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Cognitive Computation Lab, Georges-Köhler-Allee, University of Freiburg, 79110 Freiburg, Germany

Abstract
Given identical informational content, the order in which you
receive spatial information may heavily influence the correct-
ness of your mental representation. This can reveal important
insights into the specifics of human spatial cognition and the
way we integrate information. Despite its importance in ev-
eryday life, its causes and the mental processes involved still
remain an open question. Most cognitive models so far have
focused on modeling only answer distributions or just the most
frequent answer given by all participants.
In this paper we take a rather radical approach: We turn to
the individual spatial reasoner and focus our analyses on the
stream of spatial information and related reaction times, i.e.,
how the spatial information is represented and cognitively pro-
cessed. By spanning a space of 243 cognitive spatial models,
some of which outperform the current state-of-the art models,
it is possible to test the goodness of general principles under-
lying such models.
Keywords: Spatial Cognition; Reasoning; Continuity Effect;
Cognitive Models

Introduction
Imagine that you are new to a city. It is a common experience
that it is not very likely that you will have all spatial infor-
mation available at the same time. Rather, you will receive it
piece by piece. However, the way of how we receive spatial
information can impact our mental representation, the time
to understand the information, and possible conclusions we
draw. But how do we process information mentally that we
receive? How do we possibly integrate the spatial information
into a mental representation? How difficult is it to process
the information? What can existing cognitive approaches and
computational models contribute?

Spatial relational information can be formulated by two ob-
jects and a relation: the first object is the object to be located,
the relation gives information about how the objects are spa-
tially connected, and the second object which is termed the
reference object. Consider the following:

(1) The post office is to the left of the train station.
The train station is to the left of the main street.
The main street is to the left of the park.

Can you easily build a mental representation integrating this
information at the same time? You should have no difficulty
at all! Even receiving this information step-by-step, each new
information nicely integrates with the most recent informa-
tion. Such a problem is called a continuous description. Con-
sider now the following description:

(2) The train station is to the left of the main street.
The park is to the right of the main street.
The post office is to the left of the train station.

This time, it might have taken more time and a bit more
difficult to build a mental representation from the given asser-
tion. While the information content was identical to before,
the information could not be so easily integrated as in prob-
lem (1). This was mainly due to the last assertion that related
the post office to the train station. Such problems are coined
semi-continuous. Consider now this last description:

(3) The post office is to the left of the train station.
The park is to the right of the main street.
The train station is to the left of the main street.

Again, if you have received the assertions piece by piece,
building an internal representation might have been again
more difficult. While again the description has the same in-
formation content as all descriptions before, the first and the
second assertion were unrelated, requiring to build two unre-
lated scenarios. Hence, such a problem description is coined
discontinuous. All three problems allow for constructing an
identical arrangement of the objects, namely

post office – train station – main street – park.

Such an arrangement of objects from the assertions is called
a model of the assertions. These three problems have been
investigated by psychologists in the so-called continuity ef-
fect (e.g., Ehrlich & Johnson-Laird, 1982; Knauff, Rauh,
Schlieder, & Strube, 1998). But, why does the second and
especially the third problem appear to be more difficult to
be processed by humans? The stream of information makes
the difference between problem descriptions. In continuous
and semi-continuous descriptions, a common middle-term of
two successive assertions exists. Since this is not the case
in discontinuous orders, these assertions are more difficult to
process and may even require to keep two distinct pieces of
information in working memory.

Because of the fine-grained nature of this effect, model-
ing the cognitive processes which underlie it can give in-
sight into how exactly spatial information is processed in the
mind. Several cognitive models have been proposed for spa-
tial relational reasoning, among which an implementation in a
cognitive architecture (Ragni, Fangmeier, & Brüssow, 2010),
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a model for reasoning with intervals (Schlieder & Berendt,
1998), and a stand-alone cognitive architecture (Schultheis
& Barkowsky, 2011) (for a recent overview see Friemann &
Ragni, 2018). To account for the continuity effect, a cog-
nitive model needs to describe the nature of constructing a
spatial model in great detail. This includes the introduction
of a measure of difficulty, the mental cost, of a specific mental
operation to account for the increase in reading times and the
drop in accuracy. The cognitive models which satisfy these
requirements are the spatial reasoning as verbal reasoning
model (Krumnack, Bucher, Nejasmic, & Knauff, 2010) and
preferred inferences in reasoning with spatial mental models
(PRISM, Ragni & Knauff, 2013), which we now introduce.

