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Abstract

Background: Over the past decade, there has been rising interest in the interaction of 

Pneumocystis with the environment. This interest has arisen in part from the demonstration that 

environmental factors have important effects on the viability and transmission of microbes, 

including Pneumocystis. Environmental factors include climatological factors such as temperature, 

humidity, and precipitation, and air pollution factors including carbon monoxide, nitrogen dioxide, 

sulfur dioxide, and particulate matter.

Methods: We undertook a systematic review in order to identify environmental factors associated 

with Pneumocystis infection or PCP, and their effects on human and animal hosts.
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Results: The systematic review found evidence of associations between Pneumocystis infection 

in animal and human hosts, and climatological and air pollution factors. Data from human studies 

infers that rather than a seasonal association, presentation with PCP appears to be highest when 

the average temperature is between 10 and 20°C. There was evidence of an association with 

hospitalization with PCP and ambient air pollution factors, as well as evidence of an effect of air 

pollution on both systemic and bronchoscopic lavage fluid humoral responses to Pneumocystis. 

Interpretation of human studies was confounded by possible genetically-determined predisposition 

to, or protection from infection.

Conclusions: This systematic review provides evidence of associations between Pneumocystis 
infection in both animal and human hosts, and climatological and environmental air pollution 

factors. This information may lead to an improved understanding of the conditions involved in 

transmission of Pneumocystis in both animal and human hosts. Such knowledge is critical to 

efforts aimed at prevention.
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1. Introduction

Pneumocystis jirovecii is a fungus that continues to be an important cause of pneumonia 

(PCP) in the immunocompromised host and a major cause of death in humans [1]. It is 

estimated that there are more than 400,000 annual cases of PCP worldwide, with over 

52,000 deaths per year [2]. Knowledge of the basic biology of Pneumocystis has long been 

limited by of the lack of a reliable and reproducible method of in vitro cultivation [3] but 

important insights have been gained from both animal and human studies. Pneumocystis 
organisms found in different hosts are morphologically indistinguishable but host species-

specific [1]. Colonization of apparently healthy asymptomatic humans may provide a 

reservoir of P. jirovecii, and transmission of Pneumocystis to both susceptible and healthy 

persons may occur. However, the exact relationship is incompletely understood, and 

environmental reservoirs for the organism have also been suggested. Pneumocystis infection 

is acquired by inhalation, and the infective moiety is the cystic form [4] but the precise 

conditions for airborne transmission are unknown. Traditionally, PCP was thought to be the 

result of reactivation of latent infection acquired early in childhood, but molecular studies 

from PCP outbreaks demonstrate that PCP can also result from recent exposure in an at-risk 

host [5]. As a result, an improved understanding of the conditions involved in transmission is 

critical to efforts at prevention.

Over the past decade, there has been rising interest in the interaction of Pneumocystis with 

the environment. This interest has arisen in part from the demonstration that environmental 

factors have important effects on the viability and transmission of microbes, including 

Pneumocystis. Studies have demonstrated an association between environmental factors and 

the risk of PCP as well as specific antibody responses against P. jirovecii. The environmental 

factors can broadly be divided into two groups: a) climatological factors such as 

temperature, humidity, and precipitation; and b) air pollution factors including carbon 

monoxide (CO), nitrogen dioxide (NO2), sulfur dioxide (SO2) and particulate matter [6]. We 
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undertook this systematic review in order to identify specific environmental factors 

associated with Pneumocystis infection or PCP, and their effects on human and animal hosts. 

Our goal was to comprehensively review the published literature on this topic in order to 

gain insights and advance our understanding of this important human pathogen.

2. Materials and Methods

We sought to identify publications describing associations between environmental factors 

and detection of Pneumocystis in humans and animals, and with development and 

presentation with PCP. We first reviewed English-language published articles of 

Pneumocystis and PCP and associated climatological and air pollution factors for the period 

01 January 1960 to the present day (30 June 2018) using PubMed (US National Library of 

Medicine). The following search terms were used: Pneumocystis [Title] + English 

[Language], then Human [MeSH], then one of the following MeSH: season, climate, air 

pollution, environment, geography, humidity, or temperature. In addition, we reviewed the 

references within each publication for additional articles. Since the first reports of human 

immunodeficiency virus (HIV)-associated PCP in the early 1980s, most cases of PCP in the 

literature have been described in the context of HIV infection.

The scope of the present study was increased to include animals studied in the wild, in 

slaughterhouses, and in research laboratories. The same time period was used and the 

following search terms were used in the literature search: Pneumocystis [Title] + English 

[Language], then, Animal [MeSH], then one of the following MeSH: season, climate, air 

pollution, environment, geography, humidity, or temperature. Inclusion of these animal 

studies was done in order to enhance the findings from human studies and to provide 

important insights that add to our understanding of studies in humans.

Studies identified by the search strategy were divided into three groups:

Group 1: animal studies. Group 2: human studies of HIV-infected and uninfected patients 

with PCP divided based on geographic location. Group 3: human studies of HIV-infected 

patients with PCP associated with ambient air pollutants.

Where specific climatological information (i.e., temperature and humidity/precipitation) was 

not described in a specific publication we used World Weather Online [7]. In addition, as 

this is a systematic review of previously published work, Ethics Committee/IRB approval 

was not required from any of the three centers involved in this work.

