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The term “core microbiome” has become widely used in microbial ecology over the last decade. Broadly,
the core microbiome refers to any set of microbial taxa, or the genomic and functional attributes associated
with those taxa, that are characteristic of a host or environment of interest. Most commonly, core micro-
biomes are measured as the microbial taxa shared among two or more samples from a particular host or
environment. Despite the popularity of this term and its growing use, there is little consensus about how a
core microbiome should be quantified in practice. Here, we present a brief history of the core microbiome
concept and use a representative sample of the literature to review the different metrics commonly used
for quantifying the core. Empirical analyses have used a wide range of metrics for quantifying the core
microbiome, including arbitrary occurrence and abundance cutoff values, with the focal taxonomic level of
the core ranging from phyla to amplicon sequence variants. However, many of these metrics are suscepti-
ble to sampling and other biases. Developing a standardized set of metrics for quantifying the core that
accounts for such biases is necessary for testing specific hypotheses about the functional and ecological
roles of core microbiomes.

core microbiome j microbiota j microbial ecology j 16S ribosomal RNA gene

The search for the core microbiome has become
widespread within the field of microbial ecology. In
general, a core microbiome can be defined as any
set of microbial taxa, as well as the associated geno-
mic or functional attributes characteristic of a spe-
cific host or environment (1–3). This has led to a
number of studies focused on the genes (e.g., ref.
4), functional pathways (e.g., ref. 5), and metabolic
profiles (e.g., ref. 6) common to microbial communi-
ties in a number of environments. Most commonly,
however, the search for the core microbiome
involves determining which taxa, if any, are shared
among two or more microbial communities in a
given host species or environment (7). These shared
taxa are hypothesized to represent the most ecolog-
ically and functionally important microbial associates
of that host or environment under the conditions
sampled. In fact, it has been suggested that identify-
ing core microbiome components may assist in
addressing topics ranging from the maintenance of

human oral and gut health (8, 9) to the responses of
organisms to anthropogenic climate change (10, 11).
The potential utility of these core taxa has led
researchers to identify core microbiomes in a wide
range of environments and hosts, from the skins of
frogs (12) to the Baltic Sea (13) to activated sludge
(14), resulting in a rapid increase in the number of
studies that include a core microbiome component
over the past decade (Fig. 1).

Although analyses of the core taxonomic micro-
biome have provided a number of insights into the
microbial ecology of a multitude of environments
and hosts (8, 15–17), they often vary in their criteria
for quantifying the core. In general, this involves
determining the proportion of samples that share a
set of microbial taxa, the relative abundances of
shared taxa across samples or hosts, or a combina-
tion of the two. The taxonomic level used to define
the core can also vary, as a core microbiome may be
determined at the level of amplicon sequence
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variants (ASVs, sequences clustered at 100% sequence similar-
ity), phyla, or anywhere in between. Furthermore, the spatial
and temporal scales over which a core microbiome is quantified
are also variable, ranging from samples collected at a single site
to a global sampling of a particular host taxon, and from sam-
ples collected at a single time point to multiple collections
spanning days to years.

Here, we explore the diversity of methods that have been
used to quantify core microbiomes, determine which practices
are most widely used in the literature, benefits and challenges
of this methodological variability, as well as implications for
understanding the ecological and evolutionary processes that
produce and maintain core microbiomes. To do this, we
searched Google Scholar using the terms “core microbiome” or
“core microbiota” and limited the search to studies published
between 2008 and 2019 (search conducted on March 18, 2020).
We selected the first 200 primary research articles (excluding
reviews and computational methods), which quantified a core
microbiome of bacterial and archaeal taxa using 16S rRNA gene
amplicon sequencing, a common method for determining the
diversity and composition of prokaryotic communities. We then
supplemented these articles with those previously downloaded
into our own personal reference libraries, using the same date
range and methodological criteria. This resulted in a representa-
tive sample of 224 studies published between 2008 and 2019
that involve an analysis of the core microbiome (Fig. 2A and
Dataset S1). These studies are distributed across a variety of
different plant and animal hosts, environments (e.g., soil, seawa-
ter), and industrial processes (e.g., wastewater treatment, indus-
trial fermentation), which allowed us to further explore the
methodologies for quantifying core microbiomes across sub-
fields of microbial ecology (Fig. 2B). Although some studies
within our sample set also determine a core fungal microbiome
or core functional genes (Dataset S1), we have limited our

analysis of the literature to core prokaryotic taxa, as these com-
prise the majority of published empirical studies. However,
many of the major points discussed below are also applicable
to fungal taxa or functional core microbiomes. We also note
that most of the studies referenced here focus on the “core
microbiota,” which includes the microbial taxa within a particu-
lar environment, rather than the “core microbiome,” which
includes the structure and function of the community as well as
the abiotic conditions in their particular environment (18). While
such distinction is useful, the published literature predominately
uses the term “microbiome” for both types of analyses (Dataset
S1) and our use of the term core microbiome here follows that
practice.

