
UC San Diego
UC San Diego Electronic Theses and Dissertations

Title
The proof and search complexity of three combinatorial principles

Permalink
https://escholarship.org/uc/item/4b444740

Author
Aisenberg, James

Publication Date
2016

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/4b444740
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA, SAN DIEGO

The proof and search complexity of three combinatorial principles

A dissertation submitted in partial satisfaction of the

requirements for the degree

Doctor of Philosophy

in

Mathematics

by

James Aisenberg

Committee in charge:

Professor Sam Buss, Chair
Professor Russell Impagliazzo
Professor Shachar Lovett
Professor Jeffrey Remmel
Professor Jacques Verstraete

2016

Copyright

James Aisenberg, 2016

All rights reserved.

The dissertation of James Aisenberg is approved,

and it is acceptable in quality and form for publi-

cation on microfilm and electronically:

Chair

University of California, San Diego

2016

iii

TABLE OF CONTENTS

Signature Page . iii

Table of Contents . iv

List of Figures . vi

Acknowledgements . vii

Vita and Publications . viii

Abstract of the Dissertation . ix

Chapter 1 Introduction . 1
1.1 Background . 3

1.1.1 Propositional proof complexity 3
1.1.2 Total NP search problems 7

1.2 Summary of main results . 11

Chapter 2 Quasi-polynomial size Frege proofs of Frankl’s Theorem on the trace
of sets . 14
2.1 Introduction . 14

2.1.1 Frankl’s Theorem and the Kruskal-Katona Theorem . . 17
2.1.2 Frege, extended Frege, and the main theorems 19

2.2 Proof of Frankl’s Theorem . 21
2.2.1 The prefix tree for A . 21
2.2.2 The χ function . 24
2.2.3 The hereditary matrix A′ 29
2.2.4 The functional Kruskal-Katona Theorem 32

2.3 Formalization in the Frege system 34
2.3.1 Quasi-polynomial size Frege proofs 34
2.3.2 Polynomial size constant depth proofs 37

2.4 Equivalent definitions of the hereditary matrix 40

Chapter 3 Short Proofs of the Kneser-Lovász Coloring Principle 45
3.1 Introduction . 45
3.2 The Kneser-Lovász Principle and Statement of the Main The-

orems . 50
3.3 Mathematical Arguments . 51

3.3.1 Argument for Extended Frege Proofs 52
3.3.2 Argument for Frege Proofs 53
3.3.3 Optimal Colorings of Kneser Graphs 55

3.4 Formalization in Propositional Logic 56
3.4.1 Polynomial Size Extended Frege Proofs 56
3.4.2 Quasi-polynomial Size Frege Proofs 59

3.5 The Tucker Lemma and the Truncated Tucker Lemmas 61

iv

3.5.1 Equivalence Between the Truncated Tucker Lemmas . . 66
3.6 Short eF Proofs of the Truncated Tucker Lemma, k = 1 Case . 67

Chapter 4 2-D Tucker is PPA complete . 71
4.1 Introduction . 71

4.1.1 Definitions . 73
4.2 Reduction from Leaf . 74
4.3 Tucker, Leaf, and LeafD 85

Chapter 5 Total NP search problems . 90
5.1 Frankl’s theorem . 90
5.2 The octahedral Tucker lemma 93
5.3 The truncated Tucker lemma 99
5.4 The Kneser-Lovász theorem . 106

Bibliography . 108

v

LIST OF FIGURES

Figure 2.1: The prefix tree T of A. 23
Figure 2.2: The prefix tree T0 associated with P0. 24
Figure 2.3: An example of a tree T with χ values specified. 25
Figure 2.4: An example of a tree T and Tj with χ values specified. 26