3. Results

3.1. Literature Search

The PubMed literature search for the period 01 January 1960 through 30 June 2018 

identified 74 unique full text articles. From these, 53 articles were excluded (after review of 

the full text by LH and RFM), as they were not relevant to the topic, or they were review 

articles that did not contain original data. In addition to the 21 remaining articles, 16 articles 

were identified by hand searching by the authors (LH and RFM). Additionally, the authors 

of some publications identified either by the MeSH search or via the “hand search” were 
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contacted (by RFM) in order to obtain additional information not contained in their original 

published manuscript. Thus, in total 37 articles were identified and were included in the 

systematic review. Figure 1 shows the results of the literature search.

3.2. Animal Studies Showing Associations between Detection of Pneumocystis and 
Seasonal and Environmental Factors

Group 1. Eleven studies in animals (six from Europe, two from South America, two from 

Asia, and one from USA) were identified. Animal hosts were pigs (four studies), wild mouse 

species, shrew species, field voles, rats, hares, crab-eating macaques, and bats (each one 

study), (Table 1) [8–18]. Pneumocystis was detected in all of the animal species studied, 

using a range of techniques including Grocott silver staining, immunohistochemistry, and 

polymerase chain reaction (PCR). Using PCR, Pneumocystis was detected in as few as 4–

5% of pigs in a slaughterhouse [17] to as many as 34.5% of crab-eating macaques living in a 

Primatology Center [12].

The main findings were that in eight of the 11 studies there was a clear seasonal variation in 

detection of Pneumocystis among different hosts, in their natural surroundings [8, 9, 10, 11, 

14, 15, 17, 18]. In the study of macaques housed in a Primatology Center, detection was 

associated with mean precipitation, and in the study of rats in a laboratory facility, 

temperature and humidity had a clear influence on the predominance of different types of 

Pneumocystis. Finally, the study of bats in both captive and wild environments showed no 

association between detection of Pneumocystis and either temperature or humidity, but an 

association with smaller, crowded sedentary colonies at altitudes below 800m above sea 

level.

3.3. Human Studies Showing Associations between Pneumocystis and Seasonal and 
Environmental Factors

Group 2. Twenty-four studies in HIV-infected and uninfected patients with PCP were 

identified and were divided, based on geographic location. Seven studies were from USA, 

two from South America, 11 from Northern Europe, three from Southern Europe, and one 

from Australia, (Table 2) [6, 19–41]. These studies were a mixture of prospective and 

retrospective clinical or laboratory (including autopsy) studies and were national, multi-

center or single center in their design. Two studies were done in infants, the remaining 22 

studies were done in adults. Among the adult studies 19 included only HIV-infected adults, 

two included HIV-infected and uninfected adults, and one included HIV-uninfected adults 

with underlying rheumatologic conditions. In the two studies of infants, subjects were HIV-

uninfected [19–41].

The main findings were that in 18 studies in adults there was evidence of a seasonal and/or 

climatological association and presentation with PCP, or detection at autopsy and two 

studies showed no such association but noted clustering of cases of PCP by Zip Code, and 

another identified that time spent outdoors was associated with risk of PCP. In the remaining 

two studies there was no apparent seasonal or climatologic association with development of 

PCP. However, both studies showed an apparent ethnic predisposition, with patients of black 

African origin being at reduced risk of developing PCP compared to patients who were of 
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Western origin (Table 2). Both studies in infants showed a seasonal variation either in 

detection of P. jirovecii at autopsy, or variation in antibody responses to Pneumocystis major 

surface antigen components.

3.4. Human Studies Showing Associations between Pneumocystis and Ambient Air 
Pollution Factors

Group 3. Four studies (three from USA, one from Spain) reported the impact of ambient air 

pollution factors among HIV-infected adult patients hospitalized with PCP (Table 3) [6, 40, 

42, 43]. Of note two of these four studies are also included in Group 2 [6, 42]. The San 

Francisco studies were single-center, prospective studies while the study from Spain was a 

national study.

The main findings were that one study showed elevated levels of NO2, PM10 and ozone in 

ambient air were associated with increased risk of hospitalization with PCP [40], and in 

another SO2, was associated with increased risk of hospitalization, but the risk was 

attenuated by elevated CO levels [6]. Two further studies that examined serologic responses 

in hospitalized patients with PCP, and showed elevated NO2, and PM10 were independently 

associated with impaired IgM responses to P. jirovecii major surface glycoprotein (Msg) 

constructs in serum [42], and that there was an impaired IgA response to P. jirovecii Msg in 

bronchoscopic lavage (BAL) fluid that was associated with increased ambient ozone 

exposure. Additionally, increased BAL fluid IgA responses were associated with increased 

ambient NO2 exposure [43] (Table 3).

4. Discussion

We believe that the present study is the first systematic review of the relationship between 

Pneumocystis infection in its animal and human hosts, and the effects of climatological and 

air pollution factors in the environment on this relationship. This review found evidence of 

associations between Pneumocystis infection in animal and human hosts, and climatological 

and environmental air pollution factors, but the quality of evidence was poor and was limited 

by inconsistent and incomplete sampling methodology in both animal and human studies.

