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Compensation of Nonlinear Harmonic

Coupling for Pulsed Jet Velocity Shaping∗

Cory Hendrickson† and Robert M’Closkey‡

University of California, Los Angeles, Los Angeles, CA, 90095 USA

This paper describes an approach to periodic reference tracking in a

pulsed jet injection experimental study. The objective is to match the

jet’s temporal velocity profile to a periodic reference. The challenge lies

in controlling the highly nonlinear and poorly understood dynamics associ-

ated with the jet velocity. Although the actuator maintains good authority

over the jet velocity, the nonlinear jet dynamics creates a high degree of

coupling among neighboring harmonics that depends on the forcing level

and the desired waveform. The coupling is quantified by demodulating

the jet velocity measurement into baseband components centered at the

harmonic frequencies represented in the desired waveform. An empirical

input-output relationship is developed by perturbing the baseband compo-

nents and measuring their effect on neighboring harmonics and it is shown

that this relationship can be modeled as a linear multi-input multi-output

system. This knowledge is exploited to create stabilizing feedback controls

that asymptotically drive the jet velocity to the desired waveforms over a

wide range of forcing conditions.

∗This work is sponsored by The National Science Foundation under grant no. CBET-0755104
†Graduate Student, Department of Mechanical and Aerospace Engineering
‡Professor, Department of Mechanical and Aerospace Engineering
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Nomenclature

ak, bk = Fourier coefficients of desired waveform

C̃p = pressure loop controller, demodulated coordinates

C̃v = velocity loop controller, demodulated coordinates

ẽv = velocity tracking error, demodulated coordinates

gp, gv = pressure and velocity loop scalar gains

h = matrix impulse response from δp to δv

H = Laplace transform of h

H(0) = DC component of H

H̃ = H with quadrature input columns removed

Hlp = single-input/single-output low-pass filter following demodulation blocks

j =
√−1

Kv = velocity controller gain matrix

Lp = scalar loop gain of pressure feedback loop

ne = number of samples used for identifying H(0)

nh = number of modulation/demodulation blocks (number of controlled harmonics)

np = number of operating points used in controller synthesis

P̃p = demodulated plant with pressure output

P̃v = demodulated plant with velocity output

Pd, Px = scalar transfer functions associated with P̃p

R
m×n = m× n matrices with real elements

Rk, Ik = pressure controller compensation constants at frequency kω0

r̃p = pressure reference

r̄p = constant portion of pressure reference

r̄v = constant portion of velocity reference

t = time

ts = sample period

ũ = input vector for demodulated plants P̃p and P̃v

uin, u
q
n = in-phase and quadrature elements of ũ

Vrms = velocity RMS amplitude

x = state vector of h

xv = velocity controller state vector

yp, yv = pressure and velocity outputs, scalar-valued

yref = velocity reference waveform, scalar valued

ỹp,ỹv = demodulated pressure and velocity signals, vector-valued
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yip,k, y
q
p,k = in-phase and quadrature components of ỹp at frequency kω0, scalar-valued

yiv,n, y
q
v,n = in-phase and quadrature components of ỹv at frequency kω0, scalar-valued

ȳv = mean value of ỹv

(·)T = matrix transpose

α = maximum singular value limit for Kv

βk = constraint matrices in controller synthesis

Δp, Δv = vector-valued time series of δp and δv for identification of H(0)

δp = perturbation summed with pressure reference r̄p

δv = time varying portion of ỹv

δiv,k/δ
i
p,l = transfer function relating in-phase components of lth input channel

and kth output channel of H

γ = generalized eigenvalue

γ∗ = minimum achievable generalized eigenvalue

λcl = closed-loop eigenvalues

σ̄(·) = maximum singular value

ωc = Hlp corner frequency

ω0 = fundamental frequency of yref

| · | = absolute value

‖ · ‖2 = Euclidean norm

I. Introduction

Understanding the dynamics of jets injected into quiescent surroundings or into crossflows

is a fundamental problem with application to a wide range of engineering systems, particularly

those for propulsion and energy generation.1,2 Transverse jets appear in air-breathing turbine

engines as dilution air jets, which reduce temperature pattern factor downstream of combustion,

and for turbine blade cooling, where air injected from the leading edge insulates the turbine blade

from the hot surrounding combustion gases. Active control of jet injection has been shown to

improve important characteristics of each flowfield such as spread and penetration of the jet into

the crossflow for dilution jet injection3 and boundary layer attachment at low turbine inlet Reynolds

numbers for turbine blade cooling.4 Control of the jet in crossflow is typically accomplished through

temporal excitation of the jet fluid using flowrate modulation or acoustic forcing.5–8 The excitation

is periodic, usually with the goal of forming either sinusoidal or pulse-like jet velocity profiles.

Pulsed jets have been noted to form strong vortex rings which penetrate greatly into the crossflow,

leading to enhanced mixing.9

Feedback control is required to shape the jet velocity since open-loop methods are subject to

errors as a result of flow disturbances and uncertainty associated with the system dynamics.7,8 The
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field of repetitive control, which addresses asymptotic disturbance rejection and reference tracking

of periodic signals, provides a framework for pulsed jet reference tracking. All forms of repetitive

control are based on the internal model principle which requires a model of the disturbance or

reference to be included in the feedback loop for perfect rejection or tracking.10 Systems based

on repetitive control commonly use a time delay in the feedback loop to place an infinite num-

ber of poles on the imaginary axis at the fundamental frequency and harmonics of the periodic

disturbance or reference.11–13 In practice, the plant has finite bandwidth and the controller is im-

plemented with a digital signal processor, therefore, only a finite number of internal models can be

created for asymptotic tracking. In this case, modulated-demodulated control can be used as an al-

ternative to time delay repetitive control.14,15 Modulated-demodulated control, also referred to as

adaptive feedforward control or adaptive feedforward cancellation,16,17 demodulates the spectrum

of a wideband signal into a family of baseband signals, operates at baseband, and then modulates

the baseband spectra back to higher frequency.

The plant represents the dynamic system from the actuator command to the hotwire anemome-

ter measurement taken at the jet exit and “baseband” refers to a narrow frequency band, typically

10Hz to 50Hz, centered at 0Hz that represents the jet velocity behavior in a neighborhood of each

of the demodulation frequencies. Periodic jet velocity waveforms at amplitudes exceeding 0.5ms−1

root mean square (RMS) exhibit nontrivial coupling among the harmonics that can destabilize the

closed-loop system employing a controller designed for more moderate forcing amplitudes. The

authors’ past research addressed lower amplitude forcing in which linear models of the jet veloc-

ity were adequate for control design.18 Research on pulsed jets using primarily open-loop control

schemes are presented in Refs. 5–8. In the present study we show that identification of the plant

dynamics in the baseband coordinate system provides key insight into the nonlinearity that couples

adjacent frequency “bins” under strong forcing conditions. The baseband coordinates also provides

a convenient framework for compensating the harmonic coupling. In fact, the nonlinear coupling

can be modeled in the baseband coordinates as a multi-input multi-output (MIMO) constant gain.

