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Abstract
Summary: Harmonizing variant indexing and allele assignments across datasets is crucial for data integrity in cross-dataset studies such as 
multi-cohort genome-wide association studies, meta-analyses, and the development, validation, and application of polygenic risk scores. 
Ensuring this indexing and allele consistency is a laborious, time-consuming, and error-prone process requiring a certain degree of computa
tional proficiency. Here, we introduce GRIEVOUS, a command-line tool for cross-dataset variant homogenization. By means of an internal data
base and a custom indexing methodology, GRIEVOUS identifies, formats, and aligns all biallelic single nucleotide polymorphisms (SNPs) across 
all summary statistic and genotype files of interest. Upon completion of dataset harmonization, GRIEVOUS can also be used to extract the maxi
mal set of biallelic SNPs common to all datasets.
Availability and implementation: GRIEVOUS and all supporting documentation and tutorials can be found at https://github.com/jvtalwar/ 
GRIEVOUS. It is freely and publicly available under the MIT license and can be installed via pip.

1 Introduction
The explosion of genetic variant datasets, driven by increas
ingly affordable genomic profiling technologies, presents ex
citing opportunities across a number of fields, ranging from 
precision medicine to ecology to agriculture. However, taking 
full advantage of genetic data from multiple sources can be 
challenging when datasets use different conventions for 
encoding variants. Analyses requiring the integration of vari
ous datasets range from the straightforward, such as validat
ing genetic findings or polygenic scores in new datasets, to 
the more complex, such as cross-dataset joint statistical anal
yses [e.g. genome wide association meta-analyses (Zeggini 
and Ioannidis 2009, Evangelou and Ioannidis 2013), two- 
sample Mendelian randomizations (Hartwig et al. 2016, 
Sanderson et al. 2022)]. These approaches can frequently be 
undermined by discrepancies in the definition of identical 
variants across datasets (Zeggini and Ioannidis 2009, 
Hartwig et al. 2016).

Common variants, such as single nucleotide polymor
phisms (SNPs), are abundantly shared across different data
sets, and can be imputed against reference panels to increase 
coverage (van Leeuwen et al. 2015, Coleman et al. 2016). 
Quality control of SNP data is critical, and best practices in
clude setting uncertain genotypes to missing, orienting geno
types to the forward reference DNA strand, and filtering on 
missingness, minor allele frequency, or deviation from Hardy 
Weinberg equilibrium (Anderson et al. 2010, Coleman et al. 

2016, Marees et al. 2018, Choi et al. 2020). However, even 
after performing the steps to generate a high-quality dataset, 
there can still be discrepancies between datasets due to differ
ences in conventions used to define genotypes. If left uncor
rected, these discrepancies can create illusory genotypic 
differences where none exist. Given that common variant sets 
can include millions of SNPs, it can be challenging and time 
consuming to manually identify and resolve discrepancies.

To reduce this burden to the researcher, we developed a 
Generalized Realignment of Innocuous and Essential 
Variants Otherwise Utilized as Skewed or GRIEVOUS, a 
command-line tool designed to ensure cross-cohort consis
tency and maximal feature recovery of biallelic SNPs, the 
most commonly used class of variants for genetic studies 
(Choi et al.2020). Whether creating a composite cohort from 
smaller studies for joint analyses, or ensuring feature fidelity 
for validation studies or polygenic score portability, 
GRIEVOUS reduces the problem of variant consistency and 
recovery to a simple streamlined set of commands.

2 Materials and methods
2.1 Datasets
Summary statistics and genotype data were obtained for two 
diseases: breast cancer (BC) and prostate cancer (PC). 
Specifically, data consisted of one summary statistic file and 
two different genotype datasets, each of which diverged in 
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genotyping and imputation methodology from the other. 
Each file (i.e. both summary statistics and genotypes), for 
each condition studied here, indexed variants in a unique 
manner, capturing the discordance that can exist be
tween datasets.