4.1. Non-Pneumocystis Fungi – Seasonal and Climatological Factors

Climatological factors, including temperature and humidity, are associated with variations in 

concentrations of ascomycetes, basidiomycetes, and other fungi in air [44–48]. A study from 

Porto Alegre, Southern Brazil, showed the highest detection of airborne fungal spores was in 

summer (December-February), when average minimum air temperatures are typically 

between 18 and 21°C [7]. The lowest rates of detection were in the autumn (March-May), 

when average minimum temperatures are typically between 12 and 17°C [45]. A second 

study from Fortaleza, North East Brazil, where the climate is hotter, reported seasonal 

variation in rates of detection of airborne fungi, (higher rates of detection were observed in 

January-April, and lower rates were recorded in July-October [46]. This city experiences a 

rainy season (February-July: rainfall 1883.5 mm, average temperature 26.8°C) and a dry 

season (August-January: rainfall 260 mm, average temperature 27.6°C) [46].
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4.2. Pneumocystis - Seasonal Factors – Average Temperature

In the studies of Pneumocystis in animals studied in the wild, in slaughterhouses, and in 

research laboratories that were identified in this systematic review interpretation of the 

observed seasonal variation is confounded by the fact that none of the studies systematically 

sampled throughout the year, nor sampled in consecutive years, and none of the studies 

included “controls”. Thus, possible alternative explanations for the apparent seasonal 

variation must include closer animal-to-animal proximity within animal colonies, driven by 

climatological factors, and by season, for example by closer co-habitation during the mating 

season for an individual animal host. This potentially increases the chance for airborne or 

“other” animal-to-animal transmission, and thus likelihood of detection by opportunistic, or 

systematic sampling. In the studies of pigs, another factor influencing detection of 

Pneumocystis is the type of husbandry used in rearing the animals, as higher rates of 

detection were observed in semi-intensively farmed animals when compared with pigs who 

were intensively-farmed. This finding has been ascribed to less control of production 

variables in pigs reared semi-intensively [17]. Additionally, detection of Pneumocystis has 

been associated with underlying viral and/or bacterial infection in pigs. It has been 

suggested that these infections may act as potential “immune suppressants” thus permitting 

colonization/infection with Pneumocystis [15, 17]

Taken together the human studies clearly demonstrate evidence of a seasonal and/or 

climatological association and presentation with PCP, or serologic or autopsy detection of 

infection. A seasonal variation in incidence of PCP was first reported in 1991 [19]. 

Subsequently, the relationship between seasonality and temperature and hospitalization with 

PCP has described inconsistent findings with some, but not all studies describing any 

association. In both HIV-infected and uninfected patients the risk of PCP has been observed 

to be higher in summer (London, UK) [28, 35], (Geneva, Switzerland [29] (Munich, 

Germany) [36] and (San Francisco, USA) [6] autumn (Melbourne, Australia) [41], and 

winter (Seville, Spain) [40]. As previously suggested [6], these differing results might be as 

a result of differences in patient populations, climatological factors, geography, 

Pneumocystis genotypes, or to differences in study design [6]. Because of geographical 

climatological differences, it is likely that summer temperatures in one country, or region, 

are similar to autumn or winter temperatures in another geographical location. For example, 

in Spain winters are generally mild (most regions having an average temperature between 10 

and 20°C), and summers are hot (with average temperatures greater than 30°C) [40]. Thus, 

the average temperature in a Spanish winter is similar to that observed in other seasons in 

other countries during which the highest incidence of PCP has been described [40]. In 

London the “peak” summer temperature was 13°C *28], the mean summer temperature in 

San Francisco was 17.6°C [6], and average temperature in Melbourne was between 13.2 and 

20°C [7, 40]. Taken together, interpretation of these data, infer that rather than a seasonal 

association, presentation with PCP appears to be highest during the season of the year when 

the average temperature is between 10 and 20°C [40]. As previously noted [40], among HIV-

infected persons, other confounding factors, including tobacco smoking [24], chronic 

obstructive pulmonary disease, bacterial pneumonia, and colonization of the respiratory tract 

by P. jirovecii, can contribute to increased risk of developing PCP, and also that these 

contributing factors additionally, are potentially affected by climatological factors [24].
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A similar seasonal association is apparent in the two studies of infants done in Chile [25, 

26]. In the autopsy study the highest rate of detection of Pneumocystis was in winter (June-

August), when average maximum temperatures were 16–18°C, and the lowest rate of 

detection was in autumn (March-May), when average maximum temperatures were 20–28°C 

[7, 25]. In the study of serum antibody responses to Pneumocystis MsgA constructs among 

immune competent infants the lowest peaks were also detected in autumn (March-May) 

[26].

4.3. Seasonal Factors – Humidity and Precipitation

There is a less certain association between the climatological variables of humidity and 

precipitation, and detection of Pneumocystis in animal and human hosts, or with 

presentation with PCP in humans. Some animal studies [12, 17, 18] and some human studies 

[20, 27, 28, 33] suggest an association, but others do not. Confounding these observations is 

the fact that data about this climatological variable was not routinely collected in either the 

animal or human studies.

A further potential factor, confounding interpretation of data concerning both temperature 

and humidity/precipitation in humans is that in the EuroSIDA study, which was a 

prospective observational cohort study that reported diagnosis of PCP in North, Central, and 

South Europe, the higher prevalence of PCP described in cooler, wetter North European 

climates might be explained by other logistical factors, including better access to healthcare 

(and so the likelihood of being diagnosed with PCP) in North Europe [30]. A similar 

interpretation can be applied to the findings from another European retrospective multicenter 

study [31].