This control strategy achieves asymptotic tracking of the desired jet velocity waveform within the

bandwidth of the actuation system. An inner equalizing control loop that feeds back the plenum

pressure measurement is also employed to equalize the magnitude of the jet velocity response and

reduce the condition number of the jet velocity gain matrix. The identification and control strategy

detailed here provides a framework to explore how precise jet velocity waveforms improve mixed-

ness, penetration, and spread compared to open-loop control schemes, however, these studies are

not yet complete and will be reported elsewhere.

II. Pulsed Jet Experiment

A. Actuation System

A schematic of the experimental pulsed jet injection apparatus is shown in Fig. 1. Compressed

air, regulated to maintain a constant mean jet velocity of 8ms−1, flows into a plenum and then
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through a smoothly contracted nozzle into quiescent surroundings. The nozzle is brought to an

approximately 4mm exit diameter by a 5th order polynomial contraction, resulting in a nearly top-

hat spatial velocity profile with a measured scaled moment thickness D/θ = 26. The jet Reynolds

number, based on the mean jet velocity, is held constant at 2000. The jet velocity is perturbed

about its 8ms−1 mean value by a lightweight piston positioned at the bottom of the plenum. The

piston is driven in-line with the jet by a modal shaker (Ling Electronics LVS-100). The shaker

voice coil current is proportional to the shaker amplifier input signal, the latter being the plant

input. The jet velocity is measured using a hotwire anemometer (Dantec 54T30) placed in the

center of the jet at the nozzle exit. Additionally, the apparatus is equipped with a microphone

(PCB Piezotronics 378C01) that measures pressure at the top of the plenum. Controllers are

implemented in MATLAB’s xPC Target application with a 25kHz sampling rate.19 Eight-pole,

low-pass, Chebyshev filters with 10kHz corner frequencies are used as anti-alias filters for filtering

the microphone and hotwire signals prior to sampling. The entire system can be placed beneath a

wind tunnel with the nozzle exit flush with the test section floor if crossflow is desired. An industrial

blower driven by an adjustable speed electric motor introduces the crossflow and several screens

and a honeycomb flow straightener section condition the crossflow before entering the test section

which is 12cm by 12cm in cross-section and 30cm in length. This apparatus has been employed

in a wide range of unforced20,21 and forced experimental studies6–8,18,22 where the jet-to-crossflow

velocity ratio varies between 1.15 and 10 and the jet-to-crossflow density ratio varies between 0.14

(pure helium) and 1.00 (pure air). In the present study the control technique is demonstrated

without crossflow.

Voice Coil

Amplifier

Signal 

ConditioningCompressed

Jet Fluid

 

Voice Coil

Pressure

Regulator

Piston
Piston

Motion

Nozzle

Air Flow

Hotwire

DSP
Piston 

Support Structure

Microphone
Plant 

Measurements

Control Effort/

Plant Input
Voice 

Coil 

Current

Plenum

u

y
v
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Figure 1. Pulsed jet injection experimental setup using a piston to actively control the tem-
poral velocity waveform of a jet at the nozzle exit.

B. Motivation: Nonlinear Coupling Between Harmonics

Linear models of the pulsed jet can be developed from data generated with low amplitude test

inputs. Controllers developed using the models are then adequate for low amplitude reference
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tracking.18,22 At forcing amplitudes exceeding 0.5ms−1 RMS, though, the nonlinear response of

the velocity measurement (the regulated variable) can destabilize the closed-loop system. The

desired velocity perturbation is periodic so the nonlinear response can be studied from the point of

view of coupling among harmonics in the periodic waveform. The magnitude and character of the

harmonic coupling is dependent upon the desired velocity reference and the RMS forcing level.

In general, the nonlinear dynamics alter the estimated velocity frequency response according to

the system’s particular identification input. For example, the velocity “frequency response”, shown

in Fig. 2, is measured using band-limited white noise inputs with amplitudes set to perturb the jet

velocity by 0.15ms−1 RMS (solid line) and 0.80ms−1 RMS (dashed line). The frequency response

is determined by averaging the cross-spectra of the input-output data and then normalizing by

the input power spectrum.23 It is evident that the frequency response derived from the case with

harder forcing deviates from the low amplitude frequency response. Additionally, the jet velocity

coherence, shown in Fig. 3, decreases with the higher amplitude forcing compared to the nominal

case. The coherence is reduced because a greater portion of the velocity output is determined by

nonlinear dynamics at higher forcing amplitudes. In contrast, the frequency responses with the

pressure measurement are nearly identical for both test amplitudes and, furthermore, Fig. 3 shows

the pressure coherence increases with harder forcing (the expected response of a linear plant with

an additive fixed disturbance/noise spectrum).
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Figure 2. Velocity and pressure frequency responses obtained with a white noise identification
input which perturbs the jet velocity by Vrms = 0.15ms−1 (solid) and Vrms = 0.80ms−1 (dashed).
The velocity frequency response is dependent on the forcing condition whereas the pressure
measurement is independent of the forcing condition.

The jet response to dual tone forcing clearly demonstrates jet velocity nonlinearity and the

difficulty it presents for periodic reference tracking. Figure 4 shows the velocity spectra in response

to dual tone forcing at 1800Hz and 1900Hz with an amplitude that perturbs the jet velocity by

Vrms = 0.50ms−1. The inputs at 1800Hz and 1900Hz produce strong super- and sub-harmonics

occuring at integer multiples of 100Hz, which is the difference between the two input tones. The

figure also shows the pressure spectrum in response to the same dual tone input – the pressure

measurement is dominated by tones at 1800Hz and 1900Hz which supports the hypothesis that the

pressure responds in an essentially linear manner to the input.
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Figure 3. Coherence of the empirical frequency response data in Fig. 2. The Vrms = 0.80ms−1

velocity coherence (dashed line) decreases from the Vrms = 0.15ms−1 velocity coherence (solid
line) due to the nonlinear jet response. On the other hand, Vrms = 0.80ms−1 pressure coherence
(dashed line) increases from the Vrms = 0.15ms−1 pressure coherence (solid line) due the fact
the pressure signal is essentially independent of the forcing condition and responds in a linear
manner to the actuation signal.

