHX2 at 8q21.1 with p value = 7.4 × 10−6), and confirmed
the associations between TERT (rs2736100) and the HLA region and lung cancer risk. HM allows
for prior knowledge such as from bioinformatic sources to be incorporated into the analysis
systematically, and it represents a complementary analytical approach to the conventional GWAS
analysis.
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Introduction
Epidemiologic evidence suggests that chronic severe inflammation may be related to
carcinogenesis of the lung potentially through common exposures (infectious agents,
particulate matter, smoke, fumes and exhausts) (Engels 2008), tumor initiation and
promotion (Peek et al. 2005; Bernatsky et al. 2008; Parikh-Patel et al. 2008), as well as
genetic determinants (Engels et al. 2007). Three recent investigations completed
comprehensive analyses of genes involved in inflammation pathways and lung cancer risk
based on GWAS data. Shi et al. (2012) investigated variants in inflammation pathways and
computed gene-based association scores. Spitz et al. (2012a, b) examined variants from an
inflammation panel of variants among never smokers using a two-stage approach and among
current and former smokers using a three-stage approach, respectively. All three
investigations identified novel variants (in RAD52, NR4A1 and IL2RB and BCL2L14
genes, respectively) using their approaches. Although these analyses chose variants based on
their plausible biological function, neither systematically incorporated functional
information into their analyses.

Given that highly significant variants for lung cancer risk have been identified through
standard GWAS analysis using maximum likelihood (ML) approaches for single variants,
the current challenge is how to identify the variants that might not reach GWAS level
significance while still being biologically important. Hierarchical models/modeling (HM)
presents an alternative for addressing some of the shortcomings of standard GWAS analysis
by incorporating the wealth of readily available bioinformatic data characterizing the
structural and functional roles of common variants (Cantor et al. 2010; Wang et al. 2010).
The goal of HM in this application is to systematically incorporate available prior biological
knowledge, improve effect and variance estimation in genomic investigations(Aragaki et al.
1997), and optimize variant prioritization for follow-up investigation (Witte and Greenland
1996; Witte 1997). A recent simulation study showed that an empirical-Bayes hierarchical
framework outperforms traditional ML methods (increased power, reduced false-positive
rate) and may suggest additional regions of interest beyond traditional ML methods (Heron
et al. 2011).

We applied two HM methods developed for GWAS level data to optimize variant
prioritization based on prior biological information. One model, developed by Chen and
Witte (2007) estimates the effect of variants based on a single-distribution of variant effects.
The other, developed by Lewinger et al. (2007) re-ranks variants assuming a two-
distribution model, where the majority of the variant effects are centered at null and a small
fraction of variant effects centered at a non-null value. We applied a two-stage design to
investigate the genes in inflammation-related pathways: in Stage 1, we applied each of the
two HM frameworks to pooled data from six lung cancer GWAS examining common
variants from the International Lung Cancer Consortium (ILCCO); in Stage 2, we conducted
in silico replication based on the DCEG lung cancer GWAS data.

Methods
Study populations

Within ILCCO (http://ilcco.iarc.fr) six case–control studies from Europe and North America
participated in this investigation. All the studies were, at a minimum, frequency-matched
based on age and sex. The subjects were all European descendants as described in the
previous publications (Hung et al. 2008; Brenner et al. 2010; Brennan et al. 2006; Amos et
al. 2008; Thornquist et al. 1993; Sauter et al. 2008). The combined population consisted of
4,441 cases and 5,194 controls. Additional study-specific details are summarized in Table 1.
To further assess the performance of HM and the robustness of the findings, we used the
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DCEG lung cancer GWAS results available through the Database of Genotypes and
Phenotypes (dbGAP) from the National Institutes of Health (NIH) to perform in silico
replication of variants of interest identified by the two HM approaches. The DCEG lung
cancer GWAS data (NCI-replication) consist of 506,062 variants from the 550 K Illumina
chip on 5,699 cases and 5,818 controls recruited in four studies by National Cancer Institute
(NCI) investigators (referred to as NCI-replication). The details of this study have been
described previously (Landi et al. 2009).