4.4. Seasonal Factors – Outdoor Activities

The study from Atlanta, USA showed spending time outdoors gardening, camping or hiking 

in the six months prior to hospitalization with pneumonia was strongly associated with risk 

of PCP [21]. Additionally, studies from Cincinnati and San Francisco, USA showed 

clustering of PCP by Zip Codes [22, 24]: the former study showing more cases in affluent 

areas with more green space [22], the latter reporting more cases in residential areas 

containing parks and small yards [24]. Taken together, these three studies infer that 

susceptible individuals are at greater risk of developing PCP if they have increased 

opportunities for being outdoors, and thus possibly for increased environmental exposure to 

Pneumocystis.

4.5. Genetic Factors

Observations from national (Netherlands) and single-site London (UK) cohorts infer that 

there might be an ethnic/genetically-determined predisposition to development of PCP [32, 

37]. Single point mutations (SNPs) in genes associated with innate immune function are 

increasingly recognized as significant factors dictating an individual’s susceptibility to 

infection *49-51]. Two reports describe an association between SNPs and development of 

PCP in HIV-infected individuals [52,53]. The FcγIIa receptor, which binds to immune 

complexes to facilitate uptake of microbes, is encoded by a gene with synonymous 

(functional) polymorphisms that affects binding affinity to IgG. Participants in the 
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Multicenter AIDS Cohort Study (MACS) with the FcγRIIa RR genotype progressed to 

AIDS (i.e., CD4 count <200 cells/uL) faster than participants with RH or HH genotypes 

[52]. By contrast, participants with an FcγRIIa HH genotype progressed more quickly to 

AIDS (defined by development of PCP) than those with other genotypes [52]. While the 

underpinning mechanisms remain uncertain, these results raise intriguing questions about 

the antibodies that opsonize Pneumocystis and interact with FcγRIIa receptors. The 

chemokine receptor CXCR6 is a co-receptor that facilitates fusion of HIV to CD4 cells. The 

ligand for CXCR6 (CCXCL16) is highly expressed in the lungs. A SNP in codon 3 

(CXCR6-E3K) is common in African Americans and rare in Caucasians. The AIDS Link to 

Intravenous Experience (ALIVE) study, a prospective cohort study of predominantly African 

American HIV-infected drug users, examined the relationship of CXCR6 SNPs and 

development of PCP [53]. Time to development of PCP was similar among the genotypes, 

but subjects homozygous or heterozygous for CXCR6–3E were more likely to die after PCP 

(and thus had a shorter survival time) than subjects homozygous for CXCR6–3K [53].

The current epidemiology of pediatric PCP in the USA demonstrates that it is less frequently 

observed in HIV-infected children. By contrast cases associated with hematologic 

malignancy and primary immunodeficiency have become more prominent, infants being the 

most commonly affected [54]. Well-described mutations in MHC class II (bare lymphocyte 

syndrome), recombination activating genes (RAG) −1 and −2, signal transducer and 

activator of transcription (STAT) −3, and IL-21R that can be modeled in genetically 

engineered mice and P. murina infection, provide evidence of genetic susceptibility to 

Pneumocystis infection [55]. Taken together these data suggest a gene-environment 

interaction in the disease.

4.6. Air Pollution

Among the general population it is increasingly evident that ambient air pollution 

contributes to the global burden of respiratory disease, including asthma, Chronic 

Obstructive Pulmonary Disease, and pneumonia [56–65]. The studies identified in this 

systematic review originating from Spain and San Francisco, USA clearly demonstrate an 

association between ambient air pollution factors and presentation of HIV-infected adults 

with PCP [6, 40]. It is intriguing that in one study there was no association with PM10, NO2, 

CO, or ozone, and an association was only evident for SO2 [6]. In the other study NO2, 

PM10, CO, and ozone were associated with risk of hospitalization with PCP [40]. This 

apparent difference may in part be explained by the fact that San Francisco is one of the least 

polluted cities in the United States and so it is possible that levels of these pollutants were 

below thresholds that can trigger respiratory complications [6].

The mechanisms by which ambient air pollution increases susceptibility to pulmonary 

infection are not well defined. Controlled exposure studies of single pollutants that have 

used cells, animals and human subjects indicate that ambient air pollutants alter innate lung 

immunity at multiple levels, including altered muco-ciliary function, respiratory epithelial 

cell dysfunction, impaired alveolar macrophage phagocytosis, and dysfunction of surfactant 

protein A and D [Reviewed in 6]. However, the effects of ambient air pollution factors on 

humoral immunity and serologic responses to pulmonary infection, and the immune-toxic 
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effects of real-life exposures to ambient air pollution factors are poorly understood. In one 

study from San Francisco [42] PM10 and NO2 were independently associated with 

suppressed IgM (but not IgG) responses to Pneumocystis Msg constructs. It was suggested 

that PM10 particles encountering bronchus associated lymphoid tissue, might impair antigen 

presenting cell function, resulting in decreased activation of the humoral immune system and 

suppressed serologic responses [42]. Both animal and human exposure studies have found 

mixed effects of NO2 inhalation on bronchoalveolar and systemic antibody responses [66–

69]. In a second study also from San Francisco patients with PCP increasing exposure to 

ozone was associated with reduced BAL fluid IgA responses to P. jirovecii Msg constructs 

and increasing exposure to NO2 was independently associated with increased BAL fluid IgA 

responses to P. jirovecii Msg [43]. These results might be explained by the observation that 

ozone is a potent oxidant resulting in both bronchoalveolar, and systemic inflammation. 

