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Abstract

We identify the role of equal strength interference links as bottlenecks on the ergodic sum
capacity of a K user interference network with the fading process restricted primarily to inde-
pendent and uniform phase variations while the channel magnitudes are held fixed across time.
It is shown that even though there are K(K − 1) cross-links, only about K/2 disjoint and equal
strength interference links suffice to determine the capacity of the network regardless of the
strengths of the rest of the cross channels. This scenario is called a minimal bottleneck state.
It is shown that ergodic interference alignment is capacity optimal for a network in a minimal
bottleneck state. The results are applied to large networks. It is shown that large networks
are close to bottleneck states with a high probability, so that ergodic interference alignment is
close to optimal for large networks. Limitations of the notion of bottleneck states are also high-
lighted for channels where both the phase and the magnitudes are allowed to vary with time.
It is shown through an example that for these channels, joint coding across different bottleneck
states makes it possible to circumvent the capacity bottlenecks.

1 Introduction

The capacity of Gaussian interference networks is an active area of research in network information
theory. Three vastly different perspectives have been used to approach this challenging problem.

1. Elemental Networks: The focus is on small networks - small number of users, finite SNR
- in classical settings such as the two user interference network. This approach is most
useful for exploring the microscopic details of optimal coding schemes. The goal is to obtain
exact capacity characterizations, or capacity approximations within a constant number of
bits. A representative recent result of this approach is the capacity characterization of the
2 user interference network that is accurate to within 1 bit for all channel parameters [1].
A limitations of the elemental approach is that extensions to more general settings are not
straightforward. For example, it has been shown that extensions to more than 2 users or
fading channels require fundamentally new concepts not encountered in the classical two user
scenario. Specifically, extensions to more than 2 users involve the new concept of interference
alignment [2], while extensions to fading channels have to deal with the inseparability of
parallel interference networks[3].

2. Degrees of Freedom: The focus is on networks with arbitrary but finite number of users and
asymptotically high signal and interference strengths relative to the noise floor at each receiver
[4, 2]. This approach, essentially, offers insights into the scheduling/medium-access problem
by identifying optimal ways of sharing signaling dimensions among competing users. The goal
is to obtain capacity approximations within o(log(SNR)), i.e., whose accuracy approaches



100% as SNR approaches infinity. A representative result of this approach is the degrees of
freedom characterization of the K user time-varying/frequency-selective interference network
[2]

CΣ =
K

2
log(SNR) + o(log(SNR)) (1)

where CΣ is the sum-capacity of the network, K is the number of users and SNR is the
signal to noise power ratio. A limitation of this approach is that while the degrees of freedom
characterizations are dependent on the number of users through the capacity pre-log, they
cannot be directly used to identify scaling laws with the number of users for any finite SNR.
For finite SNR, the o(log(SNR)) approximation error term can contain potentially arbitrary
dependence on the number of users.

3. Network Scaling Laws: The focus is on large networks, with the number of nodes ap-
proaching infinity [5, 6]. This approach, essentially, offers fundamental insights into both
scheduling (dense networks) and routing (extended networks) issues. The goal is to obtain
approximations of the logarithm of the capacity within o(log(K)). A recent representative
result from this approach is the characterization

log(CΣ) = log(K) + o(log(K)) (2)

for a dense network of K users [6]. A limitation of this approach is that the dependence on
SNR is entirely lost in this perspective.

In this work, we explore the exact ergodic capacity of an interference network, with arbitrary
number of users and arbitrary SNR, albeit with the limiting assumption that the fading process is
restricted primarily to phase variations while the channel magnitudes are held fixed. Combining
the achievability results based on the recently proposed ergodic interference alignment scheme
[7] with a converse argument based on a notion of bottleneck states introduced in this work,
we find that the ergodic setting is surprisingly tractable and allows accurate and simple network
capacity characterizations for broad classes of interference networks including many cases commonly
considered. For large, dense networks it also provides a scaling law:

lim
K→∞

Prob
[∣∣∣∣CΣ

K
− 1

2
log(1 + 2SNR)

∣∣∣∣ > ε

]
= 0, ∀ε > 0. (3)

In other words,

CΣ

K

P−→ 1
2

log(1 + 2SNR) (4)

i.e., for large networks the capacity per user converges in probability to 1
2 log(1+2SNR). Note that

the dependence on the number of users K as well as SNR is explicit here. For several networks of
interest we show that this relationship represents the exact non-asymptotic (i.e., arbitrary SNR,
arbitrary K) capacity of the network as well.



2 System Model

Consider the general K-user ergodic fading Gaussian interference network described by the input-
output relationship:

Y [r](n) =
∑
t∈K

H [rt](n)ejφ
[rt](n)X [t](n) + Z [r](n), r ∈ K, n ∈ N (5)

where at the nth channel use Y [r](n) and Z [r](n) are the received symbol and additive white Gaussian
noise (zero mean unit variance circularly symmetric complex Gaussian) seen by receiver r, X [t](n)
is the symbol transmitted from transmitter t, and H [rt](n) and φ[rt](n) are the strength and phase
of the channel between transmitter t and receiver r, t, r ∈ K , {1, 2, · · · ,K}. All symbols are
complex. The power of the transmitted symbols is normalized to 1, i.e., E[|X [t]|2] ≤ 1, ∀t ∈ K. The
channel phase terms φ[rt](n) are i.i.d. and uniform over [0, 2π), and independent of the channel
strengths. We make the following assumptions regarding the channel strengths.