Gene and variant selection
In order to identify relevant genes of interest, we used two electronic databases, Gene Cards
(genecards.org) and Gene Ontology (geneontology.org) to search for inflammation-related
genes. Specifically, keyword searches using “inflammation” or “lung specific inflammation”
or “lung inflammation” in Gene Cards and the three Gene Ontology headings
“inflammation”, “immune response” and “signaling” identified genes that are implicated in
these particular pathways. A total of 720 genes were identified through the searches. This
list was merged with annotation data from the Illumina Human-Hap 300, which includes
317 K SNP variants. Variants in the genes of interest that were present on the chip were
mapped to the closest genes as allocated based on the data from Hapmap (The International
HapMap Project 2003). This provided a list of 7,650 variants available for analysis.

Maximum likelihood estimation of variant effects
The input data for HM analyses were variant-specific pooled-effect estimates. All effect
estimates from each study and pooled estimates were based on log-additive models and
represent per allele ORs. In order to obtain these data across studies, study-specific log odds
ratios were estimated for each variant from each of the six participating studies using
logistic regression methods (PLINK, v1.07) (Purcell et al. 2007). To account for differences
across study populations, we used random effects model to combine the effect estimates
across studies, and p values for heterogeneity were estimated for each variant based on Q
statistics (STATA v10, College Station, TX, USA).

Z-matrix formulation
One of the major strengths of the HM approach is that prior knowledge of biological
function and genomic properties can be incorporated into effect estimation for the genetic
variants of interest. The Z-matrix, a key component of the HM approach, was developed
using information from several bioinformatic sources. In formulating the Z-matrix, we
included both gene and variant-specific columns reflecting the levels and types of data
included as described below. An example of the Z-matrix used with chosen column
headings and the explanation of the scores is provided in Supplementary Table 1.

Gene-specific information
Gene-specific columns were created based on the function of the genes using the biological
process sub-ontologies within the Gene Ontology (major headings listed above). Pathway/
process scores were calculated based on the involvement of a gene in a pathway/ontology
and the related sub-processes within that pathway to reflect how heavily involved a gene is
in a particular function. For example, if a gene was involved in four sub-processes/
ontologies within the inflammation response pathway (e.g. acute inflammation response,
chronic inflammation, healing during inflammatory response, regulation of immune
response), each of the variants in this gene was given a score of 4. Variables were created
for each of the three ontologies of interest (inflammation, immune response, signaling).
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Variant-specific information
Variant-specific columns were created based on PhastCons scores (http://
www.genome.ucsc.edu), the SIFT score (http://sift.jcvi.org/), whether the variant is in an
intergenic region, whether it is an exonic coding variant or a non-synonymous variant and its
location relative to the start of the gene. The p value for heterogeneity across the studies
from the pooling of the variant effect estimates was also included in the Z-matrix. This
column was included to incorporate the aspect of pooled analysis into the HM framework as
the input estimates for the variants are from a meta-analysis of studies. A variant-specific
total (calculated as the sum of all Z-matrix columns) was calculated for each variant in order
to determine the effects of the Z-matrix on the HM estimates. In principle, this approach
suggests that variants with a higher a priori function in inflammatory responses and stronger
genomic functionality will be given higher weight in analysis.

We also created a second Z-matrix to test the sensitivity of the models to variations in the Z-
matrix and to include additional covariates to account for the available variants in linkage
distribution (LD) with our tag variants. We incorporated information for those variants
available from the 1000 Genomes Project Pilot I (Siva 2008) that were in LD (pairwise R2 >
0.8 and within 500 kb) with the tag variants available from our 317 K data using the SNP
Annotation and Proxy Search tool (SNAP) V2.2 from the Broad Institute (Johnson et al.
2008). We then obtained location data from GeneCruiser (Broad Institute) to include Z-
matrix columns for the number of variants in LD with our genotyped variants that are in 3′
or 5′ untranslated regions (UTR), coding variants and whether the variants are non-
synonymous. The number of directly genotyped variants and the number of variants in LD
with the genotyped variants in each category are summarized in Supplementary Table 2. The
same Z-matrices were used for both HM approaches.

