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de Sitter spacetime plays a central role in modern (quantum) cosmology. Yet, there are

various aspects of quantum field theory in de Sitter that we do not understand at the same level

as we do Minkowski spacetime. In particular, perturbative calculations in de Sitter give rise to a

variety of contributions that grow with time (secular divergences). We study how such terms

can be interpreted using a renormalization group approach, which eventually culminates in an

effective theory description of the long wavelength physics. We also introduce techniques to

compute loop integrals in de Sitter, a problem for which the standard flat space QFT methods

are inadequate. These methods complement and validate the EFT description, and allow us to

calculate higher order corrections to the Stochastic Inflation framework for massless scalars.
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Chapter 1

Introduction

The theory of Inflation tells us that the very early universe underwent a period of rapid

expansion, driven by an inflaton field. During this era the universe could most simply be

described by an approximately de Sitter (dS) metric, characterized by a single energy scale H,

the Hubble parameter. As points in coordinate space become separated by distances larger than

H−1, they fall out of causal contact, and can no longer influence one another. Eventually inflation

ends, and these superhorizon fluctuations re-enter the horizon, seeding the structures we see in

the night sky. The quantum dynamics of the inflaton are thus embedded in our cosmological

observations.

We can get some intuition for how quantum fluctuations manifest in QFT calculations by

a simple analogy. Consider the de Sitter (dS) metric

ds2 =−dt2 +a(t)2d~x2, a(t) = eHt , (1.1)

where H is the Hubble parameter, which is assumed to be a constant in this work. This metric

defines an expanding spacetime, which we may visualize as shown in Fig. 1.1. Imagine now,

some path of arbitrary shape in space, which will also expand with the scale factor a(t). We can

define the dimension of this object by counting the minimum number of H−1 sized balls required
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to cover the path. We will assume that this number, N, is related to H−1 as

N ∝ H∆ (1.2)

where ∆ is the dimension of the path. For instance, if the path were a straight line of length

a(t)|~x|, we could cover it with Nline =
(

a(t)|~x|
H−1

)1
balls. Therefore, the dimension of a line is

∆line = 1, which makes sense. For simplicity, let us take the path in Fig. 1.1 to be a line also.

Furthermore, let us imbue this line with the property that, as it expands it reveals more structure.

This is depicted in Fig. 1.2. How does this behavior affect the dimension of the line?

H−1 time

Figure 1.1. A cartoon of de Sitter spacetime. Three dimensional space is visualized as a
plane that expands over time. Also shown is a path covered with balls of fixed size H−1, the
characteristic length scale of a fixed dS manifold.

Once again we cover the line with balls of size H−1 and add up their number. Due to its

newly revealed structure we will require more balls to cover the line than if it were a perfectly

straight line. If we still assume that N scales with H as in (1.2), we can get the new number of

balls required by modifying the value of ∆line→ 1+ γ ,

Nline =

(
a(t)|~x|
H−1

)1+γ

. (1.3)
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time

a(t)x

∆line = 1

∆line = 1+ γ

Figure 1.2. A line in dS that reveals more structure as it expands, a consequence of which is a
change in its dimensions.

The number γ is called the anomalous dimension of the expanded line, and it is smaller than 1.

This captures the intuition that the jagged line is not a one-dimensional object anymore, but it

is not quite a two-dimensional object either. Similar considerations apply for paths of arbitrary

shapes as well.

But why would these paths reveal more structure as space expands? You see, all this time

‘paths’ in dS were just a stand in for quantum fields, and the structure that gets added over time

are generated by quantum fluctuations which get stretched out by the expansion of dS. In other

words, anomalous dimensions encode the ‘quantumness’ in cosmic structure.

Before we leave this example, we may use the fact that γ < 1 to expand (1.3) to

Nline =

(
a(t)|~x|
H−1

)1

(1+ γ log(aH|~x|)+ · · ·) . (1.4)

That is, if we were doing perturbative calculations in some parameter of size O(γ), we should
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watch out for log(aH|~x|) to identify anomalous scaling. If we were working in Fourier space

we would have log(|~k|/aH) instead. Such logs often arise from loop calculations in dS. This is

a reasonable1 but non-trivial claim, owing to the appearance of special functions in the actual

integrals we need to compute. The first two chapters that follow develop some techniques to

extract and interpret such logs from ‘full’ theory calculations.

Notice that (1.3) involves a ratio of length scales a(t)|~x| and H−1. The first one grows

exponentially with time whereas the latter remains fixed. A physics problem with such a large

separation of scales must admit an effective description. In the present case this is would be an

EFT of the long wavelength (soft) modes. The second half of this work explores physics in dS

with this EFT, and culminates in a rigorous derivation of the Stochastic Inflation framework, and

corrections to it.

1This is consistent with our understanding of logs that show up in flat space loop integrals — loops in standard
QFT can be organized as an expansion in h̄. If we set h̄→ 0 all the loop effects vanish and we would be left with a
purely classical theory.

4



Chapter 2

Dynamical RG and Critical Phenomena in
de Sitter Space

2.1 Introduction

The physics of de Sitter space has posed both conceptual and technical challenges to

our understanding of the universe. Ultimately, the lack of a fixed boundary in the presence of

dynamical gravity is an unavoidable challenge in defining physics in de Sitter space [3, 4, 5,

6, 7, 8]. Yet, there have long been more mundane challenges associated with divergences in

perturbation theory [9, 10, 11, 12, 13, 14, 15, 16, 17, 18], with and without dynamical gravity.

Resolving the origin of these divergences is a more tangible problem than quantum gravity in de

Sitter itself and is surely a necessary step towards a complete theory of (quantum) cosmology.

Significant progress has been made in our understanding of perturbation theory in

cosmological spacetimes. In the particular case of cosmological correlators in single-field

inflation, it has been shown to all-loop order that time-dependent contributions from individual

diagrams must vanish when all the diagrams are summed together [19, 20]. In essence, in the case

of single-field inflation, the secular divergences are not physical. The absence of such divergences

is unique to the metric fluctuations due to the nonlinear symmetries of these modes [21, 22],

which are also responsible for the separate universe description of cosmology [23] and the

single-field consistency conditions [7, 24].

In contrast to the metric fluctuations, the divergences associated with conventional
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quantum fields in cosmological backgrounds are physical [16, 25, 26, 27, 28, 29, 30, 31, 32]. In

some cases, these divergences can be re-summed using known techniques from quantum field

theory (QFT) [11, 33, 34, 35, 36, 37]. The dynamical renormalization group (DRG) [38, 39, 40]

is one such approach that is well-suited for secular divergences in cosmology [41, 42, 43, 44].

These divergences are at most logarithmic in the scale factor [15, 16] and thus the leading logs

can be resummed using the DRG. Unfortunately, the meaning of this resummation lacks the

clear physical interpretation that we associate to the renormalization group in flat space.

In recent work, a number of non-trivial features of tree-level perturbation theory in de

Sitter space have been connected to conventional physics in flat space. For instance, the analytic

structure of correlations functions has been seen to encode the flat space S-matrix [45, 46, 47, 48].

In addition, these cosmological correlators display the analogues of simple poles and factorization

associated with the exchange of new particles [49, 50]. These types of observations have helped

demystify otherwise peculiar properties of these calculations.

In this work, we will explore the origin of secular divergences in de Sitter space and their

relation to physics in flat space. To make the origin of these divergences manifest, we will study

theories that flow to perturbative IR fixed points in flat space. At the fixed point, the theories are

conformal and their de Sitter correlators are determined by a Weyl transformation [51] from flat

space to de Sitter,

〈O1(~x1,τ1) · · ·On(~xn,τn)〉dS =

(
n

∏
i=1

a(τi)
−∆̃i

)
〈O1(~x1,τ1) · · ·On(~xn,τn)〉flat , (2.1)

where ∆̃i are the dimensions of the operators at the IR fixed point, τ is the conformal time,

a(τ) = (−Hτ)−1 is the scale factor and ~x are the spatial coordinates. In perturbation theory,

∆̃i = ∆i + γi where ∆i is the dimension at the UV fixed point and γi is the anomalous dimension

calculated in perturbation theory. Expanding the dS correlator in γi, one sees that perturbation

theory in de Sitter must contain (γi loga(τi))
N divergences that are not present in the flat space

calculation. Given only the lowest order divergence, γi loga(τi), one can use the DRG to recover
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the full power-law in Equation (2.1) as required by conformal invariance.

When the coupling is not tuned to be at the IR fixed point, the theory is not conformal

and the de Sitter correlators are not necessarily related to flat space correlators by a Weyl

transformation. Yet, the perturbative calculation does not depend on the precise value of the

coupling and the form of the secular divergences remains unchanged. We will show that these

logarithmic divergences can still be resummed and the resulting power law is determined by

the (scale-dependent) flat space anomalous dimension, γ(µ), calculated at the scale of horizon

crossing, µ = H.

We will first analyze a general version of this problem using conformal perturbation

theory in de Sitter space. When conformal perturbation theory is applicable in flat space, the

same expansion can be used in de Sitter space using the map described in Equation (2.1). We

show explicitly in conformal perturbation theory that anomalous dimensions in flat space become

secular divergences in de Sitter. We then show how they can be resummed using the DRG

equations. These insights will apply to a wide variety of theories, including perturbative QFTs

involving gauge fields, fermions and/or conformally coupled scalars. We will show this explicitly

in several examples.

The organization of this paper is as follows: in Section 2.2, we demonstrate our main

results using conformal perturbation theory. In Sections 2.3 and 2.4, we show how these general

results arise in the specific examples of a conformally coupled scalar with a λφ 4 interaction in

d = 4− ε dimensions and Yukawa interactions in four dimensions. We conclude in Section 2.5.

Details of the calculations are presented in the Appendices.

2.2 Conformal Perturbation Theory

2.2.1 Definition

Conformal perturbation theory in flat space is a powerful tool for understanding a

deformation around any fixed point, whether weakly or strongly coupled. We imagine that the
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fixed point is described in terms of some action, SCFT, that is deformed by one of the operators

in the CFT,

S = SCFT +λ µ
d−∆

∫
ddxO(xxx) , (2.2)

where xxx is a d-vector, µ is the renormalization scale, λ is the dimensionless coupling, and ∆ is

the dimension of the operator. From the Euclidean path integral description, it is easy to see that

a correlation function in the perturbed theory can be related to a correlation function in the CFT

via

〈Oi(yyy) . . .〉= 〈Oi(yyy) . . .e−λ µ
d−∆ j

∫
ddxO j(xxx)〉CFT , (2.3)

where 〈...〉CFT means we are calculating a correlation function in the (unperturbed) CFT. Taylor

expanding the exponential then gives the result in terms of correlation functions CFT,

〈Oi(yyy) . . .〉= ∑
n

(−λ µd−∆ j)n

n!

(
n

∏
k=1

∫
ddxk

)
〈Oi(yyy) . . .

n

∏
k=1

O j(xxxk)〉CFT . (2.4)

This procedure is very general and is even applicable to theories where SCFT is unknown (or

doesn’t exist). Of course, as a practical tool for calculations, it is limited to cases where the

correlation functions are known and can be integrated.

Given a theory in flat space described by conformal perturbation theory, we can apply

the same procedure to define perturbation theory in de Sitter space, now writing S = SCFT +

λ µd−∆ j
∫

dτdd−1x
√−gO j(xxx). Using ds2 = a(τ)2(−dτ2+d~x2) and

√−g = ad(τ) in conformal

time, we can write

〈Oi(yyy) . . .〉dS = a−∆i(τy)∑
n

(−λ µd−∆ j)n

n!

(
n

∏
k=1

∫
ddxkad−∆ j(τk)

)
〈Oi(yyy) . . .

n

∏
k=1

O j(xxxk)〉CFT

(2.5)

where 〈. . .〉CFT is the correlation function at the UV fixed point in flat space.
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2.2.2 Perturbative Flow between Fixed Points

We will consider a CFT in d = 4 dimensions that contains an operator of dimension

∆ = 4− ε . We will first consider the RG flow in flat space and then address the behavior in de

Sitter. In flat space, we deform the theory by S = SCFT +λ µε
∫

d4xO(xxx).

The first thing we must determine is what happens under RG flow. At leading order, the

β -function is given1 in terms of the dimension of the operator, βλ = µ
dλ

dµ
=−(4−∆)λ =−ελ .

We calculate the correction to the β function, noticing that a generic correlator of quadratic order

in λ takes the form

〈. . .λ 2
µ

2ε

∫
d4x1d4x2 O(xxx1)O(xxx2)〉 . (2.6)

We will assume the operator product expansion (OPE) of O contains the term

O(xxx1)O(xxx2)⊃
C
|xxx12|∆

O(xxx2) , (2.7)

where xxxi j = xxxi− xxx j, and C 6= 0 is the OPE coefficient. Using the OPE, our generic correlator

contains the term

〈. . . 1
2!

λ
2
µ

2ε

∫
d4x1d4x2 O(xxx1)O(xxx2)〉 ⊃ 〈. . .

1
2!

λ
2
µ

2εC
∫

d4x12 |xxx12|−4+ε

∫
d4x2 O(xxx2)〉

⊃ 〈. . . 1
2!

λ
2
µ

2εC 2π
2
∫ 1

µ

0

dx12

|xxx12|1−ε

∫
d4x2 O(xxx2)〉

⊃ 〈. . . λ 2µεπ2C
ε

∫
d4x2 O(xxx2)〉 , (2.8)

where µ is the normalization scale in units of energy. We have regulated the divergent integral

with a cutoff in position space for clarity, but we will otherwise use dimensional regularization

throughout. This divergence can be absorbed into a counterterm δλ =+π2Cλ

ε
by changing the

action to S+(λ µε)(1+ δλ )
∫

d4xO(x). Differentiating this modified coupling constant with

1µ is an energy scale which decreases to zero as we flow from the UV fixed point to the IR fixed point.
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respect to µ , we find

βλ =−ελ +π
2Cλ

2 +O(λ 3) . (2.9)

This beta function drives the theory from the UV fixed point at λ = 0 to the IR fixed point at

λIR = ε

π2C . Since ε � 1, the behavior at the IR (UV) fixed point can be understood purely from

perturbation theory around the UV (IR) fixed point.

Two-point function in flat space: Let us now derive the perturbative correction to the equal

time two point function in flat space, in anticipation of the cosmological calculation. Expanding

to first order in conformal perturbation theory, we have

〈O(~x1,τ0)O(~x2,τ0)〉= 〈O(~x1,τ0)O(~x2,τ0)〉∗−λ µ
ε〈O(~x1,τ0)O(~x2,τ0)

∫
d4x3O(~x3)〉∗ ,

where 〈. . .〉∗ is a correlation function calculated at the UV fixed point. Inserting the correlation

function (2.46) with a = 1 and using (2.48) to perform the integral, we find

〈O(~x1,τ0)O(~x2,τ0)
∫

dτ3d3x3 O(~x3,τ3)〉∗ =
C
x∆

12

∫ dτ3d3x3

|x2
13 + τ2

E |∆/2|x2
32 + τ2

E |∆/2

ε→0≈ 4π2C
x2∆

12

(
1
ε
+ log(µx12)+ . . .

)
,

where xi j = |~xi j|. Reintroducing the coupling, λ , the bare two point correlation function is then

〈O(~x1,τ0)O(~x2,τ0)〉 ≈
1

x2∆
12

(
1− 4π2Cλ

ε
(µx12)

ε

)

The 1
ε

divergence can be removed by introducing a counterterm δZ =−2π2Cλ

ε
so that the two-
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point function of the renormalized operator, O = ZOR, takes the form

〈OR(~x1,τ0)OR(~x2,τ0))〉= (1−2δZ)〈O(~x1,τ0)O(~x2,τ0))〉

=
1

x2∆
12

(
1−4π

2Cλ log(µx12)+ . . .
)
. (2.10)

As a result, OR acquires the anomalous dimension

γO = µ
d

dµ
(δZ) = 2π

2Cλ . (2.11)

Notice that at the IR fixed point the dimension of operator O becomes

∆IR = ∆+ γO = 4− ε +2π
2CλIR = 4+ ε , (2.12)

which is consistent with the IR fixed point being attractive. In fact, from the perspective of the

IR fixed point, the RG flow from the deformation of λ = λIR +δλ should be controlled by the

dimension of the operator at the IR fixed point,

βδλ =−(4−∆IR)δλ +O
(
δλ

2) . (2.13)

Taylor expanding Equation (2.9) around the fixed point, one finds βδλ = εδλ as required from

Equation (2.12).

Two-point function in de Sitter space: Now let us consider what happens to this theory when

we compute late-time correlation functions in dS. At the UV fixed point, the power spectrum in

dS follows from the conformal map from flat space to de Sitter, Equation (2.1),

〈O(~x1,τ0)O(~x2,τ0)〉∗,dS =
a(τ0)

−2∆

x2∆
12

.
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We will use conformal perturbation theory in de Sitter, Equation (2.5), to determine the leading

correction to this two point function. From the outset, we know the theory in flat space flows to a

CFT in the IR where O acquires a non-trivial anomalous dimension. Therefore, as explained in

the introduction, there must be a loga(τ0) divergence associated with this two-point function in

de Sitter space. Our goal is to find this divergence explicitly and understand the behavior away

from the fixed point.

Equal-time in-in correlators are most easily computed using the analytic continuation

to Euclidean time, as explained in Appendix 2.A. Applying this formalism at linear order in λ

requires that we calculate the quantity

I =−λ µ
ε

∫
d3x3

∫
∞

−∞

dτE a(iτE + τ0)
4〈O(~x1,τ0)O(~x2,τ0)O(~x3, iτE + τ0)〉∗

=−λ µ
εC

a(τ0)
−2∆

x∆
12

∫
∞

−∞

dτE

∫
d3x3

a(iτE + τ0)
ε

|x2
23 + τ2

E |∆/2|x2
31 + τ2

E |∆/2 . (2.14)

A priori, it might seem surprising that the above integral contains a divergence as τ0→ 0. At

fixed x3 6= x1,x2, the integral in τE is manifestly convergent. Similarly, at fixed τE the integral

over~x3 convergences. However, we are integrating over both τE and~x3 and there are divergences

associated with taking~x3→~x1,~x2 and τE → 0 simultaneously. We can estimate the degree of

this divergence by noting that the integral of ~x3 around either ~x1 or ~x2 is regulated by τE so

that
∫

d3x3 ≈ τ3
E . If we then perform the τE integral, it scales as τ

d−∆

E = τε
E which becomes a

logarithmic divergence as ε → 0.

The integral in Equation (2.14) is performed explicitly in Appendix 2.B.2 using Fourier

transforms. The resulting log-divergence arises precisely as expected from the above scaling

argument, and leads to

I
(2.50)
≈ −λC

a(τ0)
−2∆

x2∆
12

4π
2
(

1
ε
+ log

(
−µx12

Hτ0

)
− γE + . . .

)
. (2.15)
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Putting it all together, the two point function of O is given by

〈O(~x1,τ0)O(~x2,τ0)〉dS =
a(τ0)

−2∆

x2∆
12

(
1−4π

2Cλ

(
1
ε
+ log

(
−µx12

Hτ0

)
+ . . .

))
(2.16)

We see that the coefficient of the log is the anomalous dimension in flat space, 4π2Cλ = 2γO .

2.2.3 Dynamical RG

The two-point function in de Sitter space contains a number of divergent terms. The first

thing we should do is remove the 1
ε

divergence. Introducing a counterterm δZ =−4π2C λ

ε
, we get

the renormalized two point function:

〈OR(~x1,τ0)OR(~x2,τ0)〉=
a(τ0)

−2∆

x2∆
12

(
1−4π

2Cλ

(
1
ε
+ log

(
−µx12

Hτ0

)
+ · · ·−δZ

))

=
a(τ0)

−2∆

x2∆
12

(
1−4π

2Cλ log
(
−µx12

Hτ0

)
+ . . .

)
.

The interpretation of the remaining log is more transparent if we separate the two dimensionless

ratios as follows,

log
(
−µx12

Hτ0

)
= log

(
µ

H

)
+ log

(
x12

|τ0|

)
. (2.17)

The distance must appear in the ratio x12/|τ0| in order to remain invariant under the rescaling

x→ ρx and a(τ)→ ρ−1a(τ) which leaves the metric fixed. Furthermore, additional interactions

are known to give rise to pure log µ/H [17] and logx/τ divergences and therefore must be

treated separately.

We can easily eliminate log µ/H divergences by choosing µ = H. Physically, this means

that we should use standard RG to run the effective couplings of the theory to the energy scale

H (or simply define them at the scale H). Since H is fixed in de Sitter, this choice ensures that

there will be no large logs associated with µ . We will define λH = λ (µ = H) as a reminder that

we fixed the renormalization scale. This is also a physically sensible result as H is usually the
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physical scale where non-trivial (cosmological) correlations are generated.

Renormalization in the conventional sense does not address the logarithmic growth in

conformal time. In fact, the mode is only super horizon when, x12/|τ0| � 1, and our log is

necessarily large. We can formally resum the large logs in analogy with the renormalization group

via the DRG. Following the procedure in [42, 44], we introduce a reference time and distance, τ?

and x?. We then add a counter-term to the operator, δZ → δZ(1+2π2CλH logx?/|τ?|), to get

〈OR(~x1,τ0)OR(~x2,τ0)〉=
a(τ0)

−2∆

x2∆
12

[
1−4π

2CλH log
(

x12τ?

x?τ0

)]
.

Of course the operators of the theory are independent of x? and τ? so that we have a differential

equation for the two point function

∂

∂ log(x?/|τ?|)
〈OR(~x1,τ0)OR(~x2,τ0)〉= 2γ(H)〈OR(~x1,τ0)OR(~x2,τ0)〉 (2.18)

where we have defined

γ(H) =
∂

∂ log(x?/|τ?|)
δZ|µ=H = 2π

2C λH +O(λ 2
H) . (2.19)

Here we make a crucial assumption that all the secular terms can be absorbed with counter-terms

such they vanish when τ? = τ0 and x? = x12. We will return to discuss the justification for this

assumption.

By construction, x?/τ? only appears in the ratio x12τ?/(x?τ0) so we can rewrite this

equation as

∂

∂ log(x12/|τ0|)
〈OR(~x1,τ0)OR(~x2,τ0)〉=−(2∆+2γ(H))〈OR(~x1,τ0)OR(~x2,τ0)〉 , (2.20)

where we introduced the additional factor of 2∆ to account for the tree-level power spectrum.
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We can solve this equation to find

〈OR(~x1,τ0)OR(~x2,τ0)〉=
1

|a(τ0)x12|2∆+2γ(H)
(1+O(λH)) . (2.21)

where the O(λH) corrections are not logarithmically enhanced. We have used our freedom to

choose the overall normalization of the operator to write the result in terms of a(τ0) =−1/(Hτ0).

An important open question we will not address in this work is the range of applicability

of the DRG for cosmological correlators. Instead, we will use the proximity to a conformal fixed

point ensures that the DRG is accurately resuming our secular terms in the cases of interest. At

the conformal fixed point, the DRG will resum all the secular logs as required by symmetry.

Away from the fixed point, the structure of perturbation theory ensures the DRG will resum the

leading logs as desired. However, for a generic theory in de Sitter space, the applicability of the

DRG is less certain. In would be desirable to have a general result, like in flat space [52], that

characterizes the validity and limitations of the DRG.

2.2.4 Summary

Using conformal perturbation theory, we have seen that for a theory that flows between

two fixed points, the (leading-log) two-point function in de Sitter space is given by

〈OR(~x1,τ0)OR(~x2,τ0)〉=
1

|a(τ0)x12|2∆+2γ(H)
, (2.22)

where γ(H) = γ(λ (µ = H)) is the anomalous dimension calculated in flat space at the renor-

malization scale µ = H. Since the correlators in de Sitter are invariant under the group of de

Sitter isometries, the higher point correlators must be de Sitter invariant with an effective scaling

dimension of ∆̄ = ∆+ γ(H).

The derivation of this result implicitly assumed that we were studying a deformation by

a slightly relevant operator. However, we must also find the same result from the perspective of
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the IR fixed point, in which case the deformation would have been slightly irrelevant.

These results will apply to a wide range of interacting theories, including massless

particles with spin and conformally coupled scalars. When these theories are perturbative, they

are close to the Gaussian fixed point and therefore can be understood as being close to a CFT.

Light scalar fields in de Sitter are not captured by this description because Equation (2.1) does

not apply when m2/H2 6= d(d−2)/4.

2.3 Scalar Field Theory

We would like to see how the general behavior described in Section 2.2 arises in explicit

examples. In this section, we will calculate the power spectrum of the φ 2 operator in the λφ 4

theory in dS. These types of self-interactions are particularly common for inflationary models

and are of broad interest. From flat space, we know an anomalous dimension arises at one-loop

and thus the same should be true in de Sitter. Furthermore, by choosing d = 4− ε , the theory

flows to the Wilson-Fisher fixed point and, as a consequence, the dynamics in de Sitter must

approach the behavior of the CFT by construction.

2.3.1 The 〈φ 2φ 2〉 correlator

Given a free real scalar field φ of mass m in de Sitter space, one expands the fields in

modes according to

φ(~x,τ) =
∫ dd−1k

(2π)d−1 ei~k·~x {v~k(τ)a~k + v∗~k(τ)a
†
~k
} .

In the Bunch-Davies vacuum, the modes are given by

v~k(τ) =−iei(ν+ 1
2)

π

2

√
π

2
H

d−2
2 (−τ)

d−1
2 Hν(−kτ) ,
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φ 2(~k,τ0) φ 2(~k′,τ0)

~k+~p

~p

(a) The tree level diagram

τφ 2(~k,τ0) φ 2(~k′,τ0)

~k+~p ~k+~q

~p ~q

(b) The order λ correction

Figure 2.1. The Feynman diagrams involved in the calculation of 〈φ 2φ 2〉.

where k = |~k| and Hν is the Hankel function of the first kind with ν =
√

(d−1)2

4 − m2

H2 . The free

field theory in flat space maps to the conformal theory with mass m2 = d(d− 2)H2/4 in dS,

which means ν = 1
2 . Therefore the mode functions are

v~k(τ) =
−i

a(τ)
d−2

2

e−ikτ

√
2k

.

These are just the modes for a free massless theory in flat space, scaled by factors of a−∆φ as it

should be in a conformal field theory.

As explained in Appendix 2.A, we can compute equal-time (in-in) correlation functions

as an anti-time-ordered Euclidean correlation function. The anti-time-ordered propagator for our

perturbative calculations is therefore

〈T
(

φ(~k, iτE + τ0)φ(−~k,τ0)
)
〉= 1

a(iτE + τ0)
∆φ a(τ0)

∆φ

e−k|τE |

2k
. (2.23)

Note that τ0 < 0 will be fixed throughout the calculation and τE ∈ (−∞,∞).
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We begin by computing the equal-time in-in correlator 〈φ 2φ 2〉 in d = 4− ε dimensions

using the expression [53]

〈φ 2(~k,τ0)φ
2(−~k,τ0)〉= 〈T

(
φ

2(~k,τ0)φ
2(−~k,τ0)exp[−

∫
∞

−∞

dτE Hint(iτE + τ0)a(iτE + τ0)]

)
〉 ,

(2.24)

where Hint(τ) = +λ µε

4!
∫

dd−1x
√−gφ 4(τ,x). The lowest order term in this expansion corre-

sponds to Fig. 2.1a and it evaluates to

〈φ 2(~k,τ0)φ
2(−~k,τ0)〉∗ =

1
2a4∆φ (τ0)

∫ dD p
(2π)D

1

|~k+~p|p
=

c

2a(τ0)
2∆

φ2
k1−ε , (2.25)

where D = 3− ε , d = D+1 and c≈−1/(4π2) is a constant (see (2.53)). Note that, ∆φ = d−2
2

and ∆φ 2 = d−2. The computation of the momentum integral is detailed in Appendix 2.B.3.

Now we can calculate the first order correction to 〈φ 2φ 2〉 from the diagram in Figure 3.7.

Expanding Equation (2.24) to first order gives

−λ µε

4!
〈T
(

φ
2(~k,τ0)φ

2(−~k,τ0)
∫

∞

−∞

dτE a(τ3)
D+1

φ
4(τ3)

)
〉

=−λ µ
ε

∫
∞

−∞

dτE ad(τ3)

(∫ dD p
(2π)D

1
a(τ3)

2∆φ a(τ0)
2∆φ

e−|~k+~p||τE |

2|~k+~p|
e−p|τE |

2 p

)2

. (2.26)

We have used the shorthand τ3 ≡ iτE + τ0 in the interest of space. The loop integral in the

parentheses is computed in (2.56). Substituting this into (2.26) the first order correction simplifies

to

−λ µ
ε k1−ε

a(τ0)
4∆φ

M2
∫

∞

−∞

dτE
a(iτE + τ0)

ε

|τE |1−ε
K2

ε−1
2
(k|τE |) . (2.27)

Comparing this with (2.25) we see that tree level behavior of the correlation function has already

factorized out.

Finally, we are left with only the time integral to compute. This integral is the source of
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the secular divergence. In the limit |~kτ0| � 1 and ε → 0, (2.27) is approximately

+
λ

64π4
k1−ε

a(τ0)
4∆φ

(
1
ε
+ log

(
µ

H

)
− log(−kτ0)+ . . .

)
, (2.28)

where . . . are terms that vanish in the limit |~kτ0| � 1. The 〈φ 2φ 2〉 correlation function at order

λ is then

〈φ 2(~k,τ0)φ
2(−~k,τ0)〉=

c

2a(τ0)
2∆

φ2
k1−ε

[
1+

λ

32π4c

(
1
ε
+ log

(
µ

H

)
− log(−kτ0)+ . . .

) ]
.

(2.29)

Removing the divergence in (2.29) and performing a dynamic RG resummation:

〈φ 2(~k,τ0)φ
2(−~k,τ0)〉

µ=H
=

c

2a(τ0)
2∆

φ2
k1−ε exp

(
− λH

32π4c
log(−kτ0)+ . . .

)
(1+ . . .)

=
c

2a(τ0)
2∆

φ2
k1−ε(−kτ0)

2γ
φ2(H)

(1+O(λ 2
H))

=
cH−2γ

φ2(H)

2a(τ0)
2∆

φ2+2γ
φ2(H)

k1−ε+2γ
φ2(H)

(1+O(λ 2
H))

where

γφ 2(H) =− λH

64π4c
=+

λH

16π2 . (2.30)

Comparing with (2.25) we see that the effective dimension of the φ 2 operator is corrected to:

∆φ 2 → ∆φ 2 + γφ 2(H) = 2− ε +
λH

16π2

which is precisely ∆φ 2 +γφ 2(µ = H) at one-loop, where γφ 2(µ = H) is the anomalous dimension

in flat space at the scale µ = H.
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2.3.2 Implications for λφ 4 in Four-Dimensions

As we discussed in Section 2.2.4, our results don’t crucially require that there is an

interacting IR fixed point. As such, we can also view the above calculation as the dimensional

regularization of λφ 4 in four-dimensions by taking the ε → 0 limit. In that case,

∆φ 2 = 2+
λH

16π2 (2.31)

where λH = λ (µ = H) as before. Unlike the ε > 0 case, in four-dimensions the theory flows to

the trivial fixed point in the IR, λ (µ → 0) = 0. Nevertheless, since the anomalous dimension is

fixed at µ = H we still have a finite λH . As a result, the power spectrum of φ 2 in de Sitter space

will acquire a fixed anomalous scaling with time and space in the super-horizon limit.

We can similarly conclude that conformally coupled scalars in de Sitter will acquire

anomalous scaling in four-dimensions. The anomalous dimension for φ in λφ 4 is generated

at two-loops and a direct calculation is beyond the scope of this work. Nevertheless, we can

conclude that such a two-loop de Sitter calculation should find that Equation (2.22) holds with

γφ (H) =
λ 2

H
12(4π)4 , (2.32)

in accordance with the anomalous dimension in flat space.

2.4 Yukawa Interaction

As a final example, we will study the RG flow of a scalar field theory in d = 4 dimensions

that is perturbed by a Yukawa coupling Lint = λφψ̄ψ , where ψ is a massless Dirac fermion. In

flat space, φ acquires an anomalous dimension at one loop and therefore will exhibit a 1-loop

secular divergence in dS. In this sense, the Yukawa coupling is the simplest example where the

power spectrum of a fundamental scalar (as opposed to a composite operator) exhibits secular

divergences of the type discussed in this paper.
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The calculation of this effect does not require us to discuss the mode functions of the

fermions directly. For the purpose of our calculation, ψ̄ψ = O is just an operator of dimension

∆ = 3− ε in a free CFT, where we have introduced ε as our regulator. We can therefore use the

action

S[φ ]+λ µ
ε

∫
d4x
√
|g|φ O (2.33)

and evaluate the correlation functions of O using the same conformal perturbation theory

approach described in Equation (2.5).

The two point correlation function for φ receives a 1-loop (O(λ 2)) correction from the

Yukawa interaction,

I ≡ 〈φ(~k,τ0)φ(−~k,τ0)〉1−loop =
(λ µε)2

2!

∫
∞

−∞

dτE a4(τ)
∫

∞

−∞

dτ
′
E a4(τ ′) (2.34)

〈T
(

φ(~k,τ0)φ(−~k,τ0)φ(−~k,τ)O(~k,τ)φ(~k,τ ′)O(−~k,τ ′)
)
〉 ,

where τ ≡ iτE + τ0 and τ ′ ≡ iτ ′E + τ0. We evaluate this correlator by Fourier transforming the

real-space correlation function of O given in Equation (2.1). Using (2.61) and (2.23) in (2.58),

we find

I =
(λ µε)2

a(τ0)2 N
∫

∞

−∞

dτE aε(τ)
∫

∞

−∞

dτ
′
E aε(τ ′)

∫
∞

∞

dω

2π

e−k(|τE |+|τ ′E |)+iω(τE−τ ′E)

(2k)2 (k2 +ω
2)1−ε

=
(λ µε)2

a(τ0)2 N
∫

∞

∞

dω

2π
I (ω,k) I (−ω,k)(k2 +ω

2)1−ε , (2.35)

where we have factorized the two time integrals by defining:

I (ω,k) =
∫

∞

−∞

dτE aε(iτE + τ0)
e−k|τE |+iωτE

2k
. (2.36)

We could compute this integral explicitly and substitute it back into (2.35) to proceed. However,

the calculations become complicated if we take that route. We will therefore pursue a simpler

21



strategy: first, we will evaluate (2.36) in flat space-time i.e. we set a(τ) = 1. Next, we will

compute (2.36) setting τ0 = 0. In each case we substitute the result back into (2.35) and extract

the ε → 0 behavior. The final answer for the general τ0 6= 0 case is then obtained by requiring

that it match with these calculations in the respective limits. The details are given in Appendix

2.B.4; the final results are (see (2.62) and (2.64))

I a=1
= − λ 2

16π2 k

(
1
ε
+2log

(
µ

k

)
− γE + . . .

)
(2.37)

I
τ0→0
= − λ 2

16π2 a(τ0)2 k

(
1
ε
+2log

(
µ

H

)
+A + . . .

)
, (2.38)

where A is a divergent piece defined in (2.65). Requiring that the general answer must reduce to

these expressions, we find the first order correction (2.35) is

I
ε,τ0→0≈ − λ 2

16π2 a(τ0)2 k

(
1
ε
+2log

(
− µ

kHτ0

)
+ . . .

)
. (2.39)

Note that setting τ0 = 0 in the log will cause it to blow up. This is the origin of the term A in

(2.38). Putting it all together, 〈φφ〉 is

〈φ(~k,τ0)φ(−~k,τ0)〉=
1

2a(τ0)2 k

(
1− λ 2

8π2

(
1
ε
+2log

(
− µ

kHτ0

)
+ . . .

))
. (2.40)

We remove the divergence in (2.40) using a counterterm δZ =−π2λ 2

8ε
and perform a dynamical

RG resummation to find

〈φ(~k,τ0)φ(−~k,τ0)〉
µ=H
=

H−2γφ (H)

2a(τ0)
2+2γφ (H) k1−2γφ (H)

,

where

γφ (H) = +
λ 2

H
8π2 . (2.41)
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Comparing with (2.23) we see that the dimension of the φ 2 operator is corrected to:

∆φ → ∆φ + γφ (H) = 1+
λ 2

H
8π2 .

As expected, γφ (H) is precisely the anomalous dimension found in four-dimensional flat space

from a Yukawa coupling of a scalar to a Dirac fermion.

2.5 Conclusions

Secular divergences present a significant challenge to perturbative calculations of cosmo-

logical correlators. In this paper, we have shown that a certain class of such divergences have

their origins as anomalous dimensions in flat space. Like anomalous dimensions, they can be

resummed to give corrections to the power law behavior at late times. This interpretation of

the divergences is unambiguous as this resummation is required to match the predictions at the

conformal fixed point.

Our results apply to a wide range of quantum field theories in de Sitter space. Massless

particles with spin are generically conformally coupled and admit a description in terms of

conformal perturbation theory. In contrast, scalar fields with generic masses are not conformal

in de Sitter and thus our treatment is limited to the case m2 ≈ d(d−2)H2/4. Scalar fields of

generic masses are far from conformal and display a wider range of IR phenomena not addressed

here. Ultimately, one hopes to have a complete understanding of secular divergences both of

quantum fields in de Sitter and in the presence of dynamical gravity.

The main conclusion from this paper is that there is a broad class of secular divergences

that is expected in QFT in de Sitter space and has an unambiguous and simple interpretation.

The meaning of IR divergences in de Sitter (particularly in the presence of gravity) has been the

subject of significant ongoing interest and we believe these simple calculable examples can serve

as a useful test-bed for future investigations.

The broader problem of characterizing all possible IR divergences of cosmological
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correlators remains an outstanding problem. Significant progress has been made recently on

the divergences associated with massless scalars in de Sitter [30, 31, 32] and ultimately confirm

the validity of the stochastic inflation framework [11] for understanding the non-trivial long

distance behavior. While light scalar fields have certainly presented a unique challenge to

perturbative calculations, we have seen here that there are still secular terms associated with

massive fields that arise as an interplay between the short-distance and late-time behavior. A

complete understanding of all such divergences at the same level as QFT in flat space would be a

desirable outcome of a renewed focus on IR effects in de Sitter.
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2.A Analytic Continuation of the In-In Formalism

Throughout the paper, we have integrated in Euclidean time to simplify time integration.

In this appendix, we will review this procedure following [53].

We will use the in-in formalism to define equal-time correlations functions in the Bunch-

Davies vacuum. These are most easily calculated using the interaction picture operators Qint and

Hamiltonian Hint(t) via [15]

〈Q(τ0)〉=
〈

T̄ exp
[

i
∫

τ0

−∞(1+iε)
Hint(τ)a(τ)dτ

]
Qint(τ0)T exp

[
−i
∫

τ0

−∞(1−iε)
Hint(τ)a(τ)dτ

]〉
.

(2.42)
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The Hamiltonian is given in terms of a Hamiltonian density, Hint(τ,x), via

Hint(τ) =
∫

d3xa3(τ)Hint(τ,x) . (2.43)

The deformation of the contour by a factor of (1± iε) defines the Bunch-Davies vacuum and

ensures that the integrals converge as τ →−∞. We can make this convergence manifest by

Wick rotating the contours on the left and right of the operator by τ →±iτE + τ0 [54, 53]. The

resulting expression for the in-in correlators becomes an anti-time ordered integral

〈Q(τ0)〉=
〈

T̄
(

Qint(τ0)exp
[
−
∫

∞

−∞

Hint (iτE + τ0)a(iτE + τ0)dτE

])〉
(2.44)

This is particularly useful for CFT correlators, where the anti-time order correlators in Euclidean

time are given by

〈O(iτE + τ0,~x)O(iτ ′E + τ0,~x′)〉=
a(iτE + τ0)

−∆a(iτ ′E + τ0)
−∆

[(τE − τ ′E)
2 +(~x−~x′)2]

∆
(2.45)

〈O(~x1, iτ1)O(~x2, iτ2)O(~x3, iτ3)〉=
C a(iτ1)

−∆a(iτ2)
−∆a(iτ3)

−∆

|x2
12 + τ2

12|∆/2|x2
23 + τ2

23|∆/2|x2
31 + τ2

31|∆/2 , (2.46)

where τi j = τi−τ j and~xi j =~xi−~x j. We left the τ0 dependence in Equation (2.46) implicit in the

interest of space. It is important to notice that all correlators are calculated at equal Lorentzian

time, τ0, and therefore the τ0 dependence cancels in τi j, as shown explicitly in Equation (2.45).