Cognitive Theories, Models, & Complexity
Verbal Reasoning Model (Krumnack et al., 2010). The
core assumption underlying the Verbal Model is that deduc-
tion processes does not necessarily require deduction-specific
mechanisms to operate on internal representations. Instead, a
simple order of object terms and some verbal cognitive mech-
anisms might guide the reasoning process. Following Polk
and Newell (1995), cognitive processes in deductive reason-
ing might be based upon the same processes as language com-
prehension and generation. The model satisfies the criteria of
verbal reasoning as outlined by Polk and Newell (1995). Ver-
bal in that sense refers to transforming between verbal and
semantic representations, that is constructing the queue (en-
coding) and “reading out” information that is not explicitly
provided by verbal descriptions. It is assumed that reason-
ing is accomplished by applying well-trained linguistic pro-
cesses. The approach does not obviate specific mechanisms
but provides a more parsimonious explanation on how infer-
ences can be drawn from given information without assuming
additional mechanisms.

The computational model assumes the mental spatial struc-
ture to resemble a queue. In the same vein, each mental model
has an implicit direction. This direction depends on the rela-
tion in the first premise and is contrary to the explicit direction
in this relation. This can be understood as simulating an ex-
pectation on where the next object is about to appear, which
can be easily understood by considering Table 3. For exam-
ple, if the first premise was “The mango is to the left of the
pear”, the implicit direction would be to the right:

On the other hand, if the first premise was “The pear is to
the right of the mango”, the implicit direction is to the left:

PRISM (Ragni & Knauff, 2013). PRISM is an implemen-
tation of the theory of preferred mental models. The model
simulates and explains how preferred models are constructed,
inspected to find a putative conclusion, and then varied to find
possible counter-examples. A spatial working memory struc-
ture is operationalized by a spatial array. A spatial focus in-

serts tokens into the array, inspects the array to find new spa-
tial relations, and relocates tokens in the array to generate al-
ternative models of the problem description, if necessary. The
focus also introduces a general measure of difficulty based
on the number of necessary focus operations (rather than the
number of models).

Mental Costs and Complexity. The computational model
PRISM was the first model to predict reasoning difficulty of
spatial problems by assigning unit costs to the focus opera-
tions in a spatial working memory, a location where spatial
models are built (Ragni & Knauff, 2013). By the numbers of
operations PRISM is able to explain among others the conti-
nuity effect: as a successive insertion of the terms from left to
right, do cost less than switches in the focus direction (semi-
continuous case), which costs less than to generate, group,
and insert different submodels (discontinuous case). The Ver-
bal Model uses a similar cost measure.

The Order of Information Effect: Data

The order effect for human inferences has been reported in
a number of articles (e.g., Ehrlich & Johnson-Laird, 1982;
Knauff et al., 1998; Nejasmic, Bucher, & Knauff, 2015) and is
explained with the effort to construct a mental representation
of the assertions.

Table 1: Order of assertions in Knauff et al. (1998) and
Nejasmic et al. (2015). Please note that ∼ represents the rela-
tion, which is ‘left of’ in the case of Experiment 1 in Nejasmic
et al. (2015) and Knauff et al. (1998), and ‘right of’ in the case
of Nejasmic et al. (2015).

Order Assertions

continuous A ∼ B B ∼ C C ∼ D
semi-continuous B ∼ C C ∼ D A ∼ B
discontinuous C ∼ D A ∼ B B ∼ C

Knauff et al. (1998) conducted an experiment, inspired
by research of Ehrlich and Johnson-Laird (1982), to test ef-
fects on response times and error rates of continuous, semi-
continuous, and discontinuous orders of spatial assertions
(cp. Table 1) using the relation ‘left of’.

The processing times and error rates are summarized in Ta-
ble 2. While the continuous and semi-continuous order lead
to a similar error rate of about 40%, reasoning about discon-
tinuous orders of assertions was more difficult and lead to
about 50% errors. Note that the processing time for the third
assertion in discontinuous order compared to the other asser-
tions is significantly higher.

Nejasmic et al. (2015) investigated underlying cognitive
processes in two experiments using a random presentation of
the 72 problems of the three premise orders continuous, semi-
continuous and discontinuous. Each premise was presented
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Table 2: The four-term-problems in the experiment of Knauff
et al. (1998) with reading-times (RT in seconds) and error
rates (in percentage correct). Participants were presented with
interval relations.

