
UCSF
UC San Francisco Previously Published Works

Title
Time-aware Embeddings of Clinical Data using a Knowledge Graph

Permalink
https://escholarship.org/uc/item/4b32316c

Authors
Soman, Karthik
Nelson, Charlotte A
Cerono, Gabriel
et al.

Publication Date
2022-11-01

DOI
10.1142/9789811270611_0010
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/4b32316c
https://escholarship.org/uc/item/4b32316c#author
https://escholarship.org
http://www.cdlib.org/


Time-aware Embeddings of Clinical Data using a Knowledge 
Graph

Karthik Soman,

Charlotte A. Nelson,

Gabriel Cerono,

Sergio E. Baranzini*

Weill Institute for Neuroscience, Department of Neurology, University of California San Francisco, 
San Francisco, California, United States of America

Abstract

Meaningful representations of clinical data using embedding vectors is a pivotal step to invoke 

any machine learning (ML) algorithm for data inference. In this article, we propose a time-aware 

embedding approach of electronic health records onto a biomedical knowledge graph for creating 

machine readable patient representations. This approach not only captures the temporal dynamics 

of patient clinical trajectories, but also enriches it with additional biological information from 

the knowledge graph. To gauge the predictivity of this approach, we propose an ML pipeline 

called TANDEM (Temporal and Non-temporal Dynamics Embedded Model) and apply it on the 

early detection of Parkinson’s disease. TANDEM results in a classification AUC score of 0.85 on 

unseen test dataset. These predictions are further explained by providing a biological insight using 

the knowledge graph. Taken together, we show that temporal embeddings of clinical data could be 

a meaningful predictive representation for downstream ML pipelines in clinical decision-making.
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1. Introduction

Clinical data comes from multiple modalities and encompasses heterogeneous information 

related to patient health. Electronic health records (EHR), a structured clinical data, 

encompasses different health variables of a patient such as diagnosis, medications, lab tests, 

clinical visit encounters, etc. Machine learning (ML) algorithms, owing to their ability to 

decipher patterns in large scale heterogeneous data, could be used to tap the invaluable 

information embedded in the EHR data for insightful clinical predictions1. There have been 

previous efforts along this line such as clinical concept embeddings, disease phenotyping/

diagnosis and EHR de-identification2,3.
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Patient representation learning is an important aspect for running ML pipelines. Such 

representations are generally lower-dimensional latent vectors with predictive value for 

patient’s health status3. This predictive value is further capitalized for downstream clinical 

predictive modeling. There have been predictive analyses that utilized the longitudinal 

aspect of EHR data such as measurements of lab tests4, temporal history of diagnosis, 

medication and procedure codes5 and long term temporal dependencies in patient medical 

records6. These modeling approaches utilized sequence models like Recurrent Neural 

Network (RNN) to capture the temporal dynamics in the longitudinal EHR data and embed 

patients’ health state trajectories as internal latent representation2. Although such approaches 

have proven to be useful in predictive medicine, the abstract nature of patient representation 

affects their clinical interpretability.

There have been interpretable modeling approaches using knowledge networks for clinically 

relevant problems7–9. The major aspect of such an approach is the existence of biologically 

relevant edges in a knowledge network that could connect entities from molecular to 

phenotypic level10. Such a network level approach helps to understand the relationship 

between disease and underlying molecular/genetic pathways, thereby providing an insightful 

knowledge that transcends multiple levels of biology. There have been recent efforts to 

integrate EHR data with knowledge networks for a network level concept embedding and 

disease prediction11,12, but without considering the longitudinal aspect of clinical data.

In this paper, we try to achieve the best of both worlds, i.e. embedding longitudinal 

EHR data on a biomedical knowledge graph to capture the temporal dynamics of patient 

clinical trajectory at a network level. We hypothesize that such an embedding approach 

could represent the health status of a patient with enriched biological information at a 

higher temporal resolution which could ultimately improve the predictability of disease 

diagnosis. With this objective, we introduce the concept of knowledge graph based temporal 

embeddings, and use them in an explainable modeling approach called TANDEM for the 

diagnosis of chronic diseases, in this study - Parkinson’s Disease (PD).

2. Methods

2.1. Scalable Precision medicine Open Knowledge Engine (SPOKE)

SPOKE is a heterogeneous biomedical knowledge network with more than 3 million nodes 

of 16 types (such as genes, proteins, disease, symptoms etc.) and more than 16 million edges 

of 32 types between those nodes11. SPOKE integrates over 40 publicly available databases 

that are biologically relevant (such as GWAS, DOID, Uniprot, ChEMBL, DrugBank, 

SIDER, MESH). Graphical user interface of SPOKE network is made publicly available 

(https://spoke.rbvi.ucsf.edu/). In this study, we utilized the biological associations present in 

this large scale network to create meaningful patient representations for downstream ML 

analysis.

