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RESEARCH ARTICLE

Constitutively Active FOXO1 Diminishes
Activin Induction of Fshb Transcription in
Immortalized Gonadotropes
Chung Hyun Park, Danalea V. Skarra, Alissa J. Rivera, David J. Arriola,
Varykina G. Thackray*

Department of Reproductive Medicine and the Center for Reproductive Science and Medicine, University of
California San Diego, La Jolla, CA, United States of America

*vthackray@ucsd.edu

Abstract

In the present study, we investigate whether the FOXO1 transcription factor

modulates activin signaling in pituitary gonadotropes. Our studies show that

overexpression of constitutively active FOXO1 decreases activin induction of

murine Fshb gene expression in immortalized LbT2 cells. We demonstrate that

FOXO1 suppression of activin induction maps to the 2304/295 region of the Fshb

promoter containing multiple activin response elements and that the suppression

requires the FOXO1 DNA-binding domain (DBD). FOXO1 binds weakly to the

2125/291 region of the Fshb promoter in a gel-shift assay. Since this region of the

promoter contains a composite SMAD/FOXL2 binding element necessary for

activin induction of Fshb transcription, it is possible that FOXO1 DNA binding

interferes with SMAD and/or FOXL2 function. In addition, our studies demonstrate

that FOXO1 directly interacts with SMAD3/4 but not SMAD2 in a FOXO1 DBD-

dependent manner. Moreover, we show that SMAD3/4 induction of Fshb-luc and

activin induction of a multimerized SMAD-binding element-luc are suppressed by

FOXO1 in a DBD-dependent manner. These results suggest that FOXO1 binding to

the proximal Fshb promoter as well as FOXO1 interaction with SMAD3/4 proteins

may result in decreased activin induction of Fshb in gonadotropes.

Introduction

In mammalian reproduction, luteinizing hormone (LH) and follicle-stimulating

hormone (FSH) production from pituitary gonadotrope cells is critical for the

regulation of gonadal functions such as steroidogenesis and gametogenesis [1,2].
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LH and FSH are heterodimeric glycoproteins composed of a common alpha

subunit and a beta subunit which is unique to each hormone [3]. Transcription of

Lhb and Fshb is one of the rate limiting steps in the production of the mature

hormones [4,5] and is tightly controlled by a complex network of hormonal

signaling pathways including those activated by gonadotropin-releasing hormone

(GnRH) and activin [6].

Signals from pulsatile GnRH, released from the hypothalamus, are transmitted

through activation of the G-protein coupled GnRH receptor on the surface of

gonadotrope cells [7]. In addition to GnRH, activin signaling via binding to

activin type II serine/threonine kinase receptors, which results in the

phosphorylation of activin type I receptors [8], is also important for gonadotropin

production. Activation of these receptors results in the phosphorylation of

downstream Sma- and mothers against decapentaplegic (MAD)-related proteins,

SMAD2 and SMAD3 [9–11]. SMAD2/3 then bind to SMAD4, translocate into the

nucleus and activate transcription of specific target genes [8,12,13]. Activin

responsiveness of the rodent Fshb promoter has been extensively characterized

(reviewed in [14,15]). SMAD2/3/4 have been shown to bind three SMAD binding

elements (SBE) at 2267, 2149 and 2116 of the murine Fshb promoter [11,16–

19]. Forkhead box L2 (FOXL2) has also been reported to bind three elements at

2350, 2154 and 2113 in the murine Fshb promoter and mutation of these sites

disrupt activin induction [18–21].

There is considerable evidence that gonadotropin production may be

modulated by metabolic hormones such as insulin, in addition to reproductive

hormones [22–27]. One group of candidate genes that may be regulated by insulin

in gonadotropes is the FOXO subfamily of forkhead box transcription factors.

FOXOs have been shown to be key regulators of cellular pathways involved in

apoptosis, stress resistance, cell cycle arrest, and DNA damage repair [28,29]. They

also have important roles in metabolism, homeostasis and reproduction. Foxo3

knockout mice have an age-dependent reduction in fertility caused by defective

ovarian follicular growth, similar to premature ovarian failure in women [30].

Conditional knockouts of Foxo1 have demonstrated that FOXO1 plays a role in

ovarian granulosa cell proliferation and apoptosis, along with FOXO3 and that

FOXO1 is essential for maintenance and differentiation of spermatogonial stem

cells in the testis [31,32]. The activity of FOXOs is regulated by post-translational

modifications including phosphorylation, acetylation and ubiquitination [33].

Activation of the PI3K/AKT signaling pathway, in response to insulin/growth

factor stimulation, results in FOXO phosphorylation, nuclear export and

inhibition of their transcriptional activities [34].

Previously, we reported that the FOXO1 transcription factor is expressed in

gonadotrope cells and that its phosphorylation and cellular localization are

regulated by insulin signaling in a PI3K-dependent manner [35]. We also

demonstrated that FOXO1 overexpression inhibits basal and GnRH induction of

Lhb and Fshb synthesis in immortalized gonadotrope cells [35,36]. Since FOXO1

was reported to interact with SMAD3/4 in immortalized keratinocytes [37], we

hypothesized that FOXO1 may also modulate activin signaling in gonadotrope
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cells. In this study, we used the immortalized gonadotrope-derived LbT2 cell

model to determine whether FOXO1 alters activin induction of Fshb gene

expression and to investigate the mechanisms involved.