Assertion
Order RT 1 RT 2 RT 3 Error rates

continuous 13.0 11.2 10.9 39.7
semi-continuous 13.6 11.0 11.9 40.1
discontinuous 12.4 13.9 19.5 50.0

sequentially (in a self-paced manner and only one premise
visible at a time). The premise described the spatial relation
between four small, equal-sized, and disyllabic objects (tools,
fruits, or vegetables) for example: “The mango is left of the
pear, the pear is to the left of the kiwi, the kiwi is to the left
of the apple.”

The instruction was to imagine the arrangement described
by the premises (in the example: mango – pear – kiwi – ap-
ple). Subsequently participants were asked to define the cor-
rect arrangement by typing the initial letters of the named
objects using the computer keyboard. After the last letter
was entered, the trial finished automatically. The next trial
started not before the participant hit the “return” key. The
program recorded (a) premise reading times (respective time
from stimulus onset to key press calling up the next premise),
(b) the number of correct responses, and (c) corresponding
response times (time from request onset till enter of the last
letter).

Experiment 1 and 2 differ mainly in the used relation re-
sulting in different working direction. In Experiment 1 the re-
lation ‘left of’ was used suggesting a working direction from
left to right. In contrast, Experiment 2 used the relation ‘right
of’ resulting in a working direction from right to left. The
position of new named objects is leftmost (see Table 3).

Table 3: Example premises and models for a continuous order

Experiment 1 Experiment 2
Premise Model Premise Model

1 A left of B AB D right of C CD
2 B left of C ABC C right of B BCD
3 C left of D ABCD B right of A ABCD

Results from the first experiment are in line with previous
findings concerning the continuity effect. Participants need
more time to process unrelated information and more errors
occur in the discontinuous condition. In the second experi-
ment the continuity effect was presumably counteracted by
the working direction. Although processing third premises
in the discontinuous condition took the most time, there was
an overall and consistent increase of reading times over all

conditions. It was expected that reasoners find it more dif-
ficult to work in the culturally nonpreferred right-to-left di-
rection, but in the case that the continuity effect results from
the integration of two separate models when confronted with
discontinuously presented information, the working direction
should not matter. So, results support the assumption that
one preliminary model is constructed and modified in cases
of discontinuity.

Results and Discussion on Aggregated Data
The Kendall rank correlation coefficient τb with the mean re-
action times for Experiment 1 and 2 of Nejasmic et al. (2015)
and the reported data in Knauff et al. (1998) was calculated.
We removed all reading times which were outside the 1.5 in-
terquartile range. The results can be found in Table 4.

Table 4: Correlations and significance level for PRISM and
the Verbal Model on the aggregated experimental data.

PRISM Verbal Model
rτb p rτb p

Nejasmic et al.: Exp 1 .800 .007 0.730 .018
Nejasmic et al.: Exp 2 .033 1 0.225 .501
Knauff et al. .730 .182 .609 .044

For Experiment 1 from Nejasmic et al. (2015), PRISM had
a better correlation than the Verbal Model. The same proce-
dure was done with the data from (Knauff et al., 1998) (Ex-
periment 3 in Table 4), which used the same setting as Experi-
ment 1. PRISM and the Verbal Model correlated significantly
with the data.

For Experiment 2 however, the correlations dropped
strongly. This indicates that the process to generate a men-
tal model are different from relational descriptions from left
to right than building directions from right to left.

As outlined above, many cognitive models have focused
on explaining aggregate data. But, how good are these mod-
els in predicting each individual reasoner? And, are there
other models that can predict individual reasoner better? To
further investigate the performance of the models, we turn to
the individual reasoners.

To approach this challenge, there are two possibilities: cre-
ating cognitive models which are adaptable to, or creating
cognitive models designed for individuals.

The remainder of this paper will investigate the second op-
tion. Taking features of models from the literature and in-
sights from psychological experiments, we will span a large
space of possible cognitive computational models for spatial
relational reasoning.