2.B Details of Loop Integration

The explicit calculations of some of the loop integrals in the main text are performed in

this appendix. A number of these integrals are divergent but are made finite with dimensional

regularization and/or analytic continuation. We will therefore explain the regularization schemes

first and then apply it to the integrals needed for the main text.
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2.B.1 Dimensional Regularization

Throughout this paper, integrals are regulated by a parameter ε that controls the scaling

behavior of the integral. This may or may not be related to the dimension of space-time, as

indicated in each section. In Section 2.2, we have general dimension d and an operator of

dimension ∆ = d− ε , where d and ε are independent parameters. It is therefore useful to think

of the d and ∆ dependence of these integrals as independent.

We will often be interested in d-dimensional radial Fourier transform of the correlation

functions. As a result, we often have to evaluate the following integral

1
|xxx|2∆

= π
d
2 2d−2∆

Γ(d
2 −∆)

Γ(∆)

∫ ddk
(2π)d eikkk·xxx 1

|kkk|d−2∆
. (2.47)

This integral is convergent for 2∆ < d. We will not be in this regime, but we will define the

integral at other values of ∆ by analytic continuation of the above formula. This is a standard

technique in QFT but is also commonly used as a definition of the Fourier transform. This choice

is justified because the divergent contributions we are neglecting are associated with δ -functions

in position space (contact terms) and therefore vanish when x 6= 0.

For conformal perturbation theory, one is often calculating an integral over a conformal

three-point function. Using Equation (3.42) and the convolution theorem, it is straightforward to

show that ∫ ddx3

(x2
13)

∆(x2
32)

∆
= π

d
2

(
Γ
(d

2 −∆
)

Γ(∆)

)2
Γ
(
2∆− d

2

)
Γ(d−2∆)

1
x4∆−d

12

. (2.48)

This result is again defined by analytic continuation, the divergent contributions are contact terms

and vanish when x12 6= 0.
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2.B.2 de Sitter Conformal Perturbation Theory

The leading correction to the two point correlation function 〈OO〉 in de Sitter space

involves the integral (see (2.14))

I =−λ µ
εC

a(τ0)
−2∆

x∆
12

∫
∞

−∞

dτE

∫
d3x3

a(iτE + τ0)
ε

|x2
23 + τ2

E |∆/2|x2
31 + τ2

E |∆/2 .

Shifting~x3→~x3 +~x1, we see that the~x3 integral is just a convolution of the function F(~x,τE) =

(x2 + τ2
E)
−∆/2 with itself,

I =−λ µ
εC

a(τ0)
−2∆

x∆
12

∫
∞

−∞

dτE a(iτE + τ0)
ε

∫
d3x3

1
|(~x21−~x3)2 + τ2

E |∆/2|x2
3 + τ2

E |∆/2

=−λ µ
εC

a(τ0)
−2∆

x∆
12

∫
∞

−∞

dτE a(iτE + τ0)
ε

∫ d3k
(2π)3 ei~k·~x21F̃(~k,τE)

2 .

In the last step, we have applied the convolution theorem,

∫
dDy F(~x−~y)F(~y) =

∫ dDk
(2π)D ei~k.~xF̃(~k)2 , (2.49)

and introduced

F̃(~k,τE) =
∫

d3xe−i~k·~x 1
(x2 + τ2

E)
∆/2 =

2π3/2

Γ
(
2− ε

2

) ( k
2 |τE |

) 1−ε

2

Kε−1
2
(k |τE |) .

The full expression is therefore

I =−λ µ
εC

a(τ0)
−2∆

x∆
12

∫
∞

−∞

dτE a(iτE + τ0)
ε

×
∫ d3k

(2π)3 ei~k·~x21
4π3

Γ
(
2− ε

2

)2

(
k

2 |τE |

)1−ε (
Kε−1

2
(k |τE |)

)2
.
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Computing the k integral,

I =−λ µ
εC

a(τ0)
−2∆

x∆
12

4π2

Γ
(
2− ε

2

)2

∫
∞

−∞

dτE a(iτE + τ0)
ε

×2−5+ε |τE |−5+2ε
Γ

(
5
2
− ε

)
Γ

(
2− ε

2

)
2F̃1

(
5
2
− ε,2− ε

2
;
5
2
− ε

2
;− x2

12
4τ2

E

)
.

where 2F̃1 is the regularized hypergeometric function. Carrying out the integral over τE and

taking the limits ε → 0 and τ0→ 0, we get

I ≈−λC
a(τ0)

−2∆

x2∆
12

4π
2
(

1
ε
+ log

(
−µx12

Hτ0

)
− γE + . . .

)
. (2.50)

2.B.3 Integrals in the λφ 4 theory

The equal time correlation function for the φ 2 operator (see Equation (2.25) and Fig. 2.1a)

involves the loop integral ∫ dD p
(2π)D

1

|~k+~p|p
. (2.51)

Usually, one computes loop integrals like this with Feynman parameters. However, there is

another way to do this calculation which is particularly useful for unequal times. We notice that

the integral (2.51) is just a convolution of the function k−1 with itself. Therefore, we can use the

convolution theorem in the form

∫ dD p
(2π)D F̃(~k−~p)F̃(~p) =

∫
dDx e−i~k.~xF(~x)2 , (2.52)

i.e. F̃ ∗ F̃ F.T←→ F2. If F̃(~p) is radially symmetric we can change ~p→−~p without changing the

result. Therefore, all we need to do is find the Fourier transform of k−1 and square it. Using

(3.42) we see that 2π2k−1 F.T←→ x−2+ε and therefore

∫ d3−εk
(2π)3−ε

1

|~k+~p|p
(2.52)
=

∫
d3−εx e−i~k·~x

(
1

2π2x2−ε

)2
(3.42)
= ck1−ε ,
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where

c =
Γ
(
1− ε

2

)2
Γ
(

ε−1
2

)
23−επ

5−ε

2 Γ(2− ε)
≈− 1

4π2 +O(ε) . (2.53)

We can use the same strategy to evaluate the loop integral in (2.26),

∫ d3−ε p
(2π)3−ε

e−|~k+~p||τE |

2|~k+~p|
e−p|τE |

2p
. (2.54)

Notice that the loop integral is a convolution of the function F̃(~k) = e−k|τE |
2k with itself. Moreover

e−k|τE |

2k
=
∫

∞

−∞

dω

2π
eiωτE

1
ω2 + k2 ≡ F̃(~k) ,

and therefore the Fourier transform of the function F̃(~k) is

F(~x) =
∫ dDk

(2π)D
e−k|τE |+i~k·~x

2k
=
∫ dDk

(2π)D

∫ dω

2π
eiωτE+i~k·~x 1

ω2 + k2

(3.42)
=

Γ(2−ε

2 )

π
4−ε

2 22

1

(x2 + τ2
E)

2−ε

2
.

We can now apply the convolution theorem (2.52) to the loop integral in (2.54) to find

∫ d3−ε p
(2π)3−ε

e−|~k+~p||τE |

2|~k+~p|
e−p|τE |

2p
=

Γ2(2−ε

2 )

π4−ε24

∫
d3−εx

e−i~k.~x

(x2 + τ2
E)

2−ε
. (2.55)

This result can be simplified using (3.42) if we turn dDxe−i~k·~x→ ddxe−iKKK·xxx where KKK ≡ (ω,~k)

and xxx≡ (τ,~x). To accomplish this we rewrite

1
(x2 + τ2

E)
2−ε

=
∫

∞

−∞

dτ δ (τ− τE)
1

(x2 + τ2)2−ε
=
∫

∞

−∞

dτ

∫
∞

−∞

dω e−iω(τ−τE)
1

(x2 + τ2)2−ε
,
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so that our integral becomes

∫
d3−εx

e−i~k.~x

(x2 + τ2
E)

2−ε
=
∫

∞

−∞

dω eiωτE

∫
d4−εx

e−iKKK·xxx

|xxx|4−2ε

(3.42)
= π

4−ε

2 2ε
Γ( ε

2)

Γ(2− ε)

∫
∞

−∞

dω
eiωτE

(ω2 + k2)ε/2

=
π

3−ε

2 2
1+ε

2

Γ(2− ε)

(
k
|τE |

) 1−ε

2

Kε−1
2
(k|τE |) ,

where Kν(z) is the modified Bessel function of the second kind. Plugging this back into

Equation (2.55), the loop integral turns out to be

∫ d3−ε p
(2π)3−ε

e−|~k+~p||τE |

2|~k+~p|
e−p|τE |

2p
= M

(
k
|τE |

) 1−ε

2

Kε−1
2
(k|τE |) (2.56)

where

M =
Γ2(2−ε

2 )

2
7−ε

2 π
5−ε

2 Γ(2− ε)

ε→0
=

1√
128π5

+O(ε) . (2.57)

2.B.4 Integrals for the Yukawa calculation

In the main text, we found the one-loop correction to the φ power spectrum was deter-

mined by the correlation function

I = (λ µ
ε)2
∫

∞

−∞

dτE a4(τ)
∫

∞

−∞

dτ
′
E a4(τ ′) (2.58)

〈T
(

φ(~k,τ0)φ(−~k,τ0)φ(−~k,τ)O(~k,τ)φ(~k,τ ′)O(−~k,τ ′)
)
〉 ,

where we have shown the contractions required for a connected correlator. To evaluate this

correlation function we need the anti-time-ordered two-point correlation function of O . However,

unlike a generic operator in a CFT, the normalization of O = ψ̄ψ is determined by the propagator

of the free fermion. With this normalization factor, the power spectrum of this operator is given
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by

〈T (O(~k,τ)O(−~k,τ ′))〉=
∫

d3x e−i~k·~x 〈T (O(x,τ)O(0,τ ′))〉 (2.59)

=
1

π4

∫
d3x e−i~k·~x a−∆(τ)a−∆(τ ′)

(x2 +(τE − τ ′E)
2)3−ε

(2.60)

(3.42)
= N

∫
∞

−∞

dω

2π
eiω(τE−τ ′E)(k2 +ω

2)1−εa(τ)−3+εa(τ ′)−3+ε , (2.61)

where, in the second line, the factor of π−4 arises for matching to a Dirac fermion and where we

have defined

N =
1

22−2επ2
Γ(−1+ ε)

Γ(3− ε)

ε→0
= − 1

8π

(
1
ε
−2γE + . . .

)
+O(ε) .

We now turn our attention to computing (2.35) in two simple cases: (i) In flat space-time and (ii)

when τ0 = 0. Starting with the flat space-time limit,

I (ω,k)
a(τ)→1
=

∫
∞

−∞

dτE
e−k|τE |+iωτE

2k
=

1
k2 +ω2 ,

the first order correction (2.58) is

Iflat = (λ µ
ε)2N

∫
∞

∞

dω

2π

1

(k2 +ω2)
1+ε

ε→0≈ − λ 2

16π2 k

(
1
ε
+2log

(
µ

k

)
− γE + . . .

)
.

Next, we return to de Sitter space but set τ0 = 0 to find

I (ω,k) =
∫

∞

−∞

dτE

(
− 1

H τE

)ε e−k|τE |+iωτE

2k

=
Γ(1− ε)

Hε

iε(k− iω)1−ε +(−i)ε(k+ iω)1−ε

2k (k2 +ω2)
1−ε

. (2.62)
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This expression can be simplified using exp
(
2i tan−1 (ω

k

))
= k+iω

k−iω . Then, the integrand in (2.35)

becomes

I (ω,k) I (−ω,k)(k2 +ω
2)1−ε

=
Γ(1− ε)2

H2ε k2 cos
(
(1− ε) tan−1

(
ω

k

)
+

πε

2

)
cos
(
(1− ε) tan−1

(
ω

k

)
− πε

2

)
ε→0≈ 1

k2 +ω2

(
1+
(

2γE −2logH +2
ω

k
tan−1

(
ω

k

))
ε +O(ε2)

)
. (2.63)

We can now substitute (2.63) into (2.35) to obtain

I0 =
(λ µε)2

a(τ0)2 N
∫

∞

∞

dω

2π

1
k2 +ω2

(
1+
(

2γE −2logH +2
ω

k
tan−1

(
ω

k

))
ε +O(ε)2

)

ε→0≈ − λ 2

16π2 a(τ0)2 k

(
1
ε
+2log

(
µ

H

)
+A + . . .

)
. (2.64)

In the final step we have used ∫
∞

−∞

dω

2π

1
k2 +ω2 =

1
2k

and introduced

A

k
=
∫

∞

−∞

dω

2π

ω

k
tan−1(ω/k)

k2 +ω2 =
1

2πk

∫
π/2

−π/2
dθ θ tanθ (2.65)

with θ = tan−1 (ω

k

)
. This term is clearly divergent and, as pointed out in the main text, it is a

consequence of setting τ0 = 0.
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Chapter 3

Regulating Loops in dS

3.1 Introduction

Inflationary theory [55, 56, 57] posits that the early universe underwent a period of

approximately de Sitter (dS) expansion. During this period, inflaton modes of large comoving

wavelength leave the horizon, only to re-enter at a later time and seed the structure we see in the

night sky. Thus, the quantum dynamics of these super-Hubble fluctuations become ingrained

in our cosmological observations. In particular, the equal time in-in correlation functions of

light scalar fields encode a great deal of information about the inflationary era that could be

revealed by measurements of primordial non-Gaussianity [58]. However, not enough is known

about these correlators beyond tree level. This situation becomes untenable as our measurements

improve in precision, especially in light of the fact that loop calculations lead to infrared (IR)

divergences and unbounded time-dependent ‘secular’ growth [9, 10, 12, 13, 14, 25, 26, 27, 28,

59, 60, 29, 61, 62, 63, 15, 16]. Such secular terms appear at all orders of perturbation theory,

and will be our primary concern in this paper.

In this work we develop a method to compute secular divergences associated with scalar

field theories on a fixed de Sitter background. It is not easy to calculate these divergences,

even for simple 1-loop diagrams [64, 26]. The basic problem is the lack of time translational

invariance in dS, which means time appears explicitly in the momentum integrals. Such integrals

are not scaleless, hampering our ability to compute them with the usual bag of tricks we employ
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in flat space. A solution to this problem was recently introduced in the form of Soft de Sitter

Effective Theory (SdSET) [65, 66] where, in the long wavelength limit, the time integrals

factorize and separate from integrals over 3-momenta. This returns the scalelessness of the

momentum integrals, allowing us to tame the divergences without violating the symmetries of

the underlying dS spacetime. However, we still need to match the EFT with the UV theory, and

it would be desirable to have a way of regulating loop integrals on the UV side that shares all the

nice properties of the regulator we use in the EFT (dynamical dimensional regularization). Such

a procedure must also be generalizable, so that we don’t have to invent a new way of doing the

integral for every diagram we encounter.

Our method starts with the following simple observation: dS spacetime has dilatation

invariance in place of the time translation invariance of flat space. The latter allows us to Fourier

transform the time variable, which suggests that the transform best suited for dS should have,

as its basis, the eigenfunctions of the dilatation generator. Mellin transforms have exactly that

property [67, 68, 69]. Once we switch to Mellin space, the momentum and time integrals

decouple, and the divergences manifest as overlaps of certain poles of the integrand. These

overlaps may be removed by introducing tiny shifts to these poles, in much the same way that

loops in flat space QFT are regulated by tweaking the number of dimensions [70, 71]. In fact,

the connection was first made in [72], and Mellin-Barnes (MB) integrals have been used widely

in evaluating sophisticated Feynman diagrams in particle physics [73, 74, 75, 76]. We employ

some of the tools developed in these papers in the present work, thereby placing our method on a

well-established foundation of computational techniques.

As with dimensional regularization (dimreg), our approach respects the symmetry of

the background de Sitter space at every step of the calculation. The end result also bears a

strong resemblance to a standard dimreg answer, with the secular growth encoded in diverging

Γ functions. Once isolated, such divergences can be interpreted with the machinery of the

dynamical renormalization group (DRG) [77, 64, 78, 41, 43, 42]. This procedure resums large

secular logs in the same way regular RG operates on UV logs in flat space. In the effective theory
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language, the DRG evolution of composite operators of a massless scalar naturally leads to the

framework of Stochastic Inflation, which describes the probability distribution of the scalar field

as a function of time [11, 79, 80, 65, 32, 31, 81]. Stochastic Inflation is the conceptual basis for

slow-roll eternal inflation, and even subtle changes to the time dependence in this picture can

have a profound impact on the phase transition to eternal inflation. Loop effects introduce such

corrections to this framework at higher order, as demonstrated with SdSET [66]. Our method

allows us to draw the same conclusion, by performing loop calculations in the full theory itself.

The paper is structured as follows: In sec. 3.2 we outline the transition to Mellin space

and explain how divergences are encoded in this representation. Next, we review the MB

representation of a 4-pt function in sec. 3.3, and use it to compute the O(λ ) contribution to

〈φ 2φ 2〉 and 〈φ 3φ〉 in sec. 3.4 and 3.5. We explain the calculations in detail, to be pedagogical, but

most of the intermediate steps are mechanical and can be automated [76, 75]. We also identify

the issue of requiring more than one parameter to regulate certain integrals, and offer some

suggestions to resolve this. By way of a quantitative example we have calculated the anomalous

dimension of the φ 2 operator over a range of masses and summarized them in table. 3.1. We

conclude in sec. 3.6 by reviewing the lessons learnt from our calculations and contemplating

future directions.

3.2 dS loops in Mellin space

Perturbative QFT calculations in dS are plagued by a variety of divergences. One

particular kind, the secular growth terms, causes the naive perturbation expansion to break down

at late times. Such contributions are often furnished by loop integrals, which are difficult to

compute in dS. The problem becomes more tractable if we represent the correlation functions in

Mellin space.
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3.2.1 General structure

Consider a scalar field φ with mass m in a fixed dS background with the metric ds2 =

a(τ)2(−dτ2 +d~x2), where d~x is a line element in D space dimensions, τ is the conformal time

and a(τ) =−1/Hτ . For a free scalar field one expands the field in modes according to

φ(~x,τ) =
∫ dDk

(2π)D ei~k·~x {v~k(τ)a~k + v∗~k(τ)a
†
~k
} . (3.1)

In the Bunch-Davies vacuum the modes are given by

v~k(τ) = e−
iπ
4 e−

πν

2

√
π

2
H

D−1
2 (−τ)

D
2 H(1)

iν (−kτ) , (3.2)

ν
def.
= i

√
D2

4
− m2

H2 . (3.3)

where H(1)
iν is the Hankel function of the first kind (we follow the convention in [67]). We

are interested in calculating correlation functions of the field at a fixed (late) time using the

in-in/Schwinger-Keldysh formalism (see [15, ?] for a review). Such calculations involve integrals

of the schematic form

〈φ ν

~k1
(τ0) · · ·φ ν

~kn
(τ0)〉in−in

⊃∏
i

∫
τ0

dτia(τi)
D+1

∏
j

∫ dD p j

(2π)D . . .Hiν(am(~k,~p)τi)Hiν(am+1(~k,~p)τi+1) . . .

(3.4)

where am(~k,~p) are some linear combinations of the 3-momenta. The evaluation of this integral is

made difficult by the fact that the variables of integration, τi and ~p j, are trapped as arguments of

Hankel functions. There are few special values of ν for which Hiν(−kτ) has a simpler functional
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form, but even in those cases calculations involving loop integrals are cumbersome1. To make

progress, we rely on the following convenient MB representations [82],

iπe
πν

2 H(1)
iν (z) =

∫ c+i∞

c−i∞

ds
2πi

Γ

(
s+

iν
2

)
Γ

(
s− iν

2

)(
− iz

2

)−2s

−iπe−
πν

2 H(2)
iν (z) =

∫ c+i∞

c−i∞

ds
2πi

Γ

(
s+

iν
2

)
Γ

(
s− iν

2

)(
iz
2

)−2s
(3.5)

where c > |ν |. These representations have been used to study late-time tree level correlation

functions in [67, 68]. Building on that work, we will explore whether the same approach is

fruitful in analyzing loop integrals in dS. To outline the procedure we begin by substituting (3.5)

into (3.4) and changing the order of integration,

〈φ ν

~k1
(τ0) · · ·φ ν

~kn
(τ0)〉in−in ⊃∏

`

∫
ds`Γ(s`+ iν

2 )Γ(s`− iν
2 )∏

i

∫
τ0

dτia(τi)
D+1(−τi)

−2s`

×∏
j

∫ dD p j

(2π)D . . .am(~k,~p)−2s` am+1(~k,~p)−2s`′ . . . . (3.6)

We have ‘released’ the variables τi and ~p j, at the cost of introducing an MB integral for each

Hankel function. The Mellin variables s` label the eigenstates of the dilatation generator [69].

In the late-time limit, τ0→ 0, the time integrals reduce to s-conserving delta functions at each

vertex [67, 68]; dilatation invariance of de Sitter space leads to conservation of s the same way

that translation invariance implies conservation of 3-momenta~k. We are then left with

〈φ ν

~k1
(τ0) · · ·φ ν

~kn
(τ0)〉in−in ⊃∏

`

∫
ds`Γ(s`+ iν

2 )Γ(s`− iν
2 )Q(sss)δ (s`+ . . .)δ (s`′′+ . . .) . . .

×∏
j

∫ dD p j

(2π)D . . .am(~k,~p)−2s` am+1(~k,~p)−2s`′ . . . . (3.7)

1For instance, the two point function of a conformal mass scalar has the form 〈φφ〉 ∼ eik(τ−τ ′)/k, where the
exponential makes it difficult to evaluate the loop integral with techniques we use in flat space calculations (see [64]
for more details). Life can be made simpler by imposing a hard cutoff, but this could generate unphysical logs.
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where Q(sss)≡Q(s1, . . . ,s`, . . .) is some ratio of polynomials of the Mellin variables. The form of

the r.h.s. reflects the fact that dilatation and translation do not commute. The momentum integrals

are now manifestly scaleless. Evaluating these introduces new s`-dependent Γ functions,

〈φ ν

~k1
(τ0) · · ·φ ν

~kn
(τ0)〉in−in ⊃∏

`

′
∫

ds`Γ(s`+ iν
2 )Γ(s`− iν

2 )Q(sss)
Γ(D− s`′− . . .) . . .

Γ(s`− . . .) . . .
b`(~k)s`

(3.8)

where b`(~k) are ratios involving the external momenta, and the prime on ∏ j
′ indicates that we

have applied the delta functions in s. All that remains is the evaluation of a multidimensional MB

integral (3.8). Integrals of this form have been studied extensively as a tool to simplify certain

Feynman diagrams in particle physics [83, 73, 74, 75, 76]. Drawing on that literature, we turn

our attention to extracting and understanding the divergences contained in (3.8).

3.2.2 Divergences in MB integrals

Consider the simple case of an MB integral

K(x) =
∫ +i∞

−i∞

ds
2πi

Γ(s−a)Γ(−s)x−s. (3.9)

The poles of the integrand are the poles of the Γ functions. These are at s? = a,a−1,a−2,a−

3, . . . which are the ‘left’ poles and at s? = 0,1,2,3, . . . which are the ‘right’ poles. The contour

is a straight line that runs parallel to the ℑ(s) axis and it must separate all left poles from all right

poles. This is the Mellin contour prescription. We may then close the contour on either the left

or right half plane, picking up the residues at the poles.

Now consider the case where a = 0. This leads to an overlap of the zeroth left and right

poles as shown in Fig. 3.1a. In this situation no choice of contour can separate all left poles from

the right ones. Instead, if we set a =−ε , where ε is a vanishingly small positive number, we

have the situation shown in Fig. 3.1b. The overlap is removed and a contour C can be driven

between the left and right poles. As ε approaches zero the contour is said to be ‘pinched’. The
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ℜ(s)

ℑ(s)

0 1 2

0−1−2

With a = 0

(a) Poles of Γ(s)Γ(−s)

ℜ(s)

ℑ(s)

0 1 2

−1−ε−2−ε −ε

C

With a =−ε < 0

∼ Γ(ε)

finite

(b) Poles of Γ(s+ ε)Γ(−s)

Figure 3.1. Regulating divergences in MB integrals. The overlap of the zeroth left and right
poles in (a) makes (3.9) undefined because no contour can separate all the left poles from right
ones. In (b) we have shifted the left poles to the left by ε , allowing us to drive a contour between
the two kinds of poles. In the limit ε → 0 we approach the situation in (a), known as contour
pinching, which results in a divergence Γ(ε). This is simply the residue at s? = 0, as we close
the contour on the RHP. The residues at the other poles are finite in the same limit.

value of the integral at ε = 0 is defined by analytic continuation of the integral at ε > 0.

If we close C on the RHP we pick up the residues at the right poles. However, notice

that the residue at the zeroth right pole s? = 0 is

Res[Γ(s+ ε)Γ(−s)x−s;s = 0] =−Γ(ε), (3.10)

which blows up as ε → 0. In other words, an overlap of left/right poles signal divergences in the

MB integral. Also note how the divergence appears as a Γ(ε), in the same way it does for a flat

space loop integral computed with dimreg2.

2In fact, the Mellin approach produces the same answer in flat space, that we obtain by the conventional methods.
See Ch. 4 of [83] for an instructive example which uses the MB representation of Feynman propagators to compute
the one-loop self-energy graph in QED.
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ℜ(s)

ℑ(s)

0 1 2

−1−ε−2−ε −ε

C ′

Figure 3.2. A contour that does not separate left/right poles.

What happens if the contour does not separate the left and right poles? Suppose we

chose to integrate over a contour C ′ that intersects ℜ(s) to the left of the pole at s? = −ε ,

as in Fig. 3.2. Then, this pole must be included in the sum of residues. But that means

K′(x) = Res[s = −ε] +Res[s = 0] + · · · = Γ(ε)−Γ(ε)+ . . . . That is, there is no divergence,

even in the limit ε → 0 when the zeroth poles overlap. The situations in Fig. 3.1b and Fig. 3.2

differ only by the placement of the pole at s? =−ε . Therefore we can write

∫
C

ds
2πi

Γ(s+ ε)Γ(−s)x−s =+Res[s =−ε]+
∫
C ′

ds
2πi

Γ(s+ ε)Γ(−s)x−s. (3.11)

The integral over C ′ is a finite and the divergence manifests in the residue at −ε . Incidentally,

this also suggests an algorithm to identify and separate the divergence from any Mellin integral.

If we keep the contour fixed in Fig. 3.1b and decrease ε , the zeroth left pole will cross over to the

right at some point. We then end up in the same situation as Fig. 3.2, except that the contour is

still C . To recover the original integral we’ll need to add the residue at s? =−ε , just as we did

in (3.11), thereby isolating the divergence as a separate term. This is the basis of the procedure,

first introduced in [74], to extract divergences from Mellin integrals over several variables.
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3.2.3 N-dimensional MB integrals

By iterating the same basic steps discussed above, we can identify and separate diver-

gences in an N-dimensional MB integral of the general form (cf. (3.8))

K(x1,x2, . . . ,xN) =
∫ i∞

−i∞

ds1

2πi
· · ·
∫ i∞

−i∞

dsN

2πi
∏i Γ(Ui(sss))
∏ j Γ

(
Vj(sss)

)x−s1
1 · · ·x−sN

N , (3.12)

where xn are the ratios of kinematic variables, sss = (s1, . . . ,sN), and the arguments of the Γ

functions in the MB integrand are

Ui(sss)
def.
= ai +∑

`

bi`s`

Vj(sss)
def.
= a′i +∑

`

b′i`s`
(3.13)

where the constants ai,bi` etc. are reals. The integral in (3.12) is just an extension of (3.9) to N

Mellin variables. The poles of this integral are the poles of the Γ functions in the numerator, that

is, those sss where

Ui(sss) =−n, n ∈ Z0. (3.14)

As before, an MB integral is well-defined if the contours separate the left and right poles. For a

multidimensional MB integral like (3.12) this condition is equivalent to the requirement

Ui(C )> 0 ∀ i (3.15)

where Ui(C ) is the real part of Ui evaluated on the contour C . For example, consider the situation

in Fig. 3.3. If U1(s) = a+ s, then U1(C ) = a+ sC > 0 if we choose a contour which intersects

the ℜ(s) axis at sC > −a. Similarly, if U2(s) = b− s then U2(C ) = b− sC > 0 =⇒ sC < b.

Taken together, an integral with both these Γ functions requires −a < sC < b, which is exactly

the condition that the contour must separate the left/right poles.
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ℜ(s)

ℑ(s)

b b+1 b+2

−a−a−1−a−2

C

Figure 3.3. Pole structure of an MB integral
∫
C

ds
2πiΓ(a+ s)Γ(b− s)x−s. The contour satisfies

a < sC < b, which is equivalent to the condition that the arguments of the Γ functions in the
integrand are positive when evaluated on the contour (cf. (3.15)).

Generalizing this further, the condition for the nth pole of Γ(Ui) to be on the ‘correct’

side is Ui(C )+n > 0. That is, an nth right pole will be on the right side of the contour and an nth

left pole will be on the left if this inequality is satisfied. Otherwise it means that the pole has

crossed the contour. Thus, we have the following pole crossing condition for the nth pole,

Ui(C )+n < 0. (3.16)

The inequalities (3.15) and (3.16) allow us determine where a pole is, even in the N-dimensional

case when it becomes difficult to visualize the location of the poles and contours.

3.2.4 Analytic continuation

The MB integral in (3.12) will have divergences if the integrand has overlapping left/right

poles. This makes it impossible to choose a set of straight line contours that satisfy (3.15) for all

Ui (Fig. 3.4a). We circumvent this issue by introducing parameters εk into our integral that shift

the poles around until we can meet the conditions (3.15). That is, we change (3.13) to

Ui(sss)→ ai +∑
`

bi`s`+∑
k

cikεk

Vj(sss)→ a′i +∑
`

b′i`s`+∑
k

c′ikεk,

(3.17)
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and choose the initial values εk = ε
(0)
k to make the left/right poles separable with straight line

contours (Fig. 3.4b). The original integral, for which εk = 0, is defined by analytic continuation

of the integral with the modified arguments (3.17). As we take εk→ 0, some of the poles will

cross over to the ‘wrong’ side of the contours (Fig. 3.4c), and we separate the residues at those

poles as in (3.11). Around εk ∼ 0 some left/right poles nearly overlap, with the small non-zero

values of εk keeping them from complete coalescence. The residues at these poles isolate the

divergences in the original integral. We can understand these ideas with a rudimentary example.

Consider the double integral

K =
∫
Cz

dz
2πi

∫
Cw

dw
2πi

Γ1(z,w,ε)Γ2(z,w,ε) . . .Γm(z,w,ε), (3.18)

where Γi(z,w,ε)≡ Γ(Ui(z,w,ε)) are Gamma functions with arguments of the form (3.17), and

Cz and Cw are straight line contours which we close in the right half plane. These contours

separate the left/right poles of the integrand at ε = ε0. Suppose that, as we decrease ε → 0, the

first left pole z? of Γ1 has crossed to the right of Cz at ε = ε1. Following the discussion around

(3.11), we may write

K = Res[Γ1;z?]
∫
Cw

dw
2πi

Γ2(z?,w,ε1) · · ·+
∫
Cz

dz
2πi

∫
Cw

dw
2πi

Γ
∗
1(z,w,ε1)Γ2(z,w,ε1) . . .

def.
= K1 +K∗. (3.19)

The asterisk on Γ∗1 indicates that the n = 0 pole of that function is on the ‘wrong’ side. Therefore,

the double integral K? includes a contribution−Res[Γ1;z?] (the minus sign is due to the clockwise

direction of the contour), which needs to be compensated with a +Res[Γ1;z?] to recover the

original integral K. This is exactly the term K1, which is the residue of K at the first pole of

Γ1. If z? was a right pole that crossed to the left we would have written
∫
Cz

dz
2πiΓ1(z,w,ε1) =

−Res[Γ1;z?] +
∫
Cz

dz
2πiΓ

∗
1(z,w,ε1). Next, we concentrate on the K1 term3. As we continue

3Note that Γ2(z?,w,ε1) can have a different w dependence than Γ2(z,w,ε1).
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ℜ(s`)

ℑ(s`)

overlap

overlap

(a) The original integrand, with all εk = 0, has overlapping poles.

ℜ(s`)

ℑ(s`)
C

(b) The poles are separated initially by setting εk = ε
(0)
k .

ℜ(s`)

ℑ(s`)
C

∼ Γ(ε)

∼ Γ(ε)

(c) Some poles end up on the wrong side of the contour and nearly overlap when εk ∼ 0

Figure 3.4. An MB integral is defined by shifting its poles around till the left/right poles are
separated by a straight line contour. Analytic continuation involves reverting these shifts and
allowing the poles to cross back to their original position. As a pole crosses the contour, we
isolate the contribution at that pole (cf. (3.11)). Some of the left/right poles (encircled) nearly
overlap, resulting in divergences. For an N-fold MB integral all this happens across N complex
s`-planes simultaneously. Note: The poles in these figures have been staggered vertically for
clarity; they are all real valued in our examples. See sec. 3.2.4 for further explanation.
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decreasing ε , suppose a pole w? of Γ2 has crossed over at ε = ε2. Then,

K1 = Res[Γ1;z?]Res[Γ2(z?) . . .Γm(z?);w?]+Res[Γ1;z?]
∫
Cw

dw
2πi

Γ
?
2(z?,w,ε2) . . .

def.
= K12 +K∗1 . (3.20)

Similarly, if a pole of Γ2 crosses over in K? as we decrease ε from ε1, we write K∗ = K∗2 +K∗∗.

We will assume that no more poles cross over as we continue down to ε ∼ 0. Therefore we can

expand the integrals in K∗1 ,K
∗
2 and K∗∗ as a Taylor series in ε . It is clear from context which

poles are on the wrong side, so we will drop the asterisks on the K’s henceforth4. Collecting

everything together, we obtain

K→ K12 +K1 +K2 +K. (3.21)

This is just a 2-fold version of (3.11). The break up of K depends on the choice of contours, but

the final answer will be the same when everything is added up. Some of the terms in (3.21) will

contain Γ(ε)’s, from taking residues at nearly overlapping poles (see Fig. 3.4c). These are the

divergences we are looking for. Since (3.18) is a 2-fold integral there can be a maximum of two

simultaneous pinches, and the leading behavior around ε ∼ 0 is at most

K ∼ const.
ε2 +

const.′

ε
+O(ε0). (3.22)

The extension to the N-dimensional integral (3.12) is straightforward. The procedure described

above has been developed into an algorithm in [73, 75, 76]. We will illustrate the steps in the

examples below.

4The naming convention for the r.h.s. of (3.21) is from [74].
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τ0

τ

~k1 ~k2 ~k3 ~k4

time

Figure 3.5. The 4-pt correlation function at tree level.

3.3 The tree level 4-point function

The calculations in this paper begin with the contraction of the tree level 4-point function

of scalar fields shown in Fig. 5.3 (we are working with a λφ 4 interaction). The MB representation

of such functions are detailed in [67]. We will summarize just the basic elements required to

set up our loop integrals, using the same conventions as that paper. First, the Mellin-Barnes

representation for the dS bulk-to-boundary propagator is

F(ν)

±,~k (τ;τ0) = (−τ)
D
2−iνNν (τ0)

∫ i∞

−i∞

ds
2πi

eδ
±
ν (s)

Γ

(
s+

iν
2

)
Γ

(
s− iν

2

)(
−τk

2

)−2s+iν

(3.23)

where τ is a point in the bulk and the late time τ0→ 0. The contour is a vertical line that intersects

the real axis to the right of the pole at s? =− iν
2 . The other symbols are

δ
±
ν (s)def.

= ∓ iπ
(

s+
iν
2

)
(3.24)

Nν (τ0)
def.
= (−τ0)

D
2 +iν Γ(−iν)HD−1

4π
(3.25)

The +(−) sub-indices indicate the contributions from the (anti)-time-ordered branches of the

in-in contour. The four point correlator of Fig. 5.3 is given by

〈
φ
(ν1)
~k1

φ
(ν2)
~k2

φ
(ν3)
~k3

φ
(ν4)
~k4

〉′
±
=±i

∫
τ0

−∞

dτ

(−Hτ)D+1

4

∏
j=1

F(ν j)
~k j,±

(τ;τ0) . (3.26)
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Substituting (3.23) into this equation gives

〈
φ
(ν1)
~k1

φ
(ν2)
~k2

φ
(ν3)
~k3

φ
(ν4)
~k4

〉′
±
=±iH−D−1N4(τ0,ki)

∫
[ds]4 ρ(sss,ννν)

4

∏
j=1

eδ
±
ν j (s j)

(
k j

2

)−2s j

×
∫

τ0

−∞

dτ (−τ)D−1−2(s1+s2+s3+s4),

(3.27)

where [ds]N
def.
= ∏

N
j=1
∫ ds j

2πi and

ρ(sss,ννν)def.
=

4

∏
j=1

Γ

(
s j +

iν j

2

)
Γ

(
s j−

iν j

2

)
, (3.28)

N4(τ0,ki)
def.
=

4

∏
j=1

(
k j

2

)iν j

Nν j(τ0). (3.29)

The momentum and time arguments which were previously trapped inside the arguments of

Hankel functions are now out in the open. We can do the time integral right away,

∫
τ0

−∞

dτ (−τ)D−1−2(s1+s2+s3+s4) =
−(−τ0)

D−2(s1+s2+s3+s4)

D−2(s1 + s2 + s3 + s4)

τ0→0
= iπδ (D

2 − (s1 + s2 + s3 + s4))

(3.30)

which converges5 for ℜ
(D

2 − (s1 + s2 + s3 + s4)
)
< 0. Applying the delta function constraint

and reorganizing a bit allows us to write (3.27) as

〈
φ
(ν1)
~k1

φ
(ν2)
~k2

φ
(ν3)
~k3

φ
(ν4)
~k4

〉′
±
=±i

H−D−1

2
e∓i π

2 (D+i(ν1+ν2+ν3+ν4))N4(τ0,ki)I(kkk,ννν), (3.31)

I(kkk,ννν)def.
=
∫
[ds]4 2πiδ

(
D
2
− (s1 + s2 + s3 + s4)

)
ρ(sss,ννν)2D

4

∏
j=1

k−2s j
j . (3.32)

5Usually the in-in contours are deformed slightly, such that the lower limit of the forward and return legs are
−∞(1∓ iε), to kill the contribution from very early times. The same thing is accomplished here by constraining the
real part of the Mellin variables.
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φ 2(~k,τ0) φ 2(~k′,τ0)

~k+~p

~p

Figure 3.6. 〈φ 2φ 2〉 at tree level.