2.2. Creating temporal embeddings of patients

In the previous study11, SPOKE knowledge graph was connected to EHR data using 

Observational Medical Outcomes Partnership (OMOP) common data model and Unified 
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Medical Language System’s (UMLS) Metathesaurus mappings. Then an embedding vector, 

called Propagate SPOKE Entry Vectors (PSEVs), for a clinical concept was created by using 

a modified version of topic-sensitive PageRank11,13. PSEVs can be created for any code in 

the EHR that has been recorded for a cohort of patients (e.g. Parkinson’s Disease). A PSEV 

vector of a clinical concept stores how important each node in SPOKE is for that particular 

concept, which hence gives a network level representation of an EHR concept.

In this study, to produce temporal embeddings for an individual patient, PSEVs 

corresponding to the EHR codes (taken from the de-identified EHR database of UCSF 

medical center) from a specified time range (frame width = 1 year) in a patient’s timeline 

were aggregated and normalized to create a patient specific embedding vector (Figure 1A). 

Stacking such embedding vectors from each time frame gave rise to a two-dimensional 

array whose rows represented time and columns represented SPOKE nodes (Figure 1A). We 

named this as temporal SPOKEsig since it holds the temporal dynamics of SPOKE nodes as 

a function of a patient’s clinical data. We also created non-temporal SPOKEsig i.e. patient 

embedding without considering the temporal order of EHR concepts, hence generating a 

one-dimensional array of vector (i.e. no time axis, Figure 1A).

In this study we created embeddings for two patient cohorts (i.e. PD and non-PD). Patients 

were included in the PD cohorts if a PD diagnosis code was present in their EHR diagnosis 
table. We selected only those patients with enough temporal history (i.e. having clinical data 

in more than one year of time frame in their timeline). In the interest of analyzing disease 

dynamics and classifying patients into PD or non-PD classes before the clinical diagnosis, 

we created embeddings starting from one year before their actual clinical diagnosis and 

going further back in time (i.e. early detection of PD, Figure 1A). We created two sets of 

such embedding vectors for each cohort where one set was used for feature selection and 

training the downstream ML model and the other set was used to evaluate the performance 

of the model.

Considering M number of nodes in SPOKE, a patient cohort with N patients can be 

represented by a two-dimensional array of size NxM using the non-temporal approach 

(Figure 1B). The same patient cohort can be represented by a three-dimensional array of 

size NxTxM using the temporal approach, where T denotes the time axis of the embedding 

vector (Figure 1B). T corresponds to the largest visiting time of a patient in the cohort of 

interest, in this study the PD cohort.

2.3. Knowledge graph time series and feature selection

For any useful data inference using an ML algorithm, the first step is to select predictive 

features from the embedding vectors that are used as training data for downstream 

ML pipeline. In a three-dimensional temporal SPOKEsig, each feature is a time series 

corresponding to nodes in the SPOKE knowledge graph. To evaluate how these nodes evolve 

in time with respect to disease progression, we first computed the average time series of 

each SPOKE node across all patients in the training data of each cohort (Figure 1C).

We then applied a non-parametric statistical test (Mann-Kendall Trend Test, MKTT14) on 

each average time series to identify a trend15. Trend can be treated as a feature that gives a 
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measure of how time series evolve. MKTT only tests for linear monotonic trends in a time 

series15. Hence, a time-series can be classified as an increasing, decreasing or no trend. In 

addition to the trend type, the test also returns a trend value (slope) present in the time series 

and a p-value associated with it. Since we are looking at a classification problem, we wanted 

to retain predictive temporal features that show disparate temporal dynamics between the 

cohorts. Hence, we selected those features that satisfied at least one of the following three 

criteria:

1. A node has a trend in one cohort and no trend in the other cohort

2. A node has opposite trends in two cohorts

3. A node has the same trend in two cohorts, then select only if its slope in one 

cohort is more than double than in the other.

2.4. Transformation of temporal embeddings of a patient cohort

After feature selection, the next step is to train an ML classifier to identify if a patient has 

PD or not (two-class problem). Since temporal embeddings are sequential data (because of 

the time dimension), state-of-the-art models to learn such data are recurrent neural networks 

(RNN) like Long short-term memory (LSTM) networks16, Gated recurrent unit (GRU) 

networks17. However, the patient cohort size used in this study was not large enough to 

train such deep neural networks with trainable parameters in the order of millions. This 

situation (less data and more parameters) could lead to data overfitting and that could affect 

the generalizability of the trained model. In such situations, previous studies have chosen 

models like random forest (RF) owing to their ensemble architecture18–20 and we chose the 

same in our case.