H [rt](n) =
√

INR[rt](n), r, t,∈ K, r 6= t (6)

H [kk](n) =
√

SNR, ∀n ∈ N,∀k ∈ K (7)

The direct SNRs are held constant over time, primarily to avoid non-essential power-control issues.
The normalization of SNRs so that all direct links have equal strength is somewhat restrictive but
allows for exact capacity results without losing the essence of the problem. It also alleviates fairness
concerns always associated with sum capacity. Unless explicitly stated otherwise, no symmetry is
assumed in general for the cross-channel strengths INR[rt](n). Different cross-channel strengths
can follow different distributions and may be correlated in space but are independent identically
distributed (i.i.d.) in time. Global channel knowledge is assumed at all transmitters and receivers.

There are K independent messages W1,W2, · · · ,WK . Message Wk originates at transmitter
k and is intended for receiver k. The codewords are functions of the messages as well as the
channel states. The probability of error, achievable rates R[1], R[r], · · · , R[K], and sum capacity of
the network CΣ are defined in the standard Shannon theoretic sense.

We define a channel state as the matrix of channel strengths H with elements H [rt], r, t ∈ K.
We use the term “user” to refer to a corresponding transmitter-receiver pair. We use the term
capacity only in the sense of the sum capacity of the network. We refer to the fading coefficient
H [rt](n)ejφ

[rt](n) between any transmitter-receiver pair as a channel or a link interchangeably. Chan-
nels H [rt] are called direct channels if r = t and cross-channels if r 6= t. We say cross channels
H [rt](n) and H [r′t′](n) are disjoint if and only if {r, t} ∩ {r′, t′} = {}, i.e., they do not involve a
common user.

3 Background

We start by summarizing the background necessary for this work, which consists of three key ideas -
the general idea of interference alignment, the inseparability of interference networks and a specific
interference alignment scheme called ergodic interference alignment.

3.1 Interference Alignment

Evolving out of the degrees of freedom study of the X channel [8, 9], the idea of interference
alignment was introduced in the context of the interference network in [2]. It refers to a design



of signal vectors so that signals cast overlapping shadows at the receivers where they constitute
interference while they remain distinguishable at the receivers where they are desired. The overlap
between interferers at each receiver allows interference to be consolidated into a single entity at each
receiver. Since the desired signal at each receiver competes with only one effective consolidated
interferer, it is possible for every user to access half the channel degrees of freedom - i.e., everyone
gets half the cake [2].

3.2 Inseparability of Interference Networks

For Gaussian point to point, multiple access and broadcast networks (with no common messages)
ergodic capacity is the average of capacities over each channel state (subject to optimal power
allocation across channel states). This implies that joint coding across channel states is not needed.
However, for interference networks it was shown in [3, 10] that the ergodic capacity is not the average
of capacities over each channel state, i.e., parallel interference networks are in general not separable.
The following example was provided in [3] to show that even a simple joint coding scheme where
interference is treated as noise can achieve not only higher capacity but also more degrees of freedom
than the most sophisticated separate coding scheme. Consider a three user interference network,
with two parallel states given by channel matrices

H =
√
SNR

 1 −1 1
1 1 −1
−1 1 1

 H ′ =
√
SNR

 1 1 −1
−1 1 1
1 −1 1

 (8)

It is shown in [3] that separate coding for each channel state can only produce a sum capacity
of 2 log(1 + 3SNR), whereas the capacity with joint coding is 3 log(1 + 2SNR). Further the joint
coding capacity is achieved with the transmitters simply repeating the same symbol over the two
sub-channels and the receivers adding their received signals from the two sub-channels. The key to
the example is the complementary nature of the two channel matrices, i.e., H + H ′ = 2

√
SNR I

which simply aligns all the interference away from the desired signal. Note that while the signal
power quadruples, the noise variance also doubles, so that the SNR doubles as a net effect.

3.3 Ergodic Interference Alignment

The pairing of complementary matrices exploited in the example above, is generalized to construct
an ergodic interference alignment scheme in [7]. Essentially, for every channel matrix H there is a
complementary matrix H ′,

H =

 h11 h12 h13

h21 h22 h23

h31 h32 h33

 H ′ =

 h11 −h12 −h13

−h21 h22 −h23

−h31 −h32 h33

 H +H ′ = 2

 h11 0 0
0 h22 0
0 0 h33

 (9)

so that if the transmitters repeat the same symbol over the two channel states and the receivers
add the outputs from the two channels then all interference is eliminated. With uniform phase
distribution1 the two states are equally likely. Channel state quantization enables a strong typicality
argument that with high probability complementary pairs will occur in roughly equal numbers over
a long codeword, thus making this alignment possible in an ergodic setting. Based on this approach,
the following result is shown in [7].