Materials and Methods

Plasmid Constructs

The pcDNA3 human FOXO1 and FOXO1-CA expression plasmids were

previously described [38]. The pALTER human FOXO1, FOXO1-CA, and

FOXO1-CA-DNA binding domain (DBD) mutant (W209G/H215L) expression

vectors were generously provided by Dr. Terry Unterman [39]. The pRK5

SMAD2, SMAD3 and SMAD4 expression vectors were kindly provided by Dr. Rik

Derynck. The 21000 murine Fshb-luciferase (luc) in pGL3 and 59 truncations

(2500, 2304, 295) were previously described [18,40,41]. The 4XSBE-luc

containing four repeats of a consensus SBE (GATCAGATCTGA) was obtained

from Dr. Djurdjica Coss. The 46FBE-luc was constructed by inserting four

repeats of a consensus Forkhead binding element (FBE) (CCGTAAACAACT)

upstream of a minimal thymidine kinase promoter in pGL3 using KpnI and NheI

restriction enzyme sites as was the 4XFL2BE-luc containing four repeats of a

consensus FOXL2 binding element (FLRE) (CCGTCAAGGTCT) [42].

Tissue Cell Culture

Cell culture was performed with the immortalized murine LbT2 cell line which

has many characteristics of a mature, differentiated gonadotrope [43,44]. Cells

were maintained in 10 cm plates in Dulbecco’s Modification of Eagles Medium

(DMEM) from Mediatech Inc., (Herndon, VA) with 10% Fetal Bovine Serum

(FBS) (Omega Scientific, Inc., Tarzana, CA) and penicillin/streptomycin

antibiotics (Gibco/Invitrogen, Grand Island, NY) at 37 C̊ and 5% CO2. 16
Trypsin-EDTA (Sigma-Aldrich, St. Louis, MO) was used for cell dissociation.

Transient Transfection

LbT2 cells were seeded at 4.56105 cells/well on 12-well plates and transfected

18 hours later, using PolyJet DNA In Vitro Transfection Reagent (SignaGen,

Rockville, MD), following the manufacturer’s instructions. For all experiments,

the cells were transfected for 6 hours with 400 ng of the indicated luc reporter

plasmid and 200 ng of a b-galactosidase (b-gal) reporter plasmid driven by the

Herpes Virus thymidine kinase promoter to control for transfection efficiency.

The cells were switched to serum-free DMEM containing 0.1% BSA, 5 mg/L

transferrin and 50 mM sodium selenite 6 hours after transfection. After overnight

incubation in serum-free media, the cells were treated with vehicle (0.1% BSA) or

10 ng/mL activin (Calbiochem, La Jolla, CA) for 6 hours.

FOXO1 Decreases Activin Induction of Fshb
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Luciferase and b-galactosidase Assays

To harvest the cells, they were washed with 16 phosphate buffered saline (PBS)

and lysed with 0.1 M K-phosphate buffer pH 7.8 containing 0.2% Triton X-100.

Lysed cells were assayed for luc activity using a buffer containing 100 mM Tris-

HCl pH 7.8, 15 mM MgSO4, 10 mM ATP, and 65 mM luciferin. b-Gal activity

was assayed using the Tropix Galacto-light assay (Applied Biosystems, Foster City,

CA), according to the manufacturer’s protocol. Both assays were measured using a

Veritas Microplate Luminometer (Promega, Madison, WI).

Statistical Analyses

Transient transfections were performed in triplicate and each experiment was

repeated at least three times as indicated in the figure legend. The data were

normalized for transfection efficiency by expressing luc activity relative to b-gal

and then made relative to the empty pGL3 plasmid to control for FOXO1 effects

on the empty vector. The data were analyzed by Student’s t-test for independent

samples, one-way analysis of variance (ANOVA) followed by post-hoc

comparisons with the Tukey-Kramer Honestly Significant Difference test or two-

way ANOVA to determine synergy as described in [45] using the statistical

package JMP 11.0 (SAS, Cary, NC). Significant differences were designated as

p,0.05.

Adenoviral Infection

Adenoviral vectors containing cDNA of green fluorescent protein (Ad-GFP) and

constitutively active FOXO1 (T24A/S256D/S319A) (Ad-FOXO1-CA) were

provided by Dr. Domenico Accili [46]. LbT2 cells were seeded at 26106 cells/well

on 6-well plates. The next morning, cells were transduced with a multiplicity of

infection of 200 of Ad-GFP or Ad-FOXO1-CA for 6 hours, then switched to

serum-free media. 24 hours after adenoviral infection, cells were treated with

vehicle (0.1% BSA), 10 ng/mL activin, 10 nM GnRH (Sigma-Aldrich), or both

hormones for 6 hours.