Animal studies have found that rats in the first two weeks of exposure to ozone demonstrate 

decreased antibody responses to microbial antigens such as Listeria spp [70].

5. Conclusions

This systematic review found evidence of associations between Pneumocystis infection in 

both animal and human hosts, and climatological and environmental air pollution factors. 

These data are limited by inconsistent and incomplete sampling methodology in both animal 

and human studies. Data from human studies infer that rather than a seasonal association, 

presentation with PCP appears to be highest when the average temperature is between 10 

and 20°C. A potential confounder is possible genetically-determined predisposition to, or 

protection from infection. There is evidence of an association with hospitalization with PCP 

and ambient air pollution factors, as well as a clear effect of air pollution on both systemic 

and bronchoscopic lavage fluid humoral responses to Pneumocystis. The results of this 

systematic review provide an improved understanding of the conditions involved in 

transmission of Pneumocystis in both animal and human hosts. Such knowledge is critical to 

efforts aimed at prevention of infection.

Acknowledgments

We thank Professor Olga Matos and Dr Christiana Weissenbacher-Lang, for helpful discussions about their 
publications. Both provided additional data that was not included in their original publications. Additionally, 
Professor Matos provided us with climatological data (temperature, humidity and precipitation) which was obtained 
from the Portuguese Weather Institute.

Funding

PDW and RFM received no funding for this work. LH was funded by NIH K24 HL087713 and NIH R01 
HL128156.

References

1. Miller RF, Smulian AG, Walzer PD. Pneumocystis species. Chapter 269 in: Mandell, Douglas, and 
Bennett’s Principles and Practise of Infectious Diseases: 9th Edition. Editors: Mandell GL, Bennett 
JE, and Dolin R. Elsevier Science 2018 (in press).th

2. Brown GD, Denning D, Gow NA, Levitz SM, Neta MG, White TG. Hidden killers: human fungal 
infections. Sci Transl Med 2012; 4: 165rv13.

Miller et al. Page 9

OBM Genet. Author manuscript; available in PMC 2019 February 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



3. Schildgen V, Mai S, Khalfaoui S, Lüsebrink J, Pieper M, Tillmann RL, et al. Pneumocystis jirovecii 
can be productively cultured in differentiated CuFi8 airway cells. MBio 2014; 5: e01186–14.5. 
[PubMed: 24825015] 

4. Cushion MT, Linke MJ, Ashbaugh A, Sesterhenn T, C-ollins MS, Lynch K, et al. Echinocandin 
treatment of Pneumocystis pneumonia in rodent models depletes cysts leaving trophic burdens that 
cannot transmit the infection. PLoS One 2010; 29: e8524.

5. Yiannakis EP, Boswell TC. Systematic review of outbreaks of Pneumocystis jirovecii pneumonia: 
evidence that P. jirovecii is a transmissible organism and the implications for healthcare infection 
control. J Hosp Infect 2016; 93: 1–8. [PubMed: 26996089] 

6. Djawe K, Levin L, Swartzman A, Fong S, Roth B, Grieco K et al. Environmental risk factors for 
Pneumocystis pneumonia hospitalizations in HIV patients. Clin Infect Dis 2013; 56: 74–81. 
[PubMed: 23042978] 

7. World Weather. Online: https://www.worldweatheroneline.com [Accessed 02 August 2018].

8. Šebek Z, Rosický B. The finding of Pneumocystis carinii in shrews (Insectivora: Soricidae). Folia 
Parasitologica 1967; 14: 263–267.

9. Poelma FG, Broekhuizen S. Pneumocystis carinii in hares, Lepus europaeus Pallas, in The 
Netherlands. Z Parasitenk 1972; 40: 195–202. [PubMed: 4630767] 

10. Shiota T, Kurimoto H, Yoshida Y. Prevalence of Pneumocystis carinii in wild rodents in Japan. 
Zentralbl Bakteriol Mikrobiol Hyg A 1986; 261: 381–389. [PubMed: 3526764] 

11. Laakkonen J, Henttonen H, Niemimaa J, Soveri T. Seasonal dynamics of Pneumocystis carinii in 
field vole, Microtus agrestis, and common shrew, Sorex araneus, in Finland. Parasitol 1999; 118: 
1–5.

12. Demanche C, Wanert F, Herrenschmidt N, Moussu C, Durand-Joly I, Dei-Cas E, et al. Influence of 
climatic factors on Pneumocystis carriage within a socially organized group of immunocompetent 
macaques (Macaca fascicularis). J Eukaryot Microbiol 2003; 50: 611–613. [PubMed: 14736182] 

13. Icenhour CR, Arnold J, Medvedovic M, Cushion MT. Competitive coexistence of two 
Pneumocystis species. Infect Genet Evol 2005; 6: 177–186. [PubMed: 15949973] 

14. Sanches EM, Pascador C, Rozza D, Ravazzolo AP, Driemiers D, Ravazzolo AP, et al. Detection of 
Pneumocystis spp. in lung samples from pigs in Brazil. Med Mycol 2007; 45: 395–399. [PubMed: 
17654265] 