History and Evolution of the Core Microbiome Concept
One of the original goals of the Human Microbiome Project was
to identify the core microbiome or “… whatever factors are
common among the microbiomes of all or the vast majority of
humans” (1). Thus, the term core microbiome is, by design,
incredibly broad, recognizing that there may be multiple types
of characteristics shared among different human microbiomes.
These include individual genes, metabolic pathways, microbial
taxa, as well as any other mechanisms that may play a role in
host–microbiome interactions. Early studies commonly used a
taxonomic approach, based on 16S rRNA gene-sequencing
data, to quantify a core microbiome in healthy humans, as well
as in people with specific conditions, such as obesity (4) and
inflammatory bowel disease (19). However, these studies varied
greatly in their ability to identify a set of core microbial taxa
consistently associated with humans. In the gut, for example,
few taxa were shared among individuals, and in some cases no
overlapping operational taxonomic units (OTUs), or clusters of
sequences with a level of shared nucleotide identity, were found
(4). In contrast, in the oral microbiome, a number of OTUs were
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Fig. 1. Number of publications per year (A) and cumulative publications (B) in Google Scholar including the terms “core microbiome” or “core
microbiota” from the introduction of the term in 2007 to 2019 (search conducted on December 22, 2020).
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identified as members of the taxonomic core of healthy individ-
uals (8, 20). The heterogeneity of the results led to multiple dif-
ferent hypotheses about the core microbiome, including that 1)
cores may exist within certain human populations but not glob-
ally, 2) a core may be discernible only at a higher taxonomic
level such as genera, or that 3) the core may be wholly func-
tional, comprised of functional gene clusters rather than individ-
ual taxa (outlined in ref. 2). While these hypotheses are not
mutually exclusive, they do provide different insights into the
nature and functioning of the human core microbiome. Further-
more, these early studies of human microbiomes provided a

framework for subsequent analyses of core microbiomes in a
variety of nonhuman hosts and environments.

The first comprehensive overview of the conceptual basis for
the core microbiome, by Shade and Handelsman (7), revealed
that the search for a core microbiome was still largely in its dis-
covery phase, relying heavily on Venn diagrams to identify taxa
(usually OTUs) shared among samples. They further outlined
additional approaches for future research, such as inclusion of
relative abundances of taxa in identifying cores and inclusion
of a “persistent” or “dynamic” core microbiome measured
across timescales (detailed below). These advances have led to

A B
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Fig. 2. Barplots of the proportion of studies in our representative dataset (n = 224) from each publication year (A) and environment (B), as
well as the minimum occupancy value (C; those with no explicitly defined occupancy value are counted as “Other”) and taxonomic level (D)
used to determine the core microbiome. Histograms illustrate the number of sites sampled in each study (E) and the number of months from
first sampling to the completion of the project for those studies which included a temporal component (F; n = 51).
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discoveries, such as the stability of particular microbial strains in
the guts of individual humans (21), and that certain microbial
taxa persist across major environmental transitions, such as the
saltwater-to-freshwater migration in Atlantic salmon (22). Identi-
fication of core microbial taxa can also lead to better under-
standing of their functional roles through targeted culturing or
other ‘omics approaches (such as metagenomics or metatran-
scriptomics), as exemplified in the honey bee system (23, 24). On
the other hand, a few studies across phylogenetically diverse
hosts, ranging from caterpillars to crustaceans, have found that
the putative core microbiome was comprised of transient taxa
repeatedly acquired from the environment rather than obligate
associates of the host (25, 26). Finally, some authors have pro-
posed moving away from a taxonomic approach altogether to an
entirely functional definition of the core microbiome, where the
core “… can be defined as a whole set of microbial vehicles,
including replicators coding for essential functions for holobiont
fitness” (27). One proposed solution to this issue is to specify the
type of core microbiome of interest, such as a temporal core,
ecological core, or functional core (3).