1The uniform distribution is not necessary, for pairing complementary states it suffices that the phase distribution
is such that p(φ) = p(φ+ π) for all phase terms φ.



Figure 1: 4 User Interference Network. Distances
indicate signal strengths.

Figure 2: Bottleneck state with bottleneck links
highlighted

Theorem 1 [7] For the K user interference network of (5), the following ergodic rates are achiev-
able regardless of the cross-channel strengths.

Rk =
1
2

log(1 + 2SNR), ∀k ∈ K

Theorem 1 states that regardless of the number of interferers or the strength of the interferers,
each user is able to achieve the same rate that he would achieve if he had the channel to himself,
with no interferers, half the time. For K = 2 users the achievability follows trivially by a channel
state-independent TDMA scheme that allows each user to access the channel free from interference
for half the time. However, for K > 2 users it is the ergodic interference alignment scheme that
pairs complementary channel matrices, that is the key to achievability. Theorem 1 constitutes the
achievability argument of all the capacity results in this paper. The main contributions of this
paper are the converse arguments to show the optimality of ergodic interference alignment.

4 Ergodic Capacity of Interference Networks

Ergodic interference alignment allows every user to achieve (slightly more than) half of their
interference-free capacity at any SNR. However, the question remains whether this is the ergodic
capacity of the interference network. Consider a K = 4 user network example shown in Fig. 1
where the node distances may be translated into relative link strengths. From the figure, it is
apparent that Receiver 2 only sees weak interference while receivers 3 and 4 see both weak and
strong interferers. It is known that strong interference can be decoded and cancelled, while weak
interference can be treated as noise, in both cases without a significant rate penalty. A user experi-
encing very strong or very weak interference may be able to achieve close to his full interference-free
capacity. For example, in a network where all interferers are very strong, or all interferers are very



weak compared to the desired signal strengths, the sum capacity is close to the sum of the users’
interference-free capacities. It is clear therefore that achieving only half of the interference-free rate
is not necessarily a sum-capacity optimal scheme.

4.1 Bottlenecks

For further insights into the optimality of ergodic interference alignment, consider the generalized
degrees of freedom perspective (GDOF) introduced in [1] for the two user interference network and
generalized in [11] to the symmetric K user interference network. The capacity benefits of weak
or strong interference are visible in the GDOF characterization. Indeed it is seen that each user
achieves strictly more than half his interference-free degrees of freedom, except for two scenarios
where α = log(INR)

log(SNR) takes values 1 or 1/2. In fact it is known that the network degrees of freedom
(α=1) are maximized by each user achieving half his interference-free degrees of freedom. This
observation suggests that if the interference is of comparable strength to the desired signal then a
scheme that achieves half the interference-free rate for each user may be close to optimal. This in-
tuition forms the foundation for this work. Indeed we establish the role of equal strength interferers
as bottlenecks on the network capacity. The following definitions make this notion precise.

• Bottleneck Link: The cross-channel H [rt](n) between receiver r and transmitter t, t 6= r, is
a bottleneck link if INR[rt](n) =SNR, ∀n ∈ N.

• Bottleneck State: The K-user interference network is in a bottleneck state if the net-
work capacity does not depend on the distribution of the non-bottleneck link strengths. In
particular, capacity is unchanged if we add more bottleneck links.

• Reducible Bottleneck States: A bottleneck state is reducible if relaxing a bottleneck link
condition produces another bottleneck state.

• Minimal Bottleneck State: A bottleneck state is minimal if there is no other bottleneck
state with strictly fewer bottleneck links.

Figure 3: Network of Lemma 1 (only bottleneck and direct links are shown).

Lemma 1 The two user interference network with bottleneck link H [12],

Y [1](n) =
√

SNR ejφ
[11](n)X [1](n) +

√
SNR ejφ

[12](n)X [2](n) + Z [1](n) (10)

Y [2](n) =
√

INR[21](n) ejφ
[21](n)X [1](n) +

√
SNR ejφ

[22](n)X [2](n) + Z [2](n) (11)

has sum capacity

CΣ = log(1 + 2SNR)



Figure 4: Network of Lemma 2 (bottleneck state)
with only direct and bottleneck links shown.

Figure 5: Network of Lemma 3 (not a bottle-
neck state) with only direct and bottleneck links
shown.

regardless of the distribution of INR[21](n) values.

Proof: Achievability follows from Theorem 1 which is based on ergodic interference alignment.
The converse is shown as follows. Consider any reliable coding scheme that can achieve arbitrary
small probability of error by using appropriately long codewords. Let a genie provide receiver 2
with user 1’s message so he can eliminate all the interference due to X [1](n). Since the coding
scheme is reliable, receiver 1 can also decode his own message and subtract the contribution from
X [1](n) from his received signal. This leaves the two receivers with statistically equivalent signals.
Therefore, if receiver 2 can decode message W2 then so can receiver 1. Since receiver 1 is able
to decode both messages, the sum rate of the coding scheme cannot be more than the sum rate
capacity of the multiple access channel seen at receiver 1, which is log(1 + 2SNR).