15. Kim KS, Jung JY, Kim JH, Kang S-C, Hwang E-K, Park B-K, et al. Epidemiological 
characteristics of pulmonary pneumocystosis and current infections in pigs in Jeju Island, Korea. J 
Vet Sci 2011; 12: 15–19 [PubMed: 21368558] 

16. Akbar H, Pinçon C, Aliouat-Denis C-M, Derouiche S, Taylor M-L, Pottier M, et al. Characterizing 
Pneumocystis in the lungs of bats: understanding Pneumocystis evolution and the spread of 
Pneumocystis organisms in mammal populations. Appl Environ Microbiol 2012; 78: 8122–8136. 
[PubMed: 23001662] 

17. Esgalhado R, Esteves F, Antunes F, Matos O. Study of the epidemiology of Pneumocystis carinii f. 
sp. suis in abattoir swine in Portugal. Med Mycol 2013; 51: 66–71. [PubMed: 22852751] 

18. Weissenbacher-Lang C, Kureljušid B, Nedorost N, Matula B, Schiessl W, Stienberger D, et al. 
Retrospective analysis of bacterial and viral co-infections in Pneumocystis spp. positive lung 
samples of Austrian pigs with pneumonia. PLoS One 2016; 11: e0158479. [PubMed: 27428002] 

19. Hoover DR, Graham NM, Bacellar H, Schrager LK, Kaslow R, Visscher B, et al. Epidemiologic 
patterns of upper respiratory illness and Pneumocystis carinii pneumonia in homosexual men. Am 
Rev Respir Dis 1991; 44: 756–759.

20. Baccetti P. Seasonal and other influences on United States AIDS incidence. Stat Med 1994; 13: 
1921–1931. [PubMed: 7846400] 

21. Navin TR, Rimland D, Lennox JL, Jernigan J, Cetron M, Hightower A, et al. Risk factors for 
community-acquired pneumonia among persons infected with the human immunodeficiency virus. 
J Infect Dis 2000: 181: 158–164. [PubMed: 10608762] 

22. Dohn MN, White ML, Vigdorth EM, Buncher CR, Hertzberg VS, Baughman RP, et al. Geographic 
clustering of Pneumocystis carinii in patients with HIV infection. Am J Resp Crit Care Med 2000; 
162: 1617–1621. [PubMed: 11069785] 

Miller et al. Page 10

OBM Genet. Author manuscript; available in PMC 2019 February 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://www.worldweatheroneline.com


23. Morris AM, Swanson M, Ha H, Huang L. Geographic distribution of human immunodeficiency 
virus-associated Pneumocystis carinii pneumonia in San Francisco. Am J Respir Crit Care Med 
2000; 162: 1622–1626. [PubMed: 11069786] 

24. Morris A Kingsley LA, Groner G, Lebedeva IP, Beard CB, Norris KA. Prevalence and clinical 
predictors of Pneumocystis colonization among HIV-infected men. AIDS 2004; 18: 793–798. 
[PubMed: 15075515] 

25. Vargas SL, Ponce CA, Luchsinger V, Silva C, Gallo M, Lopez R, et al. Detection of Pneumocystis 
carinii f. sp. hominis and viruses in presumably immunocompetent infants who died in the hospital 
or in the community. J Infect Dis 2005; 191: 122–126. [PubMed: 15593013] 

26. Djawe K, Daly KR, Vargas SL, Santolaya ME, Ponce CA, Bustamante RM, et al. 
Seroepidemiological study of Pneumocystis jirovecii infection in healthy infants in Chile using 
recombinant fragments of the P. jirovecii major surface glycoprotein. Int J Infect Dis 2010: 14: 
e1060–1066. [PubMed: 20926326] 

27. Settnes OP, Genner J. Pneumocystis carinii in human lungs at autopsy. Scand J Infect Dis 1986; 18: 
489–496. [PubMed: 3492758] 

28. Miller RF, Grant AD, Foley NM. Pneumocystis carinii pneumonia. Lancet 1992; 339: 747–748.

29. Vanhems P, Hirschel B, Morabia A. Seasonal incidence of Pneumocystis carinii pneumonia. Lancet 
1992; 339: 1182.

30. Lundgren JD, Barton SE, Lazzarin A, Danner S, Goebel FD, Pehrson P, et al. Factors associated 
with the development of Pneumocystis carinii pneumonia in 5,025 European patients with AIDS. 
Clin Infect Dis 1995; 21: 106–113. [PubMed: 7578718] 

31. Delmas M-C, Schwoebel V, Heisterkamp SH, Downs AM, Ancelle-Park RA, Brunet JB, et al. 
Recent trends in Pneumocystis carinii pneumonia as AIDS-defining disease in nine European 
countries. J Acquir Immune Defic Syndr 1995; 9: 74–80.