Current Methods for Identifying the Taxonomic
Core Microbiome
Core microbiomes are typically quantified using one of three
methods: 1) the occurrence of microbial taxa across multiple
samples of the same host/environment, 2) the relative abundan-
ces of microbial taxa across such samples, or 3) some combina-
tion of the two. These metrics can be readily estimated from a
standard OTU table containing the number of sequence counts
of each OTU (or other units of analysis) detected in each sam-
ple. However, as discussed below, these methods have a num-
ber of pros and cons (Table 1) and their applications have been

highly variable, making it difficult to compare the sizes and
compositions of core microbiomes across different hosts and
environments.

Occurrence Only. In our dataset, 75.4% of core microbiomes
were quantified based solely on the occurrence of a taxon
(OTU, genus, etc.) within a proportion of the samples collected
(Dataset S1). Occurrence data are readily available, easily com-
parable, and provide information about the spatial or temporal
span over which the microbe and host/environment interact.
The proportions of sites, samples, or time points over which a
microbe must occur to be considered core, however, is always
at the discretion of the authors. In the most liberal cases from
our dataset, a 30% occurrence standard was used, meaning that
any OTU detected in at least 30% of samples was considered a
core member (17, 28). Others have used cutoffs between 50
and 99.9%, depending on the study system and number of total
samples (Fig. 2C). Most commonly, though, studies required a
taxon be observed in 100% of samples to be considered core
(Fig. 2C). This approach aims to identify the obligate, or seem-
ingly obligate, relationships between host and microbe. A
potential criticism, however, is that a 100% occurrence require-
ment is likely to miss lower abundance taxa that have fallen
below the threshold of detection in one or more samples, but
are of functional and ecological importance (e.g., ref. 29). The
probability of this occurring depends, in part, on the sequenc-
ing depth of the samples, which is discussed in greater detail
below. One proposed solution is to quantify the core micro-
biome using multiple occurrence cutoffs and evaluate how
these different values affect the composition of the core. For
example, in Xestospongia sponges, changing the occurrence
cutoff has a relatively small impact on the composition of the

Table 1. Pros, cons, and suggestions for improvement for the currently available methods of quantifying core microbiomes

Metric type Pros Cons Suggestions for improvement

Occurrence only Computationally simple No abundance information Maximizing sequencing depth and
replicate sampling

Commonly used in the literature Arbitrary cutoffs Using multiple occurrence cutoffs
Includes rare taxa Can be heavily impacted by

sampling coverage and
sequencing depth

Using a range-through approach in
conjunction with deeper
sequencing

Relative abundance only Computationally simple Impacted by sequencing depth
and inadequate spatial and
temporal sampling coverage

Increasing geographic and temporal
sampling, especially for
widespread and/or lower
abundance taxa

Incorporates abundance
information to identify taxa
likely to be of functional
importance

Arbitrary cutoffs Ensuring uniform sequencing depth
across samples

Affected by rarefaction and
related methods for sample
standardization

Abundance–occurrence Based on macroecological theory Often use arbitrary cutoffs of
abundance and occurrence

Need to better establish
macroecological relationships for
microbial taxa

New methods (including code) are
being developed in this space

Currently assumes that
macroecological relationships in
microbial taxa are similar to
those in plants and animals

Constraining analyses by
phylogenetic or functional groups

Can potentially differentiate the
stochastic from the
deterministically selected core

Ensuring that scale of spatial and
temporal sampling is adequate to
reliably capture macroecological
relationships
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core (30). However, in other cases different occurrence cutoffs
can also result in substantially different numbers of core taxa (e.
g., refs. 4 and 31).

Relative Abundance Only. Nine studies (4%) within our sample
set quantified the core microbiome using only relative abun-
dance criteria (Dataset S1). In certain cases, though, occurrence
data may have been used but not explicitly stated in the text. In
some of these studies, the most abundant set of taxa in each
sample type are identified as core members (32, 33). In others,
taxa considered to be core were those that were preferentially
enriched in the host of interest relative to the surrounding envi-
ronment (16, 34–36). This method assumes that a high, or at
least significantly increased, relative abundance in a particular
host or environment is evidence of a stronger and more stable
association with that system. A criticism of this approach is that
some low-abundance taxa may still play important functional
roles within the host (37, 38). Furthermore, relative abundances
of some taxa may change substantially over time (e.g., ref. 39),
so identifying core microbiomes using the abundance distribu-
tion of a single temporal snapshot may miss taxa that may be
more common at other time points. One way to test for such
variability is to use the relationship between the mean and vari-
ance of relative abundance of each OTU (e.g., ref. 40), a trend
known as Taylor’s power law (41). While this law has wide appli-
cations in ecology and beyond, in the present context, if the
temporal or spatial variance of an OTU is greater than the
mean, then the taxon should be considered less stable and its
inclusion in the core microbiome potentially problematic. Such
analyses, however, require replicate samples over time/space,
something that is currently lacking in many core micro-
biome analyses.