Model specification for hierarchical modeling
We chose to apply two different HM models to the pooled ML data. The two methods
(Lewinger et al. 2007; Chen and Witte 2007) have distinct differences although they are
similar in goal and computation. The model of Chen and Witte provides for a single
distribution of effects of the variants and uses a weighting variable in addition to the Z-
matrix to further emphasize those believed more strongly a priori to be causal (henceforth
referred to as the one-distribution model). In contrast, the model of Lewinger et al. accounts
for two-prior distributions with GWAS level data suggesting a prior model for the true
noncentrality parameters of variant associations composed of a large mass at zero and a
continuous distribution of nonzero values (henceforth referred to as the two-distribution
model). Complete statistical descriptions of the two models have been published previously
(Lewinger et al. 2007; Chen and Witte 2007).We therefore provide only brief summaries of
the modeling parameters used in the supplementary methods section.

Results comparison
We took two approaches to account for multiple testing. First, a Bonferroni correction was
applied to our results for each variant whereby variants achieving significance at a level of
α/7,650 were considered noteworthy. This considered each variant comparison as
independent. It is likely that this level of correction is too stringent as the test statistics are
correlated due to nearby variants being in LD. Second, in order to reduce possible type II
error, we used the methods of Gao et al. (2008) which account for the correlations between
variants using composite LD across variant pairs to determine the effective number of
comparisons for adjustment. This procedure suggested that the effective number of
comparisons was α/4,603 [multiple correction (MC) level significance]. To compare results
from pooled ML to HM, we also examined those variants with test statistics exceeding
critical values of p < 0.05 as well as <0.001.
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In order to determine the effects of the one-distribution model on effect estimates and
priority, variants were ranked based on p values from pooled ML and HM. For the two-
distribution model, the variants were ranked based on their posterior probability of
association. This was suggested to be the most powerful ranking strategy of the three
posterior statistics provided in the original methods paper (Lewinger et al. 2007) based on
the model parameters used.

In silico replication
For variants with HM p value < 0.05 based on the one-distribution model or ranked in the
top 100 based on the two-distribution model, we conducted in silico replication using the
DCEG lung cancer GWAS. The analyses based on DCEG data were adjusted for age, sex,
smoking groups and the top principal component of ethnicity because the population was the
amalgamation of four independent studies. For the top variants of interest, we examined for
the presence of differential effects by histology groups (adenocarcinoma, squamous cell
carcinoma, large cell carcinoma), smoking groups (ever vs. never), gender and age at
diagnosis (< 50 vs. ≥ 50 years of age) where possible in the original six studies and in the
NCI-replication set.

Results
Pooled maximum-likelihood results from first stage model

There was no evidence of population structure within each of the populations [study-specific
lambda inflation factor (λ): Toronto = 1.04, MDACC = 1.01, CARET = 1.06, CE = 1.06,
Germany = 1.04, France = 1.03] and the overall λ for pooled p values was 1.012 when
examining the bottom 90 % of the distribution. The absolute values of pooled ML βs ranged
from 2.8 × 10−6 to 1.09 (corresponding to an OR range of 1.00–2.98). The proportion of
variants that showed significant heterogeneity in effect estimates across studies at p < 0.05
was as expected (5.3 %). After pooling the results across the studies, 17 variants were
significant at a level of p < 0.001, including two that were significant at MC level
significance (p < 6.54 × 10−5) and one at Bonferroni corrected levels (p < 1.09 × 10−6) and
standard GWAS level significance (p < 5 × 10−8) (Table 2).