The harmonics generated under periodic forcing make it difficult to determine open-loop forcing

conditions which produce the desired periodic velocity waveform. This motivates using hotwire

feedback, however, the controllers must explicitly account for the coupling between harmonics. This

paper introduces an approach for identifying the coupling and a feedback compensation strategy

that permits asymptotic tracking of the reference waveform for very large perturbations relative to

the mean velocity.

III. Identification of Harmonic Coupling

The frequency responses in Fig. 2 show that the magnitudes roll off after a plenum mode near

1.8kHz. This limits the actuation bandwidth to approximately 2.0kHz. As such, we specify the

periodic reference to be truncated at or below 2.0kHz to avoid saturation of the actuator amplifier.

Throughout this paper, the reference waveforms have a fundamental frequency ω0 = 100Hz so

modulation/demodulation is centered in narrow bands around the frequencies kω0, k = 1, 2, . . . , nh,

within the actuation bandwidth. The integer nh denotes the number of frequency bands and in this

study nh = 20. Although the disturbance spectrum will only be attenuated in a neighborhood of

each harmonic, the primary reason for using hotwire anemometer feedback to shape the jet velocity

is the uncertainty associated with the plant dynamics. It is not possible to identify a plant model

of sufficiently high fidelity that its inverse provides the correct open-loop forcing conditions, thus,

feedback is used to force the jet velocity to asymptotically track the periodic reference within the

actuator bandwidth, even in the presence of the significant coupling noted in Fig. 4.

The physical mechanisms causing the nonlinear harmonic coupling are not well understood,

however, empirical models can be identified that are quite suitable for synthesising stabilizing

controllers. We identify models which characterize the harmonic coupling in a neighborhood of

a particular periodic jet velocity operating point which is close to the desired periodic waveform.
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Figure 4. (Top) Velocity response to dual tone forcing at 1800Hz and 1900Hz. The harmonic
coupling appears at harmonics of 100Hz, the difference between 1800Hz and 1900Hz. (Bottom)
Pressure response to dual tone forcing at 1800Hz and 1900Hz. The output is dominated by
the linear response at 1800Hz and 1900Hz.

As the character of the harmonic coupling depends upon the reference waveform, multiple models

must be identified for controller synthesis when tracking references at operating points that are

sufficiently far from one another.

A. Modulated-Demodulated Control

At a given operating point, the main challenge in modeling the system is quantifying the nonlinear

coupling that occurs between the nh frequency “bins” of the hotwire signal and the nh frequency

bins of the input signal. The identification is facilitated by shifting the spectrum of the plant’s

input and output in the neighborhood of each harmonic to “baseband” via modulation and de-

modulation. Figure 5 shows block diagrams of both of these processes. The modulation block

has 2nh baseband inputs, the low-bandwidth in-phase and quadrature signals, denoted uik(t) and

uqk(t) (k = 1, 2, . . . , nh). These scalar signals are assembled in the vector ũ and ordered according

to Fig. 5. The baseband inputs are modulated by cosines and sines at nh harmonics of the periodic

reference and summed to form the wide-band control effort u. The demodulation block demod-

ulates the wide-band signal y with cosines and sines at the same frequencies. The demodulated

signals are low-pass filtered by Hlp to form the low-bandwidth in-phase and quadrature signals

yik(t) and yqk(t) (n = 1, 2, . . . , nh). These signals are assembled into the vector ỹ. In the sequel,

subscripts on the vectors or their elements denote the associated measurement (“v” denotes the

velocity measurement from the hotwire anemometer and “p” denotes the pressure measurement
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from the microphone). The low-pass filter corner frequency is chosen ωc <
ω0
2 since this prevents

any direct overlap of, and interaction between, adjacent frequency channels as a consequence of the

signal processing (coupling is present, however, due to the dynamics of the jet).
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Figure 5. Diagram of modulation and demodulation used to shift the spectrum of the plant’s
input and output in the neighborhood of each harmonic to baseband. The dimensions of the
signals are shown between the brackets 〈〉.

The modulation and demodulation blocks transform the pressure and velocity plants into 2nh-

input/2nh-output systems as shown in Fig. 6 for the pressure plant. The systems from ũ to ỹp

and from ũ to ỹv are denoted P̃p, the pressure plant, and P̃v, the velocity plant, respectively.

Note that because Pp is well-modeled as a linear system, P̃p is block diagonal in the sense that all

transfer functions relating input-output pairs for differing frequencies are essentially zero and can

be neglected in the analysis.18 Non-zero transfer functions relating input-output pairs at the same

frequency are arranged in 2× 2 blocks on the diagonal of P̃p. Provided

|Hlp(jω)| ≈ 0 for ω > ωc

the kth 2 × 2 block on the diagonal can be represented by a two-input, two-output linear time-

invariant system with transfer function possessing the following structure

P̃p,k(s) =

⎡
⎣ Pd(s) Px(s)

−Px(s) Pd(s)

⎤
⎦ , k = 1, . . . , nh, (1)

where the scalar transfer functions are

Pd(s) =
1

2
Hlp(s) [Pp(s+ jkω0) + Pp(s− jkω0)]

Px(s) =
j

2
Hlp(s) [Pp(s+ jkω0) + Pp(s− jkω0)] .
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In other words, in modulated-demodulated coordinates, the transfer function with pressure mea-

surement output is

P̃p =

⎡
⎢⎢⎢⎢⎢⎢⎣

P̃p,1 0 . . . 0

0 P̃p,2
...

...
. . . 0

0 . . . 0 P̃p,nh

⎤
⎥⎥⎥⎥⎥⎥⎦
. (2)

2nh u
P  p

yp
~

Mod Demod
ypu~

Pp
~

1 1 2nh

Figure 6. Diagram of the MIMO pressure system. The system from ũ to ỹp is a 2N × 2N

MIMO system denoted P̃p. The system dynamics relating an input-output pair at differing
frequencies is essentially zero since Pp is well-modeled as a linear system. The dynamics along

the block diagonal of P̃p are given by the LTI transfer function in Eq. (1).

In contrast, P̃v is nonlinear and dependent upon the operating point. We will demonstrate,

however, that in a neighborhood of an operating point P̃v can be modeled as an affine function

of the input. The transformation to baseband coordinates permits the characterization of the

nonlinear harmonic coupling phenomenon in a linear framework which simplifies identification and

control.

B. Inner Loop with Pressure Feedback

The pressure signal is essentially independent of the operating point and it is convenient to close

an inner loop using this measurement for two reasons. First, a stable operating condition can be

established by specifying reference values for the demodulated pressure signal components. The

pressure reference values can be chosen to produce jet velocity components that are close to the

desired periodic jet velocity components. Indeed, if the pressure references could be chosen to

exactly produce the desired jet velocity, then feedback of the hotwire anemometer signal would not

be necessary, however, due to imprecise knowledge of the jet velocity plant it is not possible to

choose the references in an open loop manner so as to produce the desired jet velocity waveform.