Figure 4.1: A horizontal wire. 76
Figure 4.2: Two nodes and their connection. 76
Figure 4.3: The outbound edge of x is connected to the outbound edge of y. . . 77
Figure 4.4: The boundary with no crossings. 78
Figure 4.5: A wire crossing the boundary for joining two outbound edges. 79
Figure 4.6: A boundary crossing tile. 80
Figure 4.7: A wire crossing the boundary for joining two inbound edges. 81
Figure 4.8: A boundary crossing tile. 82
Figure 4.9: An avoided crossing. This effectively allows wires to cross each other. 82
Figure 4.10: A right angle. 83
Figure 4.11: Global layout of the grid. 83
Figure 4.12: Happy 1-simplices, and their directed neighbors. 88
Figure 4.13: An example of an instance of Tucker, and the graph G. 89

Figure 5.1: The octahedral ball for n = 3 . 96
Figure 5.2: One hemisphere of the triangulation T 3 of the octahedral ball. 97
Figure 5.3: The triangulation T 3

≤1 of the truncated octahedral ball. 100

Figure 5.4: One hemisphere of the triangulation T 3
≤1 of the truncated octahedral

ball. 101
Figure 5.5: One face in the triangulation T 3

≤1 of the truncated octahedral ball. . 102
Figure 5.6: PPP, Kneser-Lovász hierarchy, and truncated Tucker hierarchy for

k = 1, 2, and 3, assuming all possible separations. 107

vi

ACKNOWLEDGEMENTS

I would like to thank my committee: Russell Impagliazzo, Shachar Lovett,

Jeffrey Remmel, Jacques Verstraete, and especially my advisor Sam Buss. I am also

grateful for the support of my family; Kathy and Robert Aisenberg, as well as Jon,

Katie and Lucia Aisenberg. I am also grateful for the support of my friends, especially

Matt van Duyn, Andrew Kirwin, and Marisa Brandt.

Chapter 2, in full, is a reprint of material that will appear in the Journal of

Symbolic Logic. Aisenberg, James; Bonet, Maria L.; Buss, Sam. The dissertation author

was the primary investigator and author of this paper.

Chapter 3, in full, is a reprint of material that has been submitted for publica-

tion. Aisenberg, James; Bonet, Maria L.; Buss, Sam; Crac̆iun, Adrian; Istrate, Gabriel.

The dissertation author was the primary investigator and author of this paper.

Chapter 4, in full, is a reprint of material that has been submitted for publica-

tion. Aisenberg, James; Bonet, Maria L.; Buss, Sam. The dissertation author was the

primary investigator and author of this paper.

vii

VITA

2009 B.A. in Mathematics and Physics, Wesleyan University.
Middletown, CT.

2010 Graduate Studies, University of Cambridge. Cambridge,
UK.

2016 Ph.D. in Mathematics, University of California, San Diego.
San Diego, CA.

PUBLICATIONS

James Aisenberg, Maria Luisa Bonet and Sam Buss. “2-D Tucker is PPA complete.”
Submitted for publication.

James Aisenberg, Maria Luisa Bonet, Sam Buss, Adrian Crăciun, and Gabriel Istrate.
“Short proofs of the Kneser-Lovász coloring principle.” Submitted for publication.

James Aisenberg, Maria Luisa Bonet, Sam Buss, Adrian Crăciun, and Gabriel Istrate.
“Short proofs of the Kneser-Lovász coloring principle.” In Proc. 42th International
Colloquium on Automata, Languages, and Programming (ICALP’15), Lecture Notes in
Computer Science 9135 (2015): 44–55.

James Aisenberg, Maria Luisa Bonet, and Sam Buss. “Quasi-polynomial size Frege
proofs of Frankl’s theorem on the trace of finite sets.” To appear in J. of Symbolic Logic.

Itamar Sela, James Aisenberg, Tsampikos Kottos, Alex Elgart, and Doron Cohen.
“Anomalous decay of a prepared state due to non-Ohmic coupling to the continuum.”
Phys. Rev. E 81.3 (2010): 036219.

James Aisenberg, Itamar Sela, Tsampikos Kottos, Doron Cohen, and Alex Elgart. “Quan-
tum decay into a non-flat continuum.” J. Phys. A: Math. Theo. 43.9 (2010): 095301.