Abundance–Occurrence. While occurrence and abundance have
each been used individually to quantify the core microbiome,
combining them can provide a more conservative approach.
This paired method was used in 11.6% of studies in our dataset
(Dataset S1). Many studies using this method set a minimum rel-
ative abundance threshold under which a taxon is disqualified
from core membership. Then, the remaining taxa are assessed
by the number of sites/samples in which they occur, again using
an assigned cutoff value. In the studies sampled here, the mini-
mum relative abundance threshold for an OTU to be considered
for core membership ranged from 0.001 (42) to 4.5% (43), while
occurrence cutoffs ranged from 50 to 100% across host species,
geographic sites, or treatments (Dataset S1).

Abundance–occurrence relationships have a conceptual
basis in the macroecological literature, as it has been shown in
larger eukaryotes (44, 45), and more recently in marine bacterio-
plankton (13), that the local relative abundance of a species is
generally positively correlated with the number of sites that spe-
cies occupies within a region. However, whether this relation-
ship is universally applicable across environments and microbial
taxa is still unknown. Recently, though, there have been a few
attempts to use the abundance–occurrence relationship to
determine the compositions of core microbiomes. For example,
Li et al. (46) designed a simple model that visualizes taxa that
lie above user-specified abundance and occurrence cutoffs
values, using a binomial distribution to account for differences
in sequencing depth. Shade and Stopnisek (47) developed a
method using abundance–occurrence relationships and contri-
bution to Bray–Curtis similarity between samples in order to

identify potential members of the core microbiome. They fur-
ther compared the abundance–occurrence distributions of these
taxa to a null model (48) in order to determine which core mem-
bers may be deterministically selected by the host/environment
(47).

While such use of abundance–occurrence relationships has
the potential to better constrain the make-up of the core micro-
biome, it is important to keep in mind the underlying assump-
tions of such models. The first assumption is that this relation-
ship is likely to be phylogenetically and functionally constrained.
Abundance–occurrence relationships in plants and animals have
been shown to be constrained by phylogeny or functional guilds
(49) and different clades of microbial taxa also show different
patterns of abundance and occurrence across spatial scales (50,
51). Thus, using the abundance–occurrence relationship across
the entire microbiome to identify the core, as is the current
practice, is likely to be problematic. Instead, it would be better
to use this approach to identify core taxa at the level of individ-
ual clades and then aggregate across the whole community.
Another critical assumption here is that any observed
abundance–occurrence relationship of microbes using a small
number of samples or populations is truly characteristic of that
taxon. In larger eukaryotic communities, the abundance of a
species is usually nonuniform across its geographic range (52),
and often tends to peak near the center of the distribution (53).
Whether such an “abundant center” pattern is also true of
microbial taxa is currently unknown, but abundances of individ-
ual microbial taxa are also known to change along spatial gra-
dients (51, 54). Thus, abundance–occurrence models are likely
to be most useful for constraining the make-up of core micro-
biomes when they are based on large, representative samples
across the geographic distributions of individual taxa, again,
something that is currently rare.

The Role of Sequencing Depth. The number of microbial
sequences obtained from each sample, or the sequencing
depth, remains an important consideration in microbiome stud-
ies. Multiple studies of environmental microbiomes using mas-
sively deep sequencing efforts have shown that rare taxa, often
undetected by shallower sequencing, make up a substantial
portion of many microbial communities (55, 56). This suggests
that maximizing sequencing depth is important for quantifying
core microbiomes, especially when using strict occurrence cut-
offs. This is also true of functional cores determined using other
‘omics datasets, as shallower sequencing is likely to miss low-
abundance gene clusters and provide incomplete coverage of
the whole community (e.g., ref. 57).