Hierarchical modeling results
When comparing pooled ML to HM estimates, the amount of change can be described as a
combination of the weight given in the Z-matrix, the standard error (SE) of the pooled
estimate (Supplementary Figure 1) and the p value for heterogeneity (Supplementary Figure
2). The changes in ranks were altered by several of the columns of the Z-matrix with the
largest effect being from the p value for heterogeneity column. Increased heterogeneity
(small p value for heterogeneity) on average decreased the priority from ML to HM
estimates. Therefore, variants with inconsistent effects across studies ranked on average at a
decreased level of relative importance in HM estimates and those with consistent effects
were modified heavily based on their Z-matrix and ML effects. As the first stage, SE and the
p value for heterogeneity were correlated and similar effects were observed for changes in
both measures.

One-distribution model
We observed 311 variants that were significant at a level of p < 0.05 in HM estimates.
Among these, 15 variants were significant at p < 0.05 in HM but not in pooled ML. The 15
variants had an average higher Z-column score, lower first stage SE and tended to be very
homogeneous across the studies compared to the distribution across all variants. On the
other hand, 49 variants had ML p value < 0.05 but were no longer significant with HM.
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When examining those 49 variants, their first stage SE was higher compared to the total
population of variants.

Two-distribution model
Result rankings changed more drastically between pooled ML and HM in the two-
distribution model compared to the one-distribution model. The two-distribution model was
sensitive to Z-matrix prior scores, particularly where variants showed small effect estimates.
The two top-identified variants maintained their top rankings in both one-and two-
distribution models. As the posterior probability from the two-distribution model does not
follow the same distributional assumptions as the first stage p values, no direct comparison
with regards to “significance” criteria of the p values from pooled ML estimates to HM
estimates was possible. The two-distribution model, however, suggested only the top hit
(rs2736100–TERT) to have a posterior probability of association to be <0.05 and that all
others would not be suggested for further analysis. The top 100 variants from the two-
distribution model were, however, included in the replication regardless of their posterior
probability to assess whether the two-distribution identified any additional variants that were
not captured in the standard GWAS analysis.

In silico replication
Of the 311 variants observed at p < 0.05 from HM from the one-distribution model, 32 were
significantly replicated in the NCI-replication dataset at the nominal p value of < 0.05
including three replicated at the p value of < 0.001. For the top 100 variants identified from
the two-distribution HM, five were replicated and these were already included in the 32
replicated from the one-distribution model.

Of the 32 replicated variants, 16 were in the 5p15 and 6p21–22 regions which have been
previously highlighted in lung cancer GWAS (Hung et al. 2008; Landi et al. 2009),
including the variant significant at GWAS levels (rs2736100) in both HM and pooled ML.
The remaining 16 variants represented 10 independent regions of interest, which includes
one novel variant, rs2741354 located on chromosome 8q21 near the epoxide hydrolase-2
(EPHX2) gene. This variant did not reach significance at MC level in the Discovery set
based on conventional ML estimate; however, it did convey significance based on HM
estimate. When pursuing in silico replication, the variant became significant at MC level (p
= 7.38 × 10−6) when combining the data of six ILCCO studies and DCEG lung cancer study.
The other variant that was significant at MC levels in pooled ML (rs1023253) was not found
in the NCI-replication data, however, a proxy variant (r2 = 0.972 from HapMap CEU)
rs6424779 was examined and effects were not replicated (p = 0.3214). Table 3 contains the
32 variants that were replicated in the NCI-replication dataset. A forest plot for the top novel
signal at ch8p21.1 (rs2741354) including subgroup analyses by histology, smoking, sex and
age at onset is shown in Fig. 1. No specific effect modification by age, smoking status,
gender or histology was observed.