To train a RF classifier, we transformed the temporal SPOKEsig from a three-dimensional 

array (NxTxM’) to a two-dimensional array (NxM’) where N corresponds to total number of 

patients in a cohort, T represents time and M’ represents the selected features from an initial 

M features (after feature selection, M’ < M). To retain the embedded temporal information 

in the transformed two-dimensional representation, we performed a linear approximation of 

temporal SPOKEsig by computing the trend value present in each time series of SPOKE 

nodes across all patients. Figure 2 shows the steps involved in this transformation process.

To compensate for this linear approximation transformation, a second feature selection was 

done on the transformed two-dimensional array (of training data) such that we selected 

only those features whose absolute difference in their average slope values between PD and 

non-PD cohort is greater than a threshold value of 406 (chosen empirically).

2.5. Temporal and non-temporal dynamics embedded model (TANDEM) for disease 
classification

TANDEM includes both temporal and non-temporal embeddings of patients for disease 

classification. Specifically, we trained two separate RF models, one using approximated 

temporal SPOKEsig and the other one using non-temporal SPOKEsig. One model evaluated 

the linear trend and the other model evaluated the area swept by the time series of SPOKE 

nodes. Hence, both classifiers looked at two fundamentally different aspects of the time 
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series data. Each model was trained using their respective training data. Since there existed 

less PD samples than non-PD samples in the data, training data was imbalanced. Hence, 

while training the classifiers, proper weights were assigned to patient samples in the training 

data based on their class distribution (hence more weightage was given to PD samples while 

training). Individual prediction scores of these two models were further normalized by their 

percentile scores. Finally, a logistic classifier was trained (using binary cross-entropy as the 

loss function) using the normalized prediction scores from temporal and non-temporal RF 

models to compute the final disease prediction score.

Classification performance was evaluated using an unseen test dataset. Model performance 

was quantified by computing the Area Under the Curve (AUC) of Receiver Operator 

Characteristic (ROC) curve. Bootstrap analysis was done by randomly sampling prediction 

scores (corresponding to both classes) with replacement and then computing AUC score for 

that sample. This process was repeated for 1000 times which generated a distribution of 

AUC scores for the model. In addition to AUC, we also computed F1 score and Average 

Precision score of each model for comparison.

3. Results

3.1. Patient temporal embedding

We selected a total of 283 PD and 74,059 non-PD patients respectively as training dataset. 

We had a separate test dataset (for model evaluation) with 1994 patients (17 PD and 1977 

non-PD). EHR history of both cohorts spanned a maximum of 21 years from one year prior 

to the clinical diagnosis. There were a total of 389,297 SPOKE nodes in the embedding 

vector (i.e. dimension of the vector).

3.2. Feature selection and PCA visualization

Following the feature selection method using the MKT test (mentioned in the Methods 

section), we were able to reduce the features of temporal SPOKEsig from 389,297 

to 109,256 (28.1% of initial features). Next, temporal dynamics of the selected and 

non-selected features were visualized by projecting them onto the first three principal 

components (Figure 3). A second feature selection on the linear approximated temporal 

SPOKEsigs (see Methods) reduced features from 109256 to 42012 (38.5% of initial 

features).

3.3. Disease classification using TANDEM architecture

AUC bootstrap analysis on the test data showed that temporal model showed higher 

performance than the non-temporal model (Figure 4A, Table 1, p-value=4.5*10−52, N=1000, 

Mann Whitney U test). However, TANDEM architecture outperformed these two models 

significantly (Figure 4A, Table 1). We also compared these models using their F1-score and 

average precision score on the test data and it showed that in both cases TANDEM model 

held the highest score (Figure 4B–C).

For the explainability of TANDEM predictions from a biological perspective, we estimated 

the temporal slope (rate of growth) of PD related gene nodes’ time series (i.e. gene nodes 
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connected to PD node in SPOKE) for all patients that were correctly predicted by the 

TANDEM model. 13 PD (out of 17) and 1659 non-PD (out of 1977) test patients were 

correctly predicted by the TANDEM model. PD genes showed higher rate of temporal 

evolution in these PD patient group than the non-PD group (p-value = 1.4*10−06, N = 141, 

Mann Whitney U test, Figure 4D). We also showed the temporal evolution of PD-gene 

network for a single patient across three discrete time points in a patient’s timeline (Figure 

4E for PD patient and Figure 4F for non-PD patient).

4. Discussion

If we consider clinical events of a patient in the order in which they occurred, they naturally 

form a time series. By embedding this longitudinal EHR data on a knowledge network, 

we tried to achieve a network level interpretation of the temporal dynamics of disease (in 

this case PD). This approach could possibly bridge the two EHR modeling approaches i.e. 

knowledge network approach10 and longitudinal data approach2.