32. Del Amo J, Petruckevitch A, Phillips AN, Johnson AM, Stephenson J, Desmond N, et al. Spectrum 
of disease in Africans with AIDS in London. AIDS 1996; 10: 1563–1569. [PubMed: 8931793] 

33. Lubis N, Baylis D, Short A, Stebbing J, Teague A, Portsomuth S, et al. Prospective cohort study 
showing changes in the monthly incidence of Pneumocystis carinii pneumonia. Postgrad Med J 
2003; 79: 164–166. [PubMed: 12697918] 

34. Miller RF, Evans HE, Copas AJ, Cassell JA. Climate and genotypes of Pneumocystis jirovecii. Clin 
Microbiol Infect 2007; 13: 445–448. [PubMed: 17359333] 

35. Walzer PD, Evans HER, Copas AJ, Edwards SG, Grant AD, Miller RF. Early predictors of 
mortality from Pneumocystis jirovecii pneumonia in HIV-infected patients. Clin Infect Dis 2008; 
46: 625–633. [PubMed: 18190281] 

36. Sing A, Schmoldt S, Laubender RP, Heesemann J, Sing D, Wildner M. Seasonal variation of 
Pneumocystis jirovecii infection: analysis of underlying climactic factors. Clin Microbiol Infect 
2009; 15: 957–960. [PubMed: 19519848] 

37. Schoffelen AF, van Lelyveld SF, Barth RE, Gras L, de Wolf F, Netea MG, et al.; ATHENA national 
observational cohort study Lower incidence of Pneumocystis jirovecii pneumonia among Africans 
in the Netherlands host or environmental factors? AIDS 2013, 27: 1179–1184. [PubMed: 
23276810] 

38. Varela JM, Regordán C, Medrano FJ, Respaldiza N, de la Hora C, Montes-Cano MA, et al. 
Climatic factors and Pneumocystis jirovecii infection in southern Spain. Clin Microbiol Infect 
2004; 10: 770–772. [PubMed: 15301686] 

39. Calderón EJ, Varela JM, Medrano FJ, Nieto V, Gonzalez-Becarra C, Respaldiza N, et al. 
Epidemiology of Pneumocystis carinii pneumonia in southern Spain. Clin Microbiol Infect 2004; 
10: 673–676. [PubMed: 15214886] 

40. Alvaro-Meca A, Palomares-Sancho I, Diaz A, Resino R, De Miguel AG, Resino S. Pneumocystis 
pneumonia in HIV-positive patients in Spain: epidemiology and environmental risk factors. J Int 
AIDS Soc 2015; 18: 19906. [PubMed: 25997453] 

41. Tadros S, Teichtahl AJ, Cicirello S, Wicks IP. Pneumocystis jirovecii pneumonia in systemic 
autoimmune rheumatic disease: a case–control study. Semin Arthritis Rheum 2017; 46: 804–809. 
[PubMed: 27814896] 

Miller et al. Page 11

OBM Genet. Author manuscript; available in PMC 2019 February 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



42. Blount RJ, Djawe K, Daly KR, Jarlsberg LG, Fong S, Balmes J, et al. Ambient air pollution 
associated with suppressed serologic responses to Pneumocystis jirovecii in a prospective cohort of 
HIV-infected patients with Pneumocystis pneumonia. PLoS One 2013; 8: e80795. [PubMed: 
24236202] 

43. Blount RJ, Daly KR, Fong S, Chang E, Greico K, Greene M, et al. Effects of clinical and 
environmental factors on bronchoalveolar antibody responses to Pneumocystis jirovecii: a 
prospective cohort study of HIV+ patients. PLoS One 2017; 12: e0180212. [PubMed: 28692651] 

44. Bush RK. Aerobiology of pollen and fungal allergens. J Allergy Clin Immunol 1989; 84: 1120–44. 
[PubMed: 2600351] 

45. Mezzari A, Perin C, Santos SA, Bernd LA. Airborne fungi in the city of Porto Alegre, Rio Grande 
do Sul, Brazil. Rev Inst Med Trop Sao Paulo 2002; 44: 269–272. [PubMed: 12436167] 

46. Menzes EA, Trindade EC, Costa MM, Freire CC, Calvalcante MdeS, Cunha FA. Airborne fungi 
isolated from Fortaleza city, state of Ceará, Brazil. Rev Inst Med Top S Paulo 2004; 46: 133–137.

47. Favero-Longo SE, Sandrone S, Matteucci E, Appolonia L, Piervittori R. Spores of lichen-forming 
fungi in the mycoaerosol and their relationships with climate factors. Sci Total Environ 2014; 466–
7: 26–33.

48. Grinn-Gofron A, Strzelczak A, Przestrzelska K. Seasonal variation of Ganoderma spore 
concentrations in urban and suburban districts of the city of Szczecin, Poland. Ann Agric Environ 
Med 2015; 22: 6–10. [PubMed: 25780819] 

49. Lupiañez CB, Canet LM, Carvalho A, Alcazar-Fuoli L, Springer J, Lackner M, et al. 
Polymorphisms in host immunity-modulating genes and risk of invasive aspergillosis: results from 
the AspBIOmics consortium. Infect Immun 2015; 84: 643–657. [PubMed: 26667837] 

50. Salas A, Pardo-Seco J, Barral-Arca R, Cebey-Lopez M, Gomez-Carballa A, Rivero-Calle I, et al.; 
GENDRES Network. Whole exome sequencing identifies new host genomic susceptibility factors 
in empyema caused by Streptococcus pneumoniae in children: a pilot study. Genes (Basel) 2018; 9 
pii: E240.