Discussion
In this investigation into the role of variants in inflammation-related pathways using HM,
we confirmed the associations with TERT and HLA regions. We also identified a novel
locus in EPHX2 at 8p21.1, which would not have been identified by the conventional ML
approach with multiple comparison adjustment. Our results in concert with others (Heron et
al. 2011) suggest that strong true-positive variants would not be missed from the use of HM
in a GWAS scale analysis, whereas the incorporation of the prior knowledge in a systematic
manner can help to identify novel variants that do not reach GWAS significance level.
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We observed an association between lung cancer risk and variant rs2741354 on
chromosome 8p21.1 situated downstream from the epoxide hydrolase-2 (EPHX2) gene
which is expressed in lung tissue samples (Yanai et al. 2005). This variant, which is not in a
coding region was included based on its role in the inflammation pathway from Gene
Ontology and had consistent effects across studies (p value for heterogeneity = 0.85). To our
knowledge, this variant has not been implicated in lung cancer risk to date; however, other
epoxide hydrolase genes have been associated with lung cancer risk in candidate studies
(Lee et al. 2002). Epoxide hydrolases play an important role in the lung by metabolizing
inhaled irritants and carcinogens (Petruzzelli et al. 1992), and variants in the genes have
been shown to be related to other inflammatory disease risk (Korotkova et al. 2011). We
examined the effects of the variant across smoking, gender, age at onset and histology
groups to determine whether the variant was acting as a marker of exposure or subgroup
risk. This did not seem to be the case as the combined effects across groups were consistent
although we were relatively limited in our analyses of never smokers as only two studies
possessed never smoking cases (Fig. 1).

Our analyses further validated the finding of variants in the TERT gene (rs2736100) and its
relationship with lung cancer risk. The variant under investigation has been previously
implicated in lung cancer risk in GWAS analysis (Hung et al. 2008) and targeted replication
(McKay et al. 2008). The TERT gene was included into the analysis based on the results
from a Gene Cards search for inflammation-related genes. TERT is thought to be active in
some rapidly dividing cells of the immune system. It is also believed to be related to
endothelial nitric oxide synthase control (Matsushita et al. 2001). Both exogenously and
endogenously-induced oxidative stress leads to translocation of human TERT from the
nucleus into the cytosol (Santos et al. 2004). Mutations in TERT have been related to
idiopathic pulmonary fibrosis (Armanios et al. 2007). Fibrotic lung scaring has also been
associated with lung cancer in prospective observational studies (Yu et al. 2008), and other
inflammatory lung diseases have been consistently associated with lung cancer risk (Brenner
et al. 2011).

Through the use of HM, we identified 15 variants at significance levels of p < 0.05 not
observed using pooled ML estimates, two of which were replicated in the NCI-replication
data. This proportion is greater than expected by chance (0.75/15 significant tests at α =
0.05) and these variants would have been missed without the use of HM. One of the variants
is of particular interest (rs3129871) as it is found in the Human Leukocyte Antigen (HLA-
DRA) gene on chromosome 6p21. This area has been previously associated with lung cancer
in a previous linkage study (Bailey-Wilson et al. 2004) and in previous GWAS analyses
(Landi et al. 2009). Variants in several HLA genes (HCG9, HLA-B, HLA-A) also ranked 4,
8, and 9th in the overall pooled ML rankings and were robust in HM analysis.
Supplementary Figure 3 displays the significance of variants from our initial discovery set
across the HLA region. Our results corroborate a previous GWAS (Wang et al. 2008) that
suggests the possibility of multiple independent variants in the region. It remains an item of
debate as to whether this area represents a marker of risk or regional population substructure
(Landi et al. 2009). Nevertheless, the crucial role of HLA in the inflammation and immune
responses is well documented (McDevitt 1980) and the association with lung cancer
provides additional weight to the inflammatory origin of lung cancer.