Nevertheless, the operating point created using plenum pressure feedback provides a useful steady-

state periodic velocity signal which is close to the desired waveform and about which a small-signal

model of the jet velocity can be developed. The second reason for using an inner pressure feedback

loop is the equalizing effect it has on the demodulated components of the jet velocity relative to the

pressure reference values. The equalization is useful because it vastly reduces the condition number

of the empirically derived map from the pressure reference to the demodulated components of the

jet velocity. The reduced condition number makes the control schemes described in Sec. IV more

robust to errors in the identified model when the hotwire measurement is used for feedback.
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The inner loop is closed around Pp using the modulated-demodulated control method described

in Ref. 18 and the inner loop controller has the same block diagonal structure as P̃p,

C̃p =

⎡
⎢⎢⎢⎢⎢⎢⎣

C̃p,1 0 . . . 0

0 C̃p,2
...

...
. . . 0

0 . . . 0 C̃p,nh

⎤
⎥⎥⎥⎥⎥⎥⎦
.

The closed-loop block diagram is shown in Fig. 7. The reference for this loop is r̃p

r̃p = [rip,1, r
q
p,1, . . . r

i
p,nh

, rqp,nh
]T

where the superscripts “i” and “q” denote the in-phase component and quadrature component,

respectively. Fig. 8 shows the kth 2× 2 block on the diagonal of C̃p. The integrators provide zero

steady state tracking error for constant references and, thus, the transfer function from r̃p to ũ

inverts P̃p at ω = 0. When this inverse is cascaded with P̃v, the relationship between ỹv and r̃p

does not suffer from the large gain variations in the block diagonal terms.

P    v

u

-

rp

P     p

yp
~

y
v

~

~

C  p
~

Mod

Demod

Demod

y
v

yp

u~
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velocity measurement

pressure measurement

Figure 7. Block diagram for identification of harmonic coupling. The inner control loop with
pressure feedback is used to equalize the magnitude response across the bandwidth of the
velocity measurement. The equalized magnitude response lowers the condition number of
the 2nh × 2nh MIMO system from r̃p to ỹv which is important for inversion based control in
Section IV. The identified system from r̃p to ỹv captures the nature of the velocity systems
nonlinear harmonic coupling in the neighborhood of an operating point.

The fixed gains Rk and Ik invert the phase of Pp at frequency kω0 for phase compensation;

specifically, Rk and Ik are defined according to

Rk + jIk =
Pp(jkω0)

|Pp(jkω0)| . (3)

If the loop is broken at yp in Fig. 7 the scalar loop gain can be represented as a set of nh linear

time invariant subsystems in parallel connection, each with loop gain

Lp,k(s) = gp,kPp(s)

[
Hlp(s− jkω0)(Rk − jIk)

s− jkω0
+

Hlp(s+ jkω0)(Rk + jIk)

s+ jkω0

]
, k = 1, . . . , nh, (4)
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where gp,k is an adjustable scalar gain that controls the time constant of the kth frequency channel.

Poles at ±jkω0 provide asymptotic tracking of a periodic signal at kω0. Additional analysis of the

dynamics of the inner loop from both the measurement and baseband perspectives is given in

Refs. 18, 22.
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Figure 8. Block diagram of the 2-input/2-output kth channel of C̃p

Measurement of the inner loop complementary sensitivity function (Fig. 9, top plot) demon-

strates that asymptotic tracking is achieved at the 20 harmonics of 100Hz targeted for control (the

phase is not shown, however, the phases at the frequencies kω0, k = 1, . . . , 20, are zero). The data

are produced using broad-band white noise injected at utest in Fig 7 with the test input amplitude

adjusted to perturb the jet velocity by 0.15ms−1 RMS (r̃p = 0). In addition to the pressure mea-

surement, the velocity measurement is recorded and used to calculate the “transfer function” from

utest to yv (Fig. 9, bottom plot). The pressure loop’s equalizing effect on the jet velocity magnitude

is evident by the similar magnitude responses at each frequency of control. Additionally, although

the velocity perturbation amplitude is small, nonlinear effects of the velocity system appear in the

transfer function at harmonics of 100Hz that fall beyond 2kHz. These peaks result from nonlinear

harmonic coupling and grow stronger with increased forcing amplitude.

C. Harmonic Coupling Identification Results

The coupling between channels in P̃v is a function of the operating point so it is necessary to

specify a constant pressure reference vector r̄p such that the elements of ỹv are close to the values

associated with the Fourier series of the desired periodic jet velocity waveform. The coupling

is identified at the operating condition by adding a time varying perturbation to the constant

reference. In other words, the reference input in Fig. 7 is specified to be r̃p = r̄p + δp, where

δp is the perturbation employed for identification in a neighborhood of the operating condition

established by r̄p. Appropriate values for r̄p must be specified, though. Let the desired periodic jet

velocity waveform yref with fundamental frequency ω0 possess the following Fourier series,

ω0

2π

∞∑
k=0

ak cos(kω0t) + bk sin(kω0t), ak + jbk =

∫ 2π
ω0

0
yref(t)e

−jkω0tdt. (5)
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Figure 9. (Top) Complementary sensitivity function of the pressure inner loop. The units
are the unscaled transducer voltage and the test input voltage. (Bottom) Transfer function
from rp to yv. The inner loop equalizes the magnitude response across the velocity system’s
bandwidth. The open loop velocity frequency response from Fig. 2 is shown as the dashed
line.

The constant reference vector r̄p should be chosen so that ȳv satisfies

[
ȳiv,1, ȳqv,1, ȳiv,2, . . . , ȳiv,nh

, ȳqv,nh

]
= [a1, b1, a2, . . . , anh

, bnh
]. (6)

If we treat Pv as a linear system with frequency response function Pv(jω), then the in-phase and

quadrature components of r̄p associated with the kth frequency would be chosen such that

r̄ip,k + jr̄qp,k = Pp(jkω0)P
−1
v (jkω0)(ak + jbk), k = 1, . . . , nh. (7)

In practice, the values of Pv(jkω0) are selected based on the “linear” jet velocity model from

Fig. 2. This method does not compensate for the nonlinear dynamics of Pv or for identification

errors in Pp and as a consequence equality in Eq. (6) does not hold and yv does not track yref.