The full 4-point function is the sum of the contributions from the forward and return legs of the

in-in contour,

〈
φ
(ν1)
~k1

φ
(ν2)
~k2

φ
(ν3)
~k3

φ
(ν4)
~k4

〉′
= H−D−1 sin

(
π

2
(D+ i(ν1 +ν2 +ν3 +ν4))

)
N4(τ0,ki)I(kkk,ννν). (3.33)

3.4 The anomalous dimension of φ 2

As our first example we compute at 1-loop the anomalous dimension of the φ 2 operator,

γφ 2 . This quantity was computed for the conformal mass case in [64]. We will set up the problem

for a scalar field with general mass m and plug in a specific value for m later. We start with the

tree level expression for 〈φ 2φ 2〉 (see Fig. 3.6),

〈φ 2
φ

2〉′tree = 2
∫ dD p

(2π)D G(ν)
~k+~p

(τ0)G
(ν)
~p (τ0) (3.34)

where G(ν) is the late time two point function

G(ν)
~k

(τ0) = lim
τ0→0

〈
φ
(ν)
~k

(τ0)φ
(ν)
~k′

(τ0)
〉′

=
HD−1

4π
Γ(−iν)2(−τ0)

D+2iν
(

k
2

)2iν

. (3.35)

We could, for instance, arrive at this expression by taking the limit τ→ τ0 ∼ 0 in (3.23) in which
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case the integral is dominated by the pole at6 s? =− iν
2 . The momentum integral in (3.34) can be

computed using the convolution theorem (cf. (3.41)). The result is

〈φ 2
φ

2〉′tree =
2

(4π)
D
2 +2

Γ(−D
2 −2iν)Γ(D

2 + iν)2Γ(−iν)2

Γ(D+2iν)
H2D−2(−τ0)

2D+4iνkD+4iν . (3.36)

Next, we calculate the first order correction 〈φ 2φ 2〉λ which is obtained by contracting the legs

τ0

τ

~k+~p1 ~p1 ~p2 ~k+~p2

~p1 ~p2
τφ 2(~k,τ0) φ 2(~k′,τ0)

~k+~p1 ~k+~p2

~p1 ~p2
time

Figure 3.7. The first order correction to 〈φ 2φ 2〉.

of the 4-point correlation function (3.33) as shown in Fig. 3.7. This corresponds to setting

~k1 =~k+~p1,~k2 = ~p1,~k3 =~k+~p2 and~k4 = ~p2 in (3.33) and integrating over ~p1 and ~p2,

〈φ 2
φ

2〉′
λ
=
∫ dD p1

(2π)D
dD p2

(2π)D

〈
φ
(ν1)
~k+~p1

φ
(ν2)
~p1

φ
(ν3)
~k+~p2

φ
(ν4)
~p2

〉′
=C

∫
[ds]4 2πiδ (D

2 − (s1 + s2 + s3 + s4))ρ(sss,ννν)2DIspec(k,sss,ννν). (3.37)

Here, Ispec is the momentum integral and we have collected the prefactors into the constant C,

Ispec(k,sss,ννν) =
∫ dD p1

(2π)D
dD p2

(2π)D
1

|~k+~p1|2s1−iν1

1

p2s2−iν2
1

1

|~k+~p2|2s3−iν3

1

p2s4−iν4
2

(3.38)

C = H−D−1 sin
(

π

2
(D+ i(ν1 +ν2 +ν3 +ν4))

)( 4

∏
j=1

1
2iν j

Nν j(τ0)

)
. (3.39)

We keep the masses distinct for now, leaving open the possibility of using the ν j’s to regulate the

divergences in (3.37). The momentum integral (3.38) clearly factorizes into two integrals of the

6The integrand in (3.23) also has poles s? = iν
2 +n but these produce analytic terms in k which don’t give rise to

long-distance correlations. See [67].
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form

Imom(a,b) =
∫ dD p

(2π)D
1

|~k+~p |a
1
pb . (3.40)

This presents us with the opportunity to introduce an analytic continuation parameter. To see

how, we first note that Imom is just the convolution of the function f̃n(~p) = 1/pn with itself,

Imom(a,b) =
∫ dD p

(2π)D f̃a(~k+~p) f̃b(~p) =
∫

dDye−i~k·~y fa(~y) fb(~y), (3.41)

where fn(~y) is given by the radial Fourier transform

fn(~y) =
∫ dD p

(2π)D
ei~p·~y

pn =
1

2nπD/2

Γ
(D−n

2

)
Γ
(n

2

) yn−D. (3.42)

Before substituting this into (3.41) we change the integral measure dDy→ dD̄y with the promise

that we’ll take D̄→D at the end. We will also introduce a factor of (−τ0)
D−D̄ in front to preserve

the overall dimensions, and to ensure that the momenta~k appears as the product −kτ0 in the final

answer. This way it remains invariant under the rescaling k→ ρ−1k and a(τ)→ ρ−1a(τ) [64].

With these changes

Īmom(a,b) =
1

2a+bπD

Γ
(D−a

2

)
Γ
(D−b

2

)
Γ
(a

2

)
Γ
(b

2

) (−τ0)
D−D̄

∫
dD̄y

e−i~k·~y

y2D−a−b

(3.42)
=

1

(4π)
2D−D̄

2

Γ
(D−a

2

)
Γ
(D−b

2

)
Γ
(a

2

)
Γ
(b

2

) Γ

(
a+b

2 − 2D−D̄
2

)
Γ
(
D− a+b

2

) kD−a−b(−kτ0)
D−D̄ (3.43)

where we have introduced a bar above Īmom to indicate that we have tampered with the dimension

D at an intermediate step. The difference D−D̄ can be used as an analytic continuation parameter.

We introduce this parameter into one of the momentum integrals in (3.38) by writing

Ispec = Īmom(2s1− iν1,2s2− iν2)× Imom(2s3− iν3,2s4− iν4) (3.44)
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with the other momentum integral obtained by setting D = D̄ in (3.43). We may now substitute

this into (3.37) and integrate over s4 to apply the delta function. The result is

〈φ 2
φ

2〉′
λ
=C

2D

(4π)
3D−D̄

2

(−kτ0)
D−D̄ kD+i∑ j ν j

×
∫
[ds]3 Γ(D

2 − s1− s2− s3 +
iν4
2 )Γ(s1 + s2 + s3 +

iν4
2 )

3

∏
j=1

Γ
(
s j +

iν j
2

)
Γ
(

D
2 − s j +

iν j
2

)
×

Γ

(
D̄
2 −D+ s1 + s2− iν1

2 −
iν2
2

)
Γ

(
D− s1− s2 +

iν1
2 + iν2

2

) Γ

(
−s1− s2− iν3

2 −
iν4
2

)
Γ

(
D
2 + s1 + s2 +

iν3
2 + iν4

2

) . (3.45)

The divergences are completely encoded in the 3-fold MB integral. To proceed we will need to

plug in values for D and ν j.

3.4.1 The conformal mass case

We will first compute γφ 2 for a scalar field with conformal mass m2 = 2H2 in D = 3

dimensions. This corresponds to ν = i
2 . Substituting these numbers into (3.36) we obtain the

tree level contribution

〈φ 2
φ

2〉′tree =−
1

8π2 (−Hτ0)
4k. (3.46)

The first order correction follows from setting

ν2→
i
2
− i2α

ν j→
i
2
, j 6= 2

D̄→ 3+2δ

(3.47)

in (3.45). We have introduced the parameters α and δ to make the MB integral well-defined,

that is, to remove any overlaps of left/right poles as required by the Mellin contour prescription7.

These are the parameters denoted by εk in (3.17). The actual integral, with α = 0 = δ , will be

7It is possible to remove all pole overlaps in this case with just one parameter, as discussed in sec. 3.4.1. We
chose to use two here to illustrate some aspects of using multiple parameters.
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defined by analytically continuing in these parameters. With these substitutions

〈φ 2
φ

2〉′
λ
=C

8
(4π)3−δ

k1+2α(−kτ0)
−2δ

∫
[ds]3

Γ1Γ2Γ3Γ4Γ5Γ6Γ7Γ8Γ9Γ10

Γ11Γ12
, (3.48)

where we have labelled the Γ-functions,

Γ1 = Γ(− 1
4 + s1)

Γ2 = Γ( 5
4 − s1)

Γ3 = Γ(− 1
4 + s2 +α)

Γ4 = Γ( 5
4 − s2 +α)

Γ5 = Γ(− 1
4 + s3)

Γ6 = Γ( 5
4 − s3)

Γ7 = Γ(− 1
4 + s1 + s2 + s3)

Γ8 = Γ( 5
4 − s1− s2− s3)

Γ9 = Γ( 1
2 − s1− s2)

Γ10 = Γ(−1+ s1 + s2−α +δ )

Γ11 = Γ(1+ s1 + s2)

Γ12 = Γ( 5
2 − s1− s2 +α).

(3.49)

The evaluation of this integral is discussed in detail below. However, most parts of the calculation

can be done using the MB Mathematica package by Czakon [76].

Choosing the contours

We shall focus on the MB integral

K =
∫
[ds]3

Γ1Γ2Γ3Γ4Γ5Γ6Γ7Γ8Γ9Γ10

Γ11Γ12
. (3.50)
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We will integrate this over straight line contours. The integral is well-defined if we can choose

contours such that (3.15) is satisfied. This gives the following inequalities:

U1,2(C )> 0 =⇒ 1
4
< sC

1 <
5
4

U3,4(C )> 0 =⇒ 1
4
−α < sC

2 <
5
4
+α

U5,6(C )> 0 =⇒ 1
4
< sC

3 <
5
4

U7,8(C )> 0 =⇒ 1
4
< sC

1 + sC
2 + sC

3 <
5
4

U9(C )> 0 =⇒ sC
1 + sC

2 <
1
2

U10(C )> 0 =⇒ sC
1 + sC

2 > 1+α−δ .

(3.51)

These inequalities can be combined to give the condition

max
(

1
4
,

3
4
−α,

5
4
+α−δ

)
< sC

1 + sC
2 + sC

3 < min
(

5
4
,

7
4
,

15
4
+α

)
. (3.52)

The contours sC
1 and sC

2 have another constraint which follows from U1,3,9(C )> 0,

1
2
−α < sC

1 + sC
2 <

1
2
. (3.53)

This condition can only be satisfied if α > 0. This means that for sufficiently small α and δ ,

(3.52) becomes
5
4
+α−δ < sC

1 + sC
2 + sC

3 <
5
4
, (3.54)

which requires δ > α . The inequalities (3.53) and (3.54) indicate that the contours are pinched,

with α and δ −α being the width of the pinches (cf. Fig. 3.3). We will see shortly how these

pinches manifest as the divergences of (3.50).

The conditions (3.51) can be satisfied by choosing α = 0.1,δ = 0.7,sC
1 = sC

3 = 0.3 and

sC
2 = 0.17. This choice is by no means unique.
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Analytic continuation

With the contours fixed we start at α = 0.1,δ = 0.7 and analytically continue to the

region around α,δ ∼ 0. As we decrease α and δ we keep track of the poles that cross the straight

line contours and add the residues at those poles to the integral in (3.50), now evaluated at a

smaller value of the parameters α and δ . These residue terms may have poles in the remaining

variables which can cross other contours as the parameters are decreased further. Iterating this

process we end up with a collection of residue terms, plus the original four fold integral. Some

of the residue terms contain factors that diverge as α,δ → 0. All remaining integrals can simply

we expanded in α,δ under the integral sign since there are no further pole crossings.

The present example is simple enough that we end up with only four residue terms.

Decreasing to α = 0.08 and δ = 0.56, the first poles to cross the contours are at s2 =
1
4 −α and

s2 = 1− s1 +α−δ which are the zeroth poles of Γ3 and Γ10. Following the pattern in (3.11)

and (3.21), we can write

K→ K3 +K10 +K, (3.55)

where the K on the r.h.s. is evaluated at the new values of α and δ , and

K3 =
∫ ds1

2πi
ds3

2πi
Γ1Γ2 Γ4Γ5Γ6Γ7Γ8Γ9Γ10

Γ11Γ12

∣∣∣∣
s2=

1
4−α

, (3.56)

K10 =
∫ ds1

2πi
ds3

2πi
Γ1Γ2Γ3Γ4Γ5Γ6Γ7Γ8Γ9

Γ11Γ12

∣∣∣∣
s2=1−s1+α−δ

. (3.57)

The Γ functions of K3 and K10 will have a different dependence on α and δ once s2 is eliminated.

Reducing the parameters further we find that the zeroth pole of Γ9, at s1 =
1
4 +α , crosses over

in K3 prompting us to write K3→ K39 +K3. At the same time the pole s3 =
1
4 −α + δ of Γ8

crosses over in K10 leading to the split K10→ K10,8 +K10. There are no further pole crossings as
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α,δ → 0. All in all we end up with

K→ K39 +K10,8 +K3 +K10 +K. (3.58)

The term K39 is

2Γ(α)Γ(1−α)Γ(2α +1)Γ(−1
2 −α +δ )√

πΓ(α +2)

∫ 0.3+i∞

0.3−i∞

ds3

2πi
Γ( 3

4 − s3)Γ( 5
4 − s3)Γ(− 1

4 + s3)Γ( 1
4 + s3).

(3.59)

The left/right poles in the s3 integral are separated by the contour. Therefore we can evaluate this

integral using Barnes’s first lemma8 to obtain

K39 =−2πΓ(α)+O(1). (3.61)

Next, the integral K10,8 is

K10,8 =
Γ(δ −α)Γ(1+α−δ )Γ(− 1

2 −α +δ )

Γ(3
2 +δ )Γ(2+α−δ )

×
∫ 0.3+i∞

0.3−i∞

ds1

2πi
Γ( 5

4 − s1)Γ(− 1
4 + s1)Γ( 1

4 + s1 +δ )Γ( 3
4 − s1 +2α−δ ). (3.62)

The poles of the of the s1 integral are well separated by the straight line contour around α,δ ∼ 0.

Therefore we can once again use (3.60) to obtain

K10,8 =−2πΓ(δ −α)+O(1). (3.63)

The remaining terms K3, K10 and K in (3.58) are at most9 O(1) and can be ignored. Putting the

8Barnes’s first lemma states∫ +i∞

−i∞

dz
2πi

Γ(λ1 + z)Γ(λ2 + z)Γ(λ3− z)Γ(λ4− z) =
Γ(λ1 +λ3)Γ(λ1 +λ4)Γ(λ2 +λ3)Γ(λ2 +λ4)

Γ(λ1 +λ2 +λ3 +λ4)
, (3.60)

where the contour is a vertical line that separates the left/right poles of the Γ functions in the integrand.
9O(1) terms are those which do not blow up as the analytic continutation parameters approach 0.
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pieces together we have

K =−2π [Γ(α)+Γ(δ −α)]+O(1), (3.64)

which completes the evaluation of (3.50). Substituting the above result into (3.48),

〈φ 2
φ

2〉′
λ
= lim

α,δ→0
C

8
(4π)3−δ

k1+2α(−kτ0)
−2δ ×−2π [Γ(α)+Γ(δ −α)] . (3.65)

We evaluate the prefactor C defined in (3.39) with the ν j from (3.47) and10 D = 3,

C =
H4

26+2απ5/2 cos(πα)Γ( 1
2 −2α)(−τ0)

4+2α ∼ H4

64π2 (−τ0)
4+2α . (3.66)

Then, at leading order in α and δ we have

〈φ 2
φ

2〉′
λ
=

(−Hτ0)
4

512π5 k×−2π

[
1
α
+

1
δ −α

−2γE + · · ·
]
(−kτ0)

2α−2δ . (3.67)

As expected the divergences are directly related to the width of the pinches. However, we do not

know the exact relationship between α and δ except that they are both infinitesimal and δ > α

(this condition, which follows from (3.54), fixes the sign of the 1
δ−α

divergence and we must

adhere to it throughout the analytic continuation process). It is ‘reasonable’ to make the width of

the pinches equal by setting δ −α = α . Then,

〈φ 2
φ

2〉′
λ
=−(−Hτ0)

4

128π4 k
[

1
α
−2log(−kτ0)+ · · ·

]
. (3.68)

10The number of space dimensions in (3.39) is D = 3 and not the D̄ = 3+2δ introduced in (3.43).
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An alternate parameterization

It is possible to define (3.50) with a single parameter instead of the α and δ we introduced

in (3.47). This time we will set all ν j→ i
2 and D̄ = D = 3 but modify the time integral (3.30) to

(−τ0)
−2ε

∫
τ0

−∞

dτ (−τ)D−1−2(s1+s2+s3+s4)+2ε τ0→0
= (−τ0)

−2ε × iπδ (D
2 − (s1 + s2 + s3 + s4)+ ε)

(3.69)

where ε is the new parameter in which we will analytically continue. We have used a factor of

(−τ0)
−2ε to keep the dimensions correct, just as we did in (3.43). Introducing these changes into

(3.45) and repeating the calculation we get

〈φ 2
φ

2〉′
λ
=−(−Hτ0)

4

128π4 k
[

1
ε
−2log(−kτ0)+ · · ·

]
, (3.70)

in agreement with (3.68). There is no ambiguity about the relationship between analytic continu-

ation parameters here since there is only one of them. We also see that it was correct to require

the width of the pinches match, for, any other choice would have led to a different answer. This

piece of insight will be useful in the next example where it is impossible to make the MB integral

well-defined with just one parameter.

Dynamical renormalization

The expression (3.68), with its 1/α pole and the associated log, resembles a standard

1-loop result in flat space, computed by continuing the number of spacetime dimensions11. The

term log(−kτ0)≡ log(k/(aH)) blows up at late times, τ0→ 0, jeopardizing the validity of the

perturbation series. This indicates that our series expansion was too simple-minded to begin with,

and a more careful treatment is required to handle these secular growth terms. The Dynamical

Renormalization Group (DRG) [77, 78] provides the required fix. To review quickly, we start by

11We can push the analogy further, to see that resumming the logs at all orders will simply change the scaling
dimension of the φ 2 operator (cf. (3.72)). The parallel between DRG and RG is explored in greater detail in [64].
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combining (3.46) and (3.68),

〈φ 2
φ

2〉′ = 〈φ 2
φ

2〉′tree−λ 〈φ 2
φ

2〉′
λ
+O(λ 2)

=− 1
8π2 (−Hτ0)

4k
[

1− λ

16π2

(
1
α
−2log(−kτ0)+ · · ·

)
+O(λ 2)

]
. (3.71)

We now remove the divergence with a counterterm, which also introduces a new ratio of

scales k?/(aH)? (see [77, 64] for more details). Noticing that the correlation function must be

independent of this ratio, we obtain a differential equation for 〈φ 2φ 2〉, the solution of which

resums the secular logs to

〈φ 2
φ

2〉′ =− 1
8π2 (−Hτ0)

4 k exp
(

λ

8π2 log(−kτ0)+ . . .

)
(1+ . . .)

=− 1
8π2 (−Hτ0)

4 k (−kτ0)
2γ

φ2 (1+O(λ 2))

=− 1
8π2

H−2γ
φ2

a(τ0)
2∆

φ2+2γ
φ2

k1+2γ
φ2 (1+O(λ 2)). (3.72)

Thus, treating the secular dependence with DRG induces an anomalous dimension for the φ 2

operator, namely

γφ 2 =
λ

16π2 . (3.73)

This anomolous scaling is a product of subhorizon effects, as we demonstrate in sec. 3.5.1. For

now, we note that the treatment of secular growth in dS closely resembles the handling of UV

divergences in flat space. This connection holds for all scalar fields of general mass, except when

the field is massless; massless scalars in dS have no flat space analogue.

3.4.2 γφ 2 for other masses

The calculation above was repeated for a few other light scalars with masses in the

range 0 < m2 <
(D

2

)2 H2. The results are summarized in Table 3.1, and plotted in Fig. 3.8. An

interesting feature of this graph is the sharp rise in the value of γφ 2 as we approach the massless
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Figure 3.8. Anomalous dimension of φ 2 for different masses. Larger values of |ν | correspond
to smaller masses (see (3.3)). The encircled points are given in table 3.1.

limit, ν → i3/2. This indicates another divergence creeping in as we decrease the mass to zero.

If we set all ν j = i3/2− i2α and D = 3 in (3.45), and examine the Γ functions, we will find four

pairs of nearly overlapping zeroth poles which can lead to a maximum of three simultaneous

contour pinches12. That means 〈φ 2φ 2〉λ diverges as ∼ α−3 where 2α is the width of each pinch.

Of these, one factor of α−1 is already present at the tree level (cf. (3.36) and [84]) and another

factor of α−1 comes from the loop integral, just like in (3.68). The remaining α−1 is roughly due

to time evolution of the long wavelength modes; this intuition is made precise by the effective

field theory treatment of such modes in [65, 66]. Such divergences are a well-known feature of

massless fields in dS and their careful resummation leads to Starobinsky’s Stochastic Inflation

framework [80, 32].
12A very similar phenomenon happens with the massless two-loop calculation in sec. 3.5.1. The divergence

structure of the MB integral is explained in greater detail there.
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Table 3.1. Anomalous dimension of φ 2 for different masses.

|ν | γφ 2/λ

1/3 0.00333

2/5 0.00483

1/2 1
16π2

2/3 0.00819

4/5 0.00967

1 1
8π2

6/5 0.01882

13/10 0.02612

7/5 0.04753

3.5 Mixing of φ 3 and φ

As our second example, we compute the order λ contribution to 〈φ 3φ〉. The dynamics

of a massless scalar, as described by Stochastic Inflation, receives an NNLO correction from

this term [66]. It is easiest to see this in the Soft de Sitter Effective Theory (SdSET), wherein

Stochastic Inflation is a direct consequence of EFT power counting (see sec. 5.2 of [65]). The

calculation below produces the same divergence structure for 〈φ 3φ〉λ in the full theory as that

computed in the SdSET, verifying the correctness of the effective theory approach.

We start with (3.33) and contract three of the legs together resulting in the two loop

diagram of Fig. 3.9,

〈φ 3
φ〉′

λ
=
∫ dD p1

(2π)D
dD p2

(2π)D

〈
φ
(ν1)
~p1

φ
(ν2)
~p2

φ
(ν3)
~k−~p1−~p2

φ
(ν4)
~k

〉′
=C

∫
[ds]4 2πiδ (D

2 − (s1 + s2 + s3 + s4))ρ(sss,ννν)2DIsun(k,sss,ννν) (3.74)
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τ0

τ

~p1 ~p2 ~k−~p1−~p2 ~k

φ(~k′,τ0)τ
[φ 3](~k,τ0)

~p1

~p2

~k−~p1−~p2
time

Figure 3.9. The leading contribution to 〈φ 3φ〉.

where C is the prefactor defined in (3.39) and Isun is the momentum integral

Isun(k,sss,ννν) =
∫ dD p1

(2π)3
dD p2

(2π)3
1

pa
1 pb

2 (
~k−~p1−~p2)c kd

, (3.75)

with a = 2s1− iν1,b = 2s2− iν2,c = 2s3− iν3 and d = 2s4− iν4. Once again, this integral can

be evaluated by noting that it is a convolution in momentum space (cf. (3.41)). We’ll also take

this opportunity to introduce an analytic continuation parameter D− D̄, just as we did in (3.43).

The result is

Isun(k,sss,ννν) =
1

(4π)
3D−D̄

2

(−kτ0)
D−D̄

k∑
3
j=1(2s j−iν j)−2D

3

∏
j=1

Γ

(
D
2 − s j +

iν j
2

)
Γ

(
s j− iν j

2

) Γ

(
s1 + s2 + s3− i(ν1 +ν2 +ν3)/2− 3D−D̄

2

)
Γ
(3D

2 − s1− s2− s3 + i(ν1 +ν2 +ν3)/2
) . (3.76)

We can substitute this into (3.74) and apply the delta function. In order to proceed we must plug

in some actual numbers for the masses and dimension.

3.5.1 The massless case

We’ll now restrict our attention to the case of massless scalar fields. It is not possible to

make (3.74) well-defined with a single parameter. So we will do the calculation in two different

parameterizations, first by floating the masses and then by tweaking the time integral and number
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of dimensions, and compare the results. We set

ν j = i
3
2
− i2α, j = 1,2,3

ν4 = i
3
2
− i2α4

D = 3

D̄ = 3+2δ

(3.77)

where we have introduced three parameters to satisfy (3.15). We could have chosen a different

α j for each ν j, to get ν j = i3
2− i2α j. However these parameters will always show up together as

the sum α1 +α2 +α3, which make sense since the s j variables associated with the legs carrying

loop momenta are interchangeable. So α1 +α2 +α3 is really just one parameter which we have

identified as 3α and distributed equally between ν1,ν2 and ν3. The fourth leg, which does not

participate in the loop integral, is given its own α4. We end up with

〈φ 3
φ〉′

λ
=C

8
(4π)3−δ

(−kτ0)
−2δ

k3−6α−2α4

∫
[ds]3

Γ1Γ2Γ3Γ4Γ5Γ6Γ7Γ8Γ9

Γ10
, (3.78)
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where
Γ1 = Γ( 9

4 − s1− s2− s3−α4)

Γ2 = Γ( 3
4 − s1− s2− s3 +α4)

Γ3 = Γ(− 3
4 + s1 + s2 + s3−3α +δ )

Γ4 = Γ( 3
4 − s1 +α)

Γ5 = Γ(− 3
4 + s1 +α)

Γ6 = Γ( 3
4 − s2 +α)

Γ7 = Γ(− 3
4 + s2 +α)

Γ8 = Γ( 3
4 − s3 +α)

Γ9 = Γ(− 3
4 + s3 +α)

Γ10 = Γ( 9
4 − s1− s2− s3 +3α).

(3.79)

We will now focus on evaluating the MB integral in (3.78),

K =
∫
[ds]3

Γ1Γ2Γ3Γ4Γ5Γ6Γ7Γ8Γ9

Γ10
. (3.80)

Anticipating the answer

At a glance (3.80) looks very similar to (3.50) but it is in fact hiding a much more intricate

divergence structure. This is already apparent if we examine the arguments of the Γ functions

above. For instance, the zeroth left pole of Γ4 is at a distance 2α from the zeroth right pole of Γ5.

As we take α → 0 these poles pinch the contour and generate a 1/2α divergence. There are four

such pairs of Γ functions in the list which together can generate up to a cubic order divergence.

Thus, without actually evaluating (3.80), we may deduce the following form of the answer:

K ∼ c3

ααα3 +
c2

ααα2 +
c1

ααα
+O

(
ααα

0) , (3.81)
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where ααα denotes some linear combination of the parameters α,α4 and δ , all of which are

nearly zero, and ci collects together the remaining factors. Also note that, for a massive scalar

(|ν |< 3/2) there would be fewer simultaneous contour pinches, and the leading small ααα behavior

would be less singular than (3.81). This is another example of our observation from Fig. 3.8:

massless scalars in dS are saddled with more IR divergences than their massive counterparts.

The Mellin variables s j carry physical meaning, as eigenvalues of the dilatation operator.

Therefore, it is worth understanding which poles contribute to the terms in (3.81). To do so we

consider a simpler 2-fold toy integral, with the same features as (3.80):

Ktoy =
∫
[ds]2Γ( 3

4 − s1− s2 +α)Γ(− 3
4 + s1 + s2 +α)

2

∏
j=1

Γ( 3
4 − s j +α)Γ(− 3

4 + s j +α). (3.82)

As α → 0 this integrand generates three contour pinches, of which at most two manifest

simultaneously. Thus, the answer has the form

Ktoy ∼
c̄2

α2 +
c̄1

α
+O(α0). (3.83)

We can examine the singular structure of Ktoy on a ℜ(s1)−ℜ(s2) plane (Fig. 3.10). The poles of

our integrand are real and these are represented by straight lines in Fig. 3.10a and Fig. 3.10b.

These lines are the graphs Ui(sss) =−n (cf. (3.14)). For example, the red lines represent the poles

of Γ(3/4− s j +α), which are at s j? = 3/4+α +n with n ∈ Z0 and j = 1,2. Similarly, we map:

3
4
− s j +α =−n (red lines)

−3
4
+ s j +α =−n (blue lines)

3
4
− s1− s2 +α =−n (orange lines)

−3
4
+ s1 + s2 +α =−n (green lines).

In applying Cauchy’s theorem we compute residues at the intersections of these lines and add
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them up in specific ways [85]. The real parts of the straight line contours are represented by a

point C in these plots.

We define the integral by choosing a value of α such that the left/right poles are well

separated by contours, as shown in Fig. 3.10a (see also Fig. 3.4b). As we decrease α → 0 some

of the n = 0 poles (blue and orange) cross over to the other side, and come within 2α distance

of n = 0 poles of the opposite nature (red and green lines). The crossed poles are indicated by

dashed lines in Fig. 3.10b, and the intersections at which we take residues are marked with dots.

Due to their proximity to other poles, the residues along each dashed line will contain a factor

of Γ(2α) (cf. (3.10)); residues computed at intersections of two dashed lines generate Γ(2α)2.

Residues computed at all other intersections, which don’t involve any dashed lines, contribute to

the O(α0) term in (3.83).

It is clear from Fig. 3.10 that only a small subset of all possible poles contribute diver-

gences to the answer. This is just a 2-dimensional generalization of what we observed in (3.11).

However, there is something else going on: only a finite number of intersections produce an α−2

term, whereas an infinity of them diverge as α−1. The poles which generate the α−2 capture

the leading behavior of the mode functions in the long wavelength limit (see discussion under

(3.35)). In fact, the EFT description of such soft modes reproduces this divergence exactly,

without any UV matching [66]. On the other hand, an infinite number of residues have to be

summed over to fully account for the α−1 term, indicating that it is tracking much more than just

k� (aH) effects. In other words, this term encodes subhorizon physics. A similar analysis on

the example from sec. 3.4.1 would show that the α−1 term there is also derived from summing

over an infinite number of intersections (this is apparent from (3.59) and (3.62)), which means

the anomalous scaling we found there was truly a UV effect.

Diagrams like Fig. 3.10 have special significance in the evaluation of multidimensional

MB integrals by the method of residues [86]. The straight lines we studied above become

hypersurfaces for an N-fold MB integral, and we take residues over the polyhedra formed by

these surfaces. For a field theory calculation, this leads to a multiple series in powers and
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logarithms of the kinematic parameters. The convergence of such a series has a geometrical

connection to the aforementioned polyhedra [85, 87]. While we focus only on the divergent

contributions in this work, it would be worth investigating whether the ideas in these references

can be used to understand the properties of dS loops in various kinematic limits.

Choosing the contours

We now return to the task of computing (3.80). The intial values of the parameters

α,α4 and δ are chosen to satisfy (3.15), by the same process as in sec. 3.4.1. One possible

choice is δ = 0.06,α = 0.26,α4 = 0.76 with contours sC
1 = sC

2 = sC
3 = 0.495. We have placed

the contours at the same position in the s1,s2 and s3 planes to leverage the symmetry of the

integral under the exchange of these variables. In practice this choice leads to simultaneous

pole crossings, which requires special care [75]. A simple solution that works for the present

calculation is to stagger the contours by a little bit, by choosing say sC
1 = 0.5,sC

2 = 0.495 and

sC
3 = 0.492.

The conditions U4,5(C ) > 0 etc., U2,3(C ) > 0, and U1,5,7,9(C ) > 0 produce pinches

similar to (3.53) and (3.54),

3
4
−α < sC

j <
3
4
+α, j = 1,2,3

3
4
+3α−δ < sC

1 + sC
2 + sC

3 <
3
4
+α4

9
4
−3α < sC

1 + sC
2 + sC

3 <
9
4
−α4

(3.84)

from which we infer that α > 0, 3α−δ < α4 and 3α > α4. We should honor these relationships

throughout, lest we end up with incorrect signs for the divergences. It should be noted that the

last pinch above does not give a divergence, because the poles of Γ1 are very nearly the same as

those of the Γ10 in the denominator, and they cancel. In other words, it does not correspond to an

overlap of poles in the unregulated integral, for which α,α4 and δ are zero.
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(a) Prior to analytic continuation, when the left/right poles are separated (cf. Fig. 3.4b).

ℜ(s1)

ℜ(s2)

−3 −2 −1 0 1 2 3

−3

−2

−1

0

1

2

3

2α

2α

2α

(b) At the end of continuation, with the dashed lines indicating crossed poles (cf. Fig. 3.4c).

Figure 3.10. The poles of the integrand are represented by straight lines on a ℜ(s1)−ℜ(s2)
plane. Residues are computed at the intersections of these lines. Poles that cross over to the
other side are represented by dashed lines in (b). The residues at • contain a Γ(α)2 divergence
whereas those at • give a Γ(α). The latter encode subhorizon physics, as explained in sec. 3.5.1.
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Analytic continuation

We now begin our journey to α,α4,δ ∼ 0 to determine (3.80) for a massless theory. The

first poles to cross at those of Γ5,Γ7 and Γ9. We separate the residues at those poles and write

K→ K5 +K7 +K9 +K57 +K59 +K79 +K579 +K. (3.85)

Γ5,Γ7 and Γ9 are the same upto an exchange of s j, and so are the terms K5,K7 and K9 as well

as K57,K59 and K79. Therefore, the above breakup is really K→ 3K5 + 3K57 +K579 +K. We

focus now on each of these terms. First, K579 is the residue of K at the three poles s j =
3
4 −α

and it involves no integrals. Next, K57 is a single integral which further breaks up, in stages,

into K57→ K572 +K572′+K57 as the parameters are taken to zero. The prime in K572′ indicates

that the residue is taken at n = 1 pole of Γ2 (cf. (3.16)). At the same time, the double integral

K5 further breaks up into K5→ K527′+K52 +K5. Finally, the K in the r.h.s. of (3.85) is a triple

integral which separates as K→ K2 +K. The analytic continuation is now complete, with

K = 3(K527′+K52 +K5)+3(K572 +K572′+K57)+K579 +K2 +K. (3.86)

Evaluation of the terms

We will evaluate a few of the terms in (3.86) to demonstrate the steps involved. The

easiest ones are those involving residues in all three variables. For e.g.

K579 =
Γ1Γ2Γ3Γ4 Γ6 Γ8

Γ10

∣∣∣∣
s j=

3
4−α

=
Γ(2α)3Γ(3α−α4)Γ

(
−3

2 +3α +α4
)

Γ
(3

2 −6α +δ
)

Γ(6α)
.

(3.87)
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There are also terms with a single integral, like

K52 =
∫
C3

ds3

2πi
Γ1 Γ3Γ4 Γ6Γ∗∗7 Γ8Γ∗9

Γ10

∣∣∣∣
s1=

3
4−α,s2=−s3+α+α4

= Γ(2α)Γ(−3α +α4 +δ )
Γ(3

2 −2α4)

Γ( 3
2 +3α−α4)

(3.88)

×
∫
C3

ds3

2πi
Γ( 3

4 + s3−α4)Γ
∗ (− 3

4 + s3 +α)Γ( 3
4 − s3 +α)Γ

∗∗ (− 3
4 − s3 +2α +α4) .

The symbol Γ∗ indicates that the first pole of that Γ function has crossed over. Γ∗∗ means the

first two poles have crossed, and so on (see sec. 3.2.4). The s3 integral by itself does not produce

any new divergence since the overlapping poles are on the other side of the contour (see Fig.

3.2). Since the prefactor is already O(α−2) as α→ 0, we need to retain the α dependence inside

the s3 integral to compute the O(α−1) contribution to K. We can Taylor expand the integrand to

linear order in α,α4 and write

∫
C3

ds3

2πi
Γ( 3

4 + s3)Γ
∗ (− 3

4 + s3)Γ( 3
4 − s3)Γ

∗∗ (− 3
4 − s3) (3.89)

×
(

1+αψ(− 3
4 + s3)+αψ( 3

4 − s3)+(2α +α4)ψ(− 3
4 − s3)−α4ψ( 3

4 + s3)

)

where ψ(x)≡ Γ′(x)
Γ(x) is the digamma function. This integral can be computed using corollaries of

Barnes’s first lemma (3.60), like those given in appendix D of [83]. The answer is

K52 = Γ(2α)Γ(−3α +α4 +δ )
Γ(3

2 −2α4)

Γ( 3
2 +3α−α4)

(
−2π +

4π

3
[γE +ψ( 3

2)]

−α
2π

3

[
(2γ

2
E +π

2 +9ψ(− 1
2)−3ψ( 1

2)−6ψ(− 3
2)ψ( 3

2)+ γE(−6−6ψ(− 3
2)+2ψ( 3

2))

]

−α4
2
3

π

[
−8+π

2−2γEψ(− 3
2)+3ψ(− 1

2)−3ψ( 1
2)+2γEψ( 3

2)−2ψ(− 3
2)ψ( 3

2)+2ψ( 3
2)

2
])

(3.90)
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Next, there are terms in (3.86) which involve double integrals. For instance,

K5 =
∫
C2

ds2

2πi

∫
C3

ds3

2πi
Γ1Γ∗2Γ3Γ4 Γ6Γ∗7Γ8Γ∗9

Γ10

∣∣∣∣
s1=

3
4−α

= Γ(2α)
∫
C2

ds2

2πi
Γ( 3

4 − s2)Γ
∗(− 3

4 + s2)
∫
C3

ds3

2πi
Γ( 3

4 − s3)Γ
∗(− 3

4 + s3)Γ
∗(−s23)Γ(s23)

(3.91)

where s23
def.
= s2 + s3. We have retained only the leading order contribution from the double

integral since the prefactor is at most O(α−1). Once again these are evaluated using corollaries

to (3.60), and we get

K5 = Γ(2α)
2π

3

[
3γ

2
E +π

2 +6γE ψ( 3
2)+3ψ( 3

2)
2−12

]
. (3.92)

Finally, the K in the r.h.s. of (3.80) is what is left of the original K after all the divergent residues

have been extracted. It produces at most an O(1) contribution and may be ignored. All other

terms in (3.86) can be evaluated in the manner shown above.

The problem of too many parameters

It is clear from (3.87), (3.90) and (3.92) that K will have the structure we anticipated in

(3.81). However, the answer involves three parameters α,α4 and δ , and we need to establish a

relationship between these to extract a meaningful result from (3.86). So far, all we have are the

inequalities α > 0,3α−δ < α4 and 3α > α4 (cf. (3.84)). We encountered a similar problem

in (3.67) and resolved it by insisting that all pinches have the same width. Said differently, all

divergent Γ functions in K must have the same argument. In the present case such a requirement

furnishes the condition (cf. (3.90))

−3α +α4 +δ = 2α. (3.93)
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Next, we see that (3.87) has a Γ(3α−α4) in the numerator but, as noted under (3.84), this does

not lead to a divergence due to the Γ(6α) in the denominator. So it makes little sense to equate

3α−α4 with the pinch width 2α . Thus we are still one constraint shy of being able to express δ

and α4 in terms of α . To proceed we’ll make yet another ‘reasonable’ assumption: we’ll choose

α4 =−3α to make Γ(3α−α4) cancel Γ(6α) exactly. Then,

〈φ 3
φ〉′

λ
≈ H4

512π5
(−kτ0)

−16α

k3

[
π

3α3 −
8π(γE −2+ log(4))

3α2

+
4π
(
3π2−32+8(γE −2+ log(4))2)

3α
+O(α0)

]
(3.94)

where we have used (3.93) to eliminate δ .

An alternate parameterization

We will now redo the calculation using a different parameterization and compare with

the above result. This will help us justify our choice of α4 at the end of the previous section.

It is possible to make (3.80) well-defined with just two parameters instead of three. The

first of the these parameters, ε , is introduced by modifying the time integral as in (3.69). The

second parameter κ is a shift in the number of space dimensions, D = 3+2κ . Finally we set all

ν j→ i3
2 , and D̄ = 3 in (3.76). Applying the conditions (3.15) on this new integral we identify

the pinches
3
4
< sC

j <
3
4
+κ; j = 1,2,3

3
4
+2κ < sC

1 + sC
2 + sC

3 <
3
4
+κ + ε

9
4
< sC

1 + sC
2 + sC

3 <
9
4
+κ + ε.

(3.95)

Comparing this with (3.84) we see that the width of the first three pinches are now κ instead

of 2α , the second pinch is −κ + ε wide, and the parameters must satisfy ε > κ > 0. The

last inequality in (3.95) does not represent a true pinch because the divergence associated

with it is cancelled by the Γ10 in the denominator, exactly as in the previous parameterization.
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However, the important difference is that equating the pinch widths establishes an unambiguous

relationship, ε = 2κ , between all two parameters. This also sets Γ1/Γ10→ 1, which is exactly

what the choice α4 =−3α accomplished in the last calculation. Proceeding with the analytic

continutation, and setting ε = 2κ , we arrive at

〈φ 3
φ〉′

λ
≈H4(−Hτ0)

4κ

512π5
(−kτ0)

−2κ

k3+2κ

[
8π

3κ3 −
16π(2γE −5+2log(4))

3κ2

+
4π
(
40+3π2−16(γE −2+ log(4))+16(γE −2+ log(4))2)

3κ
+O

(
κ

0)]
(3.96)

The leading coefficient of log(−kτ0) is the same in both (3.94) and (3.96), upto a renaming of

α → κ ,

− H4

96π4k3α2 . (3.97)

A more careful renormalization is required to make the subleading terms match. The important

takeaway is that the divergence structure of 〈φ 3φ〉′
λ

in the full theory matches what we calculated

in the SdSET [66], with a regulator that also characterizes divergences with 1/α poles. Thus,

the calculation in this section confirms that the SdSET correctly reproduces the IR divergences

of the full theory.