51. Kondoh T, Letko M, Munster VJ, Manzoor R, Maruyama J, Furuyama W, et al. Single nucleotide 
polymorphisms in human NPC1 influence filovirus entry into cells. J Infect Dis 2018 7 14 [Epub 
ahead of print]

52. Forthal DN, Landucci G, Bream J, Jacobson LP, Phan TB, Montoya B. FcγRIIa genotype predicts 
progression of HIV infection. J Immunol 2007; 179: 7916–7923. [PubMed: 18025239] 

53. Duggal P, An P, Beaty TH, Strathdee SA, Farzadagen H, Markham RB, et al. Genetic influence of 
CXCR6 chemokine receptor alleles on PCP-mediated AIDS progression among African 
Americans. Gen Immun 2003; 4: 245–250.

54. Inagaki K, Blackshear C, Hobbs CV. Pneumocystis infection in children: National trends and 
characteristics in the United States, 1997–2012. Pediatr Infect Dis J 2018 5 21 [Epub ahead of 
print].

55. Elsegeiny W, Zheng M, Eddens T, Gallo RL, Dai G, Trevejo-Nunez G, et al. Murine models of 
Pneumocystis infection recapitulate human primary immune disorders. JCI Insight 2018; 3: 
e91894.

56. Lim SS, Vos T, Flaxman AD, Danael G, Shibuya K, Adair-Rohani H, et al. A comparative risk 
assessment of burden of disease and injury attributable to 67 risk factors and risk factor clusters in 
21 regions, 1990–2010: a systematic analysis for the global burden of disease study 2010. Lancet 
2012; 380: 2224–2260. [PubMed: 23245609] 

57. Laumbach RJ, Kipen HM. Respiratory health effects of air pollution: update on biomass smoke 
and traffic pollution. J Allergy Clin Immunol 2012; 129: 3–11. [PubMed: 22196520] 

58. Xiao Q, Liu Y, Mulholland JA, Russell AG, Darrow LA, Tolbert PE, et al. Pediatric emergency 
department visits and ambient air pollution in the US State of Georgia: a case-crossover study. 
Environ Health 2016; 15: 115. [PubMed: 27887621] 

59. Neupane B, Jerrett M, Burnett RT, Marrie T, Arain A, Loeb M. Long-term exposure to ambient air 
pollution and risk of hospitalization with community-acquired pneumonia in older adults. Am J 
Respir Crit Care Med 2010; 181: 47–53. [PubMed: 19797763] 

Miller et al. Page 12

OBM Genet. Author manuscript; available in PMC 2019 February 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



60. Cheng M-H, Chiu H-F, Yang C-Y. Coarse particulate air pollution associated with increased risk of 
hospital admissions for respiratory diseases in a tropical city, Kaohsiung, Taiwan. Int J Environ 
Res Public Health 2015; 12: 13053–13068. [PubMed: 26501308] 

61. Pirozzi CS, Jones BE, VanDerslice JA, Zhang Y, Paine R, Dean NC. Short-term air pollution and 
incident pneumonia. A case-crossover study. Ann Am Thorac Soc 2018; 15: 449–459. [PubMed: 
29283681] 

62. Li D, Wang JB, Zhang ZY, Shen P, Zheng PW, Jin MJ, et al. Effects of air pollution on hospital 
visits for pneumonia in children: a two-year analysis from China. Environ Sci Pollut Res Int 2018; 
25: 10049–10057. [PubMed: 29380201] 

63. Medina-Ramon M, Zanobetti A, Schwartz J. The effect of ozone and PM10 on hospital admissions 
for pneumonia and chronic obstructive pulmonary disease: a national multicity study. Am J 
Epidemiol 2006; 163: 579–588. [PubMed: 16443803] 

64. Kim CS, Alexis NE, Rappold AG, Kehrl H, Hazucha MJ, Lay JC, et al. Lung function and 
inflammatory responses in healthy young adults exposed to 0.06 ppm ozone for 6.6 hours. Am J 
Respir Crit Care Med 2011; 183: 1215–1221. [PubMed: 21216881] 

65. Arjomandi M, Wong H, Donde A, Frelinger J, Dalton S, Ching W, et al. Exposure to medium and 
high ambient levels of ozone causes adverse systemic inflammatory and cardiac autonomic effects. 
Am J Physiol Heart Circ Physiol 2015; 308: 1499–1509.

66. Ehrlich R, Silverstein E, Maigetter R, Fenters JD. Immunologic response in vaccinated mice during 
long-term exposure to nitrogen dioxide. Environ Res 1975; 10: 217–223. [PubMed: 1193034] 

67. Fujimaki H, Shimizu F, Kubota K. Suppression of antibody response in mice by acute exposure to 
nitrogen dioxide: in vitro study. Environ Res 1981; 26: 490–496. [PubMed: 7032905] 

68. Balchum OJ, Buckley RD, Sherwin R, Gardner M. Nitrogen dioxide inhalation and lung 
antibodies. Arch Environ Health 1965; 10: 274–277. [PubMed: 14232911] 

69. Hidekazu F, Fujio S. Effects of acute exposure to nitrogen dioxide on primary antibody response. 
Arch Environ Health 1981; 36: 114–119. [PubMed: 7018408] 

70. Jakab GJ, Spannhake EW, Canning BJ, Kleeberger SR, Gilmour MI. The effects of ozone on 
immune function. Environ Health Perspect 1995; 103 Suppl 2: 77–89.

Miller et al. Page 13

OBM Genet. Author manuscript; available in PMC 2019 February 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1. 
Results of literature search.
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