Itamar Sela, James Aisenberg, Tsampikos Kottos, and Doron Cohen. “Quantum anoma-
lies and linear response theory.” J. Phys. A: Math. Theo. 43.33 (2010): 332001.

viii

ABSTRACT OF THE DISSERTATION

The proof and search complexity of three combinatorial principles

by

James Aisenberg

Doctor of Philosophy in Mathematics

University of California San Diego, 2016

Professor Sam Buss, Chair

This work concerns the propositional proof complexity and computational com-

plexity of Frankl’s theorem on the trace of sets, the Kneser-Lovász theorem, and the

Tucker lemma.

We show that propositional translations of Frankl’s theorem on the trace of

sets has quasi-polynomial size Frege proofs. For constant values of the parameter t, we

prove that Frankl’s theorem has polynomial size AC0-Frege proofs from instances of the

pigeonhole principle.

We prove that propositional translations of the Kneser-Lovász theorem have

polynomial size extended Frege proofs and quasi-polynomial size Frege proofs for all

fixed values of k. We present a new counting-based combinatorial proof of the Kneser-

Lovász theorem that avoids the topological arguments of prior proofs for all but finitely

many base cases. We introduce new “truncated Tucker lemma” principles, which are

miniaturizations of the octahedral Tucker lemma. The truncated Tucker lemma implies

the Kneser-Lovász theorem. We show that the k = 1 case of the truncated Tucker lemma

has polynomial size extended Frege proofs.

We show that the 2-D Tucker search problem is PPA-hard under many-one

reductions; therefore it is complete for PPA. The same holds for k-D Tucker for all k ≥ 2.

This corrects a claim in the literature that the Tucker search problem is in PPAD.

Frankl’s theorem, the Kneser-Lovász theorem, and the truncated Tucker lemma

are all shown to give total NP search problems. These problems are all shown to be PPP-

hard under many-one reductions.

ix

Chapter 1

Introduction

This dissertation is about algorithms and proofs associated with three combina-

torial principles: Frankl’s theorem on the trace of finite sets [29], Lovász’s theorem on the

chromatic number of Kneser graphs [48], and Tucker’s lemma about triangulations of the

n-ball [62]. Careful analysis of the algorithms involved in the proofs of these principles

yields applications to the separation problem between Frege and extended Frege systems

in propositional proof complexity [9], and in the classification of “inefficient proofs of

existence” [53] in the domain of total NP search problems.

We begin by stating the three principles, giving an overview of their proofs

without going into too many details, and briefly highlighting the algorithmic content of

their proofs that we will explore later. In Section 1.1, we discuss the relevant background

material in propositional proof complexity and total NP search problems. Section 1.2

summarizes the main results in this dissertation.

Frankl’s theorem (Theorem 2.1) states:

Theorem 1.1. (Frankl [29]) Let t be a positive integer and m ≤ n2t−1
t . Then for any

m×n 0/1 matrix with distinct rows, there is a column such that if this column is deleted,

the resulting m× (n− 1) matrix will contain fewer than 2t−1 pairs of equal rows.

The proof of Frankl’s theorem begins by showing that it suffices to consider the

case of hereditary matrices. A 0/1 matrix with distinct rows is hereditary if replacing

any 1 with a 0 in the matrix identifies two rows. The hereditary case is then handled by

appealing to the Kruskal–Katona theorem [43, 47]. The algorithmic content of this proof

that we are interested in is the reduction to the hereditary case. This reduction is done

by giving a polynomial time algorithm that transforms an arbitrary counterexample to

1

2

Frankl’s theorem into a hereditary counterexample to Frankl’s theorem. The algorithm

consists of successive applications of the down-shift operation to the given matrix. The

down-shift operation considers some 1 in the matrix: if attempting to replace this 1 with

a 0 identifies two rows, then no change is made, otherwise the matrix is updated with the

1 replaced by 0. This process is repeated until there are no 1’s that can be replaced by

0’s without identifying two rows. At this stage, the resulting matrix is hereditary. It is

straightforward to check that being a counterexample to Frankl’s theorem is an invariant

of the down-shift operation. Chapter 2 investigates the complexity of the down-shift

operation, where we give a more efficient algorithm for recognizing successive applications

of the down-shift operation. This algorithm has implications for the separation problem

between Frege and extended Frege proof systems. In Chapter 5, Frankl’s theorem is

shown to give a total NP search problem.