Quantitative RT-PCR

Total RNA was extracted from LbT2 cells with TRIzol Reagent (Life Technologies,

Carlsbad, CA) following the manufacturer’s protocol. Contaminating DNA was

removed with DNA-free reagent (Life Technologies). 2 mg of RNA was reverse-

transcribed using the iScript cDNA Synthesis Kit (Bio-Rad Laboratories, Inc.,

Hercules, CA) according to the manufacturer’s protocol. Quantitative real-time

PCR was performed in an iQ5 iCycler using iQ SYBR Green Supermix (Bio-Rad

Laboratories, Inc.) and the following primers: Fshb forward, GCCGTTTCTGCA-

TAAGC; Fshb reverse, CAATCTTACGGTCTCGTATACC; Gapdh forward,

TGCACCACCAACTGCTTAG; Gapdh reverse, GGATGCAGGGATGATGTTC,

under the following conditions: 95 C̊ for 5 min, followed by 40 cycles at 95 C̊ for
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45 sec, 54 C̊ for 45 sec, and 72 C̊ for 45 sec. Each sample was assayed in triplicate

and the experiment was repeated three times. Standard curves with dilutions of a

plasmid containing Fshb or Gapdh cDNA were generated with the samples in each

run. In each experiment, the amount of Fshb was calculated by comparing the

threshold cycle obtained for each sample with the standard curve generated in the

same run. Replicates were averaged and divided by the mean value of Gapdh in the

same sample. After each run, a melting curve analysis was performed to confirm

that a single amplicon was generated in each reaction.

Western Blot Analysis

Cells were harvested by incubating in a lysis buffer [10 mM Tris-HCl, pH 7.4,

150 mM NaCl, 1% Nonidet P-40 (NP40), 1 mM EDTA, 1 mM phenylmethyl-

sulfonyl fluoride, complete protease inhibitor cocktail pellet (Roche Molecular

Biochemical, Indianapolis, IN) and phosphatase inhibitor cocktail pellet (Roche)]

for 10 min at 4 C̊. The protein concentration was determined by Bradford assay.

An equal amount of protein per sample was loaded on a 10% SDS-PAGE gel.

Proteins were resolved by electrophoresis and transferred for 2 h at 100 V onto

polyvinylidene difluoride membrane (Millipore, Billerica, MA). Membranes were

blocked overnight in 5% nonfat milk, then incubated overnight at 4 C̊ with rabbit

anti-human FOXO1 (1:1000; sc-11350) or rabbit anti-human GAPDH (1:3000;

sc-25778). Blots were then incubated with an anti-rabbit horseradish peroxidase-

linked secondary antibody (Santa Cruz Biotechnology) and bands were visualized

using the SuperSignal West Dura Substrate (Thermo Scientific, Rockford, IL).

Electrophoretic Mobility Shift Assay (EMSA)

Flag-FOXO1-CA was transcribed and translated using a TnT Coupled

Reticulolysate System (Promega). The oligonucleotides were end-labeled with T4

polynucleotide kinase and [c-32P] ATP. 4 mL of TnT lysate was incubated with 1

fmol of 32P-labeled oligo at 4 C̊ for 30 min in a DNA-binding buffer [10 mM

Hepes pH 7.8, 50 mM KCl, 5 mM MgCl2, 0.1% NP-40, 1 mM dithiothreitol, 2 mg

poly(dI-dC), and 10% glycerol]. After 30 min, the DNA binding reactions were

run on a 5% polyacrylamide gel (30:1 acrylamide: bisacrylamide) containing 2.5%

glycerol in a 0.256 TBE buffer. Murine Flag M2 (Sigma-Aldrich F1804) antibody

was used for supershift; murine IgG was used as a control for non-specific

binding. The following oligonucleotides were used for EMSA: 2305/2271 59-

GGATTCTGAGTTCGCCAAGTTAAAGATCAGAAAGA-39, 2275/2241

59- AAAGAATAGTCTAGACTCTAGAGTCACATTTAATT-39, 2245/2211

59- TAATTTACAAGGTGAGGGAGTGGGTGTGCTGCCAT-39, 2215/2181

59- GCCATATCAGATTCGGTTTGTACAGAAACCATCAT-39, 2185/2151

59- ATCATCACTGATAGCATTTTCTGCTCTGTGGCATT-39, 2155/2121

59 GCATTTAGACTGCTTTGGCGAGGCTTGATCTCCCT-39, 2125/291

59- TCCCTGTCCGTCTAAACAATGATTCCCTTTCAGCA-39, and the consensus

FBE [47] 59-CTAGATGGTAAACAACTGTGACTAGTAGAACACGG-39.

FOXO1 Decreases Activin Induction of Fshb
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GST Interaction Assay

GST-SMAD2/3/4 were provided by Dr. Rik Derynck and the GFP expression

vector by Dr. Douglass Forbes. 35S-labeled proteins were produced using the TnT

Coupled Reticulolysate System. Bacteria transformed with GST plasmids were

grown to OD of 0.6 and induced with IPTG overnight at 30 C̊ [48]. Bacterial

pellets were sonicated in 0.1% Triton X-100, 5 mM EDTA in 16 PBS, centrifuged

and the supernatant was bound to glutathione sepharose 4B resin (Amersham

Pharmacia Biotech, Piscataway, NJ). Beads were washed 46 in PBS and in HND

buffer (10 mg/ml BSA, 20 mM Hepes pH 7.8, 50 mM NaCl, 5 mM DTT, and

0.1% NP-40). For the interaction assay, 20 ml of 35S-labeled in vitro transcribed

and translated GFP, FOXO1, FOXO1-CA, or FOXO1-CA-DBD mutant was added

to the beads with 400 ml of HND buffer. Beads were incubated overnight at 4 C̊,

washed 26 with HND buffer and 26 with 0.1% NP-40 in PBS. Thirty ml of 26
Laemmli load buffer was added, the samples were boiled and electrophoresed on a

10% SDS-polyacrylamide gel. One fourth of the 35S-labeled in vitro transcribed-

translated product was loaded onto the gel as input.