Generating the Space of Spatial Reasoning
Models

To investigate the goodness of the general assumptions, we
looked at a whole family of potential models. This approach
is driven by the idea that individual participants may not use
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the same strategy and their flow of information processing
may differ. Hence, rather than constructing a certain model,
we identified features in which potential models can differ.
These are inspired by proposed cognitive models for spatial
relational reasoning in the literature. PRISM, for example,
proposes a mental model manipulation device, called focus,
which acts just like a foveal area for mental models. The Ver-
bal Model assumes that a spatial mental model has an implicit
direction, which can offer an explanation for the better per-
formance in modeling the right-to-left task from Experiment
2 (Krumnack, Bucher, Nejasmic, Nebel, & Knauff, 2011). As
for the discontinuous case, the Verbal Model does not offer a
solution for the presentation of discontinuous information, as
in the connection of two formerly unrelated chunks of infor-
mation. PRISM on the other hand offers a solution in the form
of constructing two unrelated mental models, and integrating
them group-wise when connecting information is presented.

We chose 8 partly interdependent features to span the space
of investigated models, leading to 243 possible cognitive
models:

Mental Spatial Structure
The main difference between the Verbal Model and PRISM
is the underlying spatial representation structure. PRISM as-
sumes a grid-like structure in the human mind, with a mental
focus which inspects one object at a time, can move through
the mental representation object by object with an unary cost
in each direction, and is persistent throughout the whole task
(Ragni & Knauff, 2013). The Verbal Model on the other hand
proposes a queue-like structure, meaning that there exists an
implicit direction in the mental model, which is dependent on
the relation in the first premise (Krumnack et al., 2010). The
question whether a mental model has an implicit direction is
the focus of the first three main features, leading to the first
23 +1 possibilities:

Implicit Model Direction Inspired the Verbal Model, mod-
els can have a queue-like mental spatial structure with an
implicit direction. Moving through this queue in the im-
plicit direction is assumed to be computationally cheap,
while moving against this direction is costly. The oppo-
site assumption would be a grid-like mental array similar
as is used in PRISM.

Persistency of Direction In the Verbal Model, the implicit
direction depends on the relation in the first premise. For
the relation ‘left of’, the direction of the queue would be
to the right and vice versa. We added this dependency as
a possible feature, as well as the possibility of a reversed
dependency, i.e. for the relation ‘left of’, the direction of
the queue would be to the left as well.

Preliminary Integration Following the research in
Nejasmic et al. (2015), it seems likely that when
reading discontinuous information, such as “a is left of b,
c is left of d”, reasoners build a preliminary, connected
model instead of a second, disjunct model. Therefore,

we introduced this idea as another feature for models
which assume an implicit direction: Construct a temporary
model with the discontinuous information inserted into the
mental model in direction of the queue.

Focus
Moving through the mental model is, in PRISM and the Ver-
bal Model, assumed to require some mental operation. Fol-
lowing the terminology in PRISM, we introduce this idea as
the so called focus, a device which is able to move through
the mental model object by object.

If including the focus into the cognitive model, we can
further differentiate between different types of foci. For ex-
ample, while PRISM has a persistent mental focus through-
out the whole task, the Verbal Model implicitly introduces a
focus-like notion which resets with each premise. The idea
is that when a premise contains an object which is already in
the queue, the model has to move through the queue from the
position of this object. In a sense, this could be described as a
focus with the ability to jump. The focus feature adds another
23 + 1 possibilities, as a model which assumes a focus can
have any of the three mentioned focus features:

Jumping Focus As in the Verbal Model, when reading a
premise, the focus can jump to the addressed object which
is already existent in the mental model. After this jumping,
the focus then has to move one by one.

Access Tail In a queue-structure, like it is assumed in the
Verbal Model, the first element, the start of the queue, can
be easily accessed. One could assume that the last element,
the tail of a mental model, can be accessed just as easily.

Find Reference Object When a premise is read, the object
which is already in the mental model has to be found to de-
termine the positioning of the new object. However, if both
items already exist in the queue, the relative positioning of
the objects in the model have to be compared against the
new premise. If the focus position is on one of the objects,
it could be that for determining the relation between the ob-
jects, the focus now only has to move to the other object.
However, taking into account the difference between the
object to be located and the reference object, it is possible
that the focus has to first move to the reference object and
then to the object to be located to determine the relation
between these objects.