Tucker’s lemma (Theorem 4.5) states:

Theorem 1.2 (Tucker [62]). Let T be a triangulation of the n-ball in the ℓ1-norm with

the property that if σ ∈ T is on the boundary of the n-ball, then −σ ∈ T . Let V (T)

denote the 0-simplices (vertices) of T . If λ : V (T) → {±1, . . . ,±n} is a map with the

property that for each vertex v on the boundary of T , λ(v) = −λ(−v), then there is some

1-simplex {v1, v2} ∈ T with λ(v1) = −λ(v2).

Tucker’s lemma has a constructive proof [30, 31, 32, 50, 49] that inputs λ and

outputs a 1-simplex {v1, v2} with λ(v1) = −λ(v2) by defining a walk whose nodes are

the simplices in the triangulation T . The search procedure for Tucker’s lemma runs in

polynomial time in the number of simplices in T . Since the input to the search procedure

is a labelling of 0-simplices, and the output is a particular 1-simplex, it is an interesting

feature of this search procedure that its runtime is bound by the total number of simplices

in the triangulation (and not just the number of 0- and 1-simplices). The fact that there

are triangulations where the total number of simplices is exponentially larger than the

number of 0- and 1-simplices is explored in the context of propositional proof complexity

in Chapter 3, and in the context of total NP search problems in Chapter 5 in the form of

the Truncated Tucker lemma. An unrelated question about what problems are reducible

to the Tucker search problem is explored in Chapter 4.

The Kneser–Lovász theorem (Theorem 3.1) states:

Theorem 1.3 (Lovász [48]). Let n ≥ 2k > 1, and let
(
n
k

)
denote the k-subsets of

{1, . . . , n}. If c :
(n
k

)
→ {2k, . . . , n} is a map, then there are A,B ∈

(n
k

)
with A ∩ B = ∅

3

such that c(A) = c(B).

Lovász pioneered the use of topological methods in combinatorics by proving

Kneser’s conjecture by means of the Borsuk–Ulam theorem [11] about continuous maps

from the n-sphere to Rn. Matoušek [49] gave a more combinatorial proof of the Kneser–

Lovász theorem that involves a reduction to Tucker’s lemma. For fixed k, this reduction

is very inefficient. To find disjoint A and B with c(A) = c(B) for a map c :
(n
k

)
→

{2k, . . . , n}, Matoušek’s construction reduces to an instance of the Tucker lemma on an

exponentially large (in n) triangulation of the n-ball. In Chapter 3, we give a different

proof of the Kneser–Lovász theorem that is much more efficient, with implications to the

separation problem between Frege and extended Frege systems. In Chapter 5, we define

total NP search problems based on the Kneser–Lovász theorem, and relate them to the

search problems based on the Truncated Tucker lemma.

1.1 Background

1.1.1 Propositional proof complexity

Propositional proof complexity takes proof systems for establishing tautologies

as its objects of study. A tautology is a Boolean formula that evaluates to True under any

assignment to its variables. Fix some suitable encoding of Boolean formulas as binary

strings, and let TAUT be the set of all tautologies under that fixed encoding. Following

Cook–Reckhow [25], we define a propositional proof system so that the correctness of a

proof can be verified in polynomial time, and every tautology has a proof (i.e., the proof

system is complete).

Definition 1.4. A propositional proof system is a polynomial time computable surjective

function f : {0, 1}∗ → TAUT. If f(x) = y, then we say that x is an f -proof of y.