Co-Immunoprecipitation Assay

LbT2 cells were incubated overnight in serum-free media and then treated with or

without 10 ng/mL activin for 2 hours. The cells were harvested and nuclear

extracts were prepared, as previously described [49]. Protein concentration was

determined by Bradford assay. 400 mg of pre-cleared nuclear extracts were

incubated with 4 mg of mouse IgG (Santa Cruz sc-2025), SMAD4 antibody (sc-

7966) or SMAD2/3 antibody (BD Biosciences 610842) at 4 C̊ for 1 hour. Twenty-

five mL of Protein A Magnetic Beads (New England Biolabs, Ipswich, MA) were

added and the extracts were rocked overnight at 4 C̊. Bead/protein complexes

were washed 16 with PBS then eluted in 26 SDS sample buffer at 70 C̊ for

5 minutes. 20 mg of protein was electrophoresed on a 10% SDS-PAGE gel,

transferred to a polyvinylidene difluoride membrane and blocked overnight in 5%

non-fat dry milk in 16 Tris-buffered saline with 0.1% Tween-20. The blots were

then incubated overnight at 4 C̊ with rabbit anti-SMAD4 (Millipore 04-1033;

1:1000 dilution), SMAD2/3 (sc-8332; 1:1000) or FOXO1 (sc-11350, 1:1000

dilution) primary antibodies. Blots were incubated with a goat anti-rabbit

horseradish peroxidase-linked secondary antibody (Santa Cruz; 1:5000) and bands

were visualized using the SuperSignal West Dura Substrate (Thermo Scientific).

Results

Constitutively Active FOXO1 Decreases Activin-Induced Fshb-luc

We recently published that overexpression of the FOXO1 transcription factor in

immortalized LbT2 gonadotrope cells resulted in decreased basal and GnRH-

induced Lhb and Fshb gene expression [35,36]. To determine whether FOXO1 can

modulate activin signaling in gonadotropes, we transfected LbT2 cells with a

FOXO1 Decreases Activin Induction of Fshb
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multimer containing four repeats of a consensus FBE fused with a luc reporter

gene (46FBE-luc) along with constitutively active FOXO1 (FOXO1-CA), which

remains in the nucleus due to the inability of insulin/growth factor signaling to

phosphorylate the mutated residues. Overexpression of FOXO1-CA increased

expression of the 46FBE-luc but activin treatment did not result in significantly

increased transcription of the 46FBE-luc in the absence or presence of FOXO1-

CA (Fig. 1A). In contrast to the 46FBE-luc, overexpression of FOXO1 reduced

expression of 21000 bp of the murine Fshb promoter fused to a luc reporter

gene (mFshb-luc). As previously reported [36], both wild-type FOXO1 and

FOXO1-CA reduced basal expression of mFshb-luc (Fig. 1B). Additionally,

although the fold activin induction of the murine Fshb promoter was not

significantly decreased by wild-type FOXO1, FOXO1-CA significantly reduced

activin induction of Fshb by 50% (Fig. 1C). The lack of a significant decrease in

activin induction of Fshb due to overexpression of wild-type FOXO1 was not

altogether unexpected since we previously showed that transfection of LbT2 cells

with pcDNA3 FOXO1 resulted in FOXO1 being predominantly localized in the

cytoplasm with some nuclear localization whereas pcDNA FOXO1-CA was

localized in the nucleus [36].

FOXO1 Decreases Activin-Induced Fshb mRNA Levels

To determine whether FOXO1-CA suppression of activin-induced transcription

also occurs on the endogenous Fshb promoter in gonadotropes, we transfected

LbT2 cells with a control GFP adenovirus (Ad-GFP) or an adenovirus containing

FOXO1-CA (Ad-FOXO1-CA) and measured Fshb mRNA levels relative to Gapdh

in response to vehicle, activin, GnRH, or activin and GnRH co-treatment. As

previously reported [36], overexpression of FOXO1-CA significantly decreased

basal Fshb mRNA levels by 62% (Fig. 1D). In LbT2 cells transduced with Ad-

GFP, Fshb mRNA levels were induced 17 fold by activin and 4 fold by GnRH

while cotreatment with activin and GnRH resulted in a synergistic 60 fold

induction, similar to what was previously reported [50,51]. In contrast, activin

induction was decreased by 62%, GnRH by 65% and activin and GnRH synergy

by 82% in cells transduced with Ad-FOXO1-CA (Fig. 1D). These results indicate

that constitutively active FOXO1 suppression of activin-, GnRH- or activin and

GnRH-induced Fshb gene expression occurs in the context of the native

chromatin.

FOXO1 Repression of Activin Induction Maps Between 2304 and

295 of the Fshb Promoter

As described in the introduction, the murine Fshb promoter contains multiple

activin response elements including SMAD and FOXL2 binding sites (Fig. 2A).