In closing, we note that the sample calculations in this paper were ‘simple’, in that we

went no farther than O(λ ), and the MB integrands did not contain terms of the form ps j
i , where

pi denotes a momentum variable. While it is certainly worth pushing the method to do higher

loops, we believe the two examples considered above sufficiently illustrate the usefulness of the

method both as a computational tool, and as a way to glean qualitative insights about the IR

behavior of fields in dS.

3.6 Conclusions

In this paper we advanced a method to identify and extract divergences in dS loop

calculations. Motivated by the dilatation invariance of dS, we worked with the Mellin-Barnes
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representation of dS correlation functions [67, 68]. This allowed us to import the techniques

developed in [72, 73, 74, 75, 76], for flat space Feynman diagrams, to the calculation of loop

integrals in dS. The resulting expressions have the familiar structure of a dimreg answer (cf.

(3.68) and (3.94)), and we can resum the divergences with dynamical RG by way of extracting

meaningful physics. While the examples we considered in this work were simple, they illustrate

a few important aspects of loop calculations in dS that are worth highlighting once again:

1. The divergences in dS correlation functions manifest as pole overlaps in the Mellin space;

the problem of isolating divergences becomes a matter of locating these pole overlaps in a

hyperspace spanned by the complex Mellin variables {s`}.

2. Our method works for loop integrals involving scalar fields of any mass. In particular, the

calculations of sec. 3.4 reveal that all massive scalars are afflicted with secular growth,

with additional divergences introduced as we approach the massless limit (see Fig. 3.8).

Stochastic Inflation provides a non-perturbative resolution of these IR issues for mass-

less scalars. The technique developed in this paper allows us to compute higher order

corrections to the stochastic description, directly from the full theory.

3. Dynamical RG resums the secular logs from dS loop integrals, just as regular RG treats UV

logs in flat space. However, it is not clear whether DRG resums logarithmic corrections at

all orders, as regular RG does. The bulk of the difficulty in addressing this problem lies in

the evaluation of higher loop integrals. However, if we can extract the general properties of

such loops, without doing the calculations explicitly (see for e.g. (3.81)), perhaps we could

improve the underpinnings of DRG itself. Alternatively, the fact that the SdSET correctly

reproduces IR divergences of the full theory can be taken as evidence that the DRG works.

From that perspective, investigating higher loops in dS could further strengthen the validity

of SdSET.

4. When Mellin representations are used to simplify Feynman integrals in flat space, the
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variables {s`} serve as little more than auxillary parameters to be integrated over. But in

dS, these variables carry physical meaning, as the eigenvalues of the dilatation generator.

Furthermore, as we noted in sec. 3.5.1, multidimensional MB integrals can be computed

with the method of residues using a geometrical procedure on the hyperplanes Ui(sss) =−n.

We used these facts to identify that certain secular behaviors originate from subhorizon

dynamics. We are left with the distinct impression that there may be deeper physical

insights hidden away in the geometry of the aforementioned planes.

Mellin space is fertile ground for the study of correlation function in dS, as many authors

have noted before. It is our hope that the observations in this work reinforce that view, and

encourages further investigation of these tools.
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Chapter 4

Stochastic Inflation at NNLO

4.1 Introduction

The study of quantum fields in de Sitter (dS) space provides insight into the foundations

of inflationary cosmology. In particular, the equal-time in-in correlation functions of light scalar

fields form the theoretical underpinnings of the predictions for the observed density fluctuations

sourced during inflation [7, 15, 16]. These correlators encode a wealth of information about the

inflationary era that could be revealed by measurements of primordial non-Gaussianity [58]. Yet,

despite their importance, our understanding of cosmological correlators beyond tree level is quite

limited. For light scalars, explicit loop calculations have revealed the presence of infrared (IR)

divergences and unbounded time-dependent “secular” growth [9, 10, 12, 13, 14, 25, 84, 26, 27,

28, 59, 60, 29, 61, 62, 63].

Stochastic Inflation [11, 79, 80] is a framework for treating the IR dynamics of a massless

scalar field in a dS background, and has long been suspected to provide the non-perturbative

resolution to the IR issues associated with massless fields in dS [88, 89, 43, 90, 91, 30, 31, 32,

81, 65, 92, 93]. The idea is to reframe the problem in terms of the probability distribution for

the scalar field as a function of time, resulting in a Fokker-Planck equation that depends on the

scalar field potential. There are two contributions to the evolution, resulting from quantum noise

induced by fluctuations of the field as it crosses the dS horizon and classical drift due to the

potential. This framework forms the conceptual basis for slow-roll eternal inflation [94, 95, 96]
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and can be used to describe the onset of eternal inflation quantitatively [97]. Moreover, these

results hint at the physical meaning of the dS entropy [98, 99, 100], which remains a significant

unsolved problem [5].

Notwithstanding the conceptual and technical appeal of Stochastic Inflation, it is neces-

sarily approximate. For example, we expect that there are non-Gaussian contributions to the

quantum noise that result from the UV interaction, which are not modeled by Stochastic Inflation.

Furthermore, the Fokker-Planck formalism obscures the connection to cosmological correlators,

and it is not a prioi obvious how to incorporate higher-order corrections. It would be ideal if we

could understand how the success of Stochastic Inflation relates to other results regarding the IR

behavior of fields in dS, such as the freeze-out of superhorizon metric fluctuations which has been

shown to all orders in perturbation theory [23, 20, 19], or the loop generated anomalous scaling

for the time-evolution of massive fields [53, 64]. One of our goals in exploring the corrections to

Stochastic Inflation is to understand how they fit into the broader context of quantum field theory

in dS.

A framework that accomplishes this ambitious goal is the Soft de Sitter Effective Theory

(SdSET) [65]. By following the standard Effective Field Theory (EFT) playbook, this approach

isolates the dynamics that persist in the superhorizon limit, yielding more efficient calculations

of loop corrections to long wavelength cosmological correlators. Taking a real scalar field in dS

as the UV description, SdSET describes the IR limit of this model by relying on two degrees of

freedom that correspond to the growing and decaying modes which are familiar from the solving

the Klein-Gordon equation classically in a dS background. This representation admits a power

counting prescription that systematically expands about the long wavelength limit in terms of a

local Lagrangian. Loop dependence on time and space is manifestly factorized throughout the

calculation, allowing an efficient isolation of the time dependent IR divergent logs. Such logs

lead to secular growth for both massive and light fields, and appear in SdSET as contributions

to the anomalous dimensions of local operators. In the case of light fields, an infinite number

of operators become degenerate and Starobinsky’s model of Stochastic Inflation is equivalent
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to the leading order (LO) dynamical renormalization group (RG) that governs their mixing as

a function of time.1 This implies that corrections to Stochastic Inflation can be computing by

simply extending the RG analysis to higher orders.

Taking the UV description to be massless λφ 4 theory, the endpoint of this RG flow is a

non-trivial fixed point where the field values are φ ∼ Hλ−1/4. Corrections to this description

around this fixed point must account for this non-perturbative scaling with λ . In this paper,

we will calculate the evolution of operators to next-to-next-to leading order (NNLO) in this

power counting. At NLO, our results reproduce previous calculations [31, 92]; as we will show,

these contributions can be attributed to field definitions within SdSET. In contrast, at NNLO

we find a universal correction in the form of a two-loop anomalous dimension that introduces

the first higher derivative correction to Stochastic Inflation. In the process, we perform the full

one-loop matching in SdSET, which further elucidates the relationship between the EFT and the

UV descriptions.

One novel feature of SdSET is that consistently matching a UV theory onto the EFT

requires specifying both Wilson coefficients and (time-independent) initial conditions. Deriving

the RG that yields Stochastic Inflation at NNLO requires performing this matching explicitly

at one-loop order. This provides a highly non-trivial check of the SdSET formalism, and

these results can be utilized for a wide variety of correlator calculations. We will also use this

calculation as an opportunity to demonstrate the power of the symmetry preserving “dynamical

dimensional regularization” technique introduced in [65].

This paper is organized as follows. We begin with a review of Stochastic Inflation

in Sec. 4.2, with an emphasis on its origins as a Markovian process, which provides a framework

with which we can organize corrections. Then Sec. 4.3 reviews the most salient aspects of

the SdSET formalism. The new calculations begin in Sec. 4.4, where we present the one-loop

matching results that are relevant for our applications here. These are then applied in Sec. 4.5,

1The dynamical RG flow described here should not be confused with the RG flow that appears in a holographic
dual via dS/CFT [5, 4, 6, 7, 45]. The key difference is that our dynamical RG applies directly to the in-in correlators
and not to the wavefunction of the universe.
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where we compute the composite operator anomalous dimensions that feed into Stochastic

Inflation up to NNLO, and leads to the main result of this work in Eq. (4.144). We then explore

the implications of this formula in Sec. 4.6, and finally conclude in Sec. 5.6. An appendix on the

relevant, but somewhat technical, six-point function matching is provided in Sec. 4.A, and the

hard cutoff version of the main calculations are given in Sec. 4.B.

4.2 Stochastic Inflation

In a theory of a massless scalar field φ in a dS background with Hubble constant H,

the field’s value will fluctuate by O(H) as each momentum mode crosses the dS horizon. An

equivalent point of view is that these stochastic fluctuations are the result of the non-zero

temperature within dS. This effect has a natural interpretation as a random walk, an idea that was

made precise by Starobinsky [11] and led the formalism known as Stochastic Inflation. In this

section, we discuss this approach, and emphasize the structure of higher order corrections.

For concreteness, we will assume the canonical example of λφ 4 theory in a dS back-

ground, whose UV description in terms of a scalar field φ is

SUV =
∫

d4x
√−g

[
− 1

2
gµν ∂

µ
φ ∂

ν
φ +

1
2

m2
φ

2 +
1
4!

λ φ
4
]
, (4.1)

where gµν is the dS metric and g≡ detgµν as usual. The essential formalism developed here

holds for general models. However, we will not be able to derive corrections to Stochastic

Inflation generically, and so we will work with this simple and well studied example when we

calculate explicit corrections.

In the process of discussing the general structure of corrections to Stochastic Inflation,

we will arrive at a natural interpretation for higher-order corrections in terms of the transition

amplitudes for the field φ . Unfortunately, how to determine the corrections directly is not

transparent in this description. In Sec. 4.3.5 we will show how the corrections discussed in this

Section arise from operator mixing, and the remainder of the paper is devoted to deriving these
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corrections and their implications using SdSET.

Before moving on, we emphasize that the formalism we develop in this section will rely

on the assumption that the late time evolution of φ can be modeled as a Markovian system (as

described in Sec. 4.2.2 below). This will be justified by the concrete calculation of the dynamical

renormalization group using the SdSET that is developed later in this paper. It ultimately is due

to the fact that the dynamics of the SdSET degrees of freedom are governed by a first order

equation, which is a consequence of the EFT power counting.

4.2.1 Leading Order

The framework of Stochastic Inflation results in a probability distribution P(φ , t) for the

field φ at a time t. To leading order, P(φ , t) obeys a Fokker-Planck equation

∂

∂ t
P(φ , t) =

H3

8π2
∂ 2

∂φ 2 P(φ , t)+
1

3H
∂

∂φ

[
V ′(φ)P(φ , t)

]
, (4.2)

where the first term captures the stochastic noise from the inherent quantum variance of φ , while

the second term is due to the classical drift induced by the potential where V ′(φ)≡ ∂V/∂φ . One

interesting application of this equation is to solve for the fixed point that the scalar field would

reach if it lived in an eternal dS background. To find the fixed point, we enforce that ∂Peq/∂ t = 0

for the equilibrium solution Peq, which implies

∂ 2

∂φ 2 Peq(φ) =−
8π2

3H4
∂

∂φ

[
V ′(φ)Peq(φ)

]
. (4.3)

Integrating both sides of this equation twice leads to the solution

Peq(φ) =Ce−8π2V (φ)/3H4
. (4.4)

We can use this leading order solution to organize corrections to Stochastic Inflation as a

perturbative series in the UV coupling.
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4.2.2 Beyond Leading Order

Having reviewed the leading order formalism and its consequence for pure dS, we

now turn to exploring the form we can expect corrections to take. In order to generalize this

Fokker-Planck equation, we return to its origins. The underlying assumption is that the system is

Markovian, in that the time slice of interest is entirely determined by the information contained in

the previous step. In other words, a Markovian system has no “memory.” Since this assumption

holds for the spectrum of scalar field fluctuations at horizon crossing, the resulting formalism

will tell us what kinds of corrections to Stochastic Inflation we can expect.

The Markovian assumption leads directly to the Chapman-Kolmogorov equations, which

describe a probability distribution P(φ , t +dt) that is fully determined by P(φ , t):

∂

∂ t
P(φ , t) =

∫
dφ
′
[
P(φ ′, t)W (φ |φ ′)−P(φ , t)W (φ ′|φ)

]
, (4.5)

where W (φ |φ ′) is a “transition rate” in that it sets the rate for transitioning to φ from another

value φ ′ in a differential amount of time. This equation simply expresses that the probability

distribution for φ at t +dt is fully determined by the weighted sum of the possible transitions

that yield φ minus the sum of all the weighted transitions for φ to change value.

Next, we will reorganize Eq. (4.5) using what is known as the Kramers-Moyal expansion,

visualized in Fig. 4.1. This is effectively the assumption that the transitions are dominated by

“local” jumps [101]. The first step is to make a substitution of ∆φ = φ −φ ′ in the first term and

∆φ = φ ′−φ in the second term. In other words, when φ is in the final state, then φ ′ = φ −∆φ

and when φ ′ is in the final state φ ′ = φ +∆φ . This yields

∂

∂ t
P(φ , t) =

∫
d∆φ

[
P(φ −∆φ , t)W (φ |φ −∆φ)−P(φ , t)W (φ +∆φ |∆φ)

]
, (4.6)

where we have included two compensating relative minus signs, one from the different changes

of variables for the two terms, and another due to needing to flip the limits of integration after
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φ

W (φ ′′|φ) W (φ ′|φ)

W (φ |φ ′′) W (φ |φ ′)

φ

W̃ (∆φ |φ −∆φ) W̃ (∆φ |φ)

∆φ ∆φ

Figure 4.1. Visualization of the Kramers-Moyal expansion. The top panel shows the probability
of “hopping” from φ to φ ′, W (φ ′|φ) or from φ ′ to φ , W (φ |φ ′), or equivalently any other point
such as φ ′′. On the bottom, we see the process in terms of the probability W̃ (∆φ |φ) to hop from
a specific starting point φ by a distance ∆φ .

switched the integration variable ∆φ →−∆φ in the second term. Since we are assuming the

main support of W comes from local jumps, we want to Taylor expand the first term for fixed φ .

To make performing this expansion transparent, it is then useful to redefine W using

W̃ (y,x)≡W (x+ y|x) , (4.7)

so that Eq. (5.56) becomes

∂

∂ t
P(φ , t) =

∫
d∆φ

[
P(φ −∆φ , t)W̃ (∆φ ,φ −∆φ)−P(φ , t)W̃ (∆φ ,φ)

]
. (4.8)

Then Taylor expanding the first term about a fixed value of φ yields

∫
d∆φ P(φ −∆φ , t)W̃ (∆φ ,φ −∆φ) =

∫
d∆φ

∞

∑
n=0

1
n!

(
−∆φ

∂

∂φ

)n

P(φ , t)W̃ (∆φ ,φ)

=
∞

∑
n=0

1
n!

∂ n

∂φ n

∫
d∆φ

(
−∆φ

)n P(φ , t)W̃ (∆φ ,φ) , (4.9)
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where in the last line, we used the fact that ∆φ is independent of φ to pull the derivatives outside

of the integral. Plugging this expansion into Eq. (4.8), we see that the n = 0 term cancels so that

∂

∂ t
P(φ , t) =

∞

∑
n=1

1
n!

∂ n

∂φ n Ωn(φ)P(φ , t) , (4.10)

where

Ωn(φ)≡
∫

d∆φ
(
−∆φ

)nW (φ +∆φ |∆φ) , (4.11)

and we have used Eq. (4.7) to write this expression in terms of the original transition rate W .

Note that all terms in this expansion are total derivatives, as required for the conservation of the

total probability. We also see that Ωn(φ) encodes the φ -dependence of the nth moment of the

distribution. For the theories of interest here, Ωn(φ) will admit a polynomial expansion in φ :

Ωn(φ) =
∞

∑
m=0

1
m!

Ω
(m)
n φ

m , (4.12)

for some coefficients Ω
(m)
n .

Thus far, all of this discussion was very general. If we specialize to the case of leading

order Stochastic Inflation, we can compare this expanded result with Eq. (4.2) to identify that the

n = 1 “drift” term is proportional to the derivative of the potential,

V = ∑
`

1
`!

c`φ ` . (4.13)

so that matching with Eq. (4.2) implies

Ω
(m)
1 =

1
3H

cm+1 . (4.14)

Hence, for n = 1, m tracks the polynomial interactions that could appear in a generic potential.
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Moving to the n = 2 “noise” term, we again can compare to Eq. (4.2) to find

Ω
(0)
2 =

H3

4π2 . (4.15)

In this case, the m > 0 terms correspond to higher order corrections.

To summarize, if we assume that the UV theory has only a λφ 4 interaction, we conclude

that the generalized evolution equation that describes Stochastic Inflation takes the form

∂

∂ t
P(φ , t) =

∞

∑
n=2

1
n!

∂ n

∂φ n

[
∞

∑
m=0

1
m!

Ω
(m)
n φ

m P(φ , t)
]
+

1
3H

∂

∂φ

[
V ′(φ)P(φ , t)

]
, (4.16)

where V ′ is the φ derivative of the potential, which includes the matching corrections required to

obtain the accuracy of interest.

To develop some intuition for what the Ωn corrections are capturing, we can interpret

W (φ +∆φ |∆φ) as the probability distribution of transitions of size ∆φ . Then Ωn(φ) is simply the

nth moment of this distribution; the first and second moments Ω1(φ) and Ω2(φ) are the complete

set of inputs for a Gaussian distribution. Furthermore, if Ω2 has non-trivial φ dependence, i.e.,

Ω
(m6=0)
2 6= 0, then the variance of the noise depends on the starting location of the jump. Finally,

if Ωn=3(φ) 6= 0, then we know our distribution is non-Gaussian. More generally, we interpret the

n > 2 terms in the generalized equation governing Stochastic Inflation in Eq. (4.16) as encoding

contributions from non-Gaussian noise generated by the UV λφ 4 interaction. Therefore, we

conclude that corrections to Eq. (4.2) are of three types:

• Higher order “noise” terms captured by ∂ n/∂φ n with n > 2, see Eq. (5.58).

• Higher polynomial terms in Ωn, see Eq. (4.12).

• Higher order terms in the potential V via corrections to coefficients and the generation of

higher polynomial φ terms.

Next, we will argue for how to relate the expansion in each of these quantities to the expansion
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in the UV quartic coupling λ as it corrects the equilibrium solution in Eq. (4.4).

Organizing Corrections Systematically

Due to the underlying λφ 4 potential, we expect that the statistics of φ are neither Gaussian

nor independent of the background value of the field. We therefore expect corrections to the

equation for Stochastic Inflation of the form discussed previously. In this section, we will take

the equilibrium solution in Eq. (4.4) and apply it to a UV theory with

V (φ) =
1
4!

λ φ
4 =⇒ Peq(φ) =Ce−8π2λφ 4/(3·4!H4) ≡Ce−(φ/φeq)

4
. (4.17)

where φ 4
eq = 9H4/(π2λ ). This distribution has support over a field range |φ |. φeq such that

〈
φ

4〉= 1
4

Γ
[5

4

]
×φ

4
eq =

9
4π2 Γ

[5
4

]H4

λ
. (4.18)

Therefore, we will organize the possible corrections by assuming the equilibrium scaling

φ ' φeq ∼ Hλ
−1/4 . (4.19)

We will further assume that the corrections are generated as an expansion in perturbation theory,

so that

Ω
(2m)
2 ∼ λ

m; Ω
(2m+1)
3 ∼ λ

m+1; Ω
(2m)
4 ∼ λ

m+1; and c2` ∼ λ
`−1 , (4.20)

which we will see agrees with the explicit calculations presented below. Putting all of this

together allows us to determine the order in λ for each term that appears in Eq. (4.16). Note that

we will assume the φ →−φ UV symmetry is preserved, which explains the absence of many

terms. These contributions are as follows.
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Leading Order (LO): Stochastic Inflation at leading order is given by Eq. (4.2):

∂

∂ t
P(φ , t) =

H3

8π2
∂ 2

∂φ 2 P(φ , t)+
1

3H
∂

∂φ

[
1
3!

λφ
3P(φ , t)

]
, (4.21)

where we have used the known leading order results Ω
(0)
2 = H3/(4π2) and V ′(φ) = λφ 3/3!.

Both terms on the right hand side of this equation are O
(
λ 1/2)×P(φ , t), which defines what we

mean by “LO.”

Next-to-leading Order (NLO): Accounting for both Ω
(m)
n and corrections to the potential, we

can determine that the next-to-leading corrections to Stochastic Inflation should take the form

∂

∂ t
P(φ , t) = O

(
λ

1/2)+ ∂ 2

∂φ 2

[
Ω

(2)
2 φ

2P(φ , t)
]
+

1
3H

∂

∂φ

[
1
5!

c6φ
5P(φ , t)

]
, (4.22)

where the correction to the noise term Ω
(2)
2 ∼ λ and the correction to the potential c6 ∼ λ will

both be determined below, and Ω
(1)
2 = 0 due to the φ →−φ symmetry. We see that these NLO

terms are O(λ )×P(φ , t). These corrections have been previously calculated in [31, 92].

Next-to-next-to-leading Order (NNLO): Following the same logic, we can find the form that

the next order terms take:

∂

∂ t
P(φ , t) =O

(
λ

1/2)+O
(
λ
)
+

H3

8π2
∂ 2

∂φ 2

(
Ω

(4)
2 φ

4P(φ , t)
)

+
1

3H
∂

∂φ

[
1
7!

c8φ
7P(φ , t)

]
+

∂ 3

∂φ 3

(
Ω

(1)
3 φP(φ , t)

)
, (4.23)

where Ω
(4)
2 ∼ λ 2 and Ω

(1)
3 ∼ λ will be determined by operator mixing in the next section and

c8 ∼ λ 3, and Ω
(0)
3 = 0 due to the φ →−φ symmetry. These NNLO terms are O(λ 3/2)×P(φ , t).

Note that in addition to these corrections, we must also include subleading corrections

to the parameters that already appear at lower order; these do not change the structure of the

equation, but will of course be accounted for as we perform the calculation. The rest of this

paper is devoted to determining these coefficients systematically using the framework of SdSET,
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with a brief discussion of the physical implications of working with NNLO Stochastic Inflation.

4.3 Soft de Sitter Effective Theory

Stochastic Inflation, and corrections to it, are the consequence of quantum field theory in

dS for scalar particles with masses m2� H2. This can be seen directly at leading order, where

a variety of methods have been used to derive the Fokker-Planck equation [11, 79, 80, 88, 89,

43, 90, 91, 30, 31, 32, 81, 65, 92, 93]. However, many of these methods become cumbersome

beyond leading order and often obscure how corrections arise.

Soft de Sitter Effective Theory offers a method to compute the equations of Stochastic

Inflation systematically to any order. The key advantage offered by SdSET is that power counting

is manifest, thereby making corrections easy to identify. Furthermore, loop integrals are scaleless

and regulated by (dynamical) dim reg and thus preserve the power counting that is manifest in

the action. In addition to fixing the values of the SdSET Wilson coefficients, the UV theory

sets the initial conditions for the effective theory fields. We will be specifically interested in

understanding the corrections to Stochastic Inflation for the concrete example of λφ 4 theory in

dS, where the UV action is given above in Eq. (4.1).

In this section, we will review the machinery of SdSET and how it arises from a given

UV theory. In the subsequent sections, we will use this technology to match SdSET to λφ 4

theory and then use it derive the equations of Stochastic Inflation at NNLO.

4.3.1 In-In Correlators

As we will see below, Stochastic Inflation is equivalent to the renormalization group

equations that govern how composite operators mix. One approach to determining the operator

mixing is to compute the divergences of in-in correlation functions involving composite operators.

This section is devoted to setting up the relevant framework. We work in the interaction picture,

where fields are quantized using the solutions to their quadratic equations of motion. A free
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scalar fields in dS can be expressed as a mode expansion:

φ(~x,τ) =
∫ d3k

(2π)3 ei~k·~x
(

φ̄
(
~k,τ
)
a†
~k
+ φ̄

∗(~k,τ)a−~k) , (4.24)

where τ =−1/[aH] is the conformal time, and a†
~k

and a~k are the canonical creation and annihila-

tion operators respectively that satisfy

[
a†
~k
, a~k′
]
= (2π)3

δ
(
~k−~k ′

)
. (4.25)

In the Bunch-Davies vacuum, one finds the positive frequency modes are given by

φ̄
(
~k,τ
)
=−iei(ν+ 1

2)
π

2

√
π

2
H(−τ)3/2H(1)

ν (−kτ) with ν =

√
9
4
− m2

H2 , (4.26)

so that ν = 3/2 corresponds to a massless field (see e.g. [102] for review). The observables of

this theory are equal-time in-in correlation functions, which are computed via

〈in|Q(t)|in〉=
∞

∑
N=0

iN
∫ t

−∞

dt1
∫ t1

−∞

dt2 ...
∫ tN−1

−∞

dtN

×
〈[

Hint
(
tN
)
,
[
Hint
(
tN−1

)
, ...
[
Hint
(
t1
)
,Qint(t)

]
...
]]〉

, (4.27)

using

Hint(t) =
∫

d3x
√−g

λ

4!
φ

4(~x, t) . (4.28)

We will be interested in multi-field correlators in the long wavelength limit, so that Q(t) =

φ
(
~k1, t

)
...φ
(
~kn, t

)
. In general, this expression must be generalized to allow for the iε prescription

that projects the initial state onto the interacting vacuum, but this form is the most useful starting

point for understanding the superhorizon evolution.
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For illustration, we can compute the tree-level four point correlation function as

〈
φ
(
~k1
)
φ
(
~k2
)
φ
(
~k3
)
φ
(
~k4
)〉′

tree
= i

λ

4!

∫ t
dt1 d3xa(t)3

〈[
φ

4(~x, t1),φ
(
~k1
)
...φ
(
~k4
)]〉′

, (4.29)

where the φ
(
~k
)

fields are all evaluated at the same time t, and we have introduced the notation

〈
...〉= (2π)3

δ
3(

∑~ki
)〈

...〉′ . (4.30)

At tree-level, we can simply use the massless mode functions,2

φ̄
(
~k,τ
)
→ H√

2k3
(1− ikτ)eikτ , (4.31)

to evaluate this expression

〈
φ
(
~k1
)
φ
(
~k2
)
φ
(
~k3
)
φ
(
~k4
)〉′

tree
= λ 2Im

∫
τ dτ1

(−Hτ1)4

4

∏
i=1

(1− ikiτ1)(1+ ikiτ)

2k3
i

eiki(τ1−τ)

=
λ

8(k1k2k3k4)3

[
1
3

(
∑

i
k3

i

)(
log

kt

[aH]
+ γE +

1
3
−2
)
− k1k2k3k4

kt
− 1

9
k3

t

+2 ∑
i< j<`

kik jk`+
1
3

kt

(
∑k2

i −∑
i< j

kik j

)]
, (4.32)

where kt = k1+k2+k3+k4. In the final step, we have used τ =−1/[aH], have kept the log[aH]

and time-independent contributions, and have not included terms that vanish as [aH]→ ∞. In

deriving this expression, we have expressed the commutator as the imaginary part of the integral,

which holds for real fields at first order in the Hint expansion, namely

i
(〈

Hint(t1)Q(t)
〉
−〈Q(t)Hint(t1)〉

)
= 2Im

〈
Q(t)Hint(t1)

〉
, (4.33)

for a real operator Q(t).

2We will use 3
2 −ν ≡ α 6= 0 as a regulator when we encounter loops.
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4.3.2 Taking the Long Wavelength Limit

In this section, we review how to determine in-in correlators in the soft limit using SdSET.

The starting point is to decompose the UV fields according to

φS
(
~k,t
)
= H

(
[a(t)H]−α

ϕ+(~k,t)+ [a(t)H]−β
ϕ−
(
~k,t
))

. (4.34)

where φ(~x,t) = φS(~x,t)+ΦH(~x,t) is split into soft (superhorizon) and hard (subhorizon) modes,

and we have introduced a dimensionless time variable t ≡ Ht so that the mass dimension of

operators tracks the EFT power counting. The parameters α and β are subject to the constraint

α + β = 3. This is straightforward to derive from the top down, as these parameters are

determined by the mass via α = 3/2−ν and β = 3/2+ν , where ν is defined in Eq. (4.26).

The decomposition of φS into ϕ+ and ϕ− is exact in the free theory. Taking the limit

kτ � 1 and using τ =−1/[aH] in Eq. (4.26), we find

ϕ+

(
~x, t
)
=
∫ d3k

(2π)3 ei~k·~x
ϕ̄+

(
~k, t
)
ã~k (4.35a)

ϕ−
(
~x, t
)
=
∫ d3k

(2π)3 ei~k·~x
ϕ̄−
(
~k, t
)
b̃~k , (4.35b)

where

ϕ̄+ =Cα

1
√

2k
3
2−α

, and ϕ̄− = Dβ

1
√

2k
3
2−β

, (4.36)

and

Cα = 21−α
Γ
(3

2 −α
)

√
π

, and Dβ =−21−β

√
π

cos(π β )Γ
(
β − 1

2

) . (4.37)

The operators ã~k and b̃~k are given in terms of the UV creation and annihilation operators of the
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form

ã~k = eiδν a†
~k
+ e−iδν a−~k , and b̃~k = i

(
e−iδν a†

~k
− eiδν a−~k

)
. (4.38)

From the UV theory, we determine that the operators commute with themselves

[
ã†
~k
, ã~k
]
=
[
b̃†
~k
, b̃~k
]
= 0 . (4.39)

Nevertheless, these operators still have non-zero correlation function

〈
ã~k ã~k′

〉
= (2π)3

δ
(
~k+~k ′

)
(4.40a)〈

b̃~k b̃~k′
〉
= (2π)3

δ
(
~k+~k ′

)
, (4.40b)

where 〈..〉 ≡ 〈0|..|0〉, and |0〉 is the vacuum that is annihilated by a~k. This gives rise to classical

statistical power spectra

〈
ϕ+

(
~k
)

ϕ+

(
~k ′
)〉

=
C2

α

2
1

k3−2α
(2π)3

δ
(
~k+~k ′

)
(4.41a)

〈
ϕ−
(
~k
)

ϕ−
(
~k ′
)〉

=
D2

β

2
1

k3−2β
(2π)3

δ
(
~k+~k ′

)
, (4.41b)

where Cα and Dβ are defined in Eq. (4.37) above. Note that in the massless limit α → 0, we

reproduce the famous scale invariant power spectrum.

The corrections to this mapping can be systematically accounted for by matching between

the UV theory and the EFT, see Sec. 4.4. The fields ϕ+ and ϕ− have well defined power counting;

they carry operator dimension α and β respectively. After utilizing field redefinitions, on-shell

conditions, and power counting to remove redundant operators, the low energy effective action is
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given by

S± =
∫

d3xdt

[
−ν

(
ϕ̇+ϕ−−ϕ+ ϕ̇−

)
−

∞

∑
n≥2

[aH]3−nα−β
cn,1

n!
ϕ

n
+ϕ−

]
, (4.42)

where the cn,1 are dimensionless Wilson coefficients. Note that t carries dimension zero by

SdSET power counting, so marginal operators are dimension three. This explains why we have

only included operators with a single factor of ϕ− since these are the only terms that become

marginal in the massless limit (α → 0). Additionally, we have not included any terms with~∂ ,

which start at dimension five and are therefore power suppressed by at least k2/[aH]2.

In addition to an action, SdSET requires specifying initial conditions for the fields

ϕ+ and ϕ− that are acquired from the time evolution prior to horizon crossing. These initial

conditions are random such that, to leading order, ϕ+ behaves as a classical stochastic variable

with correlations fixed by matching

〈
ϕ+

(
~k1
)
...ϕ+

(
~kN
)〉

IC(n)
= K −3(N−1)+N αF(n)

(
{~qi}

)
(2π)3

δ

(
∑~ki

)
, (4.43)

where K is a reference momentum scale, F(n)
(
{~qi}

)
encode the dependence on the rescaled

momenta~qi =~ki/K , and the (n) subscripts track the order in the λ perturbative expansion for

each contribution; the two point correlators in Eq. (4.41) should be viewed as 〈 ...〉IC(0) . Because

ϕ+ is time independent to leading order in the EFT, the initial conditions are determined by

matching the time independent terms.

We evaluate time integrals in the EFT using

∫ t

−∞

dt′
[
a
(
t′
)
H
]γ

=
1
γ
[a(t)H] , (4.44)

where we assume that this holds even when γ < 0. This analytic continuation enforces that the

contributions from early times vanish, thereby ensuring that power law divergences associated

with physics at horizon crossing are automatically absorbed into the initial conditions (in close
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analogy with how dim reg treats power law divergences).

Cosmological correlators are determined in SdSET using the same in-in formalism

as applied to the UV theory, see Sec. 4.3.1. For illustration, we can compute the tree-level

trispectrum using Eq. (4.27) and the canonical commutator

[
ϕ+

(
~x,t
)
,ϕ−

(
~x ′,t

)]
=− i

2ν
δ
(
~x−~x ′

)
. (4.45)

Performing the time integrals using Eq. (4.44), we find

〈
ϕ+

(
~k1
)

ϕ+

(
~k2
)

ϕ+

(
~k3
)

ϕ+

(
~k4
)〉

=

〈[
ϕ+(~k1)ϕ+(~k2)ϕ+(~k3)ϕ+(~k4) ,

(−i)
c3,1

3!

∫
dt′ d3x′

[
a
(
t′
)
H
]−2α

ϕ
3
+ϕ−

(
~x ′,t′

)]〉

=−c3,1

2ν

〈
ϕ+(~k2)ϕ+(~k3)ϕ+(~k4)

∫
d3x′ϕ3

+

〉∫
dt′
[
a
(
t′
)
H
]−2α

+permutations

=
c3,1

2ν

C6
α ∑i k3−2α

i(
k1k2k3k4

)3−2α

(
[aH]−2α

2α

)
, (4.46)

where c3,1 is the Wilson coefficient for the ϕ3
+ϕ− operator, see Eq. (4.42), and we used Eq. (4.41a)

to evaluate the field contractions. In addition, we must include any trispectrum associated with

the initial conditions.

4.3.3 (Dynamical) Renormalization

Loops corrections are calculated in the SdSET using dynamical dimensional regulariza-

tion (dynamical dim reg). Rather than varying the spacetime dimension, we instead float the

dynamical exponents α , and evaluate loop integrals by analytic continuation in α . Then when

we encounter divergences as α → 0, they will be accompanied by log corrections to the time

evolution, in exact analogy with conventional dim reg. To keep the units fixed as we vary α , we

will introduce the necessary powers of [aH] such that ϕ+ stays dimensionless. Then we take
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α = 0 at the end of the calculation, so that:

φS
(
~k,t
)
→ H

(
ϕ+

(
~k,t
)
+[a(t)H]−3

ϕ−
(
~k,t
))

, (4.47)

so that ϕ+ corresponds to a massless mode.

Since we are working within the EFT, we will typically encounter vanishing scaleless

integrals. Then we can isolate the UV divergence in the usual way by regulating the IR with a

dimensionful parameter K:

〈O ...〉 ∝ [aH]−2α

∫ d3 p
(2π)3

1
p3−2α

→ [aH]−2α

∫ d3 p
(2π)3

1
(p2 +K2)3/2−α

= [aH]−2α 1
8π3/2

Γ[−α]

Γ[3/2−α]
K2α

→− 1
2π2

(
1

2α
+ log

K
[aH]

− log2
)
, (4.48)

where we have taken the limit α → 0 in the third line. Having isolated these UV divergent

contributions, we can use them to determine the (dynamical) RG flow, which resums a series in

log[aH].

Having regulated the divergence, we can then absorb it into the renormalization of the

operator

O = ZO OR with ZO −1 ∝− 1
2π2

(
1

2α
+ log

K?

[aH]?

)
, (4.49)

so that

〈OR ...〉 ∝
1

2π2 log
[aH]?
[aH]

+ log
K
K?

, (4.50)

where [aH]? and K? are energy and momentum scales we have invented to make the logs small,

i.e., subtraction points. By definition the bare operator O is independent of these arbitrary
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parameters, and thus

d
dlog[aH]?

O = 0 ⇐⇒ d
dlog[aH]?

OR =− dlogZO

dlog[aH]?
OR ≡ γ OR , (4.51)

where the anomalous dimension γ is independent of [aH]. We are working with a scheme where

ZO is diagonal at the scale [aH]?. In general, γ → γi j is a matrix that acts on the space of

operators, and which encodes both the anomalous scaling and mixing of these operators.

4.3.4 Matching and Initial Conditions

SdSET provides an effective description for the time evolution of scalar modes that have

crossed the Hubble horizon. Their state at the time of horizon crossing cannot be computed

within the EFT, and instead has to be provided as an additional input. This is why SdSET requires

matching for both the initial conditions and the EFT Wilson coefficients. This is not unique to

SdSET, but is necessarily part of any EFT description of the post inflationary universe as well,

see e.g. [103].

When defined using dynamical dim reg, SdSET is a so-called continuum EFT [104].

Concretely, the time integrals include arbitrary early times, even though the EFT does not

provide a model of the subhorizon physics, since it relies on the use of the long-wavelength

mode functions at all times. Importantly, as with all continuum EFT, these early time integrals

only make scaleless (and therefore vanishing) contributions. Thus we can integrate over all times,

such that the regulated integrals respect the low energy symmetries and the EFT power counting.

Underlying the validity of this procedure is the fact that the subhorizon physics only alters the

initial conditions and thus we can fully account for all subhorizon evolution by matching a UV

theory onto SdSET.

One can demonstrate how matching separates into Wilson coefficient and initial con-

dition corrections more directly using a hard cutoff to evaluate time and momentum integrals,

i.e., treating the theory as a Wilsonian EFT [104]. Let ki denote the magnitudes of the momenta
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appearing in the cosmological correlator, and let the cutoff of the momentum integrals Λ be

much greater than any of the ki. In addition, we denote the time cutoff by tΛ; this is the time

when all the EFT modes are in the superhorizon limit, and thus it specifies when we set the initial

conditions for the EFT.

Before tΛ, a subset of EFT modes are subhorizon, and so one must use the UV theory

to describe them. To match onto the EFT, it is useful to split the full theory time evolution into

pieces before and after tΛ. Let UI(t, t ′) represent the interaction picture propagator, and |Ω〉 be

the UV vacuum state. This decomposition can then be written as

〈
Ω
∣∣φ(~k1, t

)
...φ
(
~kn, t

)∣∣Ω〉= 〈Ω∣∣U†
I (t,−∞)φI

(
~k1, t

)
...φI

(
~kn, t

)
UI(t,−∞)

∣∣Ω〉
=
〈
Ω
∣∣U†

I (tΛ,−∞)U†
I (t, tΛ)φI

(
~k1, t

)
...φI

(
~kn, t

)
UI(t, tΛ)UI(tΛ,−∞)

∣∣Ω〉 , (4.52)

where φI is the interaction picture field.

One can trivially re-write Eq. (4.52) as an expectation value of |ψ〉 = UI(tΛ,−∞) |Ω〉,

the state of the full theory fields at tΛ. One can then integrate out the modes whose wave

vector magnitudes satisfy k > Λ, so that the remaining modes are superhorizon after tΛ. It was

shown in [65] that, after integrating out these so-called hard modes, the resulting action for the

superhorizon modes ϕ+ and ϕ− is local. We can then evolve these modes from tΛ to t using the

unitary time evolution operators defined within the SdSET itself:

〈
Ω
∣∣φ(~k1, t

)
...φ
(
~kn, t

)∣∣Ω〉=〈
ψEFT(tΛ)

∣∣U†
I,EFT(t, tΛ)φS

(
~k1, t

)
...φS

(
~kn, t

)
UI,EFT(t, tΛ)

∣∣ψEFT(tΛ)
〉
, (4.53)

where UI,EFT is the interaction picture propagator obtained from Eq. (4.42), and φS is given by

Eq. (4.47). The state |ψEFT(tΛ)〉 is the EFT state inherited from |ψ〉 that results from integrating

out the hard modes; this state encodes the initial conditions for ϕ+ and ϕ−.