The implication of the term “bottleneck” is clear from the definitions above - the bottleneck
links determine the capacity of the network in a bottleneck state regardless of the strengths of the
remaining cross-links. For example, in Lemma 1 the link H [12] is a bottleneck link and the link
strength of H[21] is irrelevant. Note that we do require the phase of even the non-bottleneck links
to vary according to a uniform distribution. This is not needed for the converse but it is needed
for the achievability with ergodic interference alignment scheme.

Lemma 2 The three user interference network with three bottleneck links H [12], H [23], H [31] is in a
bottleneck state and has sum capacity

CΣ =
3
2

log(1 + 2SNR)

regardless of the distribution of the remaining 3 cross-channel strengths.

The network is shown in Fig. 4 with only direct and bottleneck links shown. Note that the
non-bottleneck links not shown in the figure are not necessarily zero.

Proof: Achievability again follows from Theorem 1. The converse is easily shown by considering
two users at a time. For example, we bound the sum-rate of users 1, 2 by providing receivers 1, 2
with transmitter 3’s message which allows receivers 1, 2 to remove interference from transmitter 3
and leaves us with a two user interference network of the type considered in Lemma 1. This gives
us the outer bound R1 + R2 ≤ log(1 + 2SNR). Similarly, outer bounds are obtained for the sum



rates R2 + R3 ≤ log(1 + 2SNR) and R1 + R3 ≤ log(1 + 2SNR). Adding these three outer bounds
gives us the sum rate capacity outer bound CΣ ≤ 3

2 log(1 + 2SNR).

Lemma 3 The three user interference network with two bottleneck links H [12], H [23] is not in a
bottleneck state.

The network is shown in Fig. 5 with only direct and bottleneck links shown. Note that the
non-bottleneck links not shown in the figure are not necessarily zero.

Proof: We prove the result by showing that different values of the non-bottleneck link strength
INR[31](n) produce different sum-capacity results, thus violating the definition of a bottleneck state.
First, setting INR[31] = SNR, ∀n ∈ N gives us the sum-capacity CΣ = 3

2 log(1+2SNR) by Lemma 2.
Now alternatively, consider setting all non-bottleneck link strengths INR[rt](n) = 0, r 6= t, (r, t) /∈
{(1, 2), (2, 3)}, ∀n ∈ N. In this channel let user 2 not transmit at all. Then no interference is seen by
receivers 1 and 3 allowing each of them to achieve their single user capacity. In other words, a sum-
rate of 2 log(1 + SNR) is achievable. Since this achievable rate can be higher than 3

2 log(1 + 2SNR),
it is clear that the capacity of the 3 user interference network of Lemma 3 depends on the strengths
of the non-bottleneck links, i.e., it is not in a bottleneck state.

Similarly, consider the 4 user interference network example of Fig. 1. As reflected by the node
distances in Fig. 1 and highlighted explicitly in Fig. 2 there are two bottleneck links in this 4
user network. By repeating the arguments of Lemma 1 for each disjoint bottleneck link it is easily
seen that the 4 user network example of Fig. 1 is in a bottleneck state and its sum capacity is
2 log(1 + 2SNR) regardless of the distribution of the non-bottleneck link strengths.

It is interesting to note that 2 bottleneck links suffice for the 4 user interference network but not
for the 3 user interference network, where a minimum of 3 bottleneck links is required to put the
network in a bottleneck state. This raises the question - what is the minimum number of bottleneck
links that can put a K user interference network into a bottleneck state? The bottleneck state with
the minimum number of bottleneck links is called a minimal bottleneck state. We characterize the
minimal bottleneck state in the following theorem.

Theorem 2 When K is an even number, a K-user interference network in a minimal bottleneck
state contains exactly K/2 bottleneck links and they are mutually disjoint. When K is an odd
number, a K-user interference network in a minimal bottleneck state contains a total of (K + 3)/2
bottleneck links.

Theorem 2 shows that very few bottleneck links suffice to limit the capacity of a network. For
example, with K = 10 users, a minimal bottleneck state needs only 5 bottleneck links out of the
total of 90 cross-channels. If 5 bottleneck links are disjoint, then the sum-capacity is determined
regardless of the strengths of the remaining 85 cross-channel coefficients. Moreover, there are
K!

(K/2)! = 30, 240 possible distinct minimal bottleneck states.

Proof: Consider first the case that K is even. We first show that there is a bottleneck state
with K/2 disjoint links. Let the K/2 bottleneck links be H [12], H [34], H [56], · · · , H [K−1,K]. Now
set the remaining links to zero, which cannot reduce the capacity. This gives us K/2 disjoint
Z interference networks, each with sum capacity log(1 + 2SNR) by Lemma 1. Thus the sum-
capacity of this K user interference network cannot be more than K

2 log(1 + 2SNR) regardless of
the strengths of the non-bottleneck links. However, we also know from Theorem 1 that the sum rate
K
2 log(1 + 2SNR) is achievable regardless of the strengths of the cross-links. Thus, the capacity of



the K user network with these K/2 bottleneck links is K
2 log(1+2SNR) regardless of the strengths

of the non-bottleneck links. It is therefore a bottleneck state.
To show that this is a minimal bottleneck state, we construct a proof by contradiction. Suppose

there is a bottleneck state with K/2− 1 bottleneck links. Then, since each bottleneck link can at
most involve 2 users, the total number of users involved can at most be K − 2. Thus, there are at
least 2 users that are not associated with any bottleneck link. Setting all non-bottleneck links to
zero, we find that the sum-rate K−2