We used 59 truncation analysis to determine which regions of the promoter were

necessary for FOXO1 suppression. Both activin induction and FOXO1

suppression were lost with the 295 Fshb-luc (Fig. 2B). These results indicate that

FOXO1 Decreases Activin Induction of Fshb

PLOS ONE | DOI:10.1371/journal.pone.0113839 November 25, 2014 7 / 19



the region between 2304 and 295 is necessary for activin responsiveness as well

as suppression by FOXO1 and suggest that the mechanism of suppression may

involve SMAD and FOXL2 transcription factors.

β
β

Figure 1. Overexpression of Constitutively Active FOXO1 Reduces Activin Induction of Fshb
Transcription in LbT2 Cells. A. The 46FBE-luc plasmid was transiently transfected into LbT2 cells along
with 200 ng of pcDNA3 empty vector (EV) or FOXO1-CA expression vector, as indicated. After overnight
incubation in serum-free media, cells were treated for 6 h with 0.1% BSA vehicle (veh) or 10 ng/mL activin.
The results represent the mean ¡ SEM of three experiments performed in triplicate and are presented as luc/
b-gal. * indicates that the induction by FOXO1-CA is significantly different from EV using Student’s t-test while
n.s. indicates that the activin induction is not significantly different from vehicle. B–C. The 21000 murine
Fshb-luc plasmid was transfected into LbT2 cells along with pcDNA3 EV, FOXO1 or FOXO1-CA (CA), as
indicated. After overnight incubation in serum-free media, cells were treated for 6 h with 0.1% BSA veh or
10 ng/mL activin. The results represent the mean ¡ SEM of three experiments performed in triplicate and are
presented as luc/bgal (B) or fold activin induction relative to vehicle control (C). * indicates that there is a
significant activin induction compared to vehicle using Student’s t-test (B). The different uppercase letters
indicate that fold activin induction is significantly repressed by FOXO1-CA compared to EV using one-way
ANOVA followed by Tukey’s post-hoc test (C). D. LbT2 cells were transduced with a multiplicity of infection of
200 of Ad-GFP or Ad-FOXO1-CA for 6 hours, then switched to serum-free media. 24 hours after adenoviral
infection, cells were treated with 0.1% BSA veh, 10 ng/mL activin, 10 nM GnRH, or both hormones for
6 hours, as indicated. The results represent the mean ¡ SEM of three experiments performed in triplicate and
are presented as amount of Fshb mRNA relative to Gapdh. * indicates that Fshb transcription is significantly
repressed by FOXO1-CA compared to Ad-GFP using Student’s t-test while # indicates synergy between
activin and GnRH activin using two-way ANOVA. The data concerning the effect of veh vs. GnRH was
published previously [36].

doi:10.1371/journal.pone.0113839.g001
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FOXO1 DBD Is Required for Suppression of Fshb Gene

Expression

To further investigate how activin-induced Fshb transcription is inhibited by

FOXO1, we tested whether the FOXO1 DBD was necessary for the repression, as

previously demonstrated for FOXO1 suppression of basal and GnRH-induced Lhb

and Fshb gene expression [35,36]. As a control for the level of protein expression,

we demonstrated that comparable levels of FOXO1-CA and a FOXO1-CA-DBD

mutant were expressed when transfected into LbT2 cells (Fig. 3B). While FOXO1-

CA overexpression in LbT2 cells suppressed activin-induced Fshb-luc, over-

expression of FOXO1-CA with a DBD mutation (FOXO1-CA-DBD, Fig. 3A) was

not able to repress activin induction of Fshb (Fig. 3C). These results indicate that

the FOXO1 DBD is necessary to elicit an inhibitory effect on activin signaling to

the Fshb promoter.

FOXO1 Binds to the Proximal Fshb Promoter

Since the FOXO1 repression mapped to the 2304/295 region of the Fshb

promoter and required the FOXO1 DBD, we performed EMSA to determine

whether FOXO1 could bind to this part of the promoter in vitro. Seven 35-mer

oligonucleotide probes were designed to span the 2304/295 region. Flag-

FOXO1-CA, synthesized with TnT rabbit reticulocyte lysate, bound to an

oligonucleotide probe containing a consensus FBE (Fig. 4A, lane 1). To identify

which complex contained the Flag-FOXO1-CA bound to the FBE, we supershifted

the complex with a Flag antibody (Fig. 4A, lane 3) but not with control IgG

(Fig. 4A, lane 2). Incubation with an oligo encompassing the 2125/291 region of

the Fshb promoter also resulted in the formation of a barely detectable protein-

DNA complex that was clearly shifted with a Flag antibody but not IgG (Fig. 4A,

lanes 22–24) while incubation with oligos encompassing the 2305/2121 regions

did not result in detectable FOXO1 binding (Fig. 4A, lanes 4–21). These results

suggest that, in contrast to the consensus FBE, FOXO1 can bind weakly to the

2125/291 region of the murine Fshb promoter.