One then fixes the EFT parameters in Eq. (4.42) and the initial state |ψEFT(tΛ)〉 by
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matching to full theory correlators. In practice, the full form of |ψEFT(tΛ)〉 is more information

than is needed to derive the late time behavior of n-point correlation functions of φ . Instead, it is

sufficient to determine a finite number of n-point functions,

〈
ψEFT(tΛ)

∣∣ϕ+

(
~k1
)
...ϕ+

(
~kn
)∣∣ψEFT(tΛ)

〉
, (4.54)

from matching. Furthermore, this shows that all of the contributions from t < tΛ are encode

in the state |ψEFT(tΛ)〉 or, equivalently, in the initial conditions set at tΛ. Finally, since tΛ is

an unphysical cutoff parameter, no physical results can depend on it. In particular, the initial

conditions can be identified as the time-independent contribution from the UV correlators. This

implies that we do not need to rely on hard cutoff to derive the initial conditions. In what follows,

we will regulate the theory using dynamical dim reg, and will derive the initial conditions by

identifying the time-independent contributions to correlators that appear when matching.

To illustrate the matching procedure, it is useful to first consider a simple example. By

expanding Eq. (4.27) to leading order in c3,1 and setting |in〉= |ψEFT〉 we find that the tree-level

EFT prediction for the four point function of φ is

〈
Ω
∣∣φ(~k1, t

)
...φ
(
~k4, t

)∣∣Ω〉= ( τ

τΛ

)4α [〈
ψEFT(tΛ)

∣∣ϕ+

(
~k1
)
...ϕ+

(
~k4
)∣∣ψEFT(tΛ)

〉
+2ic3,1

∫
τ

τΛ

dτ1

τ
1+2α

1

∫
d3x
〈
ψEFT(tΛ)

∣∣[ϕ+

(
~k1
)
...ϕ+

(
~k4
)
,ϕ3

+ϕ−(~x,τ1)
]∣∣ψEFT(tΛ)

〉]
. (4.55)

As in all perturbative SdSET calculations, the time dependence and field contractions factorize

at the integrand level. The EFT prediction is then parameterized by the coupling c3,1 and two

expectations values of |ψEFT〉.

The expectation values parameterize the subhorizon evolution of the EFT modes before

tΛ. If the full theory is perturbative, then the subhorizon evolution is approximately Gaussian.
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Assuming the UV theory is given by λφ 4, then to O(λ ) we can write

〈
ψEFT(tΛ)

∣∣ϕI,+
(
~k1
)
...ϕI,+

(
~k4
)∣∣ψEFT(tΛ)

〉
=
(〈

ϕI,+
(
~k1
)
ϕI,+

(
~k2
)〉

IC(0)

〈
ϕI,+

(
~k3
)
ϕI,+

(
~k4
)〉

IC(0)

+2
〈
ϕI,+

(
~k1
)
ϕI,+

(
~k2
)〉

IC(0)

〈
ϕI,+

(
~k3
)
ϕI,+

(
~k4
)〉

IC(1) +perms
)
+
〈
ϕI,+

(
~k1
)
...ϕI,+

(
~k4
)〉

IC(1) ,

(4.56)

where the final term on the RHS encodes the non-Gaussian contribution to the subhorizon

evolution of the modes. There is a similar formula for the expectation value on the second line of

Eq. (4.55). However, since it is already multiplied by c3,1, we only need the 〈...〉IC(0) contribution

to the expectation value at this order.

The SdSET two point functions derived from the free theory are given in Eq. (4.41). To

include the impact of the UV interaction on the EFT, we compute
〈
ϕI,+

(
~k1
)
...ϕI,+

(
~k4
)〉

IC and

c3,1 by matching to the full theory. The superhorizon evolution between tΛ and t generates the

term proportional to c3,1, and so we can isolate the initial conditions contribution by evaluating

both sides of Eq. (4.55) at tΛ, giving

〈
ϕI,+

(
~k1
)
...ϕI,+

(
~k4
)〉

IC =
〈
Ω
∣∣φ(~k1, tΛ

)
...φ
(
~k4, tΛ

)∣∣Ω〉connected , (4.57)

where the “connected” subscript refers to the fact that this does not include the contributions from

products of lower point contractions. The RHS of Eq. (4.57) can be computed using Eq. (4.27),

where HI is given by the full theory interaction Hamiltonian and the time integrals extend from

−∞ to tΛ. Since the integral’s main region of support occurs when the modes are subhorizon, we

cannot replace the mode functions with their late time behavior, and instead have to use their full

UV form given in Eq. (4.26). The UV mode functions simplify for scalars whose mass is much

lighter than the Hubble constant and can be approximated by Eq. (4.31).

One can then fix c3,1 by demanding that Eq. (4.55) reproduces the full theory prediction

for the correlator in the regime t > tΛ. While the split between subhorizon (t < tΛ) and super-
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horizon (t > tΛ) evolution is manifest in the EFT, this split has to be inputted by hand in the full

theory, as was done in Eq. (4.52); this is effectively making a choice of scheme. Practically, one

can decompose the time integrals in Eq. (4.27) into regions before and after tΛ. In our four point

example, subhorizon contribution is already taken care of by the initial conditions, i.e., Eq. (4.57),

while the second term in Eq. (4.55) must reproduce the superhorizon evolution. The Wilson

coefficient c3,1 is fixed by this condition.

Since the split time tΛ is arbitrary from the perspective of the full theory, all full-theory

and EFT predictions of the φ correlators must be independent of it. This provides an additional

check on the matching calculation in the hard cutoff scheme. Fortunately, when we calculate with

dynamical dim reg, the time integrals are manifestly independent of tΛ, while still maintaining

the split between initial conditions and time-evolution. In this sense, the hard-cutoff scheme

proves the validity of dynamical dim reg, while dynamical dim reg makes it manifest that we

can implement this procedure without breaking symmetries. This matches the more intuitive

argument that our treatment of initial conditions and time evolution in SdSET is identical to the

continuum EFT approach.

4.3.5 Stochastic Inflation from SdSET

From the point of view of our EFT, Stochastic Inflation can be understood as a conse-

quence of operator mixing. Specifically, for light fields for which α→ 0, the composite operators

ϕn
+ are degenerate to leading order (in that they have the same dimension as determined by the

EFT power counting). Assuming the correlations of these fields are only due to the Gaussian

contribution given in Eq. (4.41), one encounters a UV divergence from a one-loop contraction

〈
ϕ

n
+(~x) ...

〉
⊃
〈
ϕ

n−2
+ (~x) ...

〉
×
(

n
2

)
C2

α

2

∫ d3 p
(2π)3

H2−2α

p3−2α

⊃
〈
ϕ

n−2
+ (~x) ...

〉
×
(

n
2

)
C2

α

4π2 log[aH] . (4.58)
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The dynamical RG associated with this operator mixing can be written as

∂

∂t

〈
ϕ

n
+(~x) ...

〉
=

n(n−1)
8π2

〈
ϕ

n−2
+ (~x) ...

〉
− n

3 ∑
m>1

cm,1

m!
〈
ϕ

n−1
+ (~x)ϕ

m
+(~x) ...

〉
, (4.59)

where the second term arises from the classical time evolution. This equation contains the same

information as Starobinsky’s formulation of Stochastic Inflation. Specifically, we can use the

Fokker-Planck equation given in Eq. (4.2) to see that these two approaches are equivalent:

∂

∂t

〈
ϕ

n
+

〉
=

∂

∂t

∫
dϕ+ϕ

n
+P(ϕ+,t)

=
∫

dϕ+ϕ
n
+

(
1

8π2
∂ 2

∂ϕ2
+

P(ϕ+,t)+
1
3

∂

∂ϕ+

[
∑

m>1

cm,1

m!
ϕ

m
+P(ϕ+,t)

])

=
∫

dϕ+

(
n(n−1)

8π2 ϕ
n−2
+ P(ϕ+,t)−

n
3

ϕ
n−1
+ ∑

m>1

cm,1

m!
ϕ

m
+P(ϕ+,t)

)

=
n(n−1)

8π2

〈
ϕ

n−2
+

〉
− n

3 ∑
m>1

cm,1

m!
〈
ϕ

n−1
+ ϕ

m
+

〉
, (4.60)

where in the second line we plugged in Eq. (4.2), Ht = t, the α = 0 relation φ |ϕ−=0→ Hϕ+,

and

V ′(φ) → ∂

∂ϕ−
V (ϕ+,ϕ−)

∣∣∣
ϕ−=0

= ∑
m>1

cm,1

m!
ϕ

m
+ . (4.61)

This shows that Eq. (4.59) is equivalent to the leading order equation for Stochastic Infla-

tion Eq. (4.2). Therefore, calculating corrections to Stochastic Inflation has been reduced to

the straightforward task of computing the higher order dynamical RG equation using SdSET.

Concretely, we would expect to find mixing between composite operators ϕn
+ and all possible
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ϕn′
+ such that

∂

∂t

〈
ϕ

n
+

〉
=− n

3

odd

∑
m>1

cm,1

m!
〈
ϕ

n+m−1
+

〉
+

(
n
2

)
∞

∑
m=0

bm
〈
ϕ

n+2m−2
+

〉
−
(

n
3

)
∞

∑
m=0

dm
〈
ϕ

n+2m−2
+

〉
+

(
n
4

)
∞

∑
m=0

em
〈
ϕ

n+2m−4
+

〉
+ ... . (4.62)

Note the role of the binomial coefficient which will originate from the number of fields inside

ϕn
+ whose contractions are responsible for mixing with a given operator, leading to a single log

divergence. Repeating the above argument, we see that this dynamical RG is equivalent to

∂

∂t
P(ϕ+,t) =

1
3

∂

∂ϕ+

[
∂ϕ−V (ϕ+,ϕ−)|ϕ−=0P(ϕ+,t)

]
+

∂ 2

∂ϕ2
+

[
∞

∑
m=0

bm

2!
ϕ

2m
+ P(ϕ+,t)

]

+
∂ 3

∂ϕ3
+

(
ϕ+

∞

∑
m=0

dm

3!
ϕ

2m
+ P(ϕ+,t)

)
+

∂ 4

∂ϕ4
+

(
∞

∑
m=0

em

4!
ϕ

2m
+ P(ϕ+,t)

)
+ . . . ,

(4.63)

where we see that number of derivatives is related to the binomial coefficient of the associated

mixing term. Comparing with Sec. 4.2.2, we see that the NLO corrections are determined by

c5,1 and b1 while the NNLO coefficients are c7,1, b2 and d0. Achieving NNLO accuracy requires

matching λφ 4 theory onto the SdSET at one loop, the subject of the next section. Note, however,

that we have described Stochastic Inflation in terms of ϕ+ rather than the UV field φ . This

distinction will be important because the equations of Stochastic Inflation are not invariant under

field redefintions. We will address these issues in detail in Sec. 4.5.3. Finally, we note that this

result demonstrates the Markovian assumption which led to Eq. (4.16) does in fact hold as a

consequence of SdSET power counting. Specifically, the fact that the ϕ− dynamics are irrelevant

to the evolution of the ϕ+ correlators implies that the evolution of the system is indeed linear,

and thus it has no “memory.”
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4.4 Matching λφ 4 Onto SdSET at One-Loop

In this section we will show how to match correlators of φ to correlators of ϕ+ in the

SdSET to determine the EFT parameters in terms of UV data. This then serves as input for any

calculation of cosmological correlators for λφ 4 theory in the long wavelength limit, including

the corrections to Stochastic Inflation we will discuss in subsequent sections. Furthermore,

by extending this program to one-loop order for the first time, this calculation will serve as a

non-trivial check of the SdSET framework.

Unlike conventional EFTs, we match both the couplings of SdSET and the stochastic

initial conditions, the former results from studying the time-dependent terms in the EFT while the

latter is fixed at the time of horizon crossing. As a result, consistent matching of time-dependence

of the UV correlators is non-trivial and requires that the SdSET is a complete representation of

the long wavelength dynamics. In contrast, time-independent contributions to a given correlator

can always be absorbed into the initial conditions (up to composite operators as discussed

in Sec. 4.4.3). As a result, for tree and one-loop matching we will be particularly focused on

time-dependent UV contributions.

4.4.1 Tree-level Matching and Field Redefinitions

Tree-level matching in the interacting theory is non-trivial due to the impact on the initial

conditions. We will need to introduce non-Gaussian initial conditions in order to match higher

point correlation functions as calculated by the UV theory.

We can understand many important aspects of matching by Taylor expanding the UV

calculation in the long wavelength limit. As a simple demonstration, we can explore the

superhorizon behavior of the operator φ . At first order in the coupling, we can apply the
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definition of the in-in correlator given in Eq. (4.27) with Q(t) = φ , which gives

[φ ]λ
(
~x,τ
)
= i
∫

τ

dτ1

[
Hint(τ1),φin

(
~x,τ
)]

=
λ

3!

∫
τ dτ1

(−Hτ1)4

∫
d3x1 φint(~x1,τ1)

3 i
[
φint
(
~x1,τ1

)
,φint

(
~x,τ
)]

, (4.64)

where φint are the interaction picture fields. Because the time integral runs over all times, this

includes both the regime where the modes are hard (UV) and the long wavelength limit where the

EFT applies. Nevertheless, if we expand in the long wavelength limit and evaluate the integrals

with dynamical dim reg, we will only get contributions from late times. Since φin are the free

field operators, we can use the map given in Eq. (4.34) to determine the long wavelength behavior

of the full theory:3

φint→ H
(
[aH]−α

ϕ++[aH]−3+α
ϕ−
)
. (4.65a)

Then using τ =−1/[aH] and keeping only terms that survive as [aH]→ ∞, one finds

[φ ]λ
(
~x,t
)
→ λ

3!
H
∫ t

dt1

∫
d3x1 [a(t1)H]−2α

ϕ
3
+

(
~x1
)

i
([

ϕ−
(
~x1
)
,ϕ+

(
~x
)]

+
[a(t1)H]3

[a(t)H]3

[
ϕ+

(
~x1
)
,ϕ−

(
~x
)])

=
λ

3!
H
3

(
−
(
− 1

2α
+ log[a(t)H]

)
+

1
3

)
ϕ

3
+

(
~x
)
, (4.66)

where in the last line we expanded in α � 1. Note that the scaling dimension of ϕ+ is still α

and thus will provide the necessary distance scale to make the log dimensionless inside of a

correlator, as is familiar from conventional dim reg.

Now we turn to exploring the same effect within the EFT direction by calculating the

3Note we are not working in the EFT yet, because we have not integrated out the hard modes. All we are doing
here is taking the long wavelength limit.

102



time evolution of ϕ+ using SdSET. Using Eq. (4.34) with Q = ϕ+ and Hint = c3,1ϕ3
+ϕ−/3! we

have

[ϕ+]λ (~x,t) =
c3,1

3!

∫ t

dt1

∫
d3x1[aH(t1)]

−2α
ϕ

3
+(~x1)i

[
ϕ−
(
~x1
)
,ϕ+

(
~x
)]

=−c3,1

3!
1
3

(
− 1

2α
+ log[a(t)H]

)
ϕ

3
+(~x) , (4.67)

where it is trivial to match the tree-level UV interaction to the EFT interaction, such that

c4,0 = c3,1 = ... = λ +O
(
λ

2) . (4.68)

The equality between cn,0 and cn−m,m found in matching is also fixed by the reparametrization

invariance of SdSET. We see that the EFT is capturing the first term in the Taylor expansion of

the UV theory given in Eq. (4.66), but not the second.

The origin of the missing term is two-fold. First, we are only considering correlations

of ϕ+ instead of the full UV field, which also includes ϕ−. This alone would not matter, since

ϕ− is suppressed by [aH]−3. However, in order to organize the interactions within the EFT,

we removed the c4,0ϕ4
+/4! term by a field redefinition. Specifically, to remove the cn,0ϕn

+/n!

operator, we take

ϕ−→ ϕ−+
cn,0

9(n−1)!
[aH]3−(n−1)α

ϕ
n−1
+ . (4.69)

Therefore, keeping track of the field redefinition implies that we should use

φEFT ≡ ϕ = H
(
[aH]−α

ϕ++[aH]−β
ϕ−+

c4,0

9
1
3!
[aH]−3α

ϕ
3
++ ...

)
, (4.70)

with α → 0 and β → 3. Now the quantities on the RHS live purely in the EFT. As a result

ϕ− will not contribute to correlation functions of ϕ because they are suppressed by powers of
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[aH]−3. Combining this with Eq. (4.67), we find

[
ϕ
]

λ
= ϕ++

1
3!

H
3

(
c3,1

(
1

2α
− log[aH]

)
+

c4,0

3

)
ϕ

3
+(~x) , (4.71)

where we dropped terms suppressed by powers of [aH]. Now we see that this matches the UV

expression in Eq. (4.66) when we use the tree-level matching relations c3,1 = c4,0 = λ given in

Eq. (4.68).

This result also provides the map between SdSET and Refs. [32, 93], which derived the

soft behavior by explicitly expanding the UV in-in correlator in the superhorizon limit. The

tree-like structure they observe is a consequence of our power counting as only cn,1 is marginal

and hence interactions only include a single factor of ϕ−. The nested set of commutators in

Eq. (4.27) ensures that the marginal operators always have a tree-like structure. In SdSET, this is

manifest from dynamical RG, and all the additional finite terms arise from the field redefinitions.

By similar considerations, we must apply the field redefinition to match the UV potential

onto V (ϕ+,ϕ−) in the EFT. Although λϕ4
+ has been removed, this procedure introduces higher

order terms, such as

c3,1

3!
ϕ

3
+ϕ− →

c3,1 c4,0

9(3!)2 [aH]3ϕ
6
+ (4.72a)

c2,2

4
[aH]−3

ϕ
2
+ϕ

2
− →

c2,2 c4,0

18(3!)
ϕ

5
+ϕ− . (4.72b)

Removing the first term will introduce a ϕ7
+ϕ− interaction at order λ 3 and so on. As a result, our

field redefinition requires that

V (ϕ+,ϕ−)⊃
1
3!

ϕ−
(

c3,1ϕ
3
++

c2,2c4,0

18
ϕ

5
++

c2,2c3,1c4,0

162
ϕ

7
++ ...

)
. (4.73)
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Finally, using c2,2 = c3,1 = c4,0 = λ from matching, we arrive at

V (ϕ+,ϕ−)⊃
λ

3!
ϕ−

(
ϕ

3
++

λ

18
ϕ

5
++

λ 2

162
ϕ

7
++ ...

)
. (4.74)

or c5,1 =
λ 2

18
5!
3! and c7,1 =

λ 3

162
7!
(3!) .

The correction to c5,1 is equivalent to the NLO corrections to the effective potential

calculated in Refs. [31] and [92] using complementary techniques. While these two references

approach this problem from different perspectives, the wavefunction of the universe and the dS

static patch respectively, both effectively integrate out the decaying mode ϕ− which leads to

an additional term in the potential. Instead, when ϕ− is included, our corrections arise from

insuring ϕ− does not mix with ϕ+ at higher orders in perturbation theory. As the dimensions

of ϕ+ and ϕ− are well separate for α → 0, removing mixing can always be achieved by such a

field redefinition. Additionally, it is easy to determine the correction to c2n+1,1 ∝ λ n by repeated

application of Eq. (4.69). Most importantly, we do not integrate out ϕ− to ensure we have a local

action, rather than an open EFT for the growing mode alone [30].

What we have accomplished thus far is to determine the correct basis of operators to

match the EFT and UV descriptions. We have ensured that the superhorizon limit of φ and ϕ

agree as operators at higher orders in λ . However, in order to match the correlators of the UV

theory, which include the subhorizon evolution, we will need to determine the stochastic initial

conditions beyond the Gaussian limit.

In order to correctly match the four-point function, we write the EFT trispectrum to order
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λ as4

〈
ϕ
(
~k1
)
ϕ
(
~k2
)
ϕ
(
~k3
)
ϕ
(
~k4
)〉′

C
=
〈[

ϕ
]

λ

(
~k1
)
ϕ+

(
~k2
)
ϕ+

(
~k3
)
ϕ+

(
~k4
)〉′

C
+permutations

+
〈

ϕ
(
~k1
)
ϕ
(
~k2
)
ϕ
(
~k3
)
ϕ
(
~k4
)〉′

IC(1)

=
λ H4

8(k1k2k3k4)3 ∑
i

k3
i

3

(
c3,1

(
1

2α
+ log

ki

[aH]

)
+

c4,0

3

)

+
〈

ϕ
(
~k1
)
ϕ
(
~k2
)
ϕ
(
~k3
)
ϕ
(
~k4
)〉′

IC(1)
, (4.75)

where c3,1 = c4,0 = λ as before, and the subscript “C” denotes that this is only the connected

contributions. Matching this EFT expression to the UV result in Eq. (4.32) fixes the non-Gaussian

contribution to the initial conditions:

〈
ϕ
(
~k1
)
ϕ
(
~k2
)
ϕ
(
~k3
)
ϕ
(
~k4
)〉′

IC(1)
=

λ H4

8(k1k2k3k4)3

[
∑i k3

i
(
− 1

2α
+ γE −2+ log kt

ki

)
3

−k1k2k3k4

kt
− 1

9
k3

t +2 ∑
h<i< j

khkik j +
1
3

kt

(
∑k2

i −∑
i< j

kik j

)]
, (4.76)

where kt = k1 + k2 + k3 + k4. Most significantly, all the time-dependence of the full UV trispec-

trum is already captured by the EFT and, as expected, the initial conditions are only required for

matching the time-independence contributions. This result is extended to the six-point function

in Sec. 4.A as expected from general arguments.

Matching Derivative Operators: Before moving on the loop-level matching, let us briefly

comment on the case where the UV theory is itself an effective theory. Specifically, we are only

considering the case of a λφ 4 interaction in the UV, while in principle there could be a variety of

higher derivative (irrelevant) interactions as well. The first such operator we can write down is

4For convenience, we take Cα → 1 for the light fields and have dropped the additional constants that arise from
expanding Cα = 1+α(γE −2+ log2)+O

(
α2
)
. While this choice has no impact on the physics (since the correct

constants will appear in the initial conditions by matching), it will simplify the algebra significantly.
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(∇µφ∇µφ)2/M4. The full tree level trispectrum was calculated in Ref. [105] and is given by

〈
φ
(
~k1
)
φ
(
~k2
)
φ
(
~k3
)
φ
(
~k4
)〉

∇4
= (2π)3

δ

(
∑

i

~ki

)
1

M4
H8

∏i 2k3
i

×
[
− 144k2

1k2
2k2

3k2
4

k5
t

−4

(
12k1k2k3k4

k5
t

+
3∏i< j<l kik jkl

k4
t

+
∏i< j kik j

k3
t

+
1
kt

)((
~k1 ·~k2

)(
~k3 ·~k4

)
+2 perms

)
+
(
~k1 ·~k2

)(4k2
3k2

4

k3
t

+
12(k1 + k2)k2

3k2
4

k4
t

+
48k1k2k2

3k2
4

k5
t

)

+5 perms

]
. (4.77)

What we notice right away is that this gives us a completely time-independent result. It can

therefore only be absorbed into the initial conditions of ϕ+:

〈
ϕ+

(
~k1
)
ϕ+

(
~k2
)
ϕ+

(
~k3
)
ϕ+

(
~k4
)〉

IC
⊃ H−4

〈
φ
(
~k1
)
φ
(
~k2
)
φ
(
~k3
)
φ
(
~k4
)〉

∇4
. (4.78)

This result illustrates a broader feature of physics in dS: higher derivatives decouple at long

wavelength and thus contribute, at most, time-independent correlation functions. This property

is made manifest in SdSET and must hold in matching. As a result, a variety of possible UV

theories only impact the initial conditions and not the long wavelength dynamics. In this sense,

our choice to focus λφ 4 is not missing more complicated superhorizon evolution. Instead, higher

derivative terms are trivially matched in SdSET and thus do not further illuminate the structure

of the EFT.
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4.4.2 One-loop Matching

When calculating loops in the UV theory, rather than the EFT, our EFT regulator (dynam-

ical dim reg) is not effective.5 Loop calculations in the UV are not scaleless and therefore we

will need to regulate them differently than the EFT approach. This difference will be absorbed

into the matching calculating. In Sec. 4.B, we match using a hard cutoff in both theories for an

example with consistent regulators in both and find identical results, up to scheme dependent

coefficients. To avoid the usual challenges of working with a hard cutoff, we will use dimensional

regularization in the UV theory via

〈
φ
(
~k,τ
)

φ
(
−~k,τ ′

)〉
=

π

4
Hd−1(−τ)

d
2
(
−τ
′) d

2 Hν

(
−kτ

)
H?

ν

(
−kτ

′) , (4.79)

where ν =
√

d2/4−m2/H2. To simplify calculations, we can fix ν = 3/2 for any dimension,

and then can regulate integrals that appear via an analytic continuation in d. We note that while

this will regulate the one-loop divergences that appear in this section, dim reg alone is not

sufficient in general, as we will see below.

We will begin with the one-loop power spectrum of the growing mode, illustrated in the

left side of Fig. 4.2. In the UV theory, a standard in-in calculations gives us

〈
φ
(
~k
)
φ
(
~k ′
)〉′

(1)
=

λ

4k3
H2

3

(
1
ε
+ log

2k
[aH]

+ γE −2
)[

[aH]−ε

∫ dd p
(2π)d

1
2p3

]
. (4.80)

Regulating the IR by substituting p2→ p2 +K2 in the denominator, we get

〈
φ
(
~k
)
φ
(
~k ′
)〉′

(1)
=

λ

8π2k3
H2

3

(
1
ε
+ log

2k
[aH]

+ γE −2
)[

1
ε
− log

K
[aH]

+
1
2
(

log4π− γE
)]

.

(4.81)

5In a forthcoming paper [106], it will be shown that when these integrals are transformed to Mellin space, then it
is indeed possible to implement dynamical dim reg in the full theory.
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Figure 4.2. Diagrams for the one-loop matching, as computed in the UV theory. The horizontal
line indicates a surface on constant conformal time τ0 on which our in-in correlators are evaluated.
Left: One-loop power spectrum. Right: One-loop trispectrum.

This is the complete one-loop power spectrum of the UV theory.

In SdSET, the one-loop power spectrum is given by several terms

〈
ϕ
(
~k
)
ϕ
(
~k ′
)〉′

(1)
= H2[aH]−2α

〈
ϕ+

(
~k
)
ϕ+

(
~k ′
)〉′

(1)
+H2[aH]−2α

〈
ϕ+

(
~k
)
ϕ+

(
~k ′
)〉′

δα(1)

+2
c4,0

9
1
3!

H2[aH]−4α

〈
ϕ+

(
~k
)
ϕ

3
+

(
~k ′
)〉′

(0)
+
〈

ϕ
(
~k
)
ϕ
(
~k ′
)〉′

IC(1)
, (4.82)

where c4,0 ∼ λ , and ϕ is given in Eq. (4.70). The subscript (n) labels the order in λ in which

correlator is calculated and δα(m) is the contribution to the correlator from a shift in the value of

α at order λ m. The first term is the one-loop power spectrum in the EFT,

[aH]−2α

〈
ϕ+

(
~k
)
ϕ+

(
~k ′
)〉′

(1)
=−[aH]−4α 1

2ν

(
− 1

2α

)
λ

4k3−2α

∫ d3 p
(2π)3

1
p3−2α

→− 1
6π2

λ

4k3

(
− 1

2α
− log

k
[aH]

)(
− 1

2α
− log

K
[aH]

)
.

(4.83)

We must also allow for the possibility that, due to matching, we will need to correct the value of

α from its free-field value. Substituting α → α +δα(1) in Eq. (4.41a) and expanding to linear
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order, we have

H2[aH]−2α

〈
ϕ+

(
~k
)
ϕ+

(
~k ′
)〉′

δα(1)
=
〈

ϕ
(
~k
)
ϕ
(
~k ′
)〉

(0)

(
1+2δα

(1) log
k

[aH]

)
, (4.84)

where have absorbed the [aH]−2δα into the definition of this term to derive the dimensionless

argument of the log. From the EFT point of view, δα(1) is an unknown constant of order λ to

be fixed by matching. Finally, we have the contribution to the ϕ power spectrum from the field

redefinition:

2
c4,0

9
1
3!

H2[aH]−4α

〈
ϕ+

(
~k
)
ϕ

3
+

(
~k ′
)〉′

(0)
→ c4,0

9
1

2k3
1

2π2

(
− 1

2α
− log

K
[aH]

+ log2
)
. (4.85)

We emphasize that since the coefficient of ϕ3
+ in the definition of ϕ is fixed by matching the

superhorizon six-point function, there is no additional freedom within this term that can be used

to match the 1-loop power spectrum.

The final term δ
〈
ϕ
(
~k
)
ϕ
(
~k ′
)〉′

IC is time independent and is determined by matching the

time-independent part of the UV calculation. Combining these results and using c4,0→ λ , we

find

H2
〈

ϕ
(
~k
)
ϕ
(
~k ′
)〉′

(1)
=

H2

6π2
λ

4k3

(
1
−2α

+ log
[aH]

k
+

2
3

)(
1
−2α

+ log
[aH]

K

)
+δα

(1)H2

k3 log
k
a
+

λ

9
1

2k3
1

2π2 log2+
〈

ϕ
(
~k
)
ϕ
(
~k ′
)〉′

IC(1)
. (4.86)

Comparing this result to Eq. (4.81), we see that the time-dependence of the UV and EFT agree

after matching the single log coefficient with

δα
(1) =

λ

8π2
1
3

(
γE −

7
3
+ log2− 1

2
(

log4π− γE
))

. (4.87)

This is a non-trivial result as we only have a single free parameter to match the full time-

110



dependence on the UV result. All the time-independent contributions can be matched by

adjusting the initial conditions, IC(1), which in this case is just a renormalization of the amplitude

of the two point function, namely a shift in Cα .

One-loop Trispectrum

Now we move on to the one-loop trispectrum, as illustrated in the right side of Fig. 4.2.

For our purposes here, it suffices to simply match the UV divergent terms which result in time

dependent log[aH] factors.6 This will result in a correction to the c3,1 Wilson coefficient in the

EFT. While the initial conditions also receive corrections from matching the trispectrum, these

would contribute to Stochastic Inflation beyond NNLO, and so we will not compute them here.

For convenience, we break the UV calculation into two terms

I4 =
〈

φ
(2)(~k1

)
φ
(1)(~k2

)
φ
(2)(~k3

)
φ
(1)(~k4

)〉
+permutations (4.88a)

K4 =
〈

φ
(3)(~k1

)
φ
(1)(~k2

)
φ
(1)(~k3

)
φ
(1)(~k4

)〉
+permutations , (4.88b)

where

φ
(2)(~k, t) = i

∫ t
dt1
[
Hint(t1),φ

(
~k, t
)]

(4.89a)

φ
(3)(~k, t) =−

[∫ t1
dt2Hint(t2),

[∫ t
dt1Hint(t1),φ(~k, t)

]]
, (4.89b)

where Hint is given in Eq. (4.28). In what follows, we will show that I4 is UV finite, while K4

is UV divergent. Then we will match this divergent contribution between the UV theory and the

EFT to derive the one-loop correction to c3,1.

6We remind the reader that the “UV divergences” that we are isolating here take their origins from the IR
divergences of the full theory that are resummed by Stochastic Inflation. The expansions being done to simplify the
integrals that appear on the UV theory side of this matching calculation amount to decomposing the correlator via
the method of regions [107, 108].
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We begin by evaluating I4. Expanding in the limit p� ki, we have

I4 =
1

k3
2k3

4

∫
τ dτ1

(−τ1)4

∫ d3 p
(2π)3 G

(
~k1,τ,τ1

)(1− ipτ1)
2

p3 ei2pτ1

×
∫

τ dτ2

(−τ2)4

∫ d3 p
(2π)3 G

(
~k3,τ,τ2

)(1+ ipτ2)
2

p3 e−i2pτ2

+permutations . (4.90)

The integrals over τ1 and τ2 are independent and we can evaluate them as usual. Expanding in

kiτi� 1, we have

∫
τ dτ1

(−τ1)4 G
(
~k1,τ,τ1

)
(1− ipτ1)

2ei2pτ1 →−1
3

∫
τ dτ1

(−τ1)4

(
τ

3− τ
3
1
)
(1− ipτ1)

2ei2pτ1

=
(−i)

3

(
log pτ− 11

12

)
. (4.91)

Putting this together yields

I4 '
1

k3
2k3

4

∫ d3 p
(2π)3

1
p6

(
log pτ− 11

12

)2

. (4.92)

This integral will not lead to any UV divergences. Furthermore, this result is exact in pτ since

we have only expanded in k/p. Therefore all the subleading terms will be more UV convergent,

and correspond to higher power corrections in the EFT. This shows that all we need to include

when matching c3,1 is the correction due to K4.

The second term, K4, gives rise to more interesting UV behavior. Again expanding for
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large loop momentum p� ki, we have

K4 '
H4

32(k2k3k4)3

∫ dd p
(2π)d

∫
τ dτ1

(−τ1)d+1 G
(
~k1,τ,τ1

)
×2Im

∫
τ1 dτ2

(−τ2)4
1
p6 (1+ ipτ1)

2(1− ipτ2)
2e−i2p(τ1−τ2)

+permutations . (4.93)

We have expressed the commutator acting on the loop momenta in φ (3) in terms of the imaginary

part to simplify the calculation. In this form, the time integrals can be evaluated exactly, giving

K4 '
H4λ 2

16(k2k3k4)3

∫ dd p
(2π)d

1
p3

[
10
81
− 1

27
γE(2+3γE)−

5
36

π
2

+
1
9

(
log

2p
[aH]

)2

+(1+3γE) log
2p
[aH]

+
4
9

log
k

[aH]

]
+permutations

=
H4λ 2

8(k2k3k4)3
1

4π2

(
2
ε
+ log

k
[aH]

+ log
K2

4π
− γE

)
(4.94)

×
[

10
81
− 1

27
γE(2+3γE +6log2)− 5

36
π

2 +
2log2+3log2 2

27

]
+O

(
(log[aH])2

)
+permutations .

In the last line, we are only writing the terms that are linear in log[aH] since this is what

determines the contribution to the RG.

We can see the appearance of higher powers of log from the perturbative EFT contribution
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to the one-loop trispectrum

〈
ϕ+

(
~k1
)
...ϕ+

(
~k4
)〉′
⊃ C6

α ∑i k3
i

8(k1k2k3k4)3−2α

1
9

×
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dt1

∫ t1
dt2
(
[a(t1)H][a(t2)H]

)−2α
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(2π)3
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α

2p3−2α

→ ∑i k3
i

8(k1k2k3k4)3−2α

1
9

1
2

(
− 1

2α
+ log[aH]

)2

× 1
2π2

(
− 1

2α
− log

K
[aH]

+ log2
)
, (4.95)

where the compensating dimensionful factors that appear inside the log[aH] term come from

expanding the prefactor in the small α limit. One can check that this term matches the coefficient

of the log3 divergence of the UV calculation.

In order to match the linear log term, we need to keep track of the EFT field redefinition

to order λ 2. Specifically, we need

ϕ = H
(
[aH]−α

ϕ++[aH]−β
ϕ−+

λ

9
1
3!
[aH]−3α

ϕ
3
++

λ 2

81
1
3!
[aH]−5α

ϕ
5
+

)
. (4.96)

to remove the ϕ6
+ operator from the EFT potential. This O

(
λ 2) term contributes to the trispectrum

at one loop:

〈
ϕ
(
~k1
)
ϕ
(
~k2
)
ϕ
(
~k3
)
ϕ
(
~k4
)〉′
⊃ ∑i k3

i
(k1k2k3k4)3

λ 2

81
5!

3!2

∫ d3 p
(2π)3

1
p3−2α

, (4.97)

which matches the leading UV term in Eq. (4.94), namely the log term proportional to a factor of

10/81. After matching this term, we see a fairly complicated expression remains for the linear

log. This can be absorbed into the c3,1 Wilson coefficient in the potential using Eq. (4.46), such

that

c3,1→ λ − λ 2

2π2

(
1
9

γE(2+3γE +6log2)+
5
12

π
2− 2log2+3log2 2

9

)
. (4.98)
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This is the one-loop matching correction to an EFT Wilson coefficient, in analogy with Eq. (4.87)

above. A priori, one might think that we have to consider the divergence from the mixing of the

operators ϕ+ and ϕ3
+. In later sections, we will see that such a mixing is equivalent to a shift in

the potential of the form in Eq. (4.98), and therefore these two interpretations of the logarithmic

growth are related to each other by a field redefinition.

4.4.3 Initial Conditions for Composite Operators

The above matching procedure is sufficient to regulate the correlation function of φ and

match ϕ+ correlators at separated points. Composite operators are defined when some of these

operators are at coincident points. In Fourier space, this involves a convolution integral which

can produce divergences that require renormalizing the composite operator itself.

Composite operators can be defined in this way purely within the EFT. Since we are

regulating loops in the EFT with dynamical dim reg, this implies that we will need to know

initial conditions for general α . Fortunately, we will be interested in limits where the momenta

are hierarchical (UV divergences of the momentum integrals), which simplifies the matching

considerably.

We will start by taking the tree-level initial conditions for the trispectrum, and tying two

of the legs together to form a ϕ2
+[~x = 0] composite operator:

〈
ϕ

2
+[0]ϕ+

(
~k1
)
ϕ+

(
~k2
)〉′

IC
=
∫ d3 p

(2π)3

〈
ϕ+

(
~p
)
ϕ+

(
−~p−~k1−~k2

)
ϕ+

(
~k1
)
ϕ+

(
~k2
)〉′

IC
, (4.99)

where we are interested in determining the integrand of the right hand side in the limit p� ki.

For α = 0, we determined the initial conditions exactly in Eq. (4.76). In order to regulate the UV

divergence that comes from tying the two legs together, we want to evaluate this for general α ,

while isolating the term of interest, which is proportional to P+(k1)P+(k2), where P+ is defined

by 〈
ϕ+

(
~k
)
ϕ+

(
~k ′
)〉

= P+(k)(2π)3
δ
(
~k+~k ′

)
, (4.100)
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so that
(
P+(k)

)
tree = (2k3)−1. Since k � p, the initial conditions will arise at the horizon

crossing of the modes carrying momentum p when the ki-modes are superhorizon. As discussed

in Sec. 4.4.2, we therefore match using massive mode functions for only the ki fields, where we

can also Taylor expand in kτ � 1. As a result, the initial conditions are given by

〈
ϕ+

(
~p
)
ϕ+

(
−~p−~k1−~k2

)
ϕ+

(
~k1
)
ϕ+

(
~k2
)〉′

IC(1)
' λP+(k1)P+(k2)

× lim
τ0→0

2Im
∫

τ0 dτ

(−Hτ)4 [aH]−2α 1
4p2 (1− ipτ)2(1+ ipτ0)

2ei2p(τ−τ0) , (4.101)

where [aH]−2α = (−τ)2α . The RHS of this expression is the calculation in the UV theory

with the appropriate choice of masses for the mode functions. We are implicitly evaluating the

correlation function at a time τ0 and extracting the τ0-independent piece in the τ0→ 0 limit.

Evaluating the integral, we find

〈
ϕ+

(
~p
)
ϕ+

(
~p−~k1−~k2

)
ϕ+

(
~k1
)
ϕ+

(
~k2
)〉′

IC(1)
'

λP+(k1)P+(k2)
(1+2α)Γ[−1+2α]sin

(
π

2 (1−2α)
)

22α p3+2α
. (4.102)

Corrections to this result are suppressed by powers of ki/p which will not contribute to the

one-loop divergences that we will use to determine the RG for composite operator mixing below

in Sec. 4.5.1.