In addition to overall sequencing depth, a related issue is
accounting for differences in sequencing depths across a set of
samples when quantifying core microbiomes. Some laboratory-
based methods can help to control for sequencing depth and
include standardizing the mass or volume of samples prior to
DNA extraction and pooling libraries in equal molarity before
sequencing. Despite these efforts, though, variation in sequenc-
ing depths across different samples in the same study can be
substantial, and the use of statistical standardization methods to
account for such variations has been the subject of much discus-
sion and debate. Some have suggested that data should be rar-
efied (58, 59) to a common sampling depth, typically to the
level of the sample with fewest sequences, while others argue
that such rarefaction is “inadmissible” and favor approaches
that transform or scale sequence counts (60, 61). While these
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debates have led to the development of new statistical tools to
account for sequencing depth, they have primarily focused on
analyses of the alpha (e.g., refs. 62 and 63) or beta (e.g., refs. 64
and 65) diversities. The performance of such approaches in the
context of quantifying the core microbiome remains poorly
explored. Within our dataset, multiple studies rarefied sequence
data before determining a core (e.g., refs. 12 and 66), while
others did not rarefy their data at all (e.g., refs. 42 and 67). A
recent study found that, all else being constant, the number
and identities of core microbiome members can change after
rarefying data to four different sequencing depths (68). This
suggests that using rarefied data may provide an incomplete or
potentially inaccurate picture of the core microbiome, as rarefy-
ing can remove tens or hundreds of thousands of sequences
from individual samples, especially when variation in sequenc-
ing depth across samples is large.

In addition to taxon sampling, sequencing depth is likely to
also have an impact on spatial occurrences of individual taxa
(69), and thus affect occurrence-based measures of the core
microbiome as well as the use of abundance–occurrence mod-
els discussed above. A potential solution here, borrowed from
the macroecological literature, is to use a range-through
approach where a taxon is presumed to be present everywhere
within its geographical range limits, even though it may be miss-
ing from some samples within that range (69). For example, in
samples collected along a latitudinal transect a taxon would be
counted as present in all sites between its northernmost and
southernmost point of detection, even if it is not explicitly sam-
pled there (e.g., ref. 51). While some of the observed absences
are likely to be real, driven by local environmental conditions or
other factors, the range-through metric can provide a hypothe-
sis about the occurrences of individual taxa in a specific sample,
which can then be tested by repeated sampling or deeper
sequencing. Another approach would be to sequence multiple
technical replicates from the same sample to determine the like-
lihood of a true negative result, as has been done in human
genotyping data (70), athough this creates potential tradeoffs
with additional sequencing costs or decreased sequencing
depth per individual sample.

Unspecified Definition. We found that more than 18% of the
sampled studies did not include a methodology for quantifying
the core microbiome in their Methods sections. In some cases,
the criteria used for determining the core were provided in the
Results or Discussion, while in other cases those criteria were
unclear or not explicitly stated at all. This practice has also been
mentioned by others (47) and should be strongly discouraged,
as it creates a challenge for those aiming to replicate a study or
to undertake comparative or metaanalyses of core microbiomes
across studies.

Effects of Spatial, Temporal, and Phylogenetic Scales
Spatial Scale of Sampling. Regardless of whether the core
microbiome is quantified based solely on occurrences or a com-
bination of occurrence and abundance, the choice of spatial
scale over which the host is sampled can have a strong influence
on the composition of the core. For example, the diversity, com-
position, and function of the core microbiome of two host pop-
ulations that are geographically close to each other is likely to
be very different from that of two host populations separated
by hundreds of kilometers. In our dataset, 67% of studies used
samples collected at a single site (Fig. 2E), though in many of

these cases, a core was determined between experimental
treatments, disease treatments, time points, etc. (Dataset S1).
The other 33% of studies analyzed samples collected from at
least two distinct sites, as defined by the authors (Fig. 2E). How-
ever, these studies vary greatly in the spatial scale over which
these locations were sampled, ranging from 2 locations within
the same bay (71) to 23 collections on 6 continents (72)
(Fig. 2E).

Because of the large variance in spatial scale over which
published core microbiomes have been quantified, we have
examples of cores that are essentially local (71) to those that are
“region-specific” (67), and adapted to a host in a specific envi-
ronment (e.g., ref. 73), to those that cover the entire geographic
distribution of a host. The citrus tree rhizosphere, for example,
was sampled from 23 sites spanning 6 continents, 6 climate
regimes, and 7 soil types, effectively covering a large propor-
tion of the areas in which citrus is grown as an agricultural prod-
uct, providing a core citrus rhizosphere microbiome consisting
of 132 genera (72).

Industrial and environmental microbiome studies can also
utilize large-scale spatial sampling to test for widely distributed
core microbiomes. For example, an extensive study of 51 waste-
water treatment plants from 5 countries did not identify any
core microbial OTUs present across all samples, but showed
that anaerobic digester conditions, rather than geographic loca-
tion, were significant correlated with microbial community com-
position (74). Similarly, a study of 6 soil types from 24 locations
in eastern Europe showed that only two OTUs were shared
across all samples, while many taxa appeared to be core to indi-
vidual soil types (75).