For BC, summary statistics were obtained from a large- 
scale BC GWAS study by Michailidou et al. (2017) (down
loaded from: https://bcac.ccge.medschl.cam.ac.uk/bcacdata/ 
oncoarray/oncoarray-and-combined-summary-result/gwas-sum 
mary-results-breast-cancer-risk-2017), and the genotype data
sets utilized were from the Discovery, Biology, and Risk of 
Inherited Variants in Breast Cancer (DRIVE; dbGaP study ac
cession: phs001265.v1.p1) project and the UK Biobank 
(UKBB). For PC, summary statistics from a large-scale PC 
multi-ancestry GWAS meta-analysis by Conti et al. (2021) were 
downloaded from dbGaP (study accession: phs001120.v2.p1). 
Genomic data from the ELucidating Loci Involved in Prostate 
cancer SuscEptibility (ELLIPSE; dbGaP study accession: 
phs001120.v1.p1) consortium and UKBB were utilized as the 
PC genotype datasets. PC PRSs were calculated as an effect size 
weighted genotype summation, with effect sizes and P-values 
for SNP subselection derived from the Conti et al. (2021) sum
mary statistics. Finally, we note that both DRIVE and ELLIPSE 
were subsets of each disease’s summary statistic GWAS.

Both DRIVE and ELLIPSE were genotyped using the 
OncoArray microarray (Amos et al. 2017), while the UKBB 
was genotyped using the UK Biobank Axiom Array (Bycroft 
et al. 2018). To recover untyped markers in both DRIVE and 
ELLIPSE, we imputed genotypes with Minimac4 using the 
1000 Genomes Phase 3 Version 5 reference panel, via the 
Michigan Imputation Server (Das et al.2016). Details of UKBB 
imputation can be found in the original UKBB report by Bycroft 
et al. (2018)

2.2 GRIEVOUS: design and framework
The current state of variant indexing can be summarized con
cisely as unsystematic. Datasets can use any means or mecha
nisms for indexing variants, ranging from custom concatenations 
of dataset variant information (e.g. CHR_POS_REF_ALT), to 
rsIDs, to any mixture in between (Fig. 1A). Arbitrary assignments 
of reference (REF) and alternate (ALT) definitions across datasets 
poses a similar problem (Fig. 1A). Differing genotyping technolo
gies, and in the case of summary statistics, the characterization of 
effect alleles, often lead to divergences in REF/ALT definitions 
across datasets. Harmonization of dataset indices and allele 
assignments, thus first requires variant organization, a task specif
ically addressed by the design of GRIEVOUS (Fig. 1B).

GRIEVOUS deploys a flexible internal database, backed 
by chromosome-level parquet files, to build a unified variant 
index and align allele assignments. Initialized in an empty 
manner, GRIEVOUS databases are continuously updated 
with each run, adding all hitherto unobserved biallelic SNPs 
identified in a given dataset (Fig. 1B). The iterative nature of 
database variant additions ensures that each subsequent data
set is consistently oriented with the set of common biallelic 
SNPs found in all previously GRIEVOUS realigned datasets.

The key command behind GRIEVOUS is realign, which con
sists of three steps: clean, register, and align (Supplementary Fig. 
S1). Clean identifies valid biallelic SNPs, by means of a graph for
mulation (Supplementary Methods: Identifying Valid Variants), 
and resolves duplications and multiple indexing issues. 
Specifically, variant positions are defined as nodes and dataset- 

specific IDs as edges. Any node for which there exists an edge to 
another node in the graph is considered an invalid variant, with a 
dataset-specific ID pointing to multiple genomic positions. 
Register performs variant indexing reformulation (i.e. a colon- 
separated unification of chromosome, position, REF, and ALT 
defined by the dataset; CHR:POS:REF:ALT) and database com
parison. Dataset variants found in the reverse index assignment 
from a GRIEVOUS database are marked for realignment, while 
all variants not found in the database by genomic position are 
registered for addition. Align enacts the adjustment of SNP 
assignments, updates the database, and writes output files for the 
realign run. These files include reports of identified, reassigned, 
and duplicated variants, and for PLINK2 binary file inputs 
(Purcell et al. 2007, Chang et al.2015), reassignment files to con
vert the binary genomic data to the GRIEVOUS format.

GRIEVOUS can harmonize an arbitrary number of user- 
defined genomic datasets, whether they be PLINK2 binary 
files, summary statistics, or a mixture of the two (Fig. 1C). 
Variants are processed at the chromosome-level, allowing 
parallelization and integration into different workflows. 
Additional commands, merge and intersect, combine 
chromosome-level reports and generate the maximal set of 
biallelic SNPs common to all datasets of interest, respectively 
(Fig. 1B). GRIEVOUS also supports the creation of multiple 
databases for project-specific needs, enhancing parallel proc
essing and organization.

3 Results
Polygenic risk scores (PRS) provide an example of an applica
tion where performance and portability depend on the fidel
ity of SNP assignments across datasets. They are traditionally 
calculated as an effect size weighted genotype summation, 
wherein each SNP’s effect size is multiplied by the number of 
corresponding alleles carried, and these products are summed 
across risk alleles. Thus, if differences exist in how genotypes 
are defined across datasets, the contribution of discrepant 
SNPs to the score could be calculated incorrectly, introducing 
noise to the PRS calculation and reducing score performance 
on the outcome of interest.