FOXO1 Interacts with SMAD3 and SMAD4

Since FOXO1 binding to the 2125/295 region of the Fshb promoter was weak

compared to FOXO1 binding to the consensus FBE, we investigated whether

FOXO1 physically interacts with SMAD proteins. We tested whether FOXO1 or

DNA-binding deficient FOXO1 interacts with SMADs by incubating GST-

SMAD2/3/4 fusion proteins with in vitro-transcribed and translated 35S-labeled

FOXO1, FOXO1-CA or a FOXO1-CA-DBD mutant in pull-down experiments. As

shown in Fig. 5A, there was minimal interaction between the GST-SMAD fusion

proteins and the negative control (35S-GFP) or with GST alone incubated with

FOXO1, FOXO1-CA or the FOXO1-CA-DBD mutant. In contrast, there was a

strong interaction between FOXO1 and SMAD3 or SMAD4 which was not observed

between FOXO1 and SMAD2. Additionally, a strong interaction was also observed
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between FOXO1-CA and SMAD3 or SMAD4 while there was no detectable

interaction between the FOXO1-CA-DBD mutant and SMAD3 or SMAD4, indicating

that the interaction between FOXO1 and SMAD3/4 requires the FOXO1 DBD.

Given our results demonstrating a direct protein-protein interaction between

FOXO1 and SMAD3/4 in vitro, we then determined whether endogenous FOXO1

could interact with these proteins in gonadotrope cells using a co-immunopre-

cipitation assay. As shown in Fig. 5B, SMAD4 and SMAD2/3 were efficiently

immunoprecipitated from nuclear extracts obtained from activin-treated or

untreated LbT2 cells. Since SMAD4 has been previously shown to interact with

SMAD2/3 [52], SMAD2/3 co-immunoprecipitated with SMAD4 or vice versa were

used as positive controls and occurred in cells treated with activin. Interestingly,

FOXO1 was also co-immunoprecipitated with SMAD4 or SMAD2/3 in an activin-

dependent manner, indicating that endogenous FOXO1 can interact with SMAD3

and SMAD4 in gonadotropes.

FOXO1 Suppression of Activin-Induced Fshb Transcription

Involves Inhibition of SMAD Transcription Factors

To further examine the mechanism of FOXO1 repression of activin induction, we

tested whether FOXO1 could alter SMAD-dependent transcription in gonadotrope

Figure 2. FOXO1 Suppression Maps to 2304/295 of the Murine Fshb Promoter. A. Diagram illustrating
the location of activin response elements on the murine Fshb promoter including SMAD and FOXL2 binding
sites. B. The 21000, 2500, 2304, and 295 murine Fshb-luc plasmids were transiently transfected into LbT2
cells along with pcDNA3 empty vector (EV) or FOXO1-CA, as indicated. After overnight incubation in serum-
free media, cells were treated for 6 h with 0.1% BSA or 10 ng/mL activin. The results represent the mean ¡

SEM of three experiments performed in triplicate and are presented as fold activin induction relative to the
vehicle control. # indicates that Fshb transcription is significantly induced by activin compared to vehicle
using Student’s t-test while * indicates that fold activin induction is significantly repressed by FOXO1-CA
compared to EV using Student’s t-test.

doi:10.1371/journal.pone.0113839.g002
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cells. Initially, we examined the effect of FOXO1-CA overexpression on SMAD

induction of Fshb gene expression. Overexpression of SMAD3 or SMAD4 induced

Fshb transcription by 3–4 fold while overexpression of SMAD3 and SMAD4

resulted in a 28-fold induction (Fig. 6A). Noticeably, FOXO1-CA overexpression

resulted in a profound inhibition of SMAD3/4 induction of Fshb synthesis

(Fig. 6A). We also demonstrated that the FOXO1 DBD was required for the

suppression of SMAD3/4-induced Fshb transcription (Fig. 6B). Since FOXO1

suppression of activin-induced Fshb transcription mapped to the 2304/295 region

of the Fshb promoter that contains multiple SMADs and FOXL2 binding sites, we

tested whether activin induction of a multimer containing four repeats of a

consensus binding element for SMADs or FOXL2 (SBE or FLRE) was inhibited by

FOXO1. Activin induced the 46SBE-luc by 4 fold while the 46FLRE-luc was

Figure 3. FOXO1 DNA Binding Domain Is Required to Suppress Activin-Induced Fshb Gene
Expression. A. Diagram illustrating FOXO1-CA-DBD mutant (W209G/H215L). (B) LbT2 cells were
transfected with pALTER empty vector (EV), FOXO1 (WT), FOXO1-CA (CA), or FOXO1-CA-DBD (CA-DBD)
for 6 hours, then switched to serum-free media. Twenty-four hours after transfection, the cells were harvested.
Western blot analysis was performed on whole cell extracts using FOXO1 and GAPDH primary antibodies
and a horseradish peroxidase–linked secondary antibody. A representative image is shown. C. The 21000
murine Fshb-luc reporter was transfected into LbT2 cells along with pALTER EV, FOXO1-CA or FOXO1-CA-
DBD mutant, as indicated. After overnight incubation in serum-free media, cells were treated for 6 h with 0.1%
BSA or 10 ng/mL activin. The results represent the mean ¡ SEM of three experiments performed in triplicate
and are presented as fold activin induction relative to the vehicle control. The different uppercase letters
indicate that fold activin induction is significantly repressed by FOXO1-CA compared to EV or FOXO1-CA-
DBD using one-way ANOVA followed by Tukey’s post-hoc test.