TANDEM model underlines the complementary nature of temporal and non-temporal 

features of clinical data in disease diagnosis. These two aspects of TANDEM worked in 

tandem and enhanced the overall prediction performance. Since the temporal SPOKEsig 

enriches a patient’s clinical trajectory with additional biological information, this approach 

could give a biological perspective to the model predictions and thereby making it an 

explainable approach. For example, there was an increased temporal slope associated with 

the gene LRRK2 among PD patients correctly predicted by the model. There have been 

previous studies that pointed out the criticality of mutations in the LRRK2 gene and PD 

pathogenesis, thus making it a predominant genetic risk factor for PD21,22. This followed by 

the visualization of temporal evolution of PD-gene network at individual patient level brings 

an intuitive biological insight into the model’s prediction. As a future work, we plan to apply 

this modeling architecture to other complex diseases to test its generalizability.

A major challenge in this study was the mapping of clinical data to SPOKE graph for 

creating embedding vectors. Not all EHR variables map to SPOKE nodes and hence 

that transformation was lossy. However, additional biological information from SPOKE 

knowledge graph could be considered as a compensatory factor for this loss. Another 

challenge is the limitation of patient data. Since this study relied on the temporal history 

of EHR data, we had to drop patients with fewer temporal information to analyze (~20% 

patients were dropped). This could be a bottleneck for a data driven pipeline. Lastly, linear 

approximation of temporal SPOKEsig could have compromised its predictive power. Hence, 

as a future work, we plan to use the three-dimensional temporal SPOKEsig in its entirety for 

disease prediction using deep learning sequence models.
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Availability of Code and Data
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the github repository (https://github.com/BaranziniLab/TANDEM).
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Fig. 1. 
(A) shows the schematic for the generation of temporal and non-temporal patient 

embeddings. The middle arrow shows the patient timeline where 0 represents the time 

when the diagnosis was made for the first time. −1 represents one year before the clinical 

diagnosis and a similar explanation holds for other tick labels shown on the timeline. 

(B) shows the way in which a patient cohort can be represented using non-temporal and 

temporal SPOKEsig approaches. (C) Schematic for the computation of the average time 

series of a SPOKE node. Starting from the left, it shows the time series of a SPOKE node as 

a strip in the three-dimensional array of temporal SPOKEsig. Averaging that strip across the 

depth (i.e. number of patient samples N) gives the average time series of that SPOKE node.
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Fig. 2. 
Steps involved in the linear approximation of three-dimensional temporal SPOKEsig. 

Following the direction of arrows, it starts with selecting a temporal SPOKEsig of a patient, 

followed by selecting a time series of a SPOKE node. To prevent any false trend value 

estimates (because of the zero elements in the series coming from the sporadic hospital 

visits made by the patient), the raw time series was smoothened using Savitzky-Golay 

filter (window size = 21 and polynomial order = 3). We then applied Kendall trend test 

on the smoothed time series to get the trend (slope) and p-value. Final trend value was 

considered as the estimated slope multiplied by the probability for the presence of trend in 

that time series (which is 1-p-value). These steps were iterated for all SPOKE nodes across 

all patients in a cohort to get the approximated temporal SPOKEsig of a patient cohort 

which is a two-dimensional array.
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Fig. 3. 
(A) shows the steps in applying PCA on feature selected temporal SPOKEsig. The insight 

shows six examples of SPOKE node time series corresponding to PD cohort (averaged 

across patient samples). Upper row corresponds to SPOKE nodes that are closely related to 

PD and lower row corresponds to nodes that are less related to PD. (B) Temporal trajectory 

of selected features in PCA space. Two distinct trajectories are evident in the PCA space and 

the color code is shown in the legend. (C) Temporal trajectory of non-selected features in 

PCA space. For the sake of visual comparison, we included only those non-selected features 

that showed no trend in both PD and non-PD cohorts and had a p value > 0.5.
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Fig. 4. 
(A) AUC distributions of three models in PD classification. (B)-(C) F1-score and Average 

Precision score of three models respectively (D) Distribution of temporal slope of PD related 

genes averaged across test patients correctly predicted by TANDEM. Insight shows the 

average time series of 9 PD related genes for PD (red) and non-PD (green) cohorts from the 

above distribution. (E)-(F) show the temporal evolution of PD-gene network for a PD patient 

(E) and a non-PD patient (F) across −15 (top), −4 (middle) and −1 year (bottom) before their 

clinical diagnosis. Green color nodes represent genes and the orange color node represents 

disease (PD). Size of a node at a specific time is proportional to the relevance of that node 

for an individual patient in that time.
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Table 1.

Comparison of model performances

Model AUC (μ±σ) 95% CI Comparison with TANDEM (p-value, Mann Whitney U test, N = 1000)

Temporal 0.8± 0.06 (0.67, 0.91) 3.1*10−64

Non-temporal 0.73±0.1 (0.52, 0.92) 4.5*10−145

TANDEM 0.85±0.06 (0.71, 0.96) -
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