This problem can be avoided through careful harmonization 
of SNP consistency across datasets prior to PRS calculation. 
GRIEVOUS accomplishes this through indexing unification, as
signment synchronization, and variant recovery across datasets. 
To demonstrate GRIEVOUS’ effectiveness, we applied it to har
monize summary statistics and genotype data for two different 
diseases: breast cancer (BC) and prostate cancer (PC; Materials 
and methods: Datasets).

For each condition, GRIEVOUS realign was applied se
quentially in a dataset consistent order: (i) summary statistics, 
(ii) DRIVE/ELLIPSE genotypes, (iii) UKBB genotypes. This 
process aligned the ALT allele in the genotyped datasets to 
the effect allele in the summary statistics for all biallelic var
iants, facilitating unbiased cross-disease comparison of SNP 
reassignments. The results are presented in Table 1.

Both ELLIPSE and DRIVE used different nomenclature for 
common variant indexing relative to the UKBB, a disparity that 
GRIEVOUS effectively managed. Post-reindexing, GRIEVOUS 
successfully recovered and reassigned all database-consistent 
biallelic SNPs across datasets. For BC, there was high concor
dance in variant assignment, likely because DRIVE was part of 
the BC GWAS. However, in PC, despite ELLIPSE being part of 
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the PC GWAS, 43.4% of cross-dataset common variants dif
fered in allele assignment from the summary statistics and re
quired reassignment. These discrepancies drastically impacted 
PRS generalization in both PC genotype datasets. Specifically, 
PRSs applied to the unharmonized PC datasets exhibited an 
area under the receiver operating characteristic curve (AUC) 

below random chance. However, after harmonizing all datasets 
with GRIEVOUS, expected PRS performance was restored 
(Supplementary Table S1).

In summary, GRIEVOUS harmonized datasets and identified 
the shared set of biallelic SNPs for both diseases, demonstrating 
its utility in genomic dataset harmonization.
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Figure 1. (A) Example of the same genotypes described by two different genomic datasets that use different schemas for indexing and assigning 
variants. This complicates variant recovery and leads to spurious artifactual allele frequency divergences across datasets. (B) Each genomic dataset is 
harmonized with GRIEVOUS. Upon ensuring all datasets use the same reference assembly and strand orientation, each dataset is passed through 
realign, sequentially, and then passed to merge to generate composite dataset level reports of all identified biallelic and inverted variants resulting from 
the GRIEVOUS realignment process. Finally, intersect is called once across all datasets, to identify the maximal set of biallelic SNPs common across all 
datasets. (C) After harmonization with GRIEVOUS, all genomic datasets use the same schema of variant indexing, and all biallelic SNPs common across 
all datasets are consistently assigned, eliminating cross-dataset artifactual allele frequency divergences.
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4 Conclusion
The harmonization of variant indexing and assignments is cru
cial for the accuracy of multi-dataset studies of genetic variants 
such as the development, validation, and application of PRSs. 
Here we introduce GRIEVOUS, a command-line tool designed 
to simplify and expedite the process of harmonizing and recov
ering variants across different cohorts. GRIEVOUS efficiently 
unifies variant indices, and primarily focuses on the recovery of 
biallelic SNPs. Variants not fitting this category currently still re
quire manual verification by the user to ensure allele assignment 
consistency. However, these could be supported in future 
releases. Before using GRIEVOUS, it is important for users to 
confirm that all datasets use the same reference assembly and 
strand orientation to ensure accurate results.

In summary, GRIEVOUS streamlines the time-consuming 
and meticulous process of SNP homogenization and reduces 
opportunities for human error.
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Table 1. Summary of datasets and GRIEVOUS realignment results.