The outer loop using the velocity measurement for feedback, however, will use the right-hand

side of Eq. (6) as the reference input r̄v. Some examples of the jet velocity waveform when r̄p is

chosen in this manner are shown in Fig. 10 where the measured jet velocity waveforms (solid lines)

are compared to their respective reference waveforms (dashed lines). The references are 20% duty

cycle tapered square pulses with amplitudes ranging from Vrms = 0.3ms−1 to Vrms = 1.2ms−1. The
asymmetry and oscillation seen in the emprical waveform grows with amplitude due to increased

harmonic coupling at higher RMS forcing amplitudes. While these waveforms do not match the

desired periodic waveform, they are adequate to identify a model of the harmonic coupling in a

neighborhood of the operating point which is then employed to design the stabilizing outer loop.
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Figure 10. Empirical waveforms recorded at the operating point established for identification
(solid line) compared to the 20% duty cycle square wave reference (dashed line) at Vrms =
0.3ms−1,0.6ms−1,0.9ms−1,and 1.2ms−1. The operating point is established with pressure-only
feedback using the references specified in Eq. (7). The pressure references depend on a linear
model of the velocity system so yv does not asymptotically track yref.

The small signal behavior of the jet velocity in a neighborhood of the operating point will be

modeled as a linear time-invariant system. In response to the pressure reference r̃p = r̄p + δp,

where r̄p establishes the jet velocity operating point ȳv, the demodulated velocity components are

ỹv = ȳv+δv where δv is the time varying portion of ỹv. For sufficiently small δp, we model δv = h∗δp
where h is a 2nh-input/2nh-output linear system and ∗ is the convolution operator. Note that h

is a function of the operating point established by r̄p but this dependency is suppressed for the

sake of streamlined notation. The elements of the perturbation variables follow the conventions

established for r̃p and ỹp, namely,

δp =
[
δip,1, δqp,1, δip,2, . . . , δip,nh

, δqp,nh

]T

δv =
[
δiv,1, δqv,1, δiv,2, . . . , δiv,nh

, δqv,nh

]T
.

Although the model is developed about a periodic operating point, in the demodulated signal

space the periodicity is manifested by constant signal values so h can be treated as a time-invariant

system, too. We consider in detail below a few channels of h in a neighborhood of two operating

points.

An empirical frequency response associated with the lth input channel to kth output channel of

h is identified by adding low bandwidth, zero-mean random perturbations to the constant in-phase

term r̄p,l. The low-bandwidth random input signal represents δip,l. The in-phase and quadrature

responses to this input are measured for the kth output channel, and the mean values are removed to

yield the signals δiv,k and δqv,k. The experiment is repeated but now using the quadrature input δqp,l.

Traditional cross-spectral estimation is employed to develop empirical frequency responses between

these input and output pairs. For example, Fig. 11 presents frequency response estimates from

in-phase inputs δip,15 and δip,16 to outputs δiv,15, δ
q
v,15, δ

i
v,16, δ

q
v,16 δiv,17, and δqv,17 at the unforced

operating point Vrms = 0.0ms−1. Figure 12 shows the frequency response estimates using the

channel 15 and 16 quadrature inputs to the same output variables. These figures demonstrate how

perturbations to the 15th and 16th channels (corresponding to frequency “bins” centered at 1.5kHz

and 1.6kHz) couple to signals in the 15th, 16th, and 17th channels (corresponding to frequency
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bins centered at 1.5kHz, 1.6kHz, 1.7kHz). Note that the “off diagonal” transfer functions can be

modeled as zero. Further testing of all channels leads to the conclusion that all off diagonal channels

are zero when Vrms = 0ms−1, i.e. δiv,k/δ
q
p,l = 0 when k �= l.

In marked contrast is the system behavior in the presence of periodic forcing at a 20% duty cycle

with Vrms = 0.9ms−1 (corresponding to the operating point in Fig. 10c) shown in Figs. 13 and 14.

These figures demonstrate that not only have the diagonal frequency responses changed from the

Vrms = 0ms−1 case, but that the off-diagonal magnitudes are now non-zero and in some cases are as

large as the diagonal magnitudes. This cross-channel coupling clearly reveals the nonlinear behavior

of the jet velocity. The figures also reveal additional structure in h. Comparing Fig. 11 to 12, and

Fig. 13 to 14, it is evident that for a given channel the in-phase-to-in-phase frequency response is

close in magnitude and phase to the quadrature-to-quadrature frequency response. Furthermore,

the cross element magnitudes are similar and the phases differ by about 180 degrees. Despite the

differences (some of which can be attributed to slow drift of the test conditions primarily caused

by changes in the mean jet velocity) we will assume for purpose of identification

δiv,k/δ
i
p,l = δqv,k/δ

q
p,l

δiv,k/δ
q
p,l = −δqv,k/δ

i
p,l

l, k = 1, . . . , nh. (8)

This structure can be proven for the diagonal blocks of a linear system such as the demodulated

model associated with Pp, however, for a nonlinear system such as Pv we currently have no general

proof that its demodulated model should possess this structure. Nevertheless, the experimental

data (including the other channels not shown here) supports the assumption (8).

The high channel count associated with the linearizations requires an efficient method for de-

termining a suitable model for controller design. It’s much too labor intensive to perform the sort

of experiments that produce the frequency response estimates of Figs. 11 thru 14 and, in fact,

such detailed models are not necessary for controller synthesis. Let H(s) represent the Laplace

transform of h. We will show that the DC gain of the frequency response, in other words, H(0), is

adequate for successful synthesis of low-bandwidth jet velocity compensators. In other words, at a

given operating point we identify a model of the form

δv(t) = H(0)δp(t), (9)

where H(0) ∈ R
2nh×2nh is the DC gain matrix to be determined. Due to the assumed structure of

h, though, only nh inputs are required to identify H(0) so the quadrature components of δp are held

at zero while the in-phase components are (simultaneously) specified to be low-bandwidth (0.2Hz)

uncorrelated, random, zero mean sequences. The new vector δip(t) ∈ R
nh is obtained from δp by

eliminating the quadrature components. Input-output data are collected and assembled as follows

Δv =
[
δv(0) δv(ts) δv(2ts) . . . δv((ne − 1)ts)

]
∈ R

2nh×ne

Δp =
[
δip(0) δip(ts) δip(2ts) . . . δip((ne − 1)ts)