Temporal Scale of Sampling. Of the articles in our sample,
22.3% included some form of temporal replication, ranging
from 3 d (28) to 6 y (14). Of these, the majority were sampled
over fewer than 2 mo, likely due to the challenges of repeated
sampling across a prolonged period of time (Fig. 2F). However,
such studies provide unique insight into whether core micro-
biomes persist in a particular location or host system despite
potential changes in diet, development, or environment.

Free-living environmental microbiomes are particularly ame-
nable to this type of repeated temporal sampling. Long-term
sampling allows for the determination of how microbial commu-
nities fluctuate over time (e.g., ref. 76), as well as the taxa that
persist through major events, such as hurricanes in the upper
troposphere (77) and beach oiling in the Gulf of Mexico (78).
Such studies can also reveal the level of stability present in the
microbiome of a particular environment, as exemplified by a
study of soda lakes in British Columbia, which found a highly
persistent core microbiome in these lakes over the course of 4 y
(79). Similarly, in long-lived host species such as humans, it is
possible to sample the same individual through time to deter-
mine the level of community stability within the host. Studies of
this type have identified particular OTUs that are able to persist
over multiyear periods in the guts and mouths of certain individ-
uals (80, 81).

Long-term studies of hosts with shorter generation times, or
where repeated sampling proves difficult, require different
approaches. One approach is to sample multiple individuals of
an organism across different stages of the life cycle to deter-
mine if any core microbial taxa persist throughout. Studies using
this method have shown that chickens maintain a large set of
core microbial genera throughout their lives (82) and Atlantic
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salmon maintain a relatively small core microbiome across the
freshwater-to-saltwater transition (83), while parasites experi-
ence high levels of microbiome turnover when moving between
hosts during their life cycle (84). A second method is to sample
individuals of the same species at the same site over multiple
time horizons. Although this type of sampling cannot determine
which microbial taxa persist over time in a specific individual of
a given host, any shared OTUs identified using this approach
represent a species or population level core microbiome that is
repeatedly acquired from the surrounding environment or verti-
cally transmitted from parent to offspring. For example, monthly
sampling of six sponge species over the course of 3 y showed
that host species with denser microbial loads harbored larger
core communities (85). Similarly, populations of the intertidal
bivalve Donax gouldii, collected at four time points over 11 y,
only had six ASVs present across all time points, indicating a
small but persistent core (39).

Taxonomic Resolution of the Core Microbiome. Determining
the taxonomic resolution of the core microbiome begins prior
to sequencing, as the selection of 16S rRNA gene region and
corresponding PCR primers play a significant role in the compo-
sition of the microbiome (86). Certain primer pairs may miss
particular microbial groups or provide lower resolution due to
limited coverage in taxonomic databases. Furthermore, taxo-
nomic assignments provided by one primer set may not directly
correspond to those from a different set, making core micro-
biome comparisons across studies difficult (86). Sequence
length also determines the taxonomic level available for analy-
sis, as shorter reads (e.g., 100 base pairs) provide less specific
taxonomic information and, therefore, sequences may not be
able to be assigned at lower taxonomic levels. Maximizing
sequence length by merging paired-end reads, or generating
full-length 16S rRNA gene amplicons using long-read technolo-
gies (e.g., ref. 87), are potential ways to increase the taxonomic
resolution available for further analysis.

Regardless of sequencing strategy, though, the taxonomic
level chosen for core microbiome quantification has important
implications for the ecological and functional relevance of the
core. For example, core microbiomes identified at the phylum
level, as in four of the studies sampled here (Fig. 2D), may offer
limited insights about the specific ecological and functional
roles of those microbes. On the other hand, in nearly 50% of
the studies in our dataset the core was determined using OTUs
clustered at the 97% level, reflecting the popularity of this
sequence similarity cutoff in delineating microbial OTUs (Fig.
2D). This proportion may be even higher, as bacterial species
and phylotypes are often classified at the 97% sequence similar-
ity level but were included as separate groups in these analyses
when not explicitly defined. Interestingly, only 10 studies
included a more stringent cutoff (99 or 100% OTUs) (Fig. 2D)
despite the fact that OTUs generated using 100% sequence
similarity (also known as ASVs or zero-radius OTUs) have become
a commonly used taxonomic descriptor with the increasing use of
denoising applications, such as deblur (88) and DADA2 (89). This
difference could reflect, in part, a lag in the use of these units for
core microbiome study, as they were not available until 2016 or
2017 (SI Appendix, Fig. S1).