2 log(1+2SNR)+2 log(1+SNR) is achievable. This is because
the two users not involved with any interference can each achieve their interference-free capacity
log(1 + SNR) while the remainder K − 2 users can achieve 1

2 log(1 + 2SNR) each by Theorem
1. However, if we add a bottleneck link between the two remaining users, the sum capacity is
only K

2 log(1 + 2SNR). Since the capacity changes by adding a bottleneck link, this cannot be a
bottleneck state. The contradiction completes the proof for the case that K is even.

Next, consider the case that K is odd. We first show that there is a bottleneck state with (K+
3)/2 bottleneck links. Let us first designate (K − 3)/2 bottleneck links H [45], H [67], · · · , H [K−1,K].
This leaves three users who are assigned 3 more bottleneck links H [12], H [23], H [31] . Once again we
set all non-bottleneck links to zero to find the outer bound on sum-capacity K

2 log(1+2SNR). The
outer bound for the sum-rate of users 4 through K follows from the disjoint two user Z interference
networks associated with each bottleneck link, each of which, from Lemma 1, has sum capacity
log(1 + 2SNR). The outer bound on the sum-rate of users 1, 2, 3 follows from Lemma 2. Once
again by Theorem 1, this rate is achievable regardless of the strengths of the non-bottleneck links.
Thus, the sum-capacity of the network with a total of (K − 3)/2 + 3 bottleneck links is fixed
at K

2 log(1 + 2SNR) regardless of the strengths of the non-bottleneck links. It is, therefore, a
bottleneck state.

To show that this is a minimal bottleneck state, we construct a proof by contradiction. Suppose
there is a bottleneck state with K−3

2 +2 bottleneck links. Since K−3
2 bottleneck links can only involve

at most K−3 users, we are left with 2 bottleneck links that can be assigned and 3 users. As shown
by Lemma 3, these 3 users cannot be constrained by only two bottleneck links. The contradiction
completes the proof.

The following corollary of Theorem 2 shows that all minimal bottleneck states have the same
network capacity.

Corollary 1 For a K-user interference network in a minimal bottleneck state, the ergodic sum
capacity is

CΣ =
K

2
log(1 + 2SNR)

Thus, minimal bottleneck states represent classes of interference networks where ergodic inter-
ference alignment is exactly optimal.

4.2 Large Networks

Clearly, bottleneck states are of academic interest because they allow an exact capacity character-
ization. However, the question remains whether these states play a significant role in a network
where the link strengths are arbitrary. In particular, how many bottleneck links are there and more
importantly, are there enough to put the network in a bottleneck state? Consider, for example an
interference network with an even number of users. There are K!

(K/2)! minimal bottleneck states.
Is it enough to consider only minimal bottleneck states? Does every bottleneck state contain a



minimal bottleneck state hidden behind some redundant bottleneck links ? The following theorem
formally answers this question.

Figure 6: Network of Theorem 3 (only bottleneck and direct links are shown).

Theorem 3 There exist irreducible bottleneck states that are not minimal bottleneck states.

Remark: In other words, while every minimal bottleneck state is irreducible, not every irreducible
bottleneck state is a minimal bottleneck state.

Proof: That a minimal bottleneck state is irreducible follows from definition. To show that an
irreducible bottleneck state may not be a minimal bottleneck state, we offer an example. Consider
the 6 user interference network in a bottleneck state with 6 bottleneck links as shown in Fig. 6.
From the result of Theorem 2 we know that a minimal bottleneck state for a 6 user interference
network requires only 3 bottleneck links. However, from the result of Lemma 3 it is easily seen that
one cannot relax any of the 6 bottleneck links in Fig. 6 to obtain another bottleneck state.

Thus, there may be many more bottleneck states than minimal bottleneck states. Instead of
counting the number of bottleneck states, we proceed to address directly the role of bottleneck
states in determining the capacity of a network. Specifically we consider a dense network, which
we define to be a wireless network with a large number of users where cross-channel strengths are
determined i.i.d. according to some density function, but then they are held fixed for all time,

INR[rt](n) = INR[rt], r, t ∈ K, r 6= t,∀n ∈ N. (12)

Note that the direct channel strengths are still all fixed at the same value SNR, and all phase
variations are still i.i.d., uniform and independent of the channel strength. Because of the i.i.d.
assumption on the density functions, we call such a network a dense network. In addition, we make
an important assumption, that for any constant η > 0 and for all r, t ∈ K, r 6= t,

Prob(INR[rt] ∈ (SNR− η,SNR + η)) > 0. (13)



How likely is it that the dense network defined above will be in a bottleneck state? Requiring
exact equality between INR and SNR makes the probability of a bottleneck link zero, so a network
will never be exactly in a bottleneck state. A more useful question is to ask what is the probability
that a network will be close to a bottleneck state? Closeness here corresponds to the gap between
the network capacity outer bound and the sum rate K

2 log(1 + 2SNR) achievable with ergodic
interference alignment. Using a relaxed version of the bottleneck concept, the following result is
obtained.