Processing the Relation ‘right of’
The experiments in Nejasmic et al. (2015) indicated that pro-
cessing the sentence “a is right of b” is more difficult (at least
for speakers of a language which is written from left to right
(Krumnack et al., 2011)) than the ‘left of’-relation. While the
queue-structure in the Verbal Model can account for this fact,
we introduced two features to allow a model with a direction-
neutral spatial structure, like the one used in PRISM, to show
this asymmetry. This feature space comprises 3 possibilities.
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Revert When reading “a is right of b”, insert b to the right of
a first, only to break up that connection and insert it on the
left.

Revert only the First Premise Revert only on the first
premise, after then the insertion to the left is automatically
correct. A model which has the revert-feature, does not
have the feature of reverting only the first premise, as the
latter is included in the former.

These features result in the following equation for the
space of cognitive models:

(23 +1)︸ ︷︷ ︸
implicit direction

· (23 +1)︸ ︷︷ ︸
f ocus

· 3︸︷︷︸
reverting

= 243 (1)

Results and Discussion
Best Models for all Participants

Table 5: Correlations rτb for individual data from Experiment
1 and all generated models.

Median Max PRISM Verbal Model

Exp. 1 .197 .22 .22 .218
Exp. 2 -.023 .059 -.05 -.05

To examine the goodness of fit of the generated models for
the whole group of participants, we calculated the Kendall
rank correlation coefficient τb for each model and normalized
reading time of participants in the two experiments. The pro-
cess for normalization was to first correct the reading times of
each participant in each condition for outliers, and second to
divide the reading times of a specific participant by her max-
imum reading time. This was done to account for individual
processing speed differences and resulted in reading times be-
tween 0 and 1 for each trial without losing the relative speed
differences of a specific reasoner across trials and conditions.
Results from the correlation can be seen in Table 5.

In Experiment 1, PRISM was among the best models,
correlating significantly with the normalized reading times
(p< .001), as did the Verbal Model (p< .001). Again, Exper-
iment 2 was much harder to predict for all models. However,
also the close to significant correlation of the Verbal Model
with the aggregated data disappeared when calculating the
correlation with each individual reasoner. It even showed a
significant negative correlation (p = .001). The correlation
coefficient for PRISM was not significant (p = .051). Calcu-
lating the correlation for both experiments, the models which
performed best (rτb= .171, p < .001) had the following con-
figurations:

The models assume a mental spatial structure that is, con-
trary to the Verbal Model, persistent in its direction: a right-
wards directed queue turned out to perform quite well. Con-
trary to the results from Nejasmic et al. (2015), models with
no preliminary integration of features performed better on the

two experiments combined. This indicates that this feature
needs more investigation in terms of cognitive modeling and
psychological investigation. A spatial focus structure with the
ability to jump turned out to give the highest performance.
The presence of the features considering the access of the last
element (tail) and finding the reference object, in the config-
urations, seems to be, at least within this analysis paradigm,
irrelevant.

This indicates several things, among which: (i) that PRISM
and the Verbal Model are good models to reproduce the left-
to-right tasks, (ii) that for the right-to-left relations, there exist
models which can approximate the individual data points bet-
ter than the models from the literature, and (iii) that restrict-
ing cognitive model of spatial reasoning to use only a single
model for all participants might soon hit an insurmountable
upper bound.

Best Models for Individual Participants

To explore further the idea that individual reasoners may use
different strategies, operations or structures, we again calcu-
lated the Kendall τb coefficient, but this time we allowed for
each participant to be assigned the cognitive model which fits
best. With this, the median correlation was rτb= .25, with a
maximum of rτb= .489 (p < .001).

The previously for the population identified best models
only occurred in 42.9% of participants of Experiment 1, and
in 14.3% of participants in Experiment 2. The percentage, to
which features are present in the individual models, can be
seen in Tables 7 and 8.

Table 7: Percentage to which main structural features are
present in the best models for the individual reasoner.

Direction Preliminary
No Direction Left Right Integration Focus

Exp. 1 16.6% 21.9% 61.6% 52.4% 63.2%
Exp. 2 0% 42.9% 57.1% 28.6% 92.9%

Table 8: Percentage to which secondary features are present
in the best models for individual reasoner. The percentages
are conditional in the case of focus features, because they
only apply if the focus is present.

Focus
Jumping Tail Access Find Ref. Revert Revert First

Exp. 1 55.7% 50.0% 50.0% 30.8% 65.4%
Exp. 2 65.3% 50.0% 53.8% 17.9% 28.6%
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Table 6: Best cost assignment for individual reading time prediction. Possible cost assignments were in the interval between 0
and 1, in increments of 0.1. This assignment yielded a median correlation of rτb= 0.302.