Alternatively, 97% OTUs, or higher taxonomic levels, such as
genera, may be more appropriate for determining the core
microbiome since 100% sequence similarity may be too strin-
gent for delineating functional or ecological differences among

sequences (47). For example, two sequences with a single base
pair variation would be identified as different OTUs using the
100% cutoff, but would be collapsed into a single 97% OTU.
Furthermore, certain microbial taxa are known to contain multi-
ple copies of the 16S rRNA gene, which can vary intragenomi-
cally by >1% sequence identity (90, 91). Thus, using the 100%
OTU cutoff may inflate the size of the core microbiome and
increase potential redundancy, particularly if core taxa contain
many copies of the 16S rRNA gene (e.g., Gammaproteobacte-
ria) (90). On the other hand, it has recently been shown that as
many as 16 unique microbial strains with diverse temperature
preferences and carbohydrate utilization profiles can cluster into
a single 97% OTU (92). The limited resolution of databases used
for taxonomic identification may also decrease the utility of
determining the core at lower taxonomic levels, particularly in
nonhuman samples, as many microbial groups are still unknown
or uncharacterized and therefore cannot provide much informa-
tion about community function. In more than 20% of cases,
though, the authors quantified core microbiomes using multiple
different taxonomic criteria. This is done by either 1) clustering
OTUs at different levels of sequence similarity (e.g., ref. 93) or 2)
using the levels of taxonomic classification produced by a data-
base [e.g., greengenes (94) or Silva (95)]. Multiple classifications
have the potential to provide additional information regarding
the strength of the association between the microbial taxa and
the host/environment. For example, if some functions are con-
served at higher taxonomic levels than a microbial genus, they
may play a core functional role within a host, but individual
OTUs within that genus may have a more limited occurrences
and not appear as core members.

Choice of Host Taxa. Nearly 88% of studies in our sample set
focused on microbiomes associated with plant and animal hosts
(including various microenvironments within humans and other
hosts), rather than environmental or industrial samples. Most
frequently, core microbiomes were identified for a single host
species, but 42 studies attempted to identify such cores using
two or more host species of varying phylogenetic relatedness.
In some cases, the phylogenetic relationships among the hosts
are known, and a shared core microbiome represents a poten-
tial cophylogenetic history or conserved functional/ecological
role across species. For example, 18 “types” of Symbiodinium
dinoflagellate spanning at least 8 species were found to share 3
highly abundant microbial OTUs, which were predicted to play
various roles in nutrient acquisition and stress tolerance (96).
Similar analyses using 36 strains of Leptocylindrus diatoms
found that only one microbial OTU, a member of the genus
Roseovarius, was shared by all of the strains (97). Even more
broadly, one study tested whether a highly diverse set of
sponge hosts (32 species) share a core microbiome, but found
no evidence for such conservatism (98).

Instead of phylogenetic affinities, some studies have tested
whether hosts with similar traits (e.g., mode of digestion, diet)
share core microbial taxa. Ruminant mammals, for example,
have been found to share a number of core genera across a
wide geographic range, which are hypothesized to play a role in
digestion and fermentation (15, 99). Similarly, a phylogenetically
diverse group of cycad-eating insects were found to share
five microbial OTUs in common, at least one of which was pre-
dicted to provide functional benefits for digestion of cycad tis-
sue (100).
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Synthesis and Future Directions
Determining the most effective way to quantify the core micro-
biome remains challenging, with some arguing that a taxonomic
approach is no longer useful and that a core functional micro-
biome should be prioritized (27). However, despite the utility in
understanding the core functional properties of the micro-
biome, a taxonomic approach remains highly practical for a few
important reasons. First, the per sample cost of 16S rRNA gene
sequencing remains much lower than the cost to generate the
high-quality metagenomes and metatranscriptomes necessary
for detailed functional profiling. Second, this approach is better
suited when macroecological relationships, such as abundance–
occurrence models of microbial taxa, are used for constraining
the composition of the core microbiome. Finally, a taxonomic
core microbiome provides a list of potentially ecologically rele-
vant taxa which can be prioritized for targeted culturing and
‘omics study. This also allows for the development of testable
hypotheses about the roles of these organisms within the
microbiome.