Theorem 4 For a dense K user interference network, the sum-capacity per user CΣ/K converges
in probability to 1

2 log(1 + 2SNR).

lim
K→∞

Prob
[∣∣∣∣CΣ

K
− 1

2
log(1 + 2SNR)

∣∣∣∣ > ε

]
= 0

for every ε > 0.

Thus, ergodic interference alignment achieves the ergodic capacity of a large network in the limit
as the number of users approaches infinity. Note that unlike most capacity scaling laws which
describe only the exponent of K in the large network limit and are completely insensitive to SNR,
this scaling law establishes not only the scaling with number of users K but also the precise SNR
dependence of network capacity.

Proof: Since the achievability part is already established in [7], we will focus only on the
converse, i.e., the outer bound argument in this proof. Given the positive constant ε > 0 in the
statement of the theorem, let us define arbitrary positive constants ε1, ε2, δ > 0 such that ε = ε1+ 1

2ε2
and δ < ε2. These definitions will be used in establishing the limiting behavior of various terms. It
is important to note that these constants as well as SNR are held fixed while the number of users
K →∞.

For the purpose of this theorem, we relax the notion of a bottleneck state as follows. We say
a cross-channel is a δ-bottleneck link if the sum capacity of the associated two user Z interference
network is within δ of log(1 + 2SNR), i.e., the sum capacity is less than log(1 + 2SNR) + δ. Under
the assumption about dense networks made in (13), the relaxed definition gives us a non-zero
probability for a cross-link to be a δ-bottleneck link. Let this probability be ∆ > 0. Since the
cross-links are generated i.i.d. each link has the same probability ∆ of being an δ-bottleneck. Each
δ-bottleneck H [rt] introduces the constraint:

R[r] +R[t] ≤ log(1 + 2SNR) + δ (14)

Adding these constraints we have:

∑
r,t∈K,r 6=t

I [rt](R[r] +R[t]) ≤

 ∑
r,t∈K,r 6=t

I [rt]

 (log(1 + 2SNR) + δ) (15)

Here I [rt] is an indicator function which takes value 1 when channel H [rt] is a δ−bottleneck link
and 0 otherwise. Clearly

E[I [rt]] = ∆, ∀r, t ∈ K. (16)



Let

RΣ ,
K∑
k=1

R[k]

be the sum-rate variable. From (15) we proceed as follows.

RΣ

K
≤ RΣ

K
+

(∑
r,t∈K,r 6=t I

[rt]
)

(log(1 + 2SNR) + δ)

2∆K(K − 1)
−
∑

r,t∈K,r 6=t I
[rt](R[r] +R[t])

2∆K(K − 1)
(17)

=
1

2∆K(K − 1)

K∑
k=1

R[k]

2∆(K − 1)−
∑

t∈K,t6=k
I [kt] −

∑
r∈K,r 6=k

I [rk]


+

(∑
r,t∈K,r 6=t I

[rt]

∆K(K − 1)

)
︸ ︷︷ ︸

β

(
1
2

log(1 + 2SNR) + δ

)
(18)

≤ log(1 + SNR)
2∆K

K∑
k=1

∣∣∣∣∣∣∣∣2δ −
∑

t∈K,t6=k I
[kt] −

∑
r∈K,r 6=k I

[rk]

K − 1︸ ︷︷ ︸
αk

∣∣∣∣∣∣∣∣+
β

2
(log(1 + 2SNR) + δ)(19)

=
log(1 + SNR)

2∆

(∑K
k=1 |αk|
K

)
+
β

2
(log(1 + 2SNR) + δ) (20)

In (19) we used the bound R[k] ≤ log(1+SNR),∀k ∈ K. In the remainder of the proof we will show
that, as K −→ ∞, the first term in (20) is bounded above by ε1 and the second term is bounded
above by 1

2(log(1 + 2SNR) + ε2) with probability approaching 1, thereby establishing the desired
result that limK−→∞ Prob(RΣ

K ≤
1
2 log(1 + 2SNR) + ε) = 1.

Consider the term αk. Using (16), we find the mean and variance of αk as follows.

E[αk] = E

[∑
t∈K,t6=k I

[kt] +
∑

r∈K,r 6=k I
[rk]

K − 1
− 2∆

]
= 0 (21)

var[αk] = E

(∑t∈K,t6=k I
[kt] +

∑
r∈K,r 6=k I

[rk]

K − 1
− 2∆

)2
 =

2∆(1−∆)
K − 1

(22)

Applying Jensen’s inequality in the form E[|X|] ≤
√

E[|X|2],

E[|αk|] ≤
√

E[|αk|2] =

√
2∆(1−∆)
K − 1

(23)

⇒ E

[
1
K

K∑
k=1

|αk|

]
= E[|αk|] ≤

√
2∆(1−∆)
K − 1

(24)

The last inequality follows since αk are identically distributed (they need not be independent).
The well known Markov’s inequality states that for any positive random variable X and an

arbitrary constant µ > 0, the Prob(X ≥ µ) ≤ E[X]
µ . Next we apply this inequality.