]
∈ R

nh×ne ,
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Figure 11. System identification at the unforced operating point shown for the n = 15, 16
in-phase input channels and n = 15, 16, 17 output channels. The transfer functions from the
in-phase inputs to the in-phase outputs are shown as solid lines and from the in-phase inputs
to the quadrature outputs as dashed lines. The magnitude response of the cross channels
are at the noise floor of the measurement (magnitude < 10−3) indicating little cross-channel
coupling at Vrms = 0ms−1 (note that the channels where the magnitude is essentially zero have
a different ordinate scale). The output signal units are unscaled velocity transducer voltages.
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Figure 12. Same as Fig. 11 but showing identification results with quadrature inputs. The
transfer functions from the quadrature inputs to the quadrature outputs are shown as solid
lines and from the quadrature inputs to the in-phase outputs as dashed lines.
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Figure 13. System identification at the 20% duty cycle, Vrms = 0.9ms−1 operating point
(Fig. 10c) shown for the n = 15, 16 in-phase input channels and n = 15, 16, 17 output chan-
nels. Significant cross channel coupling occurs at Vrms = 0.9ms−1.
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Figure 14. Same as Fig. 13 but showing identification results with quadrature inputs.
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where δv(kts) and δip(kts) are the output and input data at time t = kts, k = 0, 1, . . . , ne − 1, and

where ne is the number of collected time samples. The matrix H̃ ∈ R
2nh×nh is obtained from H(0)

by deleting the columns corresponding to quadrature inputs. Once H̃ is determined, though, H(0)

can be constructed from (8). A standard least-squares problem is solved to minimize the norm of

the prediction error

H̃ls = argmin
H̃

σ̄(Δv − H̃Δp). (10)

The uncorrelated inputs ensure that Δp is full rank and so a unique minimizing solution exists.
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Figure 15. The solid lines are the measured response of the k = 15, 16, 17 channels of the
demodulated hotwire signal ỹv with means removed to the test input δip(t) at the 20% duty

cycle, Vrms = 0.9ms−1 operating point. The dashed lines are the model predictions H(0)δip(t),
where H(0) is identified from (10). The units are the unscaled velocity transducer voltage in
mV .

The quality of the fit can be quantified by comparing Δv obtained from another data set to what

is predicted using the least square solution H̃lsΔp. For example, when Vrms = 0.9ms−1 with a 20%

duty cycle, the normalized prediction error on a new data set is σ̄(Δv− H̃lsΔp)/σ̄(Δv) ≈ 0.2. Time

sequences can also be compared and Fig. 15 shows measured and predicted in-phase and quadrature

velocity signals for the 15th, 16th, and 17th output channels. The prediction error is small and

H(0) accurately captures the low-frequency linearized dynamics of the harmonic coupling. Thus,

this technique is used to rapidly determine the low-frequency system dynamics at all operating

points.

A graphical representation of H(0) is also possible and is useful for viewing changes in H(0) as

the operating point is modified. Since there are 20 frequency “bins” associated with the demod-

ulated input and output signals, the norm of a given channel can be represented as a gray scale
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Figure 16. Graphical representation of H(0) at a) the unforced operating point, b) the 20%
duty cycle, Vrms = 0.45ms−1 and c) the 20% duty cycle, Vrms = 0.9ms−1 operating point.
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shade on a figure with 20× 20 cells. The norm of the lth input channel to kth output channel is

σ̄

⎛
⎝
⎡
⎣ δiv,k/δ

i
v,l δiv,k/δ

q
v,l

−δiv,k/δ
q
v,l δiv,k/δ

i
v,l

⎤
⎦
⎞
⎠ =

√(
δiv,k/δ

i
v,l

)2
+

(
δiv,k/δ

q
v,l

)2
,

where only the DC values of the transfer functions are used in the calculation. Figure 16 provides

three such graphical representations, one at the unforced operating point (a), another at the 20%

duty cycle, Vrms = 0.45ms−1 operating point (b), and the third at the 20% duty cycle, Vrms =

0.9ms−1 operating point (c). At the unforced operating point, H(0) is essentially block diagonal

which indicates little-to-no harmonic coupling. At higher forcing amplitudes, however, the figures

reveal strong harmonic coupling, especially between frequencies above 800Hz.

IV. Compensation of Harmonic Coupling

Two compensation strategies are implemented for asymptotic tracking of the periodic jet veloc-

ity reference waveform within the system’s 2kHz bandwidth: regulation about a single operating

point and regulation about multiple operating points with a single controller. In both cases the de-

modulated hotwire signal ỹv is subtracted from the constant reference r̄v which contains the Fourier

coefficients of the reference waveform. The resulting tracking error drives the velocity controller

C̃v as shown in the block diagram of Fig. 17. The reference for the velocity control loop is

r̄v = [a1, b1, a2, . . . , anh
, bnh

]T ,

where the elements are the Fourier coefficients from (5). The objective of this section is not to

present an exhaustive investigation into the various synthesis methods that can be applied to this

problem but to demonstrate that the linearized models created from the demodulated variables are

quite useful for understanding and compensating the strongly nonlinear behavior of the jet. We

focus on the case of 20% duty cycle forcing with ω0 = 100Hz and desired forcing strengths ranging

from Vrms = 0ms−1 to 1.05ms−2.
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Figure 17. Compensation of harmonic coupling using outer loop feedback of the jet velocity.
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A. Regulation at a Single Operating Point

Stabilization is rarely the sole objective of feedback control, however, in this application we are

interested in a controller that can generate a suitable low frequency plant inverse so that the desired

periodic jet velocity waveform is asymptotically tracked. With the pressure reference r̄p in Fig. 17

establishing a periodic jet velocity close to the desired waveform, the controller is required to issue

perturbations to the reference values such that the demodulated jet velocity components asymp-

totically converge to r̄v. This suggests the use of integral control in all channels to asymptotically

drive the tracking error ẽv to zero,

C̃v(s) = gvKv
1

s
, (11)

where Kv ∈ R
2nh×2nh is a constant real matrix and gv is a real, positive, scalar gain that sets the

outer loop convergence rate. The continuous-time controller realization is

ẋv = ẽv, δp = Kvxv, (12)

where xv(t) ∈ R
2nh is the controller state. The closed-loop system with the simplified plant model is

simply ẋv = −gvH(0)Kvxv. Since the velocity control loop is implemented at a 2.5kHz sample rate

(the microphone and hotwire signals are sampled at 25kHz, demodulated and then downsampled

to 2.5kHz), the computational power of the computer enables the use of a fully populated Kv in

which every element may be non-zero. Thus, Kv is chosen as the inverse of H(0) identified in

Section IIIC, i.e. Kv = H−1(0). This approach yields a robust closed-loop system because the

condition number of H(0) is relatively low at all operating points due to the equalizing effect of the

inner feedback loop illustrated in Fig. 9 (see Ref. 24). The equalizing effect lowers the condition

number κ of H(0) at the unforced operating point to κ(H(0)) = 2.7 from its open-loop value of

κ = 706. At higher forcing amplitudes, harmonic coupling increases the condition number. For

example, at Vrms = 0.45ms−1 the condition number of H(0) is κ = 4.0 and at Vrms = 0.9ms−1 the

condition number increases to κ = 8.3. In all cases, however, the inverse of the plant’s DC gain

matrix can be safely used. All (continuous-time) closed-loop eigenvalues are located at −gv, where

gv is selected so that the closed-loop time constant is one second.