Concerning methodology, we found the HM approach to be complementary to the standard
GWAS analysis. With informative prior data, this type of analytical approach can account
for functional information in a systematic manner, instead of simply as ad hoc interpretation.
By systematically including the data into the analysis, the method aids in the identification
of true associations. Thus, the biological knowledge that is traditionally consulted after the
discovery phase of top hits is systematically incorporated in the analysis. Moreover,
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previous HM analyses suggest that even completely uninformative information will not
reduce the power of the analysis beyond traditional methods (Heron et al. 2011). In this
application, we consider HM not as a simple ranking tool, but instead as a valuable
alternative analytical approach to help identify variants with potential biological function
that could have been missed in the standard GWAS analysis.

We propose the inclusion of p values for heterogeneity as a weight function column when
applying the method to pooled multi-center data as an extension of the methods proposed in
the paper by Chen and Witte (2007). Even minimal heterogeneity across study populations
as observed in this case is a determinant of the distribution of pooled ML effects as input
data. Failure to account for this design feature may lead to biased results as the distribution
of pooled effects may not reflect the underlying distributions of variant effects.

There are several limitations in this analysis. We employed random effects model to pool
effect estimates across study sites. This method is conservative (Thompson et al. 2011) and
despite the populations being of European decent, we felt it could be inappropriate to utilize
fixed effect models to pool study-specific estimates because of differences across
populations in exposures as well as different covariate assessment. Consequently, standard
errors in pooled ML estimates may have been overestimated for some variants and altered
the relative change in rank from first to second stage estimates. We used those genes with
direct coverage on the Illumina 317 K chip. It is indeed probable that there are other known
and uncharacterized genes and variants with effects on lung cancer through their role in the
inflammatory response that were omitted based on the selection process. In addition, the
variants chosen for inclusion on the platforms were not chosen based on function, but rather
on tagging ability from HapMap data (Illumina 2006, 2010) and therefore may not provide a
representative sample of functional variants within the genes. In order to address this
shortcoming, one of the formulations of the Z-matrix as utilized included additional
information whereby variants in linkage disequilibrium with other functional variants in the
1000 Genomes Project data were given additional weight as proposed in the methods of
Heron (Heron et al. 2011). The evaluation by Witte and Chen, however, showed that the
model and the subsequent rankings provided by HM were relatively robust to large
variations in the Z-matrix formulation provided that the reduced Z-matrix remains
informative despite alterations (Chen and Witte 2007). We observed a similar effect
whereby the relative rankings of variants were quite robust to additions and variations to the
Z matrix.

Our HM analysis was conducted across all cases and subgroups combined. It may be useful
to conduct additional HM analyses by smoking and other subgroups as the differential
effects of the inflammatory pathways on lung carcinogenesis remain unclear at this point. In
this case as we did not have individual-level data for all studies to be able to conduct full
subgroup analyses and were greatly limited in power for certain subgroups, in particular
never smokers, we only conducted HM among the overall results and examined for
differential effects among top hits where possible across subgroups.

Conclusion
In conclusion, we extended previously developed methods using HM in a targeted pathway-
specific approach to pooled GWAS data for inflammation-related genes. The added values
of hierarchical modeling are (1) to identify potential new loci that would have been missed
in conventional analysis, and (2) reduce false positives by incorporating priors in the
analysis stage instead of use it as ad hoc interpretation. In addition to confirming the
previous known loci, we identified a novel locus at 8p21 in the EPHX2 gene not previously
identified and worthy of follow-up investigation. Given that the highly significant variants
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can be and have been detected by the standard GWAS analysis, use of analytical methods
that incorporate prior information would be one of the most cost-effective approaches to
uncover the susceptibility loci that do not reach GWAS level significance.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Fig. 1.
Forest plots of the top novel variant rs2741354 with subgroup analyses by histology,
smoking, age at onset and gender. Pooled-ML refers to combined effects across all six
studies. HM refers to estimates from the one-distribution model. NCI-replication refers to
the in silico replication set. Effect estimates based on log-additive models and represent per
allele ORs
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