For two-loop divergences, one must determine the initial conditions (see Sec. 4.5.2

below):

〈
ϕ

3
+[0]ϕ+

(
~k
)〉′

IC(1)
=∫ d3 p1

(2π)3

∫ d3 p2

(2π)3

〈
ϕ+α1

(
~p1
)
ϕ+α2

(
~p2
)
ϕ+α3

(
−~k−~p1−~p2

)
ϕ+

(
~k
)〉′

IC(1)
,

(4.103)
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where we will take the limit pi � k, such that −~k−~p1−~p2 ' −~p1−~p2. We calculate this

contribution for general αi by matching to the full theory:

〈
φα1

(
~p1
)
φα2

(
~p2
)
φα3

(
~p3
)
φ
(
~k
)〉′

(1)
= 2Im

[
u∗ν1

(
~p1,τ

)
u∗ν2

(
~p2,τ

)
u∗ν3

(
~p3,τ

)
u∗3/2

(
~k,τ
)

×
∫

τ dτ1

(−τ1)4 uν1

(
~p1,τ1

)
uν2

(
~p2,τ1

)
uν3

(
~p3,τ1

)
u3/2

(
~k,τ1

)]
,

(4.104)

where

uν

(
~k,τ
)
=−iei

(
ν+ 1

2

)
π

2

√
π

2
H(−τ)3/2H(1)

ν (−kτ) , (4.105)

is the positive frequency mode for a field with α = 3
2 −ν . Again, since the mode functions at

horizon crossing behave as if they are effectively massless, this contribution can be determine

using massless mode function of pτ1, but we must use the massive mode functions for pτ . The

result of integrating over τ1 is

〈
ϕ+

(
~p1
)
ϕ+

(
~p2
)
ϕ+

(
~p3
)
ϕ+

(
~k
)〉′

IC(1)
= λ

∏
3
i=1Cαi pαi

12
(

p1 p2 p3
)3

(
∑

i
κi p3

i − p1 p2 p3 +∑
i6= j

p2
i p j

)
,

(4.106)

where the correlators were matched at time τ ,

κi =
1
3

(
− 1

2α
+ γE −2+ log

pt

pi

)
, (4.107)

and pt = p1 + p2 + p3.

Finally, we must also determined the tree-level six-point initial conditions, illustrated in

Fig. 4.3. We are specifically interested in the correlator

〈
ϕ+

(
~p
)
ϕ+

(
−~p−~kt

)
ϕ+

(
~k1
)
...ϕ+

(
~k4
)〉

, (4.108)
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Figure 4.3. Tree level pentaspectrum

in the limit p� ki, where~kt ≡∑
4
i=1

~ki. As in the case of the trispectrum, we will isolate the term

〈
ϕ+

(
~p
)
ϕ+

(
−~p−~kt

)
ϕ+

(
~k1
)
...ϕ+

(
~k4
)〉

IC(2)
⊃ λ

2
Γ2,4(p)P+(k1) ...P+(k4) , (4.109)

such that

Γ2,4(p) =
∫

τ dτ1

(−τ1)4−2α

∫
τ dτ2

(−τ2)4−2α

〈
φ

2(p,τ1)φ
2(p,τ)φ 2(p,τ2)

〉
−2Re

∫
τ dτ1

(−τ1)4−2α

∫
τ1 dτ2

(−τ2)4−2α

〈
φ

2(p,τ)φ 2(p,τ1)φ
2(p,τ2)

〉
. (4.110)

By direct calculation we find that

Γ2,4(p) =
1

216p3+4α

[
16+4γE(−11+3γE)+3π

2 +4(−11+6γE +3log2) log2

+O
(

log
p

[aH]

)]
. (4.111)

4.5 Composite Operator Mixing

From our above discussion, we argued that corrections to Stochastic Inflation are uniquely

determined by the correlation functions of composite operators; computing those that are relevant

to correcting Stochastic Inflation up to NNLO is the topic of this section. We will start by setting

up the problem of calculating composite operator renormalization. We are interested in operators
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of the form ϕn
+(~x). These are well-defined purely within the EFT, so we must be able to discuss

their correlation functions and renormalizations given only the EFT data. Of course, the crucial

information is the initial conditions, which therefore depend on first matching to the UV.

In general, given the EFT field operator ϕ+(~x,t), we can always define a composite

operator

ϕ
n
+(~x) =

n

∏
i=1

∫ d3 pi

(2π)3 e−i~pi·~xϕ+(~pi) . (4.112)

In a free theory, we find the structure:

〈
ϕ

n
+

(
~x
)
ϕ+

(
~k1
)
...ϕ+

(
~kn
)〉

= n!
n

∏
i=1

∫ d3 pi

(2π)3 e−i~pi·~x(2π)3
δ (~ki +~pi)P+(ki)

= n!ei∑~ki·~xP+(k1) ...P+(kn) , (4.113)

where P+ is defined in Eq. (4.100). Taking the Fourier transform,

ϕ
n
+

(
~k
)
=
∫

d3xei~k·~x
ϕ

n
+

(
~x
)
, (4.114)

we have 〈
ϕ

n
+

(
~k
)
ϕ+

(
~k1
)
...ϕ+

(
~kn
)〉

= n!P+(k1) ...P+(kn)δ

(
~k+∑~ki

)
. (4.115)

For simplicity, it will often be easiest to use ϕn
+(~x = 0)≡ ϕn

+[0] to avoid the extra δ -function.

Given this definition, we see that we should be able to define all such correlators of

composite operators as simply integrals over the correlators of ϕ+. For example,

〈
ϕ

n
+

[
~x = 0

]
ϕ+

(
~k1
)
...ϕ+

(
~km
)〉

=
n

∏
i=1

∫ d3 pi

(2π)3

〈
ϕ+

(
~p1
)
...ϕ+

(
~pn
)
ϕ+

(
~k1
)
...ϕ+

(
~km
)〉

.

(4.116)

A very important feature of this formula is that the integrand on the RHS is free of divergences,

in the sense that we should have already regulated and renormalized the expression. As a result,

all of the renormalization of the composite operator itself (and hence the matrix of anomalous
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~p −~p ~k1 ~k2

~p

ϕ+(~k1)

ϕ+(~k2)

ϕ2
+[0]

time

Figure 4.4. One loop correction to ϕ2
+ that looks like an anomalous dimension (ϕ2

+→ ϕ2
+). We

start from the tree level trispectrum and integrate over two of the fields to form the composite
operator ϕ2

+. Left: The Witten diagram with a boundary at future infinity. Right: The Feynman
diagram with the same momentum flow.

dimensions) has to be associated with integrals over ~pi as opposed to the loop integrals that

appear in the calculation of
〈
ϕ+

(
~p1
)
...ϕ+

(
~pn
)
ϕ+

(
~k1
)
...ϕ+

(
~km
)〉

itself.

4.5.1 One-loop Corrections

Trispectrum

We will start by computing b1, which is determined from the four-point function via

〈
ϕ

2
+[0]ϕ+

(
~k1
)
ϕ+

(
~k2
)〉

=
∫ d3 p

(2π)3

〈
ϕ+

(
~p
)
ϕ+

(
−~p−~k1−~k2

)
ϕ+

(
~k1
)
ϕ+

(
~k2
)〉′

. (4.117)

The relationship between this loop contribution and the tree-level trispectrum is illustrated in

Fig. 4.4. The contribution to the four-point function from the time evolution already yields a

log[aH]. Therefore, any anomalous scaling (which should also only be a single log) must arise

from the initial conditions. The relevant contribution was calculated in Eq. (4.102).

Performing the integration over p using dynamical dim reg, we find

〈
ϕ

2
+[0]ϕ+

(
~k1
)
ϕ+

(
~k2
)〉

= λ P+(k1)P+(k2)

× (1+2α)Γ[−1+2α]sin
(

π

2 (1−2α)
)

22α

K−2απ3/2Γ[α]

Γ
[3

2 +α
] . (4.118)
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Expanding for α → 0 we have

〈
ϕ

2
+[0]ϕ+

(
~k1
)
ϕ+

(
~k2
)〉

= λ P+(k1)P+(k2)

(
1

48π2α2 +
(4−3γE −3logK)

72π2α
+finite

)
→ λ

36π2 P+(k1)P+(k2)(4−3γE)

(
1

2α
− log

[aH]

ki

)
+ . . . . (4.119)

We can repeat this calculation with ϕn
+[0] to determine the one-loop anomalous dimension for all

n. Keeping track of combinatorics, one finds

〈
ϕ

n
+[0]ϕ+

(
~k1
)
...ϕ+

(
~kn
)〉
⊃ λ

36π2

(
n
2

)
n!P+(k1) ...P+(kn)

×∑
i
(4−3γE)

(
1

2α
− log

[aH]

ki
+O

(
1

α2

)
+finite

)
. (4.120)

This NLO log[aH] dependence can be resummed by including the following correction in the

dynamical RG:

b1 =−
λ

36π2 (4−3γE) . (4.121)

Six-point

Our next task is to compute b2, which we determine by evaluating the six point function,

〈
ϕ

2
+[0]ϕ+

(
~k1
)
...ϕ+

(
~k4
)〉

=
∫ d3 p
(2π)3

〈
ϕ+

(
~p
)
ϕ+

(
−~p−

4

∑
i=1

~ki

)
ϕ+

(
~k1
)
...ϕ+

(
~k4
)〉′

, (4.122)

with p� ki. The relationship between this one-loop contribution and the tree-level six-point

function is illustrated in Fig. 4.5. As before, only the initial conditions arising from

〈
ϕ+

(
~p
)
ϕ+

(
−~p−~kt

)
ϕ+

(
~k1
)
...ϕ+

(
~k4
)〉′
⊃ λ

2
Γ2,4(p)P+(k1) ...P+(k4) , (4.123)

121



will contribute to the operator mixing, where Γ2,4(p) was calculated in Eq. (4.111). Performing

the momentum integration using dynamical dim reg, we find

λ
2
∫ d3 p

(2π)3 Γ2,4(p) =
(

1
8π2α

− 1
2π2 + ...

)[
b2,4 +O

(
1
α

)]
+finite , (4.124)

where

b2,4 =
λ 2

216

[
16+4γE(3γE −11)+3π

2 +4log2(6γE +3log2−11)
]
. (4.125)

Now we restore the factor (k1k2k3k4)
α [aH]−4α associated with P(ki) for general α and take the

limit α → 0 to get

〈
ϕ

2
+[0]ϕ+

(
~k1
)
...ϕ+

(
~k4
)〉
⊃ b2,4P+(k1) ...P+(k4)

[
1

8π2α
+

1
2π2

4

∑
i=1

1
4

log
ki

[aH]

]
. (4.126)

Repeating this calculation for ϕn
+ we have

〈
ϕ

n
+[0]ϕ+

(
~k1
)
...ϕ+

(
~kn+2

)〉
⊃ b2,4

(
n
2

)
(n+2)!P+(k1) ...P+(kn+2)

×
[

1
8π2α

+
1

2π2

4

∑
i=1

1
4

log
ki

[aH]

]
. (4.127)

This NLO log[aH] dependence can be resummed by including the following correction in the

dynamical RG:

b2 =
1

2π2
λ 2

216

[
16+4γE(3γE −11)+3π

2 +4log2(6γE +3log2−11)
]
. (4.128)

4.5.2 Two-loop Corrections

Next, we move to the calculation of the two-loop anomalous dimension that generates

the NNLO non-Gaussian noise term for Stochastic Inflation. This represents a novel contribution
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~k1 ~k2 ~p −~p ~k3 ~k4

~p

ϕ+(~k1)

ϕ+(~k2)

ϕ+(~k3)

ϕ+(~k4)

ϕ2
+[0]

time

Figure 4.5. Diagram of contribution one loop contribution to Γ2,4 (ϕ2
+→ ϕ4

+). We start from
the tree level pentaspectrum (6 points function) and integrate over two of the fields to form the
composite operator ϕ2

+. Left: The Witten diagram with a boundary at future infinity. Right: The
Feynman diagram with the same momentum flow.

which is calculated here for the first time. In particular, our goal is to calculate:

〈
ϕ

3
+[0]ϕ+

(
~k
)〉

=
∫ d3 p1 d3 p2 d3 p3

(2π)9

〈
ϕ+

(
~p1
)
ϕ+

(
~p2
)
ϕ+

(
~p3
)
ϕ+

(
~k
)〉

, (4.129)

where p1,2,3� k. The relationship between this two-loop contribution and the tree-level trispec-

trum is illustrated in Fig. 4.6. The correlation function on the RHS was calculated in Eq. (4.106)

for general αi (for each pi) such that we can regulate the integral with dynamical dim reg. Making

the above substitution

〈
ϕ

3
+[0]ϕ+

(
~k
)〉
⊃ P+(k)

∫ d3 p1 d3 p2

(2π)6 λ
∏

3
i=1Cαi p

αi

12(p1 p2 p3)3

(
κ ∑

i
p3

i − p1 p2 p3 +∑
i 6= j

p2
i p j

)
,

(4.130)

where κ is fixed by the full calculation for the reasons described above, see Eq. (4.107). We note,

that this result will require us to calculate several integrals of the form

I3 =
∫ d3 p1 d3 p2

(2π)6
1

(p2
1)

a(p2
2)

b((~p1 +~p2)2)c , (4.131)
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~p1 ~p2 −~p1−~p2 ~k

ϕ+(~k)ϕ3
+[0]

~p1

~p2

−~p1−~p2
time

Figure 4.6. Diagram of contribution two loop contribution to the mixing ϕ3
+→ ϕ+. We start

from the tree level trispectrum and integrate over three of the fields to form the composite
operator ϕ3

+. We first drew this as a Witten diagram with a boundary at future infinity. At the
bottom we have shown the Feynman diagram with the same momentum flow.

where a, b and c are half integers when α = 0. We can evaluate this integral as follows:

I3 =
Γ[b+ c]
Γ[b]Γ[c]

∫ 1

0
dx
∫ d3 p1

(2π)3
1

p2a
1

∫ d3 p̄2

(2π)3
xb−1(1− x)c−1

(p̄2
2 + x(1− x)p2

1)
b+c

=
Γ[b+ c− 3

2 ]

Γ[b]Γ[c]
1

(4π)3/2

∫ d3 p1

(2π)3
1

p2a+2b+2c−3
1

∫
dx

xb−1(1− x)c−1

(x(1− x))b+c−3/2

=
Γ[b+ c− 3

2 ]

Γ[b]Γ[c]
Γ[3

2 −b]Γ[3
2 − c]

Γ[3−b− c]
1

(4π)3
Γ[a+b+ c−3]
Γ[a+b+ c− 3

2 ]
K6−2a−2b−2c , (4.132)

where we introduced an IR regulator K as we did for our 1-loop divergence. This IR regulator is

only needed when a+b+ c' 3 (the integral vanishes by dynamical dim reg otherwise). One

should also notice that enforcing a+b+ c→ 3 restores the invariance under permutations of a,

b and c.

We always have at least one log from Γ[a+b+ c−3]. Therefore, the only contributions

that are not log2 (or higher) are those where all the other Γ functions are finite. Up to permutations,

there are three relevant cases (i) a = 3/2, b = 3/2, c = 0, (ii) a = 3/2, b = 1, c = 1/2, and (iii)

a = b = c = 1. Only (iii) is a single log as expected from above. Isolating just the single log

term, for example using a = 1−α/2 with b = c = 1, we get

〈
ϕ

3
+[0]ϕ+

(
~k
)〉

(1)
=−P+(k)

λ

12
1

16π2

(
− 1

α
+ log

[aH]

k
+ log

k
K
+ ...

)
+O

(
1

α2

)
. (4.133)

124



Repeating this calculation for ϕn
+ we have

〈
ϕ

n
+[0]ϕ+

(
~k1
)
...ϕ+

(
~kn−2

)〉
(1)
⊃− λ

192π2

(
n
3

)
(n−2)!P+(k1) ...P+(kn−2)

×∑
i

(
− 1

α
−∑

i
log

ki

[aH]

)
. (4.134)

This NNLO log[aH] dependence can be resummed by including the following correction in the

dynamical RG:

d0 =
λ

192π2 . (4.135)

4.5.3 Stochastic Inflation at NNLO

Now we have computed all the necessary pieces. To summarize our results, we have

found that at NNLO, the Fokker-Planck equation for Stochastic Inflation becomes

∂

∂t
P(ϕ+,t) =

1
3

∂

∂ϕ+

[
∂ϕ−V (ϕ+,ϕ−)

∣∣∣
ϕ−=0

P(ϕ+,t)

]
+

1
2

∂ 2

∂ϕ2
+

[
(b0 +b1ϕ

2
++b2ϕ

4
+)P(ϕ+,t)

]
+

1
3!

∂ 3

∂ϕ3
+

(
d0ϕ+P(ϕ+,t)

)
, (4.136)

where

V (ϕ+,ϕ−) =
λ

3!
ϕ−

(
ϕ

3
++

λ

18
ϕ

5
++

λ 2

162
ϕ

7
++ ...

)
(4.137a)

b0 =
1

4π2 (4.137b)

b1 =−
λ

36π2 (4−3γE) (4.137c)

b2 =
1

2π2
λ 2

216

[
16+4γE(3γE −11)+3π

2 +4log2(6γE +3log2−11)
]

(4.137d)

d0 =
λ

192π2 . (4.137e)
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The rest of this section is devoted to expressing this result in a particularly simple basis.

As we have emphasized above, the coefficient b1 and b2 are basis dependent, in the sense that

they can be changed by taking a field redefinition. For the purposes of solving for the NNLO

equilibrium distribution, we will find it useful to first perform a field redefinition that moves their

effects into the potential. For contrast, we note that the coefficient d0 is basis independent, and

furthermore field redefinitions of this (∂/∂ϕ+)
3 term will only induce higher order (NNNLO)

terms that we will neglect.

Concretely, we want to redefine the field ϕ̃+ = f (ϕ+) such that b̃1 = b̃2 = 0. Using

P = (dϕ̃+/dϕ+)P̃ under such a field redefinition, we see that

1
2

∂ 2

∂ϕ2
+

[(
b0 +b1ϕ

2
++b2ϕ

4
+

)
P(ϕ+,t)

]
→

1
2

∂ 2

∂ ϕ̃2
+

[(
dϕ̃+

dϕ+

)2(
b0 +b1ϕ

2
++b2ϕ

4
+

)
P(ϕ̃+,t)

]

−1
2

∂

∂ ϕ̃+

[
d2ϕ̃+

dϕ2
+

dϕ̃+

dϕ+

(
b0 +b1ϕ

2
++b2ϕ

4
+

)
P(ϕ̃+,t)

]
. (4.138)

Next, in order to set b̃1 = b̃2 = 0, we define ϕ̃+ so that

(
dϕ̃+

dϕ+

)2 (
b0 +b1ϕ

2
++b2ϕ

4
+

)
= b0 , (4.139)

We can integrate this equation to determine

ϕ̃+ = ϕ+−
b1

6b0
ϕ

3
++

3b2
1−4b0b2

4b2
0

ϕ
5
+ → ϕ+ ' ϕ̃++

b1

6b0
ϕ̃

3
+ . (4.140)
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The remaining term is then determined to be

d2ϕ̃+

dϕ2
+

dϕ̃+

dϕ+

(
b0 +b1ϕ

2
++b2ϕ

4
+

)
=−1

2
b0

b0 +b1ϕ2
++b2ϕ4

+

(
2b1ϕ++4b2ϕ

3
+

)
'−b1ϕ̃+−

(
2b2−

5
6

b2
1

b0

)
ϕ̃

3
+ . (4.141)

This basis change also impacts the effective potential that appears in the Fokker-Planck equation:

V ′eff(ϕ̃+) = ∂ϕ−V (ϕ+,ϕ−)
∣∣
ϕ−=0 +

3
4

b0

b0 +b1ϕ2
++b2ϕ4

+

(
2b1ϕ++4b2ϕ

3
+

)
→ 3

2
b1ϕ̃++

(
c3,1

3!
+3b2−

5
4

b2
1

b0

)
ϕ̃

3
++ ... . (4.142)

The first term, 3
2b1ϕ̃+, simply provides an O(λ ) correction to α , i.e., the quadratic term in the

potential c1,1 can always be removed by redefining α , just as we did above when matching

the 1-loop matching power spectrum, see Eq. (4.87). The new contribution to the second term,

b2 = O(λ 2), is simply a correction to the definition c3,1, again just as was computed above when

matching to the 1-loop trispectrum, see Eq. (4.98). The same is true for higher powers of ϕ+ that

we have dropped. In short, we see that b1 and b2 simply shift the definition of the couplings

within SdSET at higher order in λ but do not introduce any new terms. As a result, we may

simply define

λeff = λ +18b2 +3!δc3,1 (4.143a)

δc3,1 =−
λ 2

2π2

(
1
9

γE(2+3γE +6log2)+
5

12
π

2− 2log2+3log2 2
9

)
, (4.143b)

where δc3,1 is the correction from one-loop matching in Eq. (4.98). For the other contributions

to Stochastic Inflation, λeff = λ is sufficient to achieve NNLO accuracy. In this sense, the

coefficients of the NLO and NNLO corrections to the potential are independent of redefinitions

of λ . This same argument explains the scheme-independence of β -functions up to two loops.

127



Putting this all together and relabeling ϕ̃+→ ϕ+, we arrive at a canonical form for the

NNLO equation:

∂

∂t
P(ϕ+,t) =

1
3

∂

∂ϕ+

[
V ′eff(ϕ+)P(ϕ+,t)

]
+

1
8π2

∂ 2

∂ϕ2
+

P(ϕ+,t)

+
λeff

1152π2
∂ 3

∂ϕ3
+

(
ϕ+P(ϕ+,t)

)
(4.144a)

V ′eff =
λeff

3!

(
ϕ

3
++

λeff

18
ϕ

5
++

λ 2
eff

162
ϕ

7
++ ...

)
. (4.144b)

Presumably this freedom to put these equations into such a canonical form can be recast in terms

of a covariant description in field space [109, 110], and multi-field generalizations thereof.

4.6 Implications

Having derived novel corrections to the equations that govern the Markovian evolution

of the probability distribution for ϕ+, we now turn to solving them. In particular, this section

will explore the physical implications of these new terms by calculating the NNLO equilibrium

distribution for ϕ+, assuming a static dS background. Then we will extend this to account for

the dynamics of the system as it relaxes to the equilibrium state. To this end, we will set up

the formalism to calculate the “relaxation eigenvalues,” and will numerically solve for these

quantities to O(λ 3/2).

4.6.1 Equilibrium Probability Distribution

Starting with the canonical form of the NNLO equation governing Stochastic Inflation,

we can understand the impact on the equilibrium probability distribution Peq(ϕ+), which by

definition satisfies ∂

∂t
Peq(ϕ+) = 0. We can solve the problem non-perturbatively in the absence
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of the higher derivative term proportional to d0. Therefore, our strategy will be to find the

solution in terms of general V ′eff, and then include the correction from d0 as a perturbation.

The equilibrium contribution from Veff can be determined non-perturbatively following

Sec. 4.2.1. The equilibrium solution satisfies

∂ 2

∂ϕ2
+

PV
eq(ϕ+) =−

8π2

3
∂

∂ϕ+
V ′eff(ϕ+)PV

eq(ϕ+) . (4.145)

where V ′eff(ϕ+)≡ ∂ϕ−Veff(ϕ+,ϕ−)|ϕ−=0 and PV
eq is defined as being a solution to this equation.7

Integrating twice gives the solution

PV
eq(ϕ+) =Ce−8π2Veff(ϕ+)/3 , (4.146)

where we defined

Veff(ϕ+)≡
∫

ϕ+

dϕ̃+V ′eff(ϕ̃+) . (4.147)

Note that Veff is only a function of ϕ+ and should not be confused with V (ϕ+,ϕ−) in Eq. (4.74).

Since this solution holds for any Veff, it gives the answer at both LO and NLO provided we

include the NLO contributions to Veff.

At NNLO, in addition to the correction to Veff, we must include d0 = λeff/(192π2) which

alters the equation for the equilibrium solution

d0

3!
∂ 3

∂ϕ3
+

(
ϕ+Peq(ϕ+)

)
+

∂ 2

∂ϕ2
+

Peq(ϕ+) =−
8π2

3
∂

∂ϕ+
V ′eff(ϕ+)Peq(ϕ+) . (4.148)

We can integrate this equation once to get

1
Peq(ϕ+)

(
d0

3!
∂ 2

∂ϕ2
+

ϕ+Peq(ϕ+)+
∂

∂ϕ+
Peq(ϕ+)

)
=−8π2

3
V ′eff(φ) . (4.149)

7Note that PV
eq(ϕ+) includes any higher order correction in V ′eff but not does not including higher derivative terms

that arise at NNLO and beyond. In this sense PV
eq is not to be confused with the LO solution, as it contains some (but

not all) contributions at every order.
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This can be solved using separation of variables, so we will make the ansatz

Peq(ϕ+) = PV
eq(ϕ+)Q(ϕ+) , (4.150)

where PV
eq is given in Eq. (4.146), including the NNLO corrections to Veff. Plugging this ansatz

into Eq. (4.149) gives

d0

3!
1

Q(ϕ+)PV
eq(ϕ+)

∂ 2

∂ϕ2
+

(
ϕ+PV

eq(ϕ+)Q(ϕ+)
)
+

1
Q(ϕ+)

∂

∂ϕ+
Q(ϕ+) = 0 . (4.151)

We can solve this equation perturbatively in Q. The zeroth order term is Q = constant. At the

next order, clearly Q′ is order d0 so we can neglect derivatives of Q in the first terms such that

1
Q(ϕ+)

∂

∂ϕ+
Q(ϕ+) =−

d0

3!PV
eq(ϕ+)

∂ 2

∂ϕ2
+

(
ϕ+PV

eq(ϕ+)
)

=−d0

3!

(
−16π2

3
V ′eff(φ)+ϕ+

(
8π2

3
V ′eff(φ)

)2

− 8π2

3
ϕ+V ′′eff(φ)

)
,

(4.152)

such that the solution becomes

logQ =
d0

3!

[
16π2

3
Veff(φ)−

∫
dϕ+

(
ϕ+

(
8π2

3
V ′eff(φ)

)2

− 8π2

3
ϕ+V ′′eff(φ)

)]
. (4.153)

Finally, we use d0 = λeff/(192π2) and Veff ' λeffϕ
4
+/4!, which consistently captures effects up

to NNLO accuracy. We then evaluate the integrals and simplify the expression to find

Q(ϕ+) = exp

[
λ 2

effϕ
4
+

1152

(
5
9
− 2π2

81
λeffϕ

4
+

)]
. (4.154)

Using the fact that λeffϕ
4
+ = O(1) for the LO equilibrium solution, we see that both terms in Q

are O(λeff), as expected for NNLO accuracy. Recall the NLO and one additional contribution at
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NNLO are encoded in Veff(φ+) and are included in PV
eq(φ). Combining these terms and writing

Peq =CPLO(ϕ+)PNLO(ϕ+)PNNLO(ϕ+), we have

PLO = exp
(
−π2

9
λeffϕ

4
+

)
(4.155a)

PNLO = exp
(
− π2

243
λ

2
effϕ

6
+

)
(4.155b)

PNNLO = exp
(

5
10368

λ
2
effϕ

4
+−

17π2

46656
λ

3
effϕ

8
+

)
. (4.155c)

In the regime where logPLO = O(1), we have logPNLO = O
(
λ

1/2
eff

)
and logPNNLO = O(λeff).

4.6.2 Relaxation Eigenvalues

In this section, we will explore the implications for the time dependence of P(ϕ+,t).

This can be characterized by computing the so-called “relaxation eigenvalues” as we explain

below. In the previous section, we could calculate the analytic NNLO equilibrium probability

distribution where we only had to treat the (∂/∂ϕ+)
3 term perturbatively. Here, we must resort

to a numerical evaluation of the perturbative expansion, which requires that we treat all higher

order corrections as perturbations.

To begin, we return to the full NNLO equation that governs Stochastic Inflation given in

Eq. (4.144a), and rewrite it as a Euclidean Schrödinger equation [80, 32]:

∂

∂t
P(ϕ+,t) =

1
3

∂

∂ϕ+

[
V ′eff(ϕ+)P(ϕ+,t)

]
+

1
8π2

∂ 2

∂ϕ2
+

P(ϕ+,t) , (4.156)

where V ′eff(ϕ+)≡ ∂ϕ−Veff(ϕ+,ϕ−)|ϕ−=0. This equation can be solved using separation of vari-

ables

P(ϕ+,t) = exp
[
− 4π2

3
Veff(ϕ+)

]
∞

∑
n=0

Φn(ϕ+)e−Λnt , (4.157)

where Veff(ϕ+) is defined in Eq. (4.147), we have assumed t0 = 0, and Φn are the eigenfunctions
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of [80, 32]
∂ 2

∂ϕ2
+

Φn(ϕ+)−U(ϕ+)Φn(ϕ+) =−8π
2
ΛnΦn(ϕ+) , (4.158)

where Λn are the non-negative “relaxation eigenvalues,” and the Schrödinger potential is

U(ϕ+) =

(
4π2

3
V ′eff(ϕ+)

)2

− 4π2

3
∂

∂ϕ+
V ′eff(ϕ+) . (4.159)

The lowest eigenvalue is zero with the eigenfunction Φ0(ϕ+) ∝ exp
[
−4π2

3 Veff(ϕ+)
]
. Since all

other Λn are positive, at late times the distribution P(ϕ+, t) relaxes to the fixed point

P(ϕ+,t) = N exp
[
− 8π2

3
Veff(ϕ+)

]
. (4.160)

This reproduces the static result above in Eq. (4.146). However, for the numerical evaluations we

take V ′eff(ϕ+) =
λeff
3! ϕ3

+, and treat the additional correction to the potential as perturbations. In

addition, for the remainder of this section, we will drop subscript ‘eff’ on the coupling, λeff→ λ ,

for brevity.

To explore the effect of the NNLO correction we need to determine the eigenvalues Λn

of Eq. (4.144a) for n ≥ 1. We can find the eigenvalues and eigenfunctions of Eq. (4.144a) as

perturbative expansions in powers of
√

λ ,

Λn = λ
1/2

Λ
(0)
n +λ Λ

(1)
n +λ

3/2
Λ
(2)
n + ... (4.161a)

Φn = Φ
(0)
n +λ

1/2
Φ

(1)
n +λΦ

(2)
n + ... (4.161b)

U = λ
1/2U (0)+λ U (1)+λ

3/2U (2)+ ... , (4.161c)

where Λ
(0)
n and Φ

(0)
n are the solutions of Eq. (4.158) with Schrödinger potential U = U (0).

This potential is obtained from Eq. (4.159) by setting V ′eff(ϕ+) =
λ

3!ϕ
3
+, the leading term in
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Eq. (4.144b). Explicitly,

∂ 2

∂ϕ2
+

Φ
(0)
n (ϕ+)−

[
4π4

81
λ

2
ϕ

6
+−

2π2

3
λϕ

2
+

]
Φ

(0)
n (ϕ+) =−8π

2
λ

1
2 Λ

(0)
n Φ

(0)
n (ϕ+) (4.162)

Since ϕ+ ∼ λ−1/4 we see that the Schrödinger potential, the term in square brackets, indeed

scales as O
(
λ 1/2). This equation can be solved numerically by the shooting method[111]. Higher

order terms in Eq. (4.144b) as well as the NNLO term ∂ 3
ϕ+
(ϕ+P) can be treated as perturbative

corrections to Eq. (4.162). That is, if we substitute Eq. (4.157) into Eq. (4.144a) and keep terms

up to O
(
λ 3/2), the eigenfunctions Φn must solve

∂ 2

∂ϕ2
+

Φn−
[
λ

1/2U (0)+λ U (1)+λ
3/2U (2)

]
Φn =−8π

2
[
λ

1/2
Λ
(0)
n +λ Λ

(1)
n +λ

3/2
Λ
(2)
n

]
Φn ,

(4.163)

where

λ
1/2U (0) =

4π4

81
λ

2
ϕ

6
+−

2π2

3
λϕ

2
+ (4.164a)

λ U (1) =
4π4

729
λ

3
ϕ

8
+−

5π2

81
λ

2
ϕ

4
+ (4.164b)

λ
3/2U (2) =

79π4

104976
λ

4
ϕ

10
+ −

53π2

5832
λ

3
ϕ

6
+−

5
1728

λ
2
ϕ

2
++

(
π2

7776
λ

3
ϕ

7
+−

5
1728

λ
2
ϕ

3
+

)
∂ϕ+

+

(
− 1

1728
λ

2
ϕ

4
++

λ

384π2

)
∂

2
ϕ+

+
λ

1152π2 ϕ+∂
3
ϕ+

. (4.164c)

Finally, the perturbative corrections to the eigenvalues are computed numerically using

8π
2
Λ
(1)
n =

〈
Φ

(0)
n
∣∣U (1)∣∣Φ(0)

n
〉

(4.165a)

8π
2
Λ
(2)
n =

〈
Φ

(0)
n
∣∣U (2)∣∣Φ(0)

n
〉
+

λ 1/2

8π2 ∑
k 6=n

∣∣〈Φ(0)
k

∣∣U (1)
∣∣Φ(0)

n
〉∣∣2

Λ
(0)
n −Λ

(0)
k

. (4.165b)
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The first few relaxation eigenvalues are (recall that λ = λeff here)

n Λn

1 0.03630λ 1/2 +0.00076λ +0.00049λ 3/2

2 0.11814λ 1/2 +0.00338λ +0.00138λ 3/2

3 0.21910λ 1/2 +0.00795λ +0.00316λ 3/2

The contribution to the eigenvalues at O
(
λ 3/2) includes both corrections to the equations

of Stochastic Inflation at NNLO as well as perturbative corrections to the eigenvalues from the

LO and NLO equations. Working with the full NNLO equations was crucial to obtaining the

detailed numeric values. We note that the NNLO contribution to Veff in Eq. (4.144b) dominates;

the small numerical coefficient of d0 ' 9×10−5λ suppresses its impact on these eigenvalues. As

the form of Veff is determined by SdSET field redefinitions to all orders, it may prove useful in

future studies to simply include higher order corrections to the potential as an approximation. We

expect this minor impact of d0 is due to the fact that we are assuming the UV theory is λφ 4 such

that the non-Gaussian noise and corrections to the potential are determined by the same parameter.

In contrast, if one were to consider inflationary models with primordial non-Gaussianity, these

two effects are controlled by independent parameters, such that the non-Gaussian contribution to

the noise could become important [58]. In either case, this investigation is only possible because

we have framework in which all corrections to Stochastic Inflation, including contributions from

non-Gaussian noise, can be systematically computed.
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4.7 Conclusions

Understanding the nature of quantum dS space is one of the most basic conceptual

problems in cosmology [5]. Stochastic Inflation [11, 79, 80] informs much of the physical

intuition for how we think about accelerating cosmologies, particularly as we approach the

eternally inflating regime that is dominated by quantum fluctuations [94, 95, 97, 96]. Yet,

Stochastic Inflation is itself an approximation whose regime of validity, and corrections thereof,

should follow from a more basic starting point. Ultimately, a complete description should include

dynamical gravity, although the simpler case of quantum field theory in a fixed dS background

studied here already provides a non-trivial challenge.

In this paper, we demonstrated precisely how corrections to Stochastic Inflation arise

from quantum field theory in dS, namely as a natural consequence of dynamical renormalization

group flow within the EFT that emerges in the superhorizon limit. By working with SdSET, the

origin of the stochastic description is a direct consequence of EFT power counting, which also

explains why this effect is only relevant for light (massless) scalars. (This same power counting

scheme also explains the all orders conservation of the adiabatic mode [65].) By matching

λφ 4 theory onto SdSET up to one loop, we could then calculate the log enhanced corrections

to the mixing of EFT operators up to two loops. This allowed us to derive the corrections to

the equations of Stochastic Inflation at NNLO accuracy. These results include the first higher

derivative correction to the framework, which is the leading signature of the non-Gaussian

contribution to the noise as modes cross the horizon.

This work extends derivations of Stochastic Inflation from quantum field theory in dS

at LO [30, 32, 65, 93] and NLO [31, 81, 92] to NNLO. Yet, even at NLO, we showed that

the “universal” correction to the effective potential follows from a field redefinition and can

be extended to all orders. This result agrees with Refs. [31, 81, 92], which arrive at this NLO

correction by (effectively) integrating-out the decaying mode at tree-level. Furthermore, the

first appearance of non-Gaussianity in the stochastic noise appears at NNLO and requires a
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genuine two-loop calculation. Higher-loop calculations of inflationary correlators are notoriously

difficult, but they are made manageable by working with SdSET, which facilitates the use of the

symmetry preserving dynamical dimensional regularization. Most importantly, SdSET reduces

the problem of calculating any corrections to Stochastic Inflation to the determination of the

matrix of anomalous dimensions. Rather than being a mysterious feature of dS space, we now see

that the derivation of Stochastic Inflation and corrections thereof is conceptually and technically

similar to calculating the scaling dimensions of operators at the Wilson-Fisher fixed point in

d = 4− ε dimensions. Finally, there is an intriguing connection that could be made with a

thermodynamic interpretation of the equilibrium probability distributions, PLO ∼ exp(−βE),

where the inverse temperature is β = 2π/H. It would be interesting to understand the meaning

of the NNLO corrections derived here from this point of view.

Phenomenologically, Stochastic Inflation is an important tool for understanding the pre-

dicted non-Gaussianity in multi-field inflation [23, 112, 113, 114, 115, 116], where superhorizon

evolution can give rise to non-trivial correlations. Previous work has included the non-Gaussian

contributions for the non-linear superhorizon evolution, but thus far the effects of non-Gaussian

noise has been missing. It will be interesting to explore models where both effects are simultane-

ously important. For example, one might hope this techniques would elucidate the physics of the

small mass regime of quasi-single field inflation [117], which is known to produce large logs.

Conceptually, Stochastic Inflation serves as the basis for much of our understanding

of slow-roll eternal inflation. This description requires coupling a light scalar field to gravity,

yet much of the structure is determined by the quantum noise in the Fokker-Planck equation.

Specifically, the regime of slow roll eternal inflation is the limit where the potential becomes flat

and the quantum noise dominates the time evolution until inflation ends. While understanding

this regime is often considered a conceptual problem, it may have important consequences for

cosmological solutions to hierarchy problems, such as [118, 119, 120, 121].

Finally, underlying our results on Stochastic Inflation is a demonstration that SdSET is a

consistent description of dS quantum field theory at loop level. Calculations in a wide variety of
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cosmological settings are beset with challenges stemming from the underlying time evolution

and lack of consistent regulator. The successful implementation of SdSET as an organizing

principle for calculating quantum correlators in dS offers hope that more of these cosmological

problems may be organized and simplified when described with the right degrees of freedom.

The emergence of Stochastic Inflation as a simple consequence of EFT power counting is a

non-trivial example of these principles in action.
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4.A Matching the Six-point Function

In this appendix, we provide some details for matching the tree-level six-point function,

as illustrated in Fig. 4.7. This serves as an input to the one-loop corrections, see Fig. 4.5, and

also provides a non-trivial check on the matching the EFT operator ϕ to the UV field φ .

Assuming the UV interaction is λφ 4, the six-point function first arises at second order in

perturbation theory. Using the commutator form of the in-in correlator, see Eq. (4.27), we can

write the full six-point function as

〈
φ
(
~k1
)
φ
(
~k2
)
φ
(
~k3
)
φ
(
~k4
)
φ
(
~k5
)
φ
(
~k6
)〉

tree
= A6 +B6 , (4.166)
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Figure 4.7. The tree level in-in six-point function.

where

A6 =

〈(
i
∫

dt1
[
Hint(t1),φ

(
~k1
)]) (

i
∫

dt2
[
Hint(t2),φ

(
~k2
)])

φ
(
~k3
)
φ
(
~k4
)
φ
(
~k5
)
φ
(
~k6
)〉

+permutations , (4.167)

and

B6 =

〈
φ
(
~k1
)
φ
(
~k2
)
φ
(
~k4
)
φ
(
~k4
)
φ
(
~k5
)
i2
∫

dt1
∫ t1

dt2
[
Hint(t2),

[
Hint(t1),φ

(
~k6
)]]〉

+permutations . (4.168)

Our goal is to match this expression onto the EFT, so we need to take the limit where all of

the fields are superhorizon. The additional contributions that arise from the subhorizon region,

kiτ j = O(1), will be absorbed into the initial conditions, which we do not need to calculate

explicitly for our purposes in this work.