doi:10.1371/journal.pone.0113839.g003
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induced by 1.5 fold (Fig. 6C). Interestingly, overexpression of FOXO1-CA

significantly reduced the fold activin induction of the SBE but had no effect on the

FLRE (Fig. 6C). Additionally, overexpression of FOXO1-CA with a DBD mutation

was unable to suppress activin induction of the SBE, indicating that the FOXO1

DBD was also required for this effect. The weak activin induction of the 46FLRE

and the lack of activin induction of a multimer of the 2350/2341 FOXL2 binding

site [19] suggest that, unlike an SBE, a FOXL2 binding site is not sufficient for

activin induction and thus, it is difficult to assess the role of FOXL2 in the FOXO1

suppression. In contrast, our data provides strong evidence that overexpression of

FOXO1-CA results in decreased activin and SMAD-induction of Fshb in

immortalized gonadotrope cells.

Discussion

The importance of activin signaling in the production of FSH has been illustrated

using mouse knockout models. Deletion of the Type II activin receptor as well as

gonadotrope-specific knockdown of both SMAD4 and FOXL2 resulted in a

hypogonadal hypogonadism phenotype reminiscent of the Fshb knockout [53–

55]. Since FOXO1 was previously reported to interact with SMAD3/4 proteins in

HaCAT and Cos-1 cells [37], we investigated whether FOXO1 could regulate

activin induction of Fshb gene expression. We demonstrated that overexpression

Figure 4. FOXO1 Binds to 2125/291 of the Fshb Promoter. TnT Flag-FOXO1-CA was incubated with a
consensus FBE, 2305/2271, 2275/2241, 2245/2211, 2215/2181, 2185/2151, 2155/2121, or 2125/
291 Fshb probes and tested for complex formation in EMSA. FOXO1-CA-DNA complex on the FBE is shown
in lane 1, IgG control in lane 2 and Flag supershift is shown in lane 3. The FOXO1-CA-DNA complex (arrow)
and antibody supershift (ss) are indicated on the left and right of the gel.

doi:10.1371/journal.pone.0113839.g004
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of constitutively active FOXO1 repressed activin- or activin and GnRH-induced

transcription of a murine Fshb-luc reporter as well as endogenous Fshb mRNA in

LbT2 cells (Fig. 1). The FOXO1 repression occurred in a context-dependent

manner since FOXO1 overexpression induced transcription of a consensus FBE

β

β

Figure 5. FOXO1 Interacts with SMAD3/4. A. GST interaction assays were performed using bacterially
expressed GST-fusion proteins (indicated above each lane) and 35S-labeled in vitro transcribed and
translated GFP, FOXO1, FOXO1-CA, and FOXO1-CA-DBD mutant (indicated on the left of the panel). GFP
was used as a negative control. The GST-fusion proteins included GST alone, GST-SMAD2 (S2), GST-
SMAD3 (S3), and GST-SMAD4 (S4). One quarter of the protein used in the interaction assay was loaded in
the lane marked input. The experiment was repeated several times with similar results and a representative
experiment is shown. B. Co-immunoprecipitation assays were performed using nuclear extracts from LbT2
cells treated with or without 10 ng/mL activin for 2 h after an overnight incubation in serum-free media. One
tenth of the protein used in the immunoprecipitation reaction was loaded in the lane marked input. The
immunoprecipitation was performed with mouse IgG, SMAD4 (S4) or SMAD2/3 (S2/3) antibody, as indicated.
Western blot analysis was performed using SMAD4, SMAD2/3 and FOXO1 primary antibodies, and a
horseradish peroxidase-linked secondary antibody. The experiment was repeated several times with similar
results and a representative experiment is shown.

doi:10.1371/journal.pone.0113839.g005
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(Fig. 1A). Along with evidence that FOXO1 can suppress basal and GnRH-

induced Fshb gene expression [36,56], these data support the idea that nuclear

localized FOXO1 may have a significant inhibitory effect on Fshb transcription in

gonadotrope cells although it should be noted that overexpression studies can

result in responses that do not occur in the in vivo physiological context.

Since activin regulation of Fshb transcription involves both SMADs and

FOXL2, we sought to characterize the mechanism that FOXO1 employs to repress

activin signaling in gonadotropes. We demonstrated that the region between

2304 and 295, which contains several SMAD and FOXL2 binding elements, is

necessary for the FOXO1 repression (Fig. 2). We then showed that two mutations

(W209G and H215L) in helix 3 of the FOXO1 DBD prevented FOXO1 from

eliciting a repressive effect (Fig. 3). H215 has been shown to make DNA contacts

through hydrogen-bonding and water-mediated interactions [57] but the role of

these two residues in protein-protein interactions is unknown. Our data suggests

that the FOXO1 DBD is necessary for FOXO1 repression because FOXO1 binds

directly to the Fshb promoter or because FOXO1 forms protein-protein

interactions with factors critical for activin induction of Fshb transcription via the

FOXO1 DBD.