Initialization Insert Group Break Links Move with Dir. Move against Dir. Tail Access New Start Jump

0.7 0.1 0.1 0.1 0.8 0.5 0.8 0.3 0.8

Alternative Cost Measure
To examine the adequacy of the unary cost measure, we per-
formed a search on the assignment between model actions
and mental costs. This was done using Python’s scipy li-
brary for scientific computing1. Using a random search al-
gorithm, we explored the space of cost assignments in the
interval between 0 and 1, in increments of 0.1. The goal is
to find values for the costs, such that the correlation is max-
imized. For each assignment, we calculated the Kendall τb
correlation between the predicted costs of each model and
each participant’s outlier corrected reading times of Experi-
ments 1 and 2 from Nejasmic et al. (2015). We then selected
the best model for the individual participants and took the
mean of their correlations as the utility for the optimization.
The best cost assignment can be taken from Table 6.

Using this method, the best configuration we found
achieved a median correlation of rτb= .302. The most expen-
sive actions in the assignment were the jumping movement,
the access of the tail, and the movement in direction of the
queue, or in any direction if there is no implicit direction. Ini-
tialization of a model is also costly. The direction against the
implicit direction was chosen to be less costly than moving
with the direction. Inserting a new object is not expensive in
this assignment, as were breaking connections and setting a
new starting node (as was assumed in Krumnack et al., 2011).
Similarly, the cost of grouping objects into chunks, which was
set to have a cost of n-1 with n being the number of objects in
Ragni and Knauff (2013), was also assigned a low cost.

General Discussion
In this paper, we analyzed 243 cognitive models of spatial
relational reasoning on their capability to predict individual
reading times from studies on the continuity effect. These
models comprised configurations of features from successful
cognitive models from the literature and psychological exper-
iments. While many configurations performed well on aggre-
gated data and a model building direction from left ro right,
none of them, including the cognitive models from the lit-
erature we based this study on, were able to correctly pre-
dict reading times for a direction from right to left. We then
followed the notion that different people might use different
strategies, and investigated whether assigning a specific cog-
nitive model to individual reasoners would greatly improve
performance. While we reached a better correlation using this
method, it was still in question why the correlation did not in-
crease even further. We thus challenged the unary cost mea-

1www.scipy.org/

sure proposed in Ragni and Knauff (2013). Using a search al-
gorithm, we investigated whether a different cost assignment
would lead to better predictions for the individual. While the
fit got better, it still demonstrates that the individual variety
is not yet captured. Especially Experiment 2, which explored
a presentation of spatial information using the relation ‘right
of’ revealed a low correlation, on the individual, but also on
the aggregated level.

We explored the space of possible cognitive models for
spatial relational reasoning using features present in cogni-
tive models from the literature. However, this space did not
yield a model which was able to predict reading times across
tasks robustly. This can be due to several issues: (i) the core
assumption of these models, that we build an abstract spatial
representation (a mental model) is wrong, (ii) the true men-
tal processes in our brain when processing spatial relational
information differ from those assumed in the models of the
literature, or (iii) the assumption of a sequential processing
of spatial information has to be revised. The construction
of a mental model nonetheless is a notion which is broadly
accepted (Johnson-Laird, 2004; Ragni & Knauff, 2013). If
the mental processes of model construction differ from those
presumed by the state-of-the-art cognitive models, it stands
to reason what other processes could be taking place. The se-
quential processing is common to most cognitive spatial mod-
els (Friemann & Ragni, 2018). Modeling of individual data
is limited, as individual data, and especially reaction time, is
noisy. However, if cognitive models fit averaged data well,
but are not able to capture any single individual in the experi-
ment, the meaning of cognitive modeling and goodness-of-fit
needs to be reevaluated.

Conclusion
It seems we are still far from understanding the way our mind
integrates spatial information. This study challenged com-
mon assumptions and practices from the area of cognitive
modeling for spatial reasoning. These customs are found to
be insufficient when applying them to the modeling of whole
empirical data sets instead of the aggregated data. There is
still much to be learned about the way we process streams
of information, what mental operations are performed, and in
how far we can generalize conclusions from the aggregated
data to the individual human mind.
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