To match the superhorizon behavior, we can again expand the operator using Eq. (4.66)

to find

[φ ]λ = i
∫ t

dt1
[
Hint(t1),φ

(
~k1
)]

=
λ

3!
1
3

(
−
(
− 1

2α
+ log[aH]

)
+

1
3

)
ϕ

3
+(~x) . (4.169)
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It is easy to see that the superhorizon contribution to A6 is determined by [φ ]λ ,

A6 =

〈
[φ ]λ (~k1) [φ ]λ

(
~k2
)

φ
(
~k3
)
φ
(
~k4
)
φ
(
~k5
)
φ
(
~k6
)〉

+permutations .

This shows that by matching the trispectrum with Eq. (4.71), we can also match A6.

Clearly we cannot determine B6 using [φ ]λ . The most straightforward way to determine

the superhorizon contribution is to write

B6 =
λ 2

3!2

〈
φ
(
~k1
)
φ
(
~k2
)
φ
(
~k4
)
φ
(
~k4
)
φ
(
~k5
)∫ t

−∞

dt1 a3(t1)G
(
~k6, t1, t

)∫
d3x1φ

2(~x1, t1)

×
∫ t1

−∞

dt2 a3(t2)G
(
~k123, t2, t1

)∫
d3x2φ

3(~x2, t3)
〉
. (4.170)

where

G
(
~k, t ′, t

)
= i
〈[

φ
(
~k, t ′

)
,φ
(
~k ′, t
)]〉′

' H
3

(
[a(t ′)H]−3− [a(t)H]−3

)
. (4.171)

Integrating this expression using dynamical dim reg, we find the superhorizon contribution is

B6 = λ
2 H6

∑i k3
i

25(k1k2k3k4k5k6)3
5!

(3!)2

∫ t

dt1
[a(t1)H]−2α

3

(
−1+

[a(t1)H]3

[a(t)H]3

)
×
∫ t1

dt2
[a(t2)H]−2α

3

(
−1+

[a(t2)H]3

[a(t1)H]3

)

=
λ 2 H6

∑i k3
i

25(k1k2k3k4k5k6)3

[
10
9

(
1

2α
− log[aH]+

1
3

)(
1

4α
− log[aH]+

1
3

)
+

10
81

]
. (4.172)

Next, we would like to see how this formula arises in SdSET. First, we calculate the

contribution to the six-point function at second order in c3,1. We take the same commutator

structure as B6, where one [ϕ+,ϕ−] acts on the external line and the other on an internal
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commutator. The result is

B3,1 = c2
3,1

5!
(3!)2

H6

25(k1..k6)3−2α ∑
i

k3−2α

i

∫ t

dt1
1
3
[a(t1)H]2α

∫ t1
dt2

1
3
[a(t2)H]2α

= c2
3,1

10
9 ∑

i
k3−2α

i
C10

α

(k1..k6)3−2α

[aH]4α

8α2 , (4.173)

where the additional factors of 1/3 are from the commutator i[ϕ+,ϕ−] = δ
(
~x+~x′

)
/3 when

α = 0. In addition, we have the contribution from the time evolution of ϕ at order c3,1 from

Eq. (4.70) and Eq. (4.71), which yields

ϕ ⊃ c4,0

9
H
3!
[aH]−3α

ϕ
3
+→

c4,0

3
1
3!
[aH]−3α

ϕ
2
+[ϕ+]λ

→ H
3!2

c4,0c3,1

9

(
1

2α
− log[aH]

)
ϕ

5
+(~x) . (4.174)

This contribution is in addition, to the ϕ5
+ term in ϕ in Eq. (4.96), that we determined from our

field redefinition,

ϕ ⊃ λ 2

81
1
3!
[aH]−5α

ϕ
5
+ . (4.175)

Combining these two terms in ϕ , we get the contribution to the six-point function:

Bϕ =
λ 2 H6

∑i k3
i

25(k1k2k3k4k5k6)3

[
10
27

(
1

2α
− log[aH]

)
+

20
81

]
. (4.176)

Finally, from the field redefinition we found in Eq. (4.74), we also have a correction to the

effective potential via c5,1 =
λ 2

18
5!
3! . This contributions to the six-point function at linear order in

c5,1:

B5,1 =
c5,1

2ν

[aH]−4α

4α

H6

25k3−2α

1 ..k3−2α

6
∑

i
k3−2α

i

→ λ
2 10

27
H6

∑i k3−2α

i

25k3−2α

1 ..k3−2α

6

(
1

4α
− log[aH]

)
. (4.177)
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Combining these terms and using c3,1 = c4,0 = λ , we match the UV six-point function

B6 = B3,1 +Bϕ +B5,1 . (4.178)

Note that there is some ambiguity in the constant term due to scheme dependence associated

with regulating our (divergent) time integrals. Although our expression matches the constant as

well, in some other schemes, the initial conditions may play a role in matching. On the other

hand, all powers of logaH must match in any scheme, as we find here.

4.B Hard Cutoff Calculations

In the main text, we used dynamical dim reg for the EFT loop calculations. Loops in

the UV calculations were, in some cases, regulated with dim reg rather than dynamical dim reg.

These regulators offer some technical advantages but one might worry about using different

regulators in the matching calculation. We can therefore gain further conceptual insight by

redoing these calculations with a hard cutoff. This regulator can be easily implemented in both

the UV and EFT and also makes the origin of divergences more transparent. Furthermore, we can

work directly with the massless mode functions, thereby avoiding the complications of working

with massive modes. In this appendix we will repeat the calculations from the main text using a

hard cutoff, reproducing all the above results up to differences in scheme dependent coefficients.

4.B.1 Matching

In this section, we compute the matching for λφ 4 onto the SdSET up to one-loop order.

We will use a hard cutoff for both momentum and time integrals. Specifically, we regulate the

momentum integral with a UV cutoff Λ = [aH] and an IR cutoff K. For time integrals, noting that

the UV region of integration does not contribute due to our iε prescription, we simply regulate

the IR with a cutoff t?, which corresponds to the time of horizon crossing for a mode k.
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Power Spectrum

The one-loop power spectrum in the UV theory is given by a standard in-in calculation,

〈
φ
(
~k
)
φ
(
~k ′
)〉′

(1)
=

λ

4k3
H2

3

(
log

2k
[aH]

+ γE −2
)∫ d3 p

(2π)3
1
p3 , (4.179)

where the primed correlator is defined in Eq. (4.30) above. The resulting power spectrum is

〈
φ
(
~k
)
φ
(
~k ′
)〉′

(1)
=

λ

4k3
H2

3

(
log

2k
[aH]

+ γE −2
)

1
2π2 log

[aH]

K
. (4.180)

We can calculate the one-loop power spectrum in the EFT using

〈
ϕ
(
~k
)
ϕ
(
~k ′
)〉′

(1)
= H2

〈
ϕ+

(
~k
)
ϕ+

(
~k ′
)〉′

(1)
+H2

〈
ϕ+

(
~k
)
ϕ+

(
~k ′
)〉′

δα(1)

+2
c4,0

9
1
3!

H2
〈

ϕ+

(
~k
)
ϕ

3
+

(
~k ′
)〉′

(0)
+
〈

ϕ
(
~k
)
ϕ
(
~k ′
)〉′

IC(1)
, (4.181)

where we have set α = 0 for the UV mode functions. The second term allows for the possibility

that α = δα is generated by matching and the third term is generated by performing the EFT

field redefinition given in Eq. (4.70). Using the leading order matching relation for the Wilson

coefficient c4,0 = c3,1 = λ +O(λ 2), we find

H2
〈

ϕ+

(
~k
)
ϕ+

(
~k ′
)〉′

(1)
=−H2

3
log

[aH]

k
λ

4k3

∫ d3 p
(2π)3

1
p3

=−H2

3
log

[aH]

k
λ

4k3
1

2π2 log
[aH]

K
, (4.182)

where we evaluated the time integral with a hard cutoff at the time of horizon crossing, [aH]? = k,

∫ t

t?

dt′ = log[aH]− log[aH]? = log
[aH]

k
. (4.183)
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As with the main text, the contribution from a shift in α is given by

H2
〈

ϕ+

(
~k
)
ϕ+

(
~k ′
)〉′

δα(1)
=
〈

ϕ
(
~k
)
ϕ
(
~k ′
)〉

(0)

(
1+2δα log

k
[aH]

)
, (4.184)

and from the field redefinition is

2× λ

9
H2

3!

〈
ϕ+

(
~k
)
[ϕ3

+]
(
~k ′
)〉

(0)
=

λ

9
1

2k3

∫ d3 p
(2π)3

1
2p3

=
λ

9
H2

2k3
1

4π2 log
[aH]

K
. (4.185)

Combing these results we have

H2
〈

ϕ(~k)ϕ(~k ′)
〉′
(1)

=
H2

3

(
log

k
[aH]

+
1
3

)
λ

4k3
log[aH]/K

2π2 +H2
〈

ϕ(~k)ϕ(~k ′)
〉′

IC(1)
. (4.186)

Comparing the UV expression given in Eq. (4.180) with the combined EFT results, Eq. (4.186),

we see that we need

δα
(1) =

λ

24π2

(
γE −

7
3
+ log2

)
. (4.187)

This expression differs from our result with dynamical dim reg, Eq. (4.87). This is not entirely

surprising as the precise definitions of the parameters in the UV are scheme dependent and thus

this scheme dependence is also inherited through matching.

Trispectrum

Next, we will perform the calculation to match the trispectrum taking α = 0 on all legs

and regulating all integrals with a hard cutoff. As was argued above, K4 is the only term that can
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generate log divergences from the loop momentum integrals. Taking p� ki we have

K4 '
1

(k2k3k4)3

∫ d3 p
(2π)3

∫
τ dτ1

(−τ1)4 G(~k1;τ,τ1)

×2Im
∫

τ1 dτ2

(−τ2)4
G(~p,τ1,τ2)

p3 (1+ ipτ1)(1− ipτ2)e−ip(τ1−τ2)+permutations

' H4λ 2

16(k2k3k4)3

∫ d3 p
(2π)d

1
p3

[
10
81
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27
γE(2+3γE)−

5
36

π
2

+
1
9

(
log

2p
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)2

+(1+3γE) log
2p
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+
4
9
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k
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]
+permutations

=
H4λ 2

8(k2k3k4)3
1

2π2 log
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K

[
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81
− 1

27
γE(2+3γE +6log2)− 5

36
π

2 +
2log2+3log2 2

27

]
+O

(
(log[aH])2

)
+permutations . (4.188)

As we did in the main text, we are focused on the single log[aH]/K term because it cannot be

absorbed into the initial conditions and the RG implies that higher powers of log should be

products of logs already present in lower order diagrams.

In order to compare this to the EFT, we need to keep track of our field redefinition to

order λ 2. Specifically, we need

ϕ ≡ H
(
[aH]−α

ϕ++[aH]−β
ϕ−+

λ

9
1
3!
[aH]−3α

ϕ
3
++

λ 2

81(3!)
[aH]3−5α

ϕ
5
+

)
. (4.189)

to remove the ϕ6
+ operator in the EFT Lagrangian. This additional term contributes to the

trispectrum at one loop:

〈
ϕ
(
~k1
)
...ϕ

(
~k4
)〉′
⊃ ∑i k3

i
(k1k2k3k4)3

λ 2

81
5!
3!2

∫ d3 p
(2π)3

1
p3

=
∑i k3

i
(k1k2k3k4)3

λ 2

81
5!
3!2

1
2π2 log

[aH]

K
, (4.190)

which matches the leading term in the UV expression, namely the factor of 10/81. After
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matching this term, we see a fairly complicated expression remains for the linear log. This can

be absorbed into the c3,1 using Eq. (4.46), such that

c3,1→ λ − λ 2

2π2

(
1
9

γE(2+3γE +6log2)+
5

12
π

2− 2log2+3log2 2
9

)
. (4.191)

This agrees with Eq. (4.98), which was computing using dynamical dim reg.

4.B.2 Composite Operator Mixing

We continue to demonstrate how the calculations proceed using a hard cutoff regulator.

In this section, we will compute the correlators that yield composite operator mixing, thereby

determining the dynamical RG equations.

One Loop

The first (and simplest) non-trivial calculation to do is the anomalous dimension of ϕ2
+,

which we derive from

〈
ϕ

2
+[0]ϕ+

(
~k1
)
ϕ+

(
~k2
)〉

=
∫ d3 p1d3 p2

(2π)6

〈
ϕ+

(
~p1
)
ϕ+

(
~p2
)
ϕ+

(
~k1
)
ϕ+

(
~k2
)〉

=
∫ d3 p

(2π)3

〈
ϕ+

(
~p
)
ϕ+

(
−~p−~k1−~k2

)
ϕ+

(
~k1
)
ϕ+

(
~k2
)〉′

. (4.192)

Since our goal is to reproduce the O(λ ) log divergence we found above in the main text, we

can compute the correlator in terms of ϕ2
+ as opposed to using ϕ . Using ϕ+, there is already

of a term proportional to logk/[aH] from the tree-level time evolution that would only give a

log2 term after integrating over p. Instead, we are interested in the contribution from the initial
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conditions:

〈
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(
~k1) ...ϕ+

(
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)〉′
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=
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. (4.193)

Taking k1 ' k2 = p and expanding in k3,k4� p, we find

〈
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We can then apply the same steps to evaluate a correlator with an arbitrary composite operator to

find

〈
φ
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The term of interest in this expression is the log divergence, which is multiplied
(n

2

)
. We see this

coefficient is scheme dependent as this result differs slightly from the result using dynamical

dim reg in Eq. (4.120).

We can extend this to order λ 2 using

〈
ϕ

2
+[0]ϕ+

(
~k1
)
...ϕ+

(
~k4
)〉

=
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(2π)3
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(
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)
...ϕ+

(
~k4
)〉

. (4.196)
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We will evaluate this expression for ki� p, which is a different limit of the 6-point function

as compared to the previous calculation. We also want to isolate the piece proportional to

P+(k1) ...P+(k4), so we can simply isolate a subgraph that looks just like two mass insertions:

〈
ϕ+

(
~p
)
ϕ+

(
−~p

)
ϕ+

(
~k1
)
...ϕ+

(
~k4
)〉
⊃ Γ2,4(p)P+(k1) ...P+(k4) , (4.197)

with

Γ2,4(p) =
∫
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By direct calculation we find that

Γ2,4(p) =
1

216p3

[
16+4γE(−11+3γE)+3π

2 +4(−11+6γE +3log2) log2

+O
(

log
p
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, (4.199)

which agrees with Eq. (4.128) above. This calculation is illustrated in terms of Witten and

Feynman diagrams as shown in Fig. 4.5. Performing the momentum integral, we find

∫ d3 p
(2π)3 Γ2,4(p) =

1
2π2 log
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[
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log
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where

b2,4 =
λ 2

216

[
16+4γE(3γE −11)+3π

2 +4log2(6γE +3log2−11)
]
. (4.201)
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Two Loops

The two-loop mixing of ϕ3
+ and ϕ+ is calculated using

〈
ϕ

3
+[0]ϕ+

(
~k
)〉

=
∫ d3 p1d3 p2d3 p3

(2π)9

〈
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(
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(
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(
~k
)〉

, (4.202)

see Eq. (4.129). When we use a hard cutoff as the regulator, we may use the tree-level four-point

function with all massless fields:
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where pt ≡ p1 + p2 + p3. Here we have assumed k/pi� 1 and kept only the leading terms in

this expansion since higher orders will not contribute to the mixing. Expanding this out and

(implicitly) imposing the momentum conserving δ -function so that ~p3 =−~p1−~p2 we get

〈
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(4.203)

where κi = log pt/pi + γE + 1/3− 2. The first term (proportional to κ) factorizes into two

logarithmically divergent integrals. The only single log comes from the second term, which can

be evaluated using a change of variables

∫ d3 p1d3 p2

(2π)6 =
∫ d3 p1

(2π)3 p3
1

3!
(2π)2

∫ 1

1/2
dx2

∫ x2

1−x2

dx3x2x3 , (4.204)

148



where x2 = p2/p1 and x3 = p3/p1. We then get
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. (4.205)

We see this result matches the result using dynamical dim reg from the main text given in

Eq. (4.133). This is a further confirmation that the d0 coefficient in Eq. (4.135) is scheme

independent.

Finally, we will argue that the third term in Eq. (4.203) will produce a log2 in this

description, and therefore does not contribute to the RG. If we define

ρ(a,b,c) =
∫ d3 p1d3 p2

(2π)6
1

p2a
1 p2b

2 p2c
3
, (4.206)

then the final term corresponds to taking a = 3/2, b = 1 and c = 1/2, plus permutations thereof.

We can use the methods discussed in the main text to calculate ρ(a,b,c) as

∫ d3 p1d3 p2

(2π)6 =
∫ d3 p1

(2π)3 p3
1

3!
(2π)2

∫ 1−ε

1/2
dx2

∫ x2

1−x2

dx3x2x3
1

x2b
2 x2c

3
, (4.207)

where we have included an additional regulator ε to address additional divergences that do not

appear in the p1 integral.

ρ(3/2,1,1/2)+permutations =
1

2π2 log
(
[aH]/K

)
× logε ∝ (logaH)2 . (4.208)

The sum over permutations is essential in this calculation as the split into p1, x2 and x3 breaks

the manifest permutation invariance of the measure of integration, which is only valid if the

integrand itself is permutation invariant. This calculation reproduces the result from the main
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text where this contribution is log2, although the need for two separate regulators makes this less

transparent.
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Chapter 5

A Tail of Eternal Inflation

5.1 Introduction

Developing a complete picture of physics in de Sitter space remains one of the great

unsolved problems in theoretical physics [5, 122, 123]. The issues appear in many guises.

On the practical side, we do not have a rigorous (non-perturbative) definition of cosmological

observables [5, 124]. More conceptually, confusions abound when attempting to characterize

the eternal inflating phase [94, 95, 96]. Meanwhile, these significant challenges do not seem to

impede our ability to make quantitative predictions for the universe we inhabit. Weak coupling

allows us to calculate and understand the structure of observable correlation functions as a

controlled approximation. Yet, our goal in this paper is to demonstrate, for the first time, that

there are fundamental questions about our own patch of the universe whose answers are not

calculable in perturbation theory, e.g. the possibility that our universe is eternally inflating.

Cosmological observations suggest that the large scale structures in our universe were

seeded during inflation, a period of quasi-de Sitter expansion [125, 126, 127]. The observable

implications of inflation can be captured by an Effective Field Theory (EFT) framework [128,

129]. Much progress has been made in understanding how to calculate the statistical predictions

of inflation perturbatively [130, 102]. A notable recent advance is the cosmological bootstrap,

which aims to reconstruct inflationary observables directly from locality and causality [48, 68,

131, 132, 133, 134, 135]. Much of the interest in the structure of cosmological correlators centers
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on the possible signatures of primordial non-Gaussianity, since this provides an observational

window into the particle content and interactions that played a role during inflation [58].

The fact that the observational and conceptual aspects of cosmology are decoupled is a

simple consequence of dimensional analysis, which additionally underlies the validity of the EFT

of Inflation approach. There is a significant separation between the two energy scales H and fπ

that characterize inflation [136] (see also [137, 129, 138, 139, 140, 44, 141, 142, 143, 144, 145,

146, 1]), as illustrated in Fig. 5.1. The EFT of Inflation can be framed in terms of the spontaneous

breaking of time translation symmetry, where the associated Goldstone boson π describes the

scalar density fluctuations. The universal scale describing the dynamics of the fluctuations is

f 2
π ' |φ̇ |, where φ̇ 6= 0 is the order parameter for the breaking of time translation invariance, and

φ is a fundamental scalar in most concrete UV models. Typical de Sitter fluctuations are produced

with a characteristic energy set by the Hubble parameter during inflation H, which results in there

being a de Sitter temperature 2πTdS = H. In more detail, an emergent scalar degree of freedom ζ

experiences adiabatic fluctuations, whose amplitude is 2π2As ≡ ∆ζ = H4/(2 f 4
π ). In our patch of

the universe, measurements of the cosmic microwave background imply As = 2.1' 10−9 [147],

and so we can infer fπ ' 59H. This tells us that fπ �H is a good approximation in our universe.

As we explore the physics of de Sitter space and the relation to eternal inflation in this work,

we will also consider fπ and H to be free parameters, for example the parameter space where

fπ ' H.

Primordial non-Gaussianity in single-field inflation arises through derivative interactions

that are suppressed by some dimensionful UV scale Λ.1 While the precise relationship to the

amplitude of equilateral non-Gaussianity f eq
NL varies among different possible models, the scaling

relation f eq
NL ' f 2

π/Λ2 is universal. Given the current constraints from Planck, f eq
NL =−26±47

(68% confidence interval) [2], the region of parameter space where Λ2� f 2
π remains a viable

1Here we are assuming scale invariant non-Gaussianity. Scale dependent signals [148], such as models of
resonant non-Gaussianity [149], are also possible. As these model also leave signatures in the power spectrum [150,
54, 151], we will not consider them further to ensure a clean separation between the Gaussian and non-Gaussian
effects.
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Figure 5.1. The relevant energy scales for single field inflation and the regimes of validity of the
EFT of Inflation [orange] and Soft de Sitter Effective Theory (SdSET) [blue]. The background
time evolution leads to a scale fπ , below which the time translation symmetry is spontaneously
broken (SSB). Primordial non-Gaussianity arises from interactions that are suppressed by the
EFT cutoff scale Λ, which is related to the amplitude for equilateral non-Gaussianity f eq

NL by
Λ2 ' f 2

π/ f eq
NL. Requiring the EFT of Inflation is weakly coupled at horizon crossing allows both

Λ > fπ [left] and Λ < fπ [right]. Deviations from a de Sitter background arise at |Ḣ| � H2.

possibility. On the other hand, canonical models of slow roll inflation require that f eq
NL < 1 so

that the background evolution φ̇ is calculable in the weakly coupled regime [152, 143, 144].

Nevertheless, a number of compelling models such as DBI inflation [8], models that utilize

non-trivial field space curvature [153, 154], and those involving interactions with massive

fields [155, 117] can easily produce f eq
NL� 1 self-consistently. It is only essential that Λ > H in

order to reliably calculate the observational predictions using perturbation theory [136]. In this

work, we revisit whether Λ > H is sufficient to ensure perturbative control over all quantities of

interest.

For cosmological correlators, all of the thorny issues of observables in de Sitter are under

control as long as one is in the perturbative regime where H2/M2
pl, H2/ f 2

π , and H2/Λ2 are all

small. To an excellent approximation, inflation is described by a fixed background geometry

in which the scalar fluctuations evolve. In the absence of non-Gaussianity, even the onset

of slow-roll eternal inflation is calculable and arises when ∆ζ ≥ π2/3 [97]. Building on this,
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one might expect then that the phase transition to eternal inflation in models with primordial

non-Gaussianity can also be calculated as a perturbative expansion in H2/Λ2. Remarkably, this

intuition is wrong. We will show that there are corrections to the expansion that scale as f 2
π/Λ2,

even when f 2
π � H2 (∆ζ � 1) where we might expect eternal inflation does not occur. This

implies that when Λ� fπ , there are important observables associated with the inflationary epoch

that are incalculable in the EFT of Inflation [128, 129]. Furthermore, this incalculability is not

simply due to the breakdown of the EFT itself, since all the N-point correlators are calculable in

perturbation theory. Our goal is to demonstrate this result and explain why it occurs.

At a qualitative level, the onset of slow-roll eternal inflation occurs when the amplitude

of quantum fluctuations exceeds that of classical motion of the field [94, 95]. In canonical

slow-roll inflation f 2
π = φ̇ , so that the classical distance moved in a Hubble time (∆t = H−1)

is (∆φ)classical ' f 2
π/H. Meanwhile, the Gaussian quantum fluctuation introduce an effective

noise in the motion of the field with an amplitude set by the expansion rate, (∆φ)noise ' H.

Slow-roll eternal inflation occurs when these two types of field excursions are of the same order,

(∆φ)classical ' (∆φ)noise, which happens when H2 ' f 2
π or equivalently when ∆ζ ' 1. However,

implicit to this argument is that the rate for generating fluctuations that are larger than H is

negligible. If instead there was a non-negligible rate for quantum fluctuations from the tail

of the distribution such that (∆φ)tail ' f 2
π/H with fπ > H, these larger quantum fluctuations

could be the dominant effect that would determine the onset of eternal inflation. The probability

of such a large fluctuation is exponentially small for Gaussian theories. However, primordial

non-Gaussianity could, in principle, increase the rate of these large fluctuations such that they

dominate the onset of eternal inflation. Noting that the energy scale associated with such non-

Gaussian quantum fluctuations is (φ̇)tail ' H(∆φ)tail ' f 2
π , these fluctuations would correspond

to physics above the UV cutoff for models with Λ < fπ .

In this paper, we use Soft de Sitter Effective Theory2 (SdSET) [65, 66] to calculate

2While the EFT of Inflation and SdSET have overlapping regions of validity, SdSET makes manifest the long
wavelength behavior of the fluctuations in the universe, particularly with regards to IR divergences and their
resummation via the dynamical renormalization group (RG). This property of SdSET is essential for deriving the
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Figure 5.2. The solid blue region shows where primordial non-Gaussianity naively implies
eternal inflation, suggesting a breakdown of Stochastic Inflation and/or the EFT of Inflation. The
region allowed by perturbative unitarity at horizon crossing, derived in [1], corresponds to the
region enclosed by the dashed purple line. The current 1-,2- and 3-σ limits from Planck [2]
are shown as solid red lines. We see there is a significant region where the calculation of the
transition to external inflation is breaking down, that is nonetheless consistent with the theory
being weakly coupled at horizon crossing (as determined by unitarity) and current observations.
The parameters ᾱ and cs are related to the two allowed cubic couplings in the EFT of Inflation,
as defined in Sec. 5.3. Perturbative unitarity as defined in [1] is particularly conservative and
may explain why regions of parameter space allowed by Planck are excluded. We simply wish to
emphasize that there are regions of parameter space in blue that are perturbative even by that
definition.

corrections to Stochastic Inflation [11] (see also [79, 156, 23, 80, 112, 33, 113, 114, 157, 115,

116, 111, 110]), which allows us to demonstrate that the onset of eternal inflation is incalculable

when Λ < fπ . This occurs because large field variations (corresponding to the tail of the

probability distribution) are probes of high energy physics during inflation. When Λ < fπ , the

onset of eternal inflation is sensitive to the regime where the EFT does not apply. Concretely, the

blue shaded region in Fig. 5.2 naively corresponds to eternal inflation in our universe and signals

this breakdown. Interestingly, this parameter space overlaps the regions allowed by current

results in this paper.

155



observations and weak coupling at horizon crossing. The source of the issue is that correctly

modeling the tails of the probability distributions requires a non-perturbative calculation of the

transition probabilities that go beyond the perturbative contributions that are included in the

Stochastic Inflation framework. We interpret the blue region as providing a sharp bound, akin

to a perturbative unitarity bound at the energy scale fπ . Otherwise, as we show below, the EFT

predictions would be inconsistent with interpreting the de Sitter entropy [158] as resulting from

a finite number of degrees of freedom (see e.g. [122, 99, 100, 159, 123, 160, 161]).

This work is adds a novel direction to the vast literature on the perturbative regime

inflationary fluctuations [137, 138, 139, 140, 44, 136, 141, 142, 143, 144, 145, 146, 1] and

the implications for eternal inflation [162, 98, 35, 163, 164, 165]. Prior discussions of eternal

inflation are relevant for the parameter space with fπ 'H (∆ζ =O(1)), as this is the only regime

of canonical slow-roll inflation where eternal inflation can occur. In any parameter regime, it is a

necessary condition that the theory is weakly coupled at horizon crossing, Λ>H, for calculations

to be under control. In the context of previous discussions of eternal inflation where fπ ' H, the

breakdown of weak coupling at horizon crossing is indistinguishable from the breakdown of

the Stochastic framework. In contrast, most of the discussion in our paper applies to our own

observable universe where fπ ' 59H (∆ζ ' 4.1×10−8), and where the theories of inflation of

interest are weakly coupled at horizon crossing. One would not expect eternal inflation in this

regime. However, although much is known about the structure of Stochastic Inflation in canonical

slow roll models [11, 79, 156, 23, 80, 112, 33, 113, 114, 157, 115, 116, 111, 110], before this

work it was not known how to include the non-Gaussian corrections into the Stochastic Inflation

framework. These are exactly the new ingredients that are required to ask questions about the

phase transition to eternal inflation.

Our concrete results will show that there is a breakdown in the calculation that is signaled

by the apparent onset of eternal inflation in the regime fπ�H. This failure of Stochastic Inflation

is only relevant when attempting to predict the tail of the distribution of scalar fluctuations and

is distinct from having control over perturbative calculations at horizon crossing. While it is

156



known that the tails of the distribution can break down using typical perturbative methods (see

e.g. [166]), Stochastic Inflation is a resummation of the perturbative results [65, 66] that has been

used to calculate the tail of the probability distribution in a variety of models (see e.g. [167] for

review). For example, the tail of the distribution of a particular class of two-field models was

calculated using stochastic inflation in [168, 169]; yet, it is also known that this class of two field

models reduces to the single field models we will discuss below when the second field is massive.

In this precise sense, the unusual behavior of the tail of the distribution we will demonstrate in

this paper is not a generic issue of perturbative calculations, but is instead a failure of a Stochastic

Inflation in a regime where it had previously been successfully employed [136].

The paper is organized as follows. In Sec. 5.2, we calculate the first higher derivative

correction to Stochastic Inflation from primordial non-Gaussianity in Single-Field Inflation. In

Sec. 5.3, we solve these corrected equations and use the results to compute the onset of eternal

inflation. We apply these results to interpretation of the de Sitter entropy in Sec. 5.4. In Sec. 5.5,

we interpret the surprising dependence on non-Gaussian fluctuation as a breakdown of Stochastic

Inflation requiring a UV calculation of the underlying transition amplitudes. We conclude in

Sec. 5.6. Two appendices give background for these results. In Sec. 5.A, we review aspects of

single field inflation that are essential for understanding the key results in this paper. In Sec. 5.B,

we provide an alternate derivation of our solution to the corrected Fokker-Planck equation using

the Fourier transform and the method of steepest descents.

5.2 Non-Gaussian Corrections to Stochastic Inflation

Light scalar fields in quasi de Sitter space, such as the inflaton, undergo random quantum

fluctuations. In perturbation theory, these fluctuations give rise to large infrared (IR) effects,

which can be resummed using the framework known as Stochastic Inflation [11, 79, 80]. This

gives rise to a Fokker-Planck equation that determines the evolution of the probability distribution

for the local value of the field.
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The canonical formation of Stochastic Inflation provides a leading order prediction for

the field’s evolution. Interactions correct the Fokker-Planck equation at higher orders, which can

be represented on general grounds as [66] (see also [31, 92])

∂

∂ t
P(φ , t) =

∞

∑
n=2

1
n!

∂ n

∂φ n

[
∞

∑
m=0

1
m!

Ω
(m)
n φ

mP(φ , t)

]
+

1
3H

∂

∂φ

[
V ′(φ)P(φ , t)

]
. (5.1)

The term proportional to V ′(φ) is just the classical evolution of the field, and the rest of the terms

account for the quantum fluctuations. The original formulation due to Starobinski applies to

leading order in the coupling,3 in which case the quantum noise is given by Ω
(m=0)
2 = H3/(8π2)

with all other Ω
(m)
n = 0.

Given the intuitive description of Stochastic Inflation, it might seem surprising that

calculating these higher order corrections remained elusive until recently [31, 92, 66]. It had

often been suggested that the Stochastic framework is related to IR divergences in dS [88, 89,

43, 90, 91, 30, 31, 32, 81, 65, 92, 93]. Leveraging this insight to systematically improve the

framework naturally results in the SdSET approach [65]. The SdSET converts the full theory

IR divergences into EFT UV divergences in the usual sense (see e.g. [170]). This allows one

to resum full theory IR divergences using the usual RG playbook within the EFT. Specifically,

Stochastic Inflation is equivalent to the (dynamical) RG for SdSET composite operators. The

contributions from the quantum noise can be extracted from operator mixing under time evolution,

which takes the generic form

∂

∂t

〈
ϕ

N
+

〉
=

∞

∑
m=0

N+m

∑
n=1

Ω̃
(m)
n (−1)n

(
N
n

)〈
ϕ

N−n+m
+

〉
, (5.2)

where for a massless scalar field φ , we identify ϕ+ as the growing mode mode such that

φ →Hϕ+. We also defined t= Ht and Ω̃
(m)
n = Hm−n−1Ω

(m)
n to simplify the expression in terms

of ϕ+. Finally, V ′(φ) is replaced by Ω̃
(m)
1 , which also receives corrections at higher orders.

3See e.g. [66] for a derivation of the power counting for Stochastic Inflation.
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5.2.1 Stochastic Inflation for Single Field Inflation

The first higher-derivative correction to this framework was calculated in [66] assuming

the UV model was λφ 4 in fixed dS. We will now extend these results to single-field inflation.

This is a non-trivial generalization both because the metric fluctuates (the background is no longer

fixed dS), and these fluctuations are subject to additional constraints from the diffeomorphism

invariance. The corrections to Stochastic Inflation are most transparent when expressed in

terms of the scalar metric fluctuation ζ . This choice is particularly useful because ζ transforms

non-linearly under large diffeomorphisms [7, 24, 171, 22]

DNL : δζ =−1−~x ·~∂~xζ (5.3a)

Ki
NL : δζ =−2xi−2xi

(
~x ·~∂~xζ

)
+ x2

∂
i
ζ . (5.3b)

The Ward identities associated with these symmetries [172, 173] impose constraints on correla-

tion functions that are also known as the single field consistency conditions [7, 24]. The above

transformation uniquely fixes the definition of ζ , and it ensures our results will be free from

field redefinition ambiguities and scheme dependence [174]. The important implication for our

purposes here is that these non-linearly realized symmetries fix the form of possible corrections to

the Stochastic Inflation framework. This is already known for the properties of ζ (~x) at separated

points, where it leads to the all-orders conservation of ζ (~k), namely ζ̇ (~k)→ 0 as an operator

statement in the limit k/(aH)→ 0 [23, 20, 19, 65]. From Eq. (5.2), we see that applying these

symmetries to Stochastic Inflation is the same as extending the operator statements to products

of ζ ’s at coincident points, i.e., composite operators built from ζ .

By power counting in the SdSET, the dynamical RG of any light field is necessarily

ultra-local in space, in that it contains no derivatives. This implies that the most general possible
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result must take the form

∂

∂t
ζ

N(~x,t) = ∑
M

Γ
N
M(t)ζ

M(~x,t) . (5.4)

Applying DNL from Eq. (5.3a) to the both sides of the equation implies

∂

∂t
N ζ

N−1(~x,t) = ∑
M

MΓ
N
M(t)ζ

M−1(~x,t) . (5.5)

Substituting Eq. (5.4) on the left-hand side yields

N ∑
M

Γ
N−1
M (t)ζ M(~x,t) = ∑

M
MΓ

N
M(t)ζ

M−1(~x,t) . (5.6)

Matching the powers of ζ , we find

(N +1)ΓN
M = (M+1)ΓN+1

M+1 . (5.7)

We demand ΓN
M = 0 if N < 0 or M < 0, since operators with fields in the denominator are

unphysical. If we assume N > 0 and the existence of a first non-zero anomalous dimension

Γn
0 ≡ γn 6= 0 for some n, the solution to Eq. (5.7) becomes

Γ
N
M = γnδM,N−n

N

∏
`=n+1

`

`−n
=

N

n

γnδM,N−n . (5.8)

Summing over all possible γn, we have

∂

∂t
ζ

N(~x,t) = ∑
n

γn

N

n

ζ
N−n(~x,t) . (5.9)

Finally, we apply the relation between the operator mixing language and Stochastic Inflation (see

160



e.g. [66]), which leads to the following general form for the time evolution of the probability

distribution of ζ :
∂

∂t
P(ζ ,t) = ∑

n≥2
(−1)n γn

n!
∂ n

∂ζ n P(ζ ,t) . (5.10)

This result makes intuitive sense: in order to preserve the nonlinear symmetry, the generalization

of the Fokker-Planck equation can only depend on derivatives of ζ (no explicit factors of ζ

appear).

We see from the above result, that we can calculate all corrections to Stochastic Inflation

from the mixing coefficients ζ n→ 1, where 1 is the identity operator. For n = 2, this is the usual

Gaussian (quantum) noise contribution to Stochastic Inflation such that

∫ d3k
(2π)3

〈
ζ (~k)ζ (~k ′)

〉
= 2γ2 logaH/K → γ2 =

∆ζ

4π2 , (5.11)

where K is an IR regulator and ∆ζ is the amplitude of the power spectrum,4

〈
ζ (~k)ζ (~k ′)

〉
= ∆ζ k−3+(ns−1)(2π)3

δ (~k+~k ′) . (5.12)

Previous studies of stochastic effects in single-field inflation were limited to this contribution

and the classical drift from the potential.

We are interested in computing the leading non-Gaussian contribution, which starts at

n = 3. As we are simply calculating the mixing of operators under dynamical RG, the coefficient

of the n = 3 term is determined by the logarithmic divergence in the two point function of ζ 3

and 1, i.e., the one-point function of ζ 3. This can be calculated, as illustrated in Fig. 5.3, from

the bispectrum (three-point function) via

〈
ζ

3(~x = 0)
〉
=
∫ d3k1d3k2d3k3

(2π)3

〈
ζ (~k1)ζ (~k2)ζ (~k3)

〉
. (5.13)

4Here we are defining ∆ζ so that ∆ζ = 2π2As [175].
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τ0

τ

~k1 ~k2

time

Figure 5.3. Illustration of the correlation function
〈
ζ 3(~x = 0)

〉
represented as an integral over

the bispectrum B(k1,k2,k3) computed at tree-level. The momentum integration is analogous to a
two-loop integral.

In single-field inflation, there are two contributions to this three-point function arising from the

ζ̇ ∂iζ ∂ iζ and ζ̇ 3 interactions, which are given by [176]

B
ζ̇ (∂iζ )

2(k1,k2,k3) =−
1
4

(
1− 1

c2
s

)
∆

2
ζ

×
(
24K3

6−8K2
2K3

3K1−8K2
4K1

2 +22K3
3K1

3−6K2
2K1

4 +2K1
6)

K39K13 , (5.14)

and

B
ζ̇ 3(k1,k2,k3) =

[
6
(
c2

s −1
)
+8

c3

c2
s

]
∆

2
ζ

1
K33K13 , (5.15)

where we have defined

〈
ζ (~k1)ζ (~k2)ζ (~k3)

〉
= B(k1,k2,k3)(2π)3

δ
(
~k1 +~k2 +~k3

)
, (5.16a)

B = B
ζ̇ (∂iζ )

2 +B
ζ̇ 3 , (5.16b)

K1 ≡ k1 + k2 + k3 , K2 ≡ (k1k2 + k2k3 + k3k1)
1/2 , K3 ≡ (k1k2k3)

1/3 . (5.16c)

Defining xi = ki/k1 and changing variables, we find

〈
ζ

3(~x = 0)
〉
=
∫ d3k1

(2π)3
1
k3

1

3!
(2π)2

∫ 1

1/2
dx2 x2

∫ x2

1−x2

dx3 x3 B(1,x2,x3)

=
logaH/K

2π2 ×
∆2

ζ

16π2

((
1− 1

c2
s

)(
9+3c2

s
)
+

c3

c2
s

)
, (5.17)
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where we have simply introduced a hard UV cutoff k1 = aH and an IR cutoff as k1 = K to

regulate the log-divergence. This simple regulator breaks the symmetries of dS, and so we

provide Sec. 5.A.2, which shows how to derive the same result using the symmetry preserving

dynamical dimensional regularization approach.