Prob

(
log(1 + SNR)

2∆

(∑K
k=1 |αk|
K

)
≥ ε1

)
≤ log(1 + SNR)

2∆ε1

√
2∆(1−∆)
K − 1

(25)



Equivalently

Prob

(
log(1 + SNR)

2∆

(∑K
k=1 |αk|
K

)
≤ ε1

)
≥ 1− log(1 + SNR)

2∆ε1

√
2∆(1−∆)
K − 1

−→ 1 as K →∞ (26)

Similarly, let us consider the term β.

E [β] = E

[(∑
r,t∈K,r 6=t I

[rt]

∆K(K − 1)

)]
= 1 (27)

var[β] =
1−∆

∆K(K − 1)
(28)

Chebyshev’s inequality states the following. Let X be a random variable with expected value µ
and finite variance σ2. Then for any real number t > 0,

Prob(|X − µ| ≥ t) ≤ σ2

t2
(29)

Applied to our setting, Chebyshev’s inequality implies that for any positive constant ε3:

Prob (|β − 1| ≥ ε3) ≤ 1−∆
∆K(K − 1)

1
ε23

(30)

Prob (β ≥ 1 + ε3) ≤ 1−∆
∆K(K − 1)

1
ε23

(31)

Prob (β ≤ 1 + ε3) ≥ 1− 1−∆
∆K(K − 1)

1
ε23

(32)

−→ 1 as K →∞ (33)

Substituting

(1 + ε3) =
log(1 + 2SNR) + ε2
log(1 + 2SNR) + δ

(34)

⇒ ε3 =
ε2 − δ

log(1 + 2SNR) + δ
(35)

and noting that ε2 > δ by definition, we have that

Prob
(
β

2
(log(1 + 2SNR) + δ) ≤ 1

2
(log(1 + 2SNR) + ε2)

)
≥ 1− 1−∆

∆K(K − 1)

(
log(1 + 2SNR) + δ

ε2 − δ

)2

−→ 1 as K −→∞ (36)

Combining (20), (26), (36) we have,

lim
K→∞

Prob
(
RΣ

K
≤ ε1 +

1
2

(log(1 + 2SNR) + ε2)
)

= 1 (37)

⇒ lim
K→∞

Prob
(
RΣ

K
− 1

2
log(1 + 2SNR) ≤ ε

)
= 1 (38)



where we used the definition ε = ε1 + ε2/2. Since this is true for all achievable rates, we have shown
that

lim
K→∞

Prob
(
CΣ

K
− 1

2
log(1 + 2SNR) ≤ ε

)
= 1 (39)

which is the converse statement of Theorem 4.
Remark: An alternate proof of Theorem 4 is presented by Johnson, Aldridge and Piechocki in

[12] based on the famous result of Erdos and Renyi (Theorem 2 of [13]) that a complete matching
exists almost surely in a bi-partite graph where any two nodes independently have an edge present
between them with a probability ∆. Since a complete matching divides the network into disjoint Z
interference network pairs, each in a δ-bottleneck state, it follows that the sum-capacity per user for
the entire network is limited by sum-capacity per user of Z interference network in a δ−bottleneck
state, which also establishes the converse part of Theorem 4. In fact, as shown in [12] the proof
based on complete matching states provides a faster rate of convergence than our proof outlined
above. However, the approach used in our proof may be easier to generalize to a wider class of
models, such as the node placement based model, as shown in [14].

4.3 Time-Varying Signal Strengths

The main goal of this section is to highlight a significant limitation of the concept of bottleneck
states when applied to channels with time-varying magnitudes. In all cases considered so far, the
time-variations for the direct links and the bottleneck states have been restricted just to phase
variations. (Note that non-bottleneck cross-channels may vary in both phase and magnitude fol-
lowing any distribution). Constant signal strengths with random phases may be appropriate on
wireless channels where the propagation is dominated by only one strong path (e.g. the line-of-sight
path) whose strength stays relatively constant while its phase may vary significantly due to small
scale mobility. When multiple paths are present, however, the phase variations must be associated
with channel strength variations as these paths add constructively and destructively even with
small mobility. In such scenarios, the time variations of the direct links can be compensated by
power control (e.g. channel inversion) which may justify our assumption of constant direct channel
SNRs. The same is not true for cross-channels. It is not possible to simultaneously control transmit
power so that both the direct links and the cross-links maintain constant strengths. Thus, it is
important to consider fading models where not only the cross-link phase but also the cross-link
strengths/magnitudes vary with time.

From Theorem 4 we know that in a large (dense) network there are enough bottleneck links to
put the network into a bottleneck state when the channel strengths are fixed. Now consider what
happens when the channel strengths vary over time. While any fixed snapshot of the network state
is likely to be in a bottleneck state, it turns out that this does not suffice to bound the capacity of
the network whose state varies across the different bottleneck states. As an example consider Fig.
7 where we see three different states of a 2 user interference network indicated by the following
matrices.