However, as shown by this representative sampling of the lit-
erature, quantifying a core microbiome is not straightforward.
Perhaps more important, though, is the fact that these differ-
ences in methodology for quantifying the core change its
functional definition. For example, abundance-driven metrics
prioritize the most dominant members of the community, or
those that have most effectively colonized a particular environ-
ment. However, this type of core likely overlooks a number of
ecologically and functionally important but low-abundance taxa
and may be skewed by high levels of variance. On the other
hand, occurrence-based metrics often require taxa to be pre-
sent in every sample to be counted in the core, which can miss
relevant taxa due to inadequate sequencing depth or sampling
effects. Relaxing this criterion necessarily requires using an arbi-
trary cutoff for the number of samples a microbial OTU must be
present in to count as part of the core. These different cutoff
values include taxa with different levels of association to the
host/environment and different ecological roles, thereby chang-
ing the way the core is defined. Methods that combine abun-
dance and occurrence have been introduced to overcome
some of these challenges (e.g., ref. 46), and are well-supported
in the broader ecological literature, but many still require
arbitrary occurrence and abundance cutoffs, which vary widely
across studies. Such combined methods, which use modeling
approaches, represent a potentially significant advancement,
but their broad applicability to microbial taxa is not yet certain.

In addition to specific metrics for quantifying a core, the
issue of spatial and taxonomic grain at which the core should be
determined also remains fluid. As discussed above, the spatial
extent of sampling can have a strong impact on the make-up of
the core microbiome at the population or species level, espe-
cially for hosts that have large geographic distributions. Simi-
larly, determining the taxonomic level at which the core should
be quantified also remains a challenge. Although 97% OTUs are
the most commonly used taxonomic units in our dataset, cores
are also routinely identified using ASVs, genera, or phyla, thus
introducing different levels of potential functional and ecologi-
cal redundancy into the core microbiome and changing its prac-
tical definition. One issue that has largely been ignored when
quantifying taxonomic cores is the fact that even consistent
associations between a host and a group of microbes identified
by any of the methods discussed above could still simply reflect

repeated acquisitions of microbes from the environment by the
host rather than obligate host–microbe relationships where
microbes play important functional roles (25). Experiments,
quantitative PCR, and microscopy techniques can all be used to
test whether a putative core microbiome is a stable component
of the host physiology (26) and plays a significant functional role
in the host (25), but such approaches remain rare.

In summary, our review of the literature clearly shows that
the term “core microbiome” represents different things to
different researchers, which makes comparative analyses and
metaanalyses of the core microbiome across hosts and environ-
ments very difficult, if not impossible. While a single metric is
unlikely to capture all the different aspects of core microbiomes,
we hope that the information provided is a useful starting point
for the development of measures of the core microbiome that
are robust to sampling, sequencing depth, and other issues dis-
cussed here. Such metrics are necessary not only for testing
specific hypotheses about the functional and ecological roles of
core microbiomes, but also for understanding the general
nature of core microbiomes and the ecological and evolutionary
processes that generate and maintain these stable associations
between certain microbes and their hosts. Finally, we provide a
set of recommendations below that could serve as the starting
point for achieving this goal.

First, explicitly define and state the criteria used for deter-
mining the core microbiome in the Methods section of the
manuscript. As noted in this review, these methods provide
important context for interpreting the results but are often not
adequately described.

Second, when conducting spatial analyses, explicitly distin-
guish between local, regional, and range-wide cores (e.g., refs.
67 and 73). When conducting temporal analyses, explicitly dis-
tinguish between short-term, seasonal, and multiyear cores.
They each require their own contextual definitions but provide
important information about the potential spatial and temporal
stability of any core associations.

Third, sequence as deeply as possible and ensure an ade-
quate number of sequencing replicates to determine the core.
Standardizing the size of samples (pre-DNA extraction) or
molarity (for library pooling) of samples are potential strategies
to achieve uniform sequencing depth. In spatial datasets, it may
be possible to compensate for variable sequencing depths
using the range-through approach described above.

Fourth, rarefying samples to a common sequencing depth is
best avoided while quantifying the core microbiome, especially
when variation in sequencing depth across samples is large.
Such an approach can lead to underestimates of core size and
inaccurate core composition (68).

Fifth, the use of macroecological null models for constraining
the make-up of the core microbiome should be based on ade-
quate spatial sampling coverage, especially for widely distrib-
uted microbial taxa. Most existing analyses of core microbiomes
do not have enough spatial and temporal coverage for comput-
ing meaningful macroecological relationships.

Data Availability. All study data are included in the article and
supporting information.
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