The coefficient γ3 is determined from the factor multiplying the log:

γ3 =
∆2

ζ

32π4

((
1− 1

c2
s

)(
9+3c2

s
)
+

c3

c2
s

)
, (5.18)

so that

∂

∂t
PNG(ζ ,t) =

(
∆ζ

8π2
∂ 2

∂ζ 2 −
∆2

ζ

192π4

((
1− 1

c2
s

)(
9+3c2

s
)
+

c3

c2
s

)
∂ 3

∂ζ 3

)
PNG(ζ ,t) . (5.19)

This result is consistent with the interpretation that it is a small non-Gaussian correction: a

typical fluctuation in the Gaussian limit is ζ ' ∆
1/2
ζ

, so if we assume ∂/∂ζ ∼ ∆
−1/2
ζ

, the first

term is O(1) and the second term is O
(
∆

1/2
ζ

/c2
s
)
. We can rewrite this estimate in terms of the

cutoff scale, using the relation Λ = fπcs:

∆ζ =
1
2

H4

f 4
π

⇒ γ3
∂ 3

∂ζ 3 '
∆

1/2
ζ

c2
s

=
1√
2

H2

Λ2 . (5.20)

This tells us that for typical fluctuations, the higher order corrections are suppressed by H2/Λ2

as one would expect.

5.3 Eternal Inflation and Non-Gaussian Tails

Now that we have the leading corrections to the Fokker-Planck equation in the presence

of a non-trivial bispectrum, we want to apply this formalism to see how it impacts the onset

of eternal inflation and the implications for the de Sitter entropy. Even without appealing to a

microscopic description, we can define an order parameter for the end of inflation φ . Within the
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EFT of Inflation, there is a natural choice [141]

φ ≡ f 2
π (t +π)' f 2

π

H
(t−ζ ) , (5.21)

where π is the Goldstone boson of the EFT of Inflation (see Appendix 5.A.1 for review) defined

such that ζ =−Hπ +O(ε π2), where ε is the slow roll parameter, and f 2
π is the decay constant

for π . By construction 〈φ̇〉 = f 2
π . Since we will be working in the limit ε → 0, we can treat

Eq. (5.21) as an exact relation to define ζ in terms of φ :

ζ ≡ t− H
f 2
π

φ . (5.22)

Here φ will be the field that defines the end of inflation so that φ ∈ (−∞,0) corresponds to the

inflationary regime with inflation ending when φ = 0. (Ending inflation at φ = 0 simplifies

expressions, but of course nothing can depend on this arbitrary choice).

To set the stage, we will review how one determines the onset of eternal inflation in the

Gaussian case, γ3 = 0. The evolution equation for ζ is

∂

∂t
PG(ζ ,t) =

∆ζ

4π2
∂ 2

∂ζ 2 PG(ζ ,t) , (5.23)

whose solutions are given by a Gaussian:

PG(ζ ,t,ζ0) =
1√

2πσ2t
e−(ζ−ζ0)

2/(2σ2t) , (5.24)

for any choice of the constant ζ0, and with σ2 ≡ ∆ζ/(2π2). We impose the initial condition

PG(ζ ,t= 0,ζi) = δ (ζ −ζi) so that ζ = ζi > 0 (φ < 0) at t= 0 in order to be consistent with

Eq. (5.22). Since inflation ends when φ ≥ 0, we set P(φ [ζ ]≥ 0;t) = 0 by hand. However, we

must also impose the boundary condition that PG(ζ ,t,ζi) is continuous at φ [ζ ] = 0. Note that

every choice of ζ0 in the solution Eq. (5.24) gives a δ -function δ (ζ − ζ0) at t = 0. In order
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to impose our boundary condition at φ = 0, we must add additional solutions in the region

φ [ζ ]< 0 with different values of ζ0 < 0 so that they naively produce a δ -function for φ > 0 at

t= 0. However, since we are imposing PG(φ > 0,t) = 0 by hand, adding these additional terms

remains consistent with our initial conditions. A natural guess is that the solution takes the form

PG(φ [ζ ]< 0,t,ζi) =
1√

2πσ2t

[
e−(ζ−ζi)

2/(2σ2t)− e−4ζi/(2σ2)e−(ζ+ζi)
2/(2σ2t)

]
, (5.25)

where φ = 0 corresponds to ζ = t. This way of imposing the boundary conditions is typically

called the method of images.

Now that we have the probability distribution, we can apply it to compute the onset of

eternal inflation. Following [97], the probability that reheating occurs at time t is determined by

pR,G(t) =−
d

dt

∫ 0

−∞

dφ PG(φ ;t) ∝ e−t/(2σ2) , (5.26)

where we used the Fokker-Planck equation Eq. (5.23) and integrated by parts. From here we can

calculate the average volume of the reheating surface,

〈V 〉G = L3
∫

∞

0
dte3t pR,G(t)' L3

∫
∞

0
dtet(3−1/(2σ2)) . (5.27)

where L3 is the size of the initial patch at t= 0. The onset of eternal inflation occurs when this

quantity diverges:

σ
2 =

∆ζ

2π2 >
1
6
. (5.28)

In canonical slow-roll inflation, the perturbative description remains weakly coupled up to the

phase transition and therefore this determination of the critical value of ∆ζ is meaningful [97].

Now let us repeat this analysis for theories with primordial non-Gaussianity, γ3 6= 0. The
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evolution is described by (see Eq. (5.10))

∂

∂t
PNG(ζ ,t) =

σ2

2
∂ 2

∂ζ 2 PNG(ζ ,t)−
γ3

3!
∂ 3

∂ζ 3 PNG(ζ ,t) . (5.29)

Building off the solution in Eq. (5.24), we can make the ansatz for the solution to this modified

Fokker-Planck equation:

PNG(ζ ,t,ζ0) = exp
(

κ(t)

3!
∂ 3

∂ζ 3

)
PG(ζ ,t,ζ0) . (5.30)

Substituting this ansatz into Eq. (5.29) gives

d
dt

κ(t) =−γ3 → κ(t) =−γ3t+κ0 . (5.31)

We again impose the initial condition at t= 0, ζ = ζi < 0, and P(φ ≥ 0) = 0, so the solution

takes the form

PNG(ζ ,t,ζi) = exp
(
−γ3t

3!
∂ 3

∂ζ 3

)
PG(ζ ,t,ζi)+ images , (5.32)

where the images are solutions with ζ0 > 0. While this can be solved in principle, a closed form

solution to these equations is both unnecessary and beyond our scope. Specifically, the phase

transition is determined by the behavior at φ = 0 or ζ → t in the limit t→ ∞. In this limit, we

have
∂ n

∂ζ n PG(ζ ,t,ζ0)
∣∣∣
ζ=t

=

(
(−1)n

σ2n +O
(
t−1))PG(ζ ,t,ζ0) (5.33)

so that the Gaussian behaves as an eigenfunction of the derivative operator in the t→∞ limit. In

this regime, the probability distribution for ζ becomes

exp
(
−γ3t

3!
∂ 3

∂ζ 3

)
PG(ζ ;t,ζ0) → exp

[
γ3

3!
t

(
(ζ −ζ0)

σ2t

)3

− (ζ −ζ0)
2

2σ2t

]
. (5.34)
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This solution is also derived in Sec. 5.B using the method of steepest descents.

This probability distribution for ζ tells us that the large t behavior for the probability of

reheating is

pR,NG(t) ∝ exp
[
−t
(

1
2σ2 −

γ3

3!
1

σ6

)]
. (5.35)

Repeating the same argument from above to derive the onset of eternal inflation, we see that

〈V 〉NG diverges when
1

2σ2 −
γ3

3!
1

σ6 < 3 . (5.36)

Note that this result depends on the sign of γ3, which is not fixed. Using the explicit form of γ3

given in Eq. (5.18) and σ2 = ∆ζ/(2π2), eternal inflation occurs when

1
2
− 1

48

((
1− 1

c2
s

)(
9+3c2

s
)
+

c3

c2
s

)
<

3∆ζ

2π2 . (5.37)

At this point, we notice something surprising. One might have expected that the Gaussian

term would dominate when H2/Λ2� 1. However, if we recall that Λ = fπcs, we can rewrite

this expression as
1
2
− 1

48
f 2
π

Λ2

((
c2

s −1
)(

9+3c2
s
)
+ c3

)
<

3∆ζ

2π2 . (5.38)

When computing the onset of eternal inflation, we see the corrections scale as f 2
π/Λ2� H2/Λ2.

Taken at face value, this implies that for cs = 1 (cs� 1), eternal inflation occurred in our universe

for c3 < 24 (c3 <−9). In Fig. 5.2, we compare this region to current observational constraints

from Planck denoted by the red contours in Fig. 5.2 on the parameter space (taking ∆ζ ' 0), in

terms of cs and

ᾱ1 ≡−
4
3

c3

c2
s
− 1

2

(
1− c2

s
)2

c2
s

. (5.39)

The figure also shows conservative bounds on these parameters from perturbative unitarity

at horizon crossing, derived in [1] (see Appendix 5.A.3 for a review of perturbative unitarity

constraints on the EFT of Inflation).
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Since the correction we calculated scales as f 2
π/Λ2 it is natural to guess we have become

sensitive to the cutoff scale for the EFT of Inflation. This suggests that we would become sensitive

to even higher derivative corrections. We can estimate the size of these terms by dimensional

analysis, using their relation to the connected correlators of ζ . Using our normalization of higher

dimension operators in terms of Λ, we have

γn ' σ
n
(

H
Λ

)2n−4

. (5.40)

Extending the ansatz in Eq. (5.30) to include higher derivatives, we find

P(ζ ;t,ζ0) = exp

(
∑
n>2

(−1)n γnt

n!
∂ n

∂ζ n

)
PG(ζ ;t,ζi)+ images , (5.41)

so that

pR(t) ∝ exp

[
−t
(

1
2σ2 + ∑

n>2

γn

n!
1

σ2n

)]
. (5.42)

Again, we see that in the t→ ∞ limit, all the γn corrections contribute to coefficient of the

exponential decay but do not change powers of t in the exponent. As a result, the reheating

volume diverges when
1
2
+ ∑

n>2
(−1)n γn

n!
1

σ2n−2 < 3σ
2 . (5.43)

Now we notice that the nth term is the sum is

γn

n!
1

σ2n−2 '
1
n!

1
σn−2

(
H
Λ

)2n−4 1

∆
(n−1)/2
ζ

'
(

fπ

Λ

)2n−4

. (5.44)

Therefore, the series is under control for typical couplings when Λ > fπ .

On the other hand, when Λ < fπ , it is possible, in principle, to tune the coefficients of

the higher order terms so that γ3 is the dominant contribution. Yet, the fact that our results

naturally organize into an expansion in fπ/Λ suggests that something more drastic is occurring
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in the parameter space where Λ < fπ that cannot be resolved by fine tuning. We will revisit this

interpretation in Sec. 5.5.

5.4 The de Sitter Entropy and Microstate Counting

The interpretation of these corrections in the context of eternal inflation becomes even

more more drastic when we apply them [122, 99, 100] to our interpretation of the de Sitter

entropy [158],

SdS =
π

H2GN
=

8π2M2
pl

H2 , (5.45)

where GN is Newton’s constant. During inflation, the de Sitter entropy is slowly changing as

H(t) decreases, such that

dSdS

dt
=

dSdS

Hdt
=−

16π2M2
plḢ

H4 =
4π2

cs∆ζ

. (5.46)

In analogy with the entropy of a black hole, it is natural to interpret this entropy as reflecting a

finite number of degrees of freedom describing the microphysics of (quasi) de Sitter space. One

crude test of this hypothesis is to compare the de Sitter entropy to the entropy of the fluctuations

that are observable after inflation ends, following [122]. The number of Fourier modes that are

being “created” (i.e., crossing the horizon) per e-fold is simply the expansion rate

d logNmodes

dt
= 3 . (5.47)

If the de Sitter entropy is to be interpreted as resulting from the size of the Hilbert space

describing the modes that live in de Sitter, SdS ∝ logNstates, then we should be prevented from

observing more than a de Sitter entropy’s worth of Fourier modes, so that Nmodes < Nstates, which
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implies

∫
dt

dlogNmodes

dt
<
∫

dt
dSdS

dt
. (5.48)

Our general expectation is that Nmodes � Nstates since the semi-classical fluctuations should

capture only a small fraction of the gravitational microstates.

In the models of interest here, the integrands are nearly constant so that Eq. (5.48) holds

at the level of the integrand:

d logNmodes

dt
= 3 <

dSdS

dt
=

4π2

cs∆ζ

. (5.49)

Naively, one can imagine violating this interpretation by taking

∆ζ

?
>

4π2

3cs
. (5.50)

However, to derive a contradiction, it should be unambiguous that all Nmodes are independent

and observable. This would be verifiable if inflation ended everywhere in the universe, allowing

us a vantage point from which to reconstruct all of inflation. However, if inflation never ends,

i.e., we are eternally inflating, then these modes are not accessible to an observer. In canonical

slow-roll inflation (cs = 1 and c3 = 0), the onset of eternal inflation was determined in Eq. (5.28).

Therefore, a finite period of inflation always satisfies the inequality

∆ζ <
π2

3
<

4π2

3
. (5.51)

As a result, we never encounter a regime where more than eSdS modes are produced while

maintaining control of the background in canonical slow-roll inflation.

In the presence of non-Gaussianity, the onset of eternal inflation is modified, potentially

allowing a contradiction with this interpretation of the de Sitter entropy. In particular, demanding
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a finite inflationary volume while violating our de Sitter entropy bound is possible when

π2

3
− π2

72

((
1− 1

c2
s

)(
9+3c2

s
)
+

c3

c2
s

)
> ∆ζ >

4π2

3cs
. (5.52)

When cs� 1, the left hand side of this equality scales as 1/c2
s , which easily allows a window

where ∆ζ > 4π2/(3cs) without transitioning to eternal inflation. If we set c3 = 0, this equality

can be satisfied for any

cs < 0.095 . (5.53)

When c3 6= 0 and cs� 1, we can satisfy the inequality for c3 < 9.

Rather than seeing this as a breakdown of the relation between the de Sitter entropy and

the microstate counting, it is natural to interpret this as a breakdown of the EFT of Inflation. The

likely possibility is that cs < 0.095 is in the strongly coupled regime of the EFT of Inflation,

telling us that we cannot trust the calculation of the onset of eternal inflation. Concretely, we can

again rewrite this equality in terms of Λ = cs fπ as

π2

3
+

π2

72
f 2
π

Λ2

((
1− c2

s
)(

9+3c2
s
)
− c3

)
> ∆ζ >

4π2

3cs
. (5.54)

We can again only satisfy this inequality when Λ2 < f 2
π , and in the case cs � 1 we require

Λ2� f 2
π . However, eternal inflation occurs when ∆ζ > 4π2/(3cs):

H4

f 4
π

>
8π2

3cs
. (5.55)

This is only satisfied for fπ < H and therefore the regime of interest is where Λ2� H2. This

strongly suggests that we cannot see more than a de Sitter entropy’s worth of modes in the regime

that is under control within the EFT of Inflation. We might even interpret cs > 0.095 (when

∆ζ > 4π2

3cs
) as a bound on the regime of validity of the EFT defined by the de Sitter entropy. We

compare this to the bound from naively applying perturbative unitarity in Appendix 5.A.3 and
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find good agreement. One may hope that a further exploration of the de Sitter entropy will bound

the range of parameters in the EFT of Inflation directly from the cosmological background,

complementing other approaches more similar to QFT in flat space [144, 177, 178].

5.5 On the Breakdown of Stochastic Inflation

By direct calculation, we have shown that the presence of primordial non-Gaussianity

leads to a series of large corrections that can dramatically modify the onset of eternal inflation

when Λ < fπ . Our goal here is to make the case that this should be interpreted as a breakdown of

Stochastic Inflation akin to the breakdown of the EFT of Inflation in the strong coupling regime.

This should not prevent us from calculating the phase transition in a UV complete model. We

can understand both issues by returning to the origins of Stochastic Inflation.

The Stochastic framework follows as a consequence of general Markovian evolution. For

a scalar field φ , this evolution is described by

∂

∂ t
P(φ , t) =

∫
d∆φ

[
P(φ −∆φ , t)W (φ |φ −∆φ)−P(φ , t)W (φ +∆φ |∆φ)

]
, (5.56)

where W (φ |φ ′) is the transition amplitude for the field to jump from φ ′ to φ during the time dt.

If these transition amplitudes are sufficiently “local,” we can Taylor expand Eq. (5.56) to get

∂

∂ t
P(φ , t) =

∞

∑
n=1

1
n!

∂ n

∂φ n Ωn(φ)P(φ , t) , (5.57)

where

Ωn(φ)≡
∫

d∆φ
(
−∆φ

)nW̃ (∆φ ,φ) , (5.58)

and W̃ (y,x)≡W (x+ y|x). For approximately Gaussian transition amplitudes, the moments of

the distribution should be well defined, leading to a reasonable derivative expansion. Indeed, for

the case of λφ 4 theory [66] and inflation (Sec. 5.2 above), we have verified that these coefficients

are calculable by explicitly evaluating them.
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Scalar metric fluctuations ζ are constrained by an additional non-linearly realized sym-

metry (Eq. (5.3)), which enforces that W (ζ |ζ ′) = W (ζ − ζ ′) or W̃ (y,x) ≡ W̃ (y). Using the

expected scaling behavior for γn given in Eq. (5.40), we write

γn = gnσ
n
(

H
Λ

)2n−4

, (5.59)

so that gn = O(1) and

∂

∂t
P(ζ ,t) =

(
σ2

2
∂ 2

∂ζ 2 +
Λ4

H4

∞

∑
n=3

(−1)n 1
n!

gn

(
σ

H2

Λ2
∂

∂ζ

)n
)

P(ζ ,t) , (5.60)

This is the scaling behavior we would get from a transition amplitude of the form

W (∆ζ ) =
1√

2π2σ2
exp

[
−(∆ζ )2

2σ2

(
1+ ∑

n>2
(−1)ngn

(
2π f 2

π (∆ζ )

Λ2

)n−2
)]

, (5.61)

where ∆ζ ≡ ζ −ζ ′. This series expansion will break down when

∆ζ >
Λ2

2π f 2
π

, (5.62)

or, using ∆ζ = H∆φ/ f 2
π ,

H∆φ >
Λ2

2π
. (5.63)

Notice that the expression on the left is H∆φ ' φ̇ . It is natural to interpret the large changes

in the field over a Hubble time as a probe of the high energy limit of the theory E� H, which

explains why we encounter the EFT cutoff scale Λ.

If the breakdown is indeed due to strong coupling within the EFT, we would expect that

a large correction to the onset of eternal inflation would coincide with violations of perturbative

unitarity at energies E = fπ . Since fπ � H, we can approximate the subhorizon region as

flat space and can calculate the partial wave amplitudes for two-to-two scattering of ζ . These
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amplitudes are provided in Sec. 5.A.3 along with their associated perturbative unitarity bounds.

If we take cs = 1, then s-wave scattering in the center of mass frame with incoming energies of

E = fπ is consistent with perturbativity when

−1.85≤ c3 ≤ 0.85 . (5.64)

For comparison, we saw that the non-Gaussian corrections naively imply an infinite reheating

volume when c3 < 24 (again for cs = 1). In this sense, the breakdown of our intuition regarding

eternal inflation is indeed tied to the breakdown of perturbative unitarity at E = fπ .

Ultimately, the question of whether or not a given model of inflation is eternally inflating

should be calculable. However, clearly the method of calculating the correlation functions

to determine equations of Stochastic Inflation is insufficient. Furthermore, nothing about the

calculation of the individual correlation functions will change if we work in the UV completion

(rather than the EFT). This is particularly clear when Stochastic Inflation is expressed in terms of

ζ , so that all the coefficients are constants and can be calculated from the perturbative correlation

functions.

5.5.1 Breakdown in DBI

For concreteness, DBI inflation [179] provides a useful analogy from which we can try

to understand the breakdown of our calculation [136]. In DBI, the action is given by

L = Λ
4

√
1+

∂µφ∂ µφ

Λ4 −V (φ) . (5.65)

The potential V (φ) generates a rolling field, φ = φ̇(t +π). Expanding the square root, we find

Λ
4

√
1− φ̇ 2(1+2π̇−∂µπ ∂ µπ)

Λ4 → ∑
n

1
n!

M4
n(2π̇−∂µπ∂

µ
π)n , (5.66)
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where

M4
n = Λ

4(−1)n
(

φ̇ 2

Λ4

)n
∂ n

∂Xn

√
1−X

∣∣∣
X=φ̇ 2/Λ4

, (5.67)

and
c2

s
1− c2

s
= 1− φ̇ 2

Λ4 , (5.68)

so that cs� 1 requires φ̇ 2 ' Λ4. Clearly in that limit, any process that involves a transition

φ̇ 'H∆φ > Λ2 will require the full DBI action. In fact, we see the Taylor expansion of Eq. (5.66)

will break down when sooner, when

φ̇ 2

Λ4

(
2

π̇c

f 2
π

− ∂µπc∂ µπc

f 4
π

)
� 1− φ̇ 2

Λ4 = c2
s

cs�1−−−→ π̇c

f 2
π

� c2
s

2
, (5.69)

where πc = f 2
π π is the canonically normalized field in the EFT of Inflation (see Appendix 5.A

for review). Since πc scales like the energy of the mode E, π̇c ' E2 and, therefore, Eq. (5.69)

tells us that our Taylor expansion is only valid for energies E2� c2
s f 2

π/2 = Λ2/2. The cutoff

scale we identified in the EFT is the scale where we can no long Taylor expand the DBI action.

The DBI example naturally suggests the how to resolve this breakdown: we need to

calculate the full transition amplitudes using the UV completion.5 In the case of DBI, we expect

that modeling large field transitions requires knowing the complete non-perturbative form of

the DBI action. In contrast, for smaller transitions, we can Taylor expand the DBI action to

reproduce the same results as we would find using the EFT of Inflation. In practice, DBI may not

be the simplest model in which to directly calculate the full transition amplitude, as more weakly

coupled UV completions of small cs may offer some advantages; it is possible UV complete

this regime of EFT of Inflation parameter space by integrating out a weakly coupled massive

field [155, 153, 154, 136]. In that case, we would expect that calculating the transition amplitude

requires “integrating in” the high energy field. We leave the exploration of this interesting

5The contributions to Stochastic Inflation in DBI were previous discussed in [180, 181]. The contributions
for higher derivatives did not appear in those works and thus they did not find the need for a non-perturbative
calculation.
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direction to future work.

5.6 Conclusions

In this paper, we extended the framework of Stochastic Inflation in single field inflation

to include the impact of (equilateral) primordial non-Gaussianity. We showed that the single

field consistency conditions demand that these corrections can only include higher derivative

terms with constant coefficients. We then calculated a two-loop anomalous dimension in SdSET

and used it to determine the cubic derivative correction to Stochastic Inflation.

Using these evolution equations, we set out to calculate the onset of eternal inflation in

the presence of non-Gaussian fluctuations. We found that this transition cannot be calculated

within the framework of Stochastic Inflation when the EFT of Inflation is not weakly coupled

at the scale of the time evolution of the background, fπ = 59H, which is well above the scale

of horizon crossing H. For a wide variety of models producing observable non-Gaussianity,

the onset of eternal inflation is incalculable and requires appealing to a UV completion of the

Stochastic framework and the EFT of Inflation.

We interpret the breakdown of Stochastic Inflation as a sign that the tail of the probability

distribution for the scalar fluctuations is a probe of sub-horizon physics during inflation. This

conclusion is relevant to other probes of non-Gaussianity from rare fluctuations [182, 183, 184,

185, 186], most notably as applied to the formation of primordial black holes (PBHs) [187, 188,

189, 190]. Like the onset of eternal inflation, the rate of PBH formation in canonical slow-roll

inflation is calculable using Stochastic Inflation, both in the single and multi-field regime (see

e.g. [168, 167, 169] for discussions of the connection between PBHs and Stochastic Inflation).

Nevertheless, generic non-Gaussianity was known to impact these rates of rare fluctuations in

ways that might not be calculable in perturbation theory [166]. Our results suggest it is the EFT

of Inflation that is breaking down, which implies that one cannot resolve this effect within the

EFT itself, e.g. by resumming EFT Feynman diagrams.
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This work makes a sharp connection between a number of important topics in theoretical

and observational cosmology: the regime of validity of cosmological EFTs, primordial non-

Gaussianity, probes of the tail of the distribution of scalar fluctuations, eternal inflation, and

the de Sitter entropy. A natural next step is to explore the connection between these results in

models that are UV completed beyond the cutoff of the EFT of Inflation. Given a concrete model,

e.g. DBI inflation [179], one could compute the tail of the distribution or the onset of eternal

inflation. More generally, de Sitter holography (quantum gravity) also connects many of these

topics and offers a parallel and unique perspective on the de Sitter entropy [159, 123, 160, 161],

non-Gaussianity [7, 191] and (potentially) eternal inflation [192, 193]. Naturally, one would like

to understand the breakdown of Stochastic Inflation from a holographic perspective. Our results

imply the need for a deeper non-perturbative definition of eternal inflation, which may provide a

concrete opportunity to link these (often) distinct approaches to cosmology.
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Appendices

5.A Calculations for Single Field Inflation

In this appendix, we review the basics of the EFT of Inflation, and review results for

the power spectrum and bispectrum that are used for the calculations in the main text. Then in
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Sec. 5.A.2, we provide some technical details for how to regulate the key integral that appears in

the calculation above using a dimensional regularization like approach that explicitly preserves

the symmetries of the problem. We then review the perturbative unitarity constraint derived

using flat space amplitudes in Sec. 5.A.3.

5.A.1 EFT of Inflation: Power Spectrum and Bispectrum

The EFT of inflation, in the decoupling limit, is described in terms of a Goldstone boson

π that non-linearly realizes time translations that are broken by the evolving background. Since

π shifts by a constant under time translations, the variable U = t +π(t,~x) transforms linearly

under time translations. We can then express the action in terms of U :

S =
∫

dt d3x
√−g

∞

∑
n=0

1
n!

M4
n(U)

(
∂µU∂

µU +1
)n
, (5.70)

such that the nth term is O(M4
n πn) (note we are using the (−+++) signature for the metric).

The coefficients M4
0 and M4

1 are fixed by Einstein’s equations (or equivalently by eliminating the

tadpole). The resulting quadratic and cubic contributions to the Lagrangian are given by

L2 = M2
pl|Ḣ|

(
π̇

2−
(
~∇π
)2
)
+2M4

2 π̇
2 =

M2
pl|Ḣ|
c2

s

(
π̇

2− c2
s
(
~∇π
)2
)
, (5.71)

and

L3 =

(
2M4

2 −
4
3

M4
3

)
π̇

3−2M4
2 π̇
(
~∇π
)2

, (5.72)

where M4
2 = M2

pl|Ḣ|(1− c2
s )/(2c2

s ).

Using ζ =−Hπ +O(ε π2), where ε =−Ḣ/H2 is the slow roll parameter, and defining

the pion decay constant as f 4
π ≡ 2M2

pl|Ḣ|cs, one finds the power spectrum at zeroth order in

slow-roll is 〈
ζ (~k)ζ (~k ′)

〉′
=

H4

2 f 4
π

1
k3 (2π)3

δ
(
~k+~k ′

)
≡

∆ζ

k3 (2π)3
δ
(
~k+~k ′

)
, (5.73)
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and the bispectra are [176]

B
ζ̇ (∂iζ )

2 (k1,k2,k3) =−
1
4

(
1− 1

c2
s

)
·∆2

ζ

×
(
24K3

6−8K2
2K3

3K1−8K2
4K1

2 +22K3
3K1

3−6K2
2K1

4 +2K1
6)

K39K13 ,

(5.74)

and

B
ζ̇ 3 (k1,k2,k3) = 4

(
1− 1

c2
s

)(
c̃3 +

3
2

c2
s

)
·∆2

ζ
· 1

K33K13 . (5.75)

The coefficient c̃3 is defined in [194] such that it is related to our c3 by

c̃3M4
2 ≡M4

3 ≡ c3
f 4
π

c5
s
→ c̃3 =

2c3

(1− c2
s )c2

s
, (5.76)

so that

B
ζ̇ 3 (k1,k2,k3) =

[
6
(
c2

s −1
)
+8

c3

c2
s

]
·∆2

ζ
· 1

K33K13 . (5.77)

We have also defined Ki the set of symmetry functions of the magnitudes of the momenta k1−3,

K1 ≡ k1 + k2 + k3 , K2 ≡ (k1k2 + k2k3 + k3k1)
1/2 . K3 ≡ (k1k2k3)

1/3 . (5.78)

Since the bispectra are necessarily symmetric under permutations of~ki, it is natural to write the

correlators in terms of these symmetric functions. The appearance of poles in K3 is particularly

noteworthy, as these are the cosmological avatars of energy conservation (also known as the total

energy pole).

5.A.2 Dynamical Dimensional Regularization

When working with scalar fields in fixed dS, we were able to regulate divergent integrals

in a symmetry preserving way by introducing a mass for the scalars, a procedure we called

dynamical dimensional regularization (dyn dim reg) [65]. Our interest here is in regulating

divergent integrals involving the adiabatic mode ζ . However, ζ transforms non-trivially under
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the non-linearly realized symmetries defined in Eq. (5.3) above. (This explains why correlation

functions of the adiabatic mode ζ are time-independent outside the horizon.) As a result, we

cannot regulate divergences by introducing a mass for ζ , without breaking these symmetries.

Fortunately, by definition, the background itself breaks time-translations, which will provide

us with a way to regulate divergent integrals while respecting the symmetries. Having such a

symmetry preserving regulator is important for justifying the consistency of the EFT approach.

To see how dyn dim reg works in this setting, we will recompute the leading quantum-

noise term in Stochastic Inflation from correlators of ζ when cs = 1. For comparison, we

performed this calculation using a hard cutoff above, see Eq. (5.11). We start with the quadratic

action

S =
∫

dt d3xa3(t)
M2

plḢ(t)

H2(t)
∂µζ ∂

µ
ζ . (5.79)

Here we are making the time dependence of H(t) manifest, since we will use this property to

regulate divergences. For a general inflation model, H(t) is some arbitrary function of t. If we

define some reference time t?, we can therefore expand H(t) as a power series near t = t?

S =
∫

dt d3x
M2

plḢ(t?)

H2(t?)

(
τ

τ?

)2+2ε+η (
ζ
′2−∂iζ ∂

i
ζ
)
, (5.80)

where

ε ≡− Ḣ
H2 , and η =

ε̇

Hε
, (5.81)

τ '−1/(aH) is the conformal time, and we used

τ
d

dτ
log

(
H4(t)

M2
pl|Ḣ(t)|

)
= τ

d
dτ

log

(
H2(t)

M2
plε(t)

)
=−2ε−η . (5.82)

The resulting power spectrum is

〈
ζ (~k)ζ (~k ′)

〉′
=

H4(t?)
4M2

pl|Ḣ(t?)|
1
k3

(
k?
k

)2ε+η

(5.83)
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where k?τ? =−1. We can use this to repeat the one-loop calculation we performed in Eq. (5.11)

using a hard cutoff:

ζ
n→ ζ

n−2 n(n−1)
2

∫ d3k
(2π)3

H4(t?)
4M2

pl|Ḣ(t?)|
1
k3

(
k
k?

)−2ε−η

= ζ
n−2 n(n−1)

4π2
H(t?)4

M2
pl|Ḣ(t?)|

(
− 1

2ε +η
+ logKτ?

)
, (5.84)

where K is an IR regulator6. To regulate the divergence, we introduce the normalized operator

and the counterterm Z−1 in the minimal subtraction scheme:

ζ
n−2
R = Zζ

n−2 with Z = 1+
1

2ε +η

n(n−1)
4π2

H(t?)4

M2
pl|Ḣ(t?)|

. (5.85)

From here we can determine the dynamical RG by enforcing that our predictions are independent

of aH(t?), which yields

d logZ
dlogaH(t?)

=−n(n−1)
4π2

H(t?)4

M2
pl|Ḣ(t?)|

. (5.86)

For comparison, we can repeat the calculation using a hard UV cutoff aH with ε,η → 0:

ζ
n→ ζ

n−2× n(n−1)
4π2

H4

4M2
pl|Ḣ|

logaH/K . (5.87)

This yields a counterterm

Z = 1− n(n−1)
4π2

H4

4M2
pl|Ḣ

logaH(t?)/K , (5.88)

6This result is similar to a 1/(ns−1) pole found in the one-loop power spectrum in [195]. The appearance of
these inverse powers of slow-roll parameters in loop calculations is, a priori, not necessarily problematic as they
signal the need for dynamical RG in the sense we describe here.
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from which we can recover

d logZ
dlogaH(t?)

=−n(n−1)
4π2

H4

M2
pl|Ḣ|

. (5.89)

In this sense, using the hard cutoff at one-loop will reproduce the results of a more careful

treatment with dynamical dim reg and minimal subtraction. Precisely the same approach can be

applied to regulate the two loop integral in the main text as well.

5.A.3 Perturbative Unitarity from Scattering

To understand the results of this paper, it is helpful to understand the energy scales where

various processes become important. With the introduction of a non-trivial speed of sound,

understanding the physical scales in the problem becomes more challenging, as the distinction

between a momentum and energy scale is important. To simplify the problem, we can rescale

the spatial coordinates to put time and space on the same footing

x̃i = xi/cs , L̃ = c3
sL , π = f 2

π πc , M4
n ≡ cn

f 4
π

c2n−1
s

, Λ = fπcs , (5.90)

so that c2 ≡ 1
4

(
1− c2

s
)
. After rescaling, it is convenient to organize the action in terms of the

artificially Lorentz invariant derivatives ∂̃µ and time derivatives, so that the action takes the form

L̃ =−1
2

(
∂̃ πc

)2
+

1
Λ2

[
α1π̇

3
c −α2π̇c

(
∂̃ πc

)2
]
+

1
Λ4

[
β1π̇

4
c −β2π̇

2
c

(
∂̃ πc

)2
+β3

(
∂̃ πc

)4
]
,

(5.91)

where

α1 ≡−2c2
(
1− c2

s
)
− 4

3c3 , α2 ≡ 2c2 ,

β1 ≡ 1
2c2
(
1− c2

s
)2

+2c3
(
1− c2

s
)
+ 2

3c4 , β2 ≡−c2
(
1− c2

s
)
−2c3 , β3 ≡ 1

2c2 .

(5.92)
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Crucially, we notice that the quadratic action is Lorentz invariant in terms of the x̃ variables. The

scattering amplitude for 2→ 2 scattering in the center of mass frame is [144]

M(s,θ) =
(
−9

4
α

2
1 −4α

2
2 −6α1α2 +

3
2

β1 +2β2 +(3+ cos2
θ)β3

)
s2

Λ4 . (5.93)

Now if we define the partial wave expansion of the amplitude as

M(s,θ)≡ 16π ∑
`

(2`+1)a`(s)P̀ (cosθ) , (5.94)

then |a`| ≤ 1/2 in order for the partial waves to be consistent with the optical theorem in

perturbation theory, i.e., the theory satisfies the constraint of perturbative unitarity. Integrating

the amplitude over cosθ we find

a0 (s) =
1

192π

(
−3(3α1 +4α2)

2 +18β1 +24β2 +40β3

) s2

Λ4 , (5.95a)

a2 (s) =
β3

120π

s2

Λ4 . (5.95b)

For a0, perturbative unitarity places a bound on a complicated linear combination of cs, c3 and

c4. This degeneracy can be broken by considering scattering in boosted frame. In contrast, if

we demand |a2|< 1/2 when the external energies are both fπ so that s = 4 f 2
π , then we find that

cs > 0.31 if perturbative unitarity holds [144].

These bounds can be strengthen by considering scattering beyond the center of mass

frame. This is analysis was performed in [1], leading to the exclusion in terms of cs and ᾱ1:

ᾱ1 =−
4
3

c3

c2
s
− 1

2

(
1− c2

s
)2

c2
s

=
α1

c2
s
. (5.96)

This is the bound shown in Fig. 5.2.

183



Consistency with the de Sitter Entropy

With some extrapolation, we can also apply these results to the consistency of the de

Sitter entropy discussed in Sec. 5.4. Concretely, we could observe more than a de Sitter entropy’s

worth of modes if we could satisfy the inequalities

π2

3
− π2

72

((
1− 1

c2
s

)(
9+3c2

s
)
+

c3

c2
s

)
> ∆ζ >

4π2

3cs
. (5.97)

This appears to be possible when cs < 0.095, but we interpreted as a breakdown of EFT of

inflation as the cutoff dropped below the Hubble scale, Λ < H. We check this interpretation by

comparing it to the perturbative unitarity on cs of the d-wave amplitude, |a2(E)|< 1/2, which

implies [144]
E4

f 4
π

< 30π
c4

s
1− c2

s
. (5.98)

Although taking E = H is not well-defined, since we are far from flat space (where the unitarity

calculations are performed) in that limit, we can still use this bound as a check on our interpre-

tation of the apparent violation of de Sitter entropy bound. Throwing caution to the wind, we

combine this inequalities using E = H to find

8π2

3cs
<

H4

f 4
π

< 30π
c4

s
1− c2

s
. (5.99)

The only viable solutions to these inequalities occurs when

cs > 0.68 . (5.100)

We see that cs < 0.095 clearly falls outside this region, so that it lies in the strongly coupled

regime derived using this naive interpretation of the partial wave unitarity bound. The bound on

cs from the de Sitter entropy is a clearly a weaker constraint, but has the advantage that it applies

in the de Sitter background directly.
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For c3 6= 0, the flat space perturbative unitarity bounds become more complicated, as the

s-wave amplitude depends on cs, c3 and c4 (see Eq. (5.95a)). A proper comparison of the de

Sitter entropy and scattering based bounds would require the next
(
4th) order in the derivative

expansion in the Fokker-Planck equation which is beyond the scope of this work.

5.B Solving the Fokker-Planck with Steepest Descents

In this appendix, we will present an alternate solution to the Fokker-Planck equation

∂

∂t
P(ζ ;t) =

σ2

2
∂ 2

∂ζ 2 P(ζ ;t)− γ3

3!
∂ 3

∂ζ 3 P(ζ ;t) . (5.101)

The basic idea is to use the Fourier transform to simplify the derivatives with respect to ζ .

Specifically, if we define

P(ζ ;t) =
∫

∞

−∞

dke−iζ kP(k;t) (5.102)

then the Fokker-Planck equation becomes

∂

∂t
P(k;t) =

(
−k2 σ2

2
− ik3 γ3

3!

)
P(k;t) . (5.103)

This can be integrated to obtain

P(k;t) =C exp
(
−k2σ2t

2
t− ik3 γ3

3!
t

)
. (5.104)

To determine the probability distribution of ζ , we take the inverse Fourier transform

P(ζ ;t) =C
∫

∞

−∞

dk exp
(
−iζ k− k2 ∆ζ

4π2t− ik3 γ3

3!
t

)
. (5.105)

For large t, we might suspect we can calculate this integral using the method of steepest descents.

Specifically, we can deform the k contour in the complex plane so that is goes through a point k?
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such that
d
dk

(
−iζ k− k2 σ2

2
t− ik3 γ3

3!
t

)∣∣∣∣
k=k?

= 0 , (5.106)

which occurs when

k? = i
σ2

γ3

(
1±
√

1+
2γ3ζ

σ4t

)
. (5.107)

Noting γ3� ∆ζ , we should take the − solution, since it lies closer to the real axis. We will

assume 8π4γ3ζ/t� 1 so that

k? '−i
ζ

σ2t
+ iγ3

ζ 2

2σ6t2 . (5.108)

The resulting probability distribution can be determined approximately by using k = k?+ k̄

P(ζ ;t)'C exp
(
− ζ 2

2σ2t
+

γ3

3!
ζ 3

σ6t2

)∫
∞

−∞

dk̄e−t∆ζ k̄2/(2π2)

' C̃√
∆ζt

exp
(
− ζ 2

2σ2t
+

γ3

3!
ζ 3

σ6t2

)
, (5.109)

where C and C̃ are constants. Here we used the fact the integrand is analytic in the region

enclosed by contours k ∈ (−∞,∞) and k̄ ∈ (−∞,∞) to obtain our final result.

This reproduces Eq. (5.34), which we derived from our exact solution. However, we also

see that the method of steepest descents will become problematic when we take 2γ3ζ/(σ4t)≥ 1.

This corresponds to the same condition as above for the failure of the Stochastic framework to

reliably calculate the tail of the distribution.
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