Ha =
[ √

SNR
√
SNR

α
√
SNR

]
, Hb =

[ √
SNR β√
SNR

√
SNR

]
, Hc =

[ √
SNR γ√
SNR

√
SNR

]
(40)

Note that while only channel magnitudes are highlighted above, i.i.d. uniform phase fading is
assumed for each channel coefficient within each state. For example, the signal at Receiver 1 in



Figure 7: Three different states of a 2 user interference network. While the capacity of each channel
state by itself is limited by the bottleneck link, i.e., it does not depend on α, β, γ, the joint capacity
of the three states together is not limited by the bottleneck links, i.e., it depends also on α, β, γ.
Note that each channel coefficient also has a multiplicative random uniform time-varying phase
term, omitted in the figure for compact notation.

channel state b is

Y
[1]
b (n) =

√
SNR ejθ

[11]
b (n)X

[1]
b (n) + βejθ

[12]
b (n)X

[2]
b (n) + Z

[1]
b (n) (41)

For this example, we assume that the channel changes state between these three states, so that
each state is held for 1/3 of the time.

As a baseline, first note that if the channel were to be held fixed permanently in any one
of these three states, then because each state is a bottleneck state, the channel will have capacity
log(1+2SNR). In particular, note that the capacity of each channel state is limited by the bottleneck
link so that it does not depend on the strengths, α, β, γ, of the non-bottleneck cross-links.

However, now consider the time-varying setting, where each of the three states Ha, Hb, Hc is
held for 1/3 of the time. In this case, it turns out that the capacity is not limited by the bottleneck
links, i.e., it depends on α, β, γ as well. To see this, consider the following distinct choices for
α, β, γ.

Choice 1: (α, β, γ) = (
√

SNR,
√

SNR,
√

SNR) (42)
Choice 2: (log(1 + α2), β, γ) = (2 log(1 + SNR), 0, 0) (43)

With the first choice, each state is identical and the capacity of the interference network is simply
log(1 + 2SNR). However, with the second choice, we argue that a sum rate of 4

3 log(1 + SNR) is
achievable, which is higher than the capacity of any bottleneck state at high SNR. The scheme works
as follows. Over state Ha transmitter 1 sends his message W1 to receiver 2 at rate 2 log(1 + SNR)
which is less than the capacity of the cross-link between Transmitter 1 and Receiver 2 for state Ha.
Receiver 1 and Transmitter 2 are inactive in state Ha. Now, in states Hb, Hc the users communicate
with their desired receivers as they would in the absence of interference. Receiver 1 does not see
any interference and receiver 2 having already decoded Transmitter 1’s message is able to cancel
the interference. Thus the sum-rate achieved is 4 log(1 + SNR) over three channel uses (one for
each state). Equivalently, the rate achieved is 4

3 log(1 + SNR) per channel use.
Thus, we have shown that the idea of bottleneck links, while very useful for the constant-

magnitude varying-phase setting, does not generalize directly to varying-magnitude varying-phase
setting. While the bottleneck links, i.e., the equal strength interferers, limit the capacity when the
channel magnitudes are held fixed, these limits may be circumvented by jointly encoding across
different bottleneck states when the channel magnitudes are allowed to vary.



5 Conclusion

Ergodic interference alignment has recently been shown to achieve (slightly more than) half the
interference-free capacity for an interference network at any SNR. We explore the optimality of
ergodic interference alignment for ergodic capacity of an interference network where the channel
coefficients undergo primarily phase-fading, i.e., the channel magnitudes are held fixed, while the
phase terms are assume to vary according to an i.i.d. uniform distribution. The question arises
because it is known that strong interference can be cancelled and weak interference can be treated
as noise, without significant penalty to the users’ rates. Thus, half of the interference-free rate is not
necessarily optimal. The main insight offered in this paper is that network capacity is determined
not by the weak or strong interferers but by the equal strength interferers. Thus, we identify equal
strength interferers as the bottlenecks for network capacity. It is shown that very few bottleneck
links suffice to determine the capacity of the network regardless of the strengths of the remaining
links. This notion is formalized in the definition of a minimal bottleneck state. As an example, for
a 10 user interference network, 5 disjoint bottleneck links determine the capacity regardless of the
strengths of the remaining 85 interfering links. This capacity is achieved by ergodic interference
alignment. We also consider a large network and show that it is always close to a bottleneck state,
so that ergodic interference alignment is close to capacity optimal for large networks.

The impact of time-variations in the magnitudes of channel coefficients is explored next. The
notion of bottleneck links is found to be insufficient to determine capacity bounds in this setting.
The limitations of bottlenecks for channels with time-varying strengths are intrinsically related
to the question of inseparability of parallel interference networks. It is shown in [3, 10] that the
capacity of time-varying interference networks is in general higher than the average of the capacity
of the channel for each individual channel state, i.e., joint coding across channel states outperforms
separate coding for each channel state. While the inseparability of bottleneck states is an important
obstacle that prevents the generalization of the capacity bounds presented in this work to the case
of time-varying channel magnitudes, there are some intriguing separability properties of bottleneck
states highlighted in [15] that may be useful to make further progress in this direction.
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