Unless otherwise specified, all proof systems will be taken to be propositional

proof systems. A proof system f is said to be super if every tautology has a polynomial

length proof. In other words, there exists a polynomial p such that for every tautology

y there exists an f -proof x of y with |x| ≤ p(|y|). Whether or not super propositional

proof systems exists is a fundamental question in computational complexity theory:

Theorem 1.5 (Cook–Reckhow [25]). Super propositional proof systems exist iff NP =

co−NP.

4

A function has a quasipolynomial growth rate if it is in 2O((log x)c) for some

constant c. We say that one proof system is stronger than other if the former can

efficiently simulate proofs in the latter:

Definition 1.6. If f and g are propositional proof systems, then g (quasi)polynomially

simulates f if there is some (quasi)polynomial time computable function h such that

f(x) = g(h(x)) for all x.

A proof system is optimal if it can polynomially simulate any other proof system.

Kraj́ıček and Pudlák [46] show that EXP = NEXP implies that optimal proof systems

exist.

Many proof systems have been shown to have good lower bounds. That is, they

are known not to be super: resolution [36], constant-depth Frege [5], cutting plane [10,

56], the polynomial calculus [57], and others (see [59] for a survey). By contrast, Frege

systems do not currently have any known superpolynomial lower bounds.

Frege systems are the usual “textbook style” proof system for propositional

logic [25]. A Frege proof is a sequence of formulas. Each forumula in the sequence

is either an axiom or has been inferred by a rule of inference from previously derived

formulas. Axioms are substitution instances from a finite set of axiom schemes. Inference

rules are also substitution instances from a finite set of inference rule schemes. A Frege

system is fully specified by the axiom schemes, inference rule schemes, and formula

basis (the allowed Boolean connectives). The notion of a Frege system is robust. For

a fixed formula basis, every Frege system can polynomially simulate any other Frege

system [25]. For Frege systems over different bases, it is still true that every Frege

system can polynomially simulate every other Frege system, but care must used to make

this precise [58].

Extended Frege systems are Frege systems with an additional non-schematic

rule of inference, the extension rule. The extension rule allows extended Frege proofs to

define new variables that abbreviate formulas. The extension rule allows a formula like

the one that follows to appear as a line in an extended Frege proof:

x ≡ φ

where φ is a formula, and x is a variable that has not been previously mentioned. If

“≡” is not in the formula basis, then the line above is replaced with something logically

5

equivalent, such as

(x → φ) ∧ (φ → x).

Extended Frege systems, like Frege systems are robust. They can polynomially simulate

each other over the same basis [25] or over different bases [58]. Any Frege proof is trivially

an extended Frege proof, so extended Frege systems polynomially simulate Frege systems.

A fundamental question in propositonal proof complexity is:

Question 1.7. Can Frege systems polynomially simulate extended Frege systems?

The extension rule allows extended Frege proofs to reason using Boolean cir-

cuits, whereas Frege proofs can only reason using Boolean formulas. Since it is conjec-

tured that there are Boolean circuits that can only be expressed as exponentially longer

Boolean formulas, it is also conjectured that there is an exponential separation between

Frege proof length and extended Frege proof length. Currently there are no known

results that make this connection precise, however.

If there is an exponential separation between Frege and extended Frege systems,

then there ought to be a combinatorial principle whose propositional translations have

polynomial size extended Frege proofs and require exponential size Frege proofs. Over the

past 30 years, a number of combinatorial principles have been considered as candidates

to provide such a separation, but none have born fruit. This history is described in

detain in Section 2.1. In this section we will only discuss the pigeonhole principle. The

n + 1 → n pigeonhole principle states that there is no injection from a set of size n + 1

(the pigeons) to a set of size n (the holes). To encode this statement in propositional

logic, we use (n+ 1)n propositional variables pij where i = 1, . . . , n+ 1 and j = 1, . . . , n.