To assess these two possibilities, we tested whether FOXO1 could bind to the

region of the Fshb promoter necessary for the repressive effect. Gel-shift assays

demonstrated that in vitro transcribed and translated FOXO1 bound to the 2125/

291 region of the Fshb promoter, albeit much more weakly than FOXO1 binding

to a consensus FBE (Fig. 4). Interestingly, the 2125/291 region contains a

composite binding element for SMAD and FOXL2 proteins which has been shown

to be essential for activin induction [16,20,21]. We did not observe binding of

FOXO1 to this region of the promoter when LbT2 nuclear extracts were used

instead of TnT FOXO1. Our studies are in agreement with a recent report by Choi

et al. which demonstrated that FOXO1 can bind to the Fshb promoter using a

DNA pulldown assay but was not detectable in a gel-shift assay employing LbT2

nuclear extracts [56]. Thus, these studies indicate that FOXO1 binding to the Fshb

promoter may be a potential mechanism of FOXO1 repression of activin signaling

in gonadotropes.

We then explored the possibility that FOXO1 repression of activin signaling in

gonadotropes is due to protein-protein interactions between FOXO1 and

SMAD3/4. Our GST pulldown experiments confirmed that FOXO1 can directly

interact with SMAD3 and SMAD4 in vitro and that this interaction was dependent

on the FOXO1 DBD (Fig. 5A). Notably, this was in contrast to the lack of

interaction observed between FOXO1 and SMAD2. Since SMAD2 and SMAD3

are very similar proteins except that SMAD2 contains an insertion in the MH1

domain that prevents DNA binding, our data suggests that the inhibitory domain

prevents interaction between FOXO1 and SMAD2. This idea is supported by the

fact that the SMAD2 splice variant that lacks this insertion was reported to bind

FOXO proteins [37]. It is also noteworthy that SMAD3 and SMAD4 were

previously reported to bind FOXO1 through the MH1 domain [37]. FOXO1

interaction with SMAD3 and SMAD4 in an activin-dependent manner in
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Figure 6. FOXO1 Suppresses SMAD-Induced Fshb Gene Expression. A–B. The 21000 murine Fshb-luc
plasmid was transfected into LbT2 cells along with 100 ng of pALTER empty vector (EV), FOXO1-CA or
FOXO1-CA-DBD mutant, as well as 100 ng of pRK5 EV, 50 ng SMAD3 or SMAD4 with 50 ng of pRK5, or
50 ng SMAD3 and SMAD4 expression vectors, as indicated. Cells were incubated in serum-free media for
24 h before harvest. The results represent the mean ¡ SEM of three experiments performed in triplicate and
are presented as fold SMAD induction relative to the pRK5 EV. * indicates that Fshb transcription is
significantly repressed by FOXO1-CA compared to EV using Student’s t-test (A) while the different uppercase
letters indicate that Fshb transcription is significantly repressed by FOXO1-CA compared to EV or FOXO1-
CA-DBD using one-way ANOVA followed by Tukey’s post-hoc test (B). C. 46SBE-luc or 46FLRE-luc
plasmids were transfected into LbT2 cells along with 200 ng of pALTER EV, FOXO1-CA or FOXO1-CA-DBD.
After overnight incubation in serum-free media, cells were treated for 6 h with 0.1% BSA or 10 ng/mL activin.
The results represent the mean ¡ SEM of three experiments performed in triplicate and are presented as fold
activin induction relative to the vehicle control. The different uppercase letters indicate that transcription of the
46SBE-luc is significantly reduced by FOXO1-CA compared to EV or FOXO1-CA-DBD using one-way
ANOVA followed by Tukey’s post-hoc test while there is no significant difference in transcription of the
46FLRE-luc.

doi:10.1371/journal.pone.0113839.g006
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co-immunoprecipitation experiments suggests that SMAD phosphorylation is

required to bind FOXO1 (Fig. 5B). This data is in agreement with the report that

the FOXO1 interaction with SMAD3/4 was dependent on TGFb treatment of the

cells [37]. Our studies also demonstrated that FOXO1 repressed the effects of

SMAD3/4 overexpression on Fshb-luc and activin induction of a 46SBE-luc in a

FOXO1 DBD-dependent manner (Fig. 6). Altogether, these results provide strong

support for the hypothesis that FOXO1-CA modulates activin responsiveness of

the Fshb promoter by interacting with SMAD3/4 via the FOXO1 DBD.

In summary, our studies provide evidence that the FOXO1 transcription factor

may negatively regulate activin induction of Fshb synthesis through FOXO1

binding to the proximal Fshb promoter as well as through a direct interaction

between the FOXO1 DBD and SMAD3/4. Since these experiments were

performed in immortalized gonadotrope cells, additional studies are needed to

determine whether FOXO1 functions in the pituitary to negatively regulate

gonadotropin production in vivo. Moreover, since FOXO proteins act as

coactivators of SMAD-dependent transcription in several other cell types

[37,58,59], future studies are required to understand how FOXO1 acts as a

repressor of activin signaling in pituitary gonadotrope cells. It may also be

worthwhile to investigate whether FOXO1 regulates additional activin responsive

genes in gonadotrope cells including the GnRH receptor and follistatin [60–62].

Interactions between FOXO and SMAD proteins may also be important for

regulation of gene expression in other reproductive tissues that express both of

these transcription factors such as the ovary and uterus [63,64].
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