Condition Dataset Total number  
of variants

Number of  
biallelic 

SNPs identified

Number of  
biallelic 

SNPs reassigned

Average run time  
(minutes)

Max memory  
usage (GB)

Cross-dataset 
SNP  

intersection size

Breast cancer Michailidou 
et al.a

11 792 542 10 413 027 0b 1.71 ± 1.08 3.00 10 295 993

DRIVE 48 838 144 44 849 194 2 9.13 ± 4.03 9.97
UKBB 97 013 422 92 429 914 659 8.03 ± 3.69 14.77

Prostate cancer Conti et al.a 29 235 255 26 529 293 0b 4.66 ± 3.48 6.80 26 098 297
ELLIPSE 48 899 508 44 905 050 11 329 170 7.22 ± 3.49 8.55
UKBB 97 013 422 92 424 521 11 374 523 10.42 ± 7.85 14.96

a Summary statistics.
b The first dataset GRIEVOUS realigned for a condition, which by definition will reassign 0 SNPs. All GRIEVOUS realignments were deployed in parallel 

and used multiple cores (summary statistics: 2; genotype files: 4).
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installable via pip. The code for GRIEVOUS, which was 
implemented in Python, along with supporting documenta
tion and tutorials, can be found on GitHub (https://github. 
com/jvtalwar/GRIEVOUS). The code for GRIEVOUS is also 
archived on Zenodo (Talwar 2024).

References
Amos CI, Dennis J, Wang Z et al. The OncoArray Consortium: a net

work for understanding the genetic architecture of common cancers. 
Cancer Epidemiol Biomarkers Prev 2017;26:126–35.

Anderson CA, Pettersson FH, Clarke GM et al. Data quality control in 
genetic case-control association studies. Nat Protoc 2010; 
5:1564–73.

Bycroft C, Freeman C, Petkova D et al. The UK Biobank resource 
with deep phenotyping and genomic data. Nature 2018; 
562:203–9.

Chang CC, Chow CC, Tellier LC et al. Second-generation PLINK: ris
ing to the challenge of larger and richer datasets. Gigascience 2015; 
4:7.

Choi SW, Mak TS-H, O'Reilly PF et al. Tutorial: a guide to performing 
polygenic risk score analyses. Nat Protoc 2020;15:2759–72.

Coleman JRI, Euesden J, Patel H et al. Quality control, imputation and 
analysis of genome-wide genotyping data from the Illumina 
HumanCoreExome microarray. Brief Funct Genomics 2016; 
15:298–304.

Conti DV, Darst BF, Moss LC et al. Trans-ancestry genome-wide 
association meta-analysis of prostate cancer identifies new 

susceptibility loci and informs genetic risk prediction. Nat 
Genet 2021;53:65–75.

Das S, Forer L, Sch€onherr S et al. Next-generation genotype imputation 
service and methods. Nat Genet 2016;48:1284–7.

Evangelou E, Ioannidis JPA. Meta-analysis methods for genome-wide 
association studies and beyond. Nat Rev Genet 2013;14:379–89.

Hartwig FP, Davies NM, Hemani G et al. Two-sample Mendelian ran
domization: avoiding the downsides of a powerful, widely applica
ble but potentially fallible technique. Int J Epidemiol 2016; 
45:1717–26.

Marees AT et al. A tutorial on conducting genome-wide association 
studies: quality control and statistical analysis. Int J Methods 
Psychiatr Res 2018;27:e1608.

Michailidou K, Lindstr€om S, Dennis J et al.; ConFab/AOCS 
Investigators. Association analysis identifies 65 new breast cancer 
risk loci. Nature 2017;551:92–4.

Purcell S, Neale B, Todd-Brown K et al. PLINK: a tool set for whole- 
genome association and population-based linkage analyses. Am J 
Hum Genet 2007;81:559–75.

Sanderson E, Glymour MM, Holmes MV et al. Mendelian randomiza
tion. Nat Rev Methods Primers 2022;2:1–21.

Talwar JV. jvtalwar/GRIEVOUS: GRIEVOUS Version 0.1.5. Zenodo 
2024. https://doi.org/10.5281/zenodo.12158726.

van Leeuwen EM, Kanterakis A, Deelen P et al.; Genome of the 
Netherlands Consortium. Population-specific genotype imputa
tions using minimac or IMPUTE2. Nat Protoc 2015; 
10:1285–96.

Zeggini E, Ioannidis JPA. Meta-analysis in genome-wide association 
studies. Pharmacogenomics 2009;10:191–201.

© The Author(s) 2024. Published by Oxford University Press.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits 
unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.
Bioinformatics, 2024, 40, 1–5
https://doi.org/10.1093/bioinformatics/btae489
Applications Note

GRIEVOUS                                                                                                                                                                                                                                       5 

https://github.com/jvtalwar/GRIEVOUS
https://github.com/jvtalwar/GRIEVOUS
https://doi.org/10.5281/zenodo.12158726

	Active Content List
	1 Introduction
	2 Materials and methods
	3 Results
	4 Conclusion
	Acknowledgements
	Author contributions
	Supplementary data
	Conflict of interest
	Funding
	Data availability
	References