There is one technical detail to be addressed and that is to show there is no possibility of

cancellation between a controller pole at s = 0 with a transmission zero of H(s). This is easily

demonstrated by assuming a minimal realization for H to be ẋ = Ax + Bδp, δv = Cx, where

x(t) ∈ R
m, m is the state dimension of H, A ∈ R

m×m, B ∈ R
m×2nh , and C ∈ R

2nh×m. We may

assume H is strictly proper because Hlp rolls off all channels. Transmission zeros at s = 0 require

detQ = 0 where Q is defined as

⎡
⎣−A −B

C 0

⎤
⎦ ∈ R

(m+2nh)×(m+2nh),

and where “0” denotes a 2nh×2nh matrix of zeros.25 The asymptotic stability ofH means detA �= 0
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and so detQ = detA det
(
CA−1B

)
. Note, though, H(0) = −CA−1B is invertible and it follows

that detQ �= 0 so H cannot have transmission zeros at s = 0. The implication is that the controller

C̃v = gvH
−1(0)1s internally stabilizes the plant H(s) if gv is sufficiently small.

Steady-state, closed-loop, jet velocity waveforms with the outer loop controller designed ac-

cording to this prescription are shown in Fig. 18. In all four cases the velocity loop controllers

asymptotically drive the demodulated hotwire signals to the Fourier coefficients of the reference

waveforms at the 20 frequencies of control. The measured waveforms (solid lines) closely match

the references (dashed lines) which are identical to those in Fig. 10 for pressure-only feedback. At

each reference amplitude, a unique C̃v is synthesized using H(0) identified at the operating points

shown in Fig. 10. The spectra of the Vrms = 0.9ms−1 jet velocity waveform, yv, and the reference

coefficients, r̄v (expressed in polar form), shown in Fig. 19, verify that the Fourier coefficients of

yv match the reference coefficients at all frequencies of control. Small periodic errors are evident

in the high amplitude time series and are the result of harmonics excited beyond 2.0kHz. As these

harmonics lie beyond the bandwidth of the actuation system, they are uncompensated.
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Figure 18. Empirical waveforms with velocity and pressure feedback (solid line) compared to
the 20% duty cycle square wave reference (dashed line) at Vrms = 0.3ms−1,0.6ms−1,0.9ms−1,and
1.2ms−1. The outer velocity loop moves the velocity output from the operating points in Fig. 10
to the waveforms shown here. The waveforms with velocity feedback asymptotically track the
velocity reference Fourier coefficients at all nh = 20 frequencies of control.
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Figure 19. Spectra of yv (X’s) and yref (O’s) at each of the harmonics of the 100Hz fundamental
frequency for the Vrms = 0.9ms−1 square waves in Fig. 18. The empirical measurement matches
the reference Fourier coefficient at each frequency of control. The small ripples seen in Fig. 18c-
d come from harmonics excited beyond the actuation bandwidth as shown here.

The controllers effectively regulate the jet velocity in a neighborhood of an operating point,

however, instability may occur if the velocity reference r̄v moves sufficiently far from the operating
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point about which the controller design was based. For example, a 20% duty cycle square wave is

tracked using the controller synthesized from the identification of H(0) at the unforced operating

point (Fig. 16a). With the outer loop closed, the velocity reference is increased from zero until

instability occurs. Note that increasing the pulse height with fixed duty cycle (as is done here)

just requires a real scaling of r̄v. Figure 20 shows the norm of the velocity loop tracking error

‖ẽv(t)‖2 = ‖r̄v − ỹv(t)‖2 as the jet velocity RMS amplitude is increased from 0ms−1 to 0.6ms−1

in steps of 0.15ms−1, occurring every 30s. The error is regulated to zero after each step until

t = 120s where, at Vrms = 0.6ms−1, the closed-loop system is unstable. The instability can be

predicted by analyzing the eigenvalues λcl of −gvH(0)Kv, where Kv is based on the identification at

Vrms = 0ms−1 and H(0) is changed according to the Vrms implied by the velocity reference. Table

1 lists the predicted maximum real part of λcl for the four Vrms cases and shows that instability

occurs somewhere between Vrms = 0.45ms−1 and Vrms = 0.6ms−1 as is experimentally observed

(gv = 1 in this experiment).
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Figure 20. Error signal norm, ‖ẽv‖2, tracking a 20% duty cycle square wave using the Vrms =
0ms−1 model inverse controller. The reference amplitude is stepped from 0ms−1 to 0.6ms−1 by
0.15ms−1 every 30s. Instability at Vrms = 0.6ms−1is accurately predicted by eigenvalue analysis
using a static map of the harmonic coupling at each amplitude.

Table 1. Predicted maximum closed-loop eigenvalue

Vrms(ms−1) max(real(λcl))

0.00 -1.00

0.15 -0.93

0.30 -0.69

0.45 -0.16

0.60 0.39

B. Regulation at Multiple Operating Points

It may be possible to synthesize a single controller which stabilizes the system at multiple operating

conditions. The previous section demonstrated that a controller designed at a given operating point
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may, indeed, also stabilize the closed-loop system at other operating points, however, the objective

of this section is to show that if multiple operating points are a priori considered in the controller

design, a larger range of operating conditions can be stabilized with a single controller (a single

controller is desired for ease of implementation). The controller remains an integrator for which

the gain matrix Kv is to be designed. The synthesis problem is established by considering the

backwards difference discrete-time approximation of (12),

xv((k + 1)ts) = xv(kts) + tsẽv(kts), δp(kts) = Kvxv(kts),

where ts is the sample period, k is an integer denoting the sample index and gv = 1. The closed-loop

system at an operating point with DC gain H(0) is

xv((k + 1)ts) = (I − tsH(0)Kv)xv(kts).

A sufficient condition for closed-loop asymptotic stability is σ̄ (I − tsH(0)Kv) < 1, so if there are

np operating points with DC gain matrices Hk(0), k = 1, . . . , np, then a search can be performed

for a single Kv such that σ̄ (I − tsHk(0)Kv) < 1, k = 1, . . . , np. The synthesis of Kv can be

(conservatively) formulated as

min
Kv

max
k

σ̄ (I − tsHk(0)Kv)

which can be expressed as a generalized eigenvalue minimization problem

minimze γ

subject to 0 < Σ(Kv)

βk < γI, k = 1, . . . , np.

(13)

The matrix Σ(Kv) is defined

Σ(Kv) =

⎡
⎣ αI Kv

KT
v αI

⎤
⎦ , (14)

where α is a positive real constant that enforces σ(Kv) < α. The matrices βk are defined

βk =

⎡
⎣ 0 I − tsHk(0)Kv

(I − tsHk(0)Kv)
T 0

⎤
⎦ , k = 1, . . . , np. (15)

Setting γ > 1 and Kv = 0 yields a feasible starting point and if in the course of the optimization

γ < 1, the associated Kv asymptotically stabilizes the system at all np operating points. With

multiple operating points, though, there is no guarantee of finding a single stabilizing gain Kv.

In fact, it is straightforward to construct examples for which there does not exist a stabilizing

solution. Furthermore, the conservatism introduced by using σ̄ means that even if a stabilizing

solution exists, it does not imply γ∗ < 1. Nevertheless, this approach has been useful in generating

controllers that successfully stabilize a range of operating points that cannot be stabilized by
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a controller designed for a single operating point. The closed-loop convergence rate cannot be

specified with this approach, however, if γ∗ < 1 then the closed-loop time constant is no larger

than −ts/ log γ
∗. If the adjustable gain parameter gv is introduced in the controller then the

eigenvalues of I − gvtsHk(0)Kv are affine functions of gv and all closed-loop eigenvalues converge

to 1 as gv → 0. Thus, if the eigenvalues of I − tsHk(0)Kv are stable, then so are the eigenvalues

of I − gvtsHk(0)Kv for gv ∈ (0, 1] –this provides a means of adjusting the convergence rate. The

bound on the maximum singular value of the controller gain, α, is often an inactive constraint in

the optimization, however, it can be included to limit the maximum controller gain.

This synthesis approach is used to generate a single controller that can track a 20% duty cycle

square wave over a wide amplitude range. The optimization is executed with α = 5 and a set

of np = 4 gain matrices identified at Vrms = {0, 0.6, 0.9, 1.05}ms−1 operating points. Matlab’s

linear matrix inequality solvers were used to generate solutions to (13).26 The optimization yields a

controller that stabilizes all operating points and γ∗ = 0.999982 guarantees time constants smaller

than 20 seconds (ts = 0.0004). The range of amplitudes stabilized with this controller is more than

double the range stablized with the Vrms = 0ms−1 model inverse controller presented in Fig. 20.

Fig. 21 shows ‖ẽv‖2 as the reference amplitude is stepped from Vrms = 0ms−1 to 1.05ms−1. The

amplitude is incrementally increased in steps of 0.15ms−1 every 20s and the error asymptotically

converges to zero after every step change in amplitude. Increasing Vrms beyond 1.05ms−1 is not

possible due saturation of the amplifier input. Note that the closed-loop time constants are con-

siderably smaller than the upper bound derived from γ∗.
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Figure 21. Error signal norm, ‖ẽv‖2, tracking a 20% duty cycle square wave using an optimized
controller. The reference amplitude is stepped from Vrms = 0ms−1 to Vrms = 1.05ms−1 by
0.15ms−1 every 20s. The optimized controller tracks the reference over a wide amplitude range
compared to the model inverse controller.

C. Alternative Waveforms

Alternatives to pulsed jet injection may be explored with the harmonic coupling control system.

For example, Fig. 22 shows the ability to track sawtooth and doublet waveforms at an amplitude of

Vrms = 1.0ms−1 and ω0 = 100Hz. The doublet waveform contains two successive pulses, one above

the mean and one below the mean. The properties of these waveforms may be better suited for
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specific applications of pulsed jet injection when compared to periodic square pulses. For example,

the doublet waveform may perturb the flowfield to adhere, on average, closer to the injection wall,

a benefit for film cooling applications.27
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Figure 22. Example sawtooth waveform (case a) and doublet waveform with 10% duty cycle
pulse (case b) at an amplitude of Vrms = 1.0ms−1. These waveforms demonstrate the versa-
tility of the harmonic coupling control method for tracking any periodic reference within the
actuation system’s bandwidth.

V. Conclusion

This paper presents identification and control strategies for periodic waveform tracking in an

experimental pulsed jet injection system. The main contribution is the introduction of demodulated

signal components in which scalar signals –the system input and output– are demodulated at

the harmonic frequencies present in the Fourier series of the periodic reference waveform. The

demodulated signals are low bandwidth and can be viewed as “slowly varying” amplitude variables

for sinusoids at the harmonic frequencies. This change of coordinates, however, converts a single-

input/single-output system into a MIMO system in which the off-diagonal elements reveal the

coupling between different frequency “bins.” This point of view is uniquely suited to quantifying

the nonlinear coupling between harmonics in the pulsed jet experiment. It was demonstrated that

the DC gain matrices associated with linearizations performed in the demodulated coordinates at

various operating points can be used for synthesizing stabilizing controllers that drive the jet velocity
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to asymptotically track the velocity reference waveform within the bandwidth of the actuator and

over a wide range of amplitudes up to incipient saturation of the actuator. Feedback of the jet

velocity was facilitated by an inner loop which acted on a pressure measurement taken from the

plenum. Feedback of the pressure signal was useful for establishing operating points close to the

desired periodic jet velocity waveform. The inner loop also has an equalizing effect on the jet

velocity components which produces lower condition numbers of the DC gain matrices.

There is no doubt as to the utility of this approach for nonlinear plants but future research can

put the modulation-demodulation control approach on a more firm theoretical foundation where

nonlinear plants are concerned. Proofs that go beyond local stability in a neighborhood of an oper-

ating point are still lacking and would require global models of the system, which is an additional

challenge in itself. Furthermore, it is also not known under what conditions the structure (8) of

the linearizations conforms to what was empirically noted. This structure was only exploited for

identification of the DC gain matrices but not for controller synthesis. With regard to controller

synthesis, we only touched on a few of many potentially viable approaches. For example, the con-

servatism of our synthesis formulation can be reduced by introducing additional decision variables

that correspond to similarity transforms of the closed-loop dynamics matrix that also attempt to

reduce its maximum singular value (although in this case the problem becomes non-convex). It

is also possible to embed the identified plants in a more general uncertainty description for which

many analysis and synthesis tools exist.26 Finally, we noted in our experiments the presence of

significant out-of-band harmonics that cannot be directly regulated by the controller due to the fact

that they lie beyond the actuator bandwidth. Nevertheless, these harmonics are a consequence of

the in-band forcing so another direction to pursue is a means of adjusting the reference waveform

so as to manipulate the out-of-band harmonics to enhance features of the waveform that are critical

for the flow control study. Future publications will address these challenges.
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