The interpretation of these variables it that they define a mapping f : X → Y where

X = {1, . . . , n + 1}, Y = {1, . . . , n} and f(i) = j iff pij is true. The pigeonhole principle

tautology PHP is as follows:

∧

i

∨

j

pij

→

∨

j

∨

i 6=i′

pij ∧ pi′j

The left-hand side of the conditional states that the pij’s define a total function. The

right-hand side of the conditional states that the function defined by the variables pij is

not injective.

The pigeonhole principle has polynomial size extended Frege proofs [25]. The

argument is as follows: Suppose f : {1, . . . , n + 1} → {1, . . . , n} is an injection. Define

6

g : {1, . . . , n} → {1, . . . , n− 1} as follows:

g(x) =

f(x) f(x) 6= n

f(n + 1) f(x) = n

It is straightforward to check that g is an injection if f is. The extension rule allows

extended Frege proofs to introduce propositional variables defining g from the proposi-

tional variables defining f . Let qij be new propositional variables for i = 1, . . . n, and

j = 1, . . . , n− 1. The extension rule is used to define

qij ≡ pij ∨ (pin ∧ p(n+1)j).

A straightforward argument shows that if the p’s define an injection, then so do the q’s.

This process is iterated n− 1 times (introducing new variables each time) until we reach

an injection from {1, 2} to {1}. A short exhaustive search verifies that there is no such

injection, which completes the proof. This argument is readily translated into polyno-

mial size extended Frege proofs. These extended Frege proofs use the extension rule to

reason about linear depth circuits. Näıve translations of these circuits into formulas give

exponential size formulas. In other words, näıve translations of these polynomial size

extended Frege proofs into Frege proofs by replacing each extension variable with the

formula it abbreviates yields exponential size Frege proofs.

For a number of years, it was thought that the pigeonhole principle would

provide an exponential separation between Frege systems and extended Frege systems.

However, Buss [16] showed that the pigeonhole principle has polynomial size Frege proofs.

The main idea of the proof is to show that Frege systems can “count.” In other words,

for a collection of formulas φ1, . . . , φk, there are polynomial size formulas (in the size

of φ1, . . . , φk) that express, in binary, the number of φi’s that are true. These binary

numbers can then be compared to other binary numbers, again using polynomial size

formulas. The counting formulas make use of carry-save addition, which allows these

formulas to be defined using log depth circuits. It is not enough to simply show that

counting can be expressed by polynomial size formulas, crucial to the argument in [16] is

that Frege systems can prove that counting formulas behave the way they are supposed

to.

The inductive polynomial size extended Frege proof of the pigeonhole princi-

ple and the counting-based polynomial size Frege proof of the pigeonhole principle are

quite different. Some have pointed to this fact as evidence that Frege systems do not

7

polynomially simulate extended Frege systems. If they did, then there must be a poly-

nomial time procedure that inputs the inductive extended Frege proof, and outputs the

counting-based Frege proof. This seems implausible. However, subsequently Buss [14]

found quasipolynomial size Frege proofs of the pigeonhole principle that closely follow the

inductive extended Frege proofs. This argument replaces the linear depth circuits of the

extended Frege proof with a reduction to st-connectivity and hence log2 depth circuits,

yielding quasipolynomial size Frege proofs. Thus the difference between the inductive

proof and the counting proof of the pigeonhole principle cannot be taken as evidence

against a quasipolynomial simulation of extended Frege systems by Frege systems.

1.1.2 Total NP search problems

Usually the problems studied in computational complexity theory are decision

problems. For example, given a Boolean formula, decide if it has a satisfying assignment.

It is also interesting to consider the complexity of search problems. For example, given a

formula, find a satisfying assignment if it exists or state that there is no such assignment.

By the self-reducibility of satisfiability, the search problem and decision problem for

satisfiability are equivalent to each other, but in general search and decision problems

could be different. For the satisfiability problem, a solution can be verified in polynomial

time (in the length of the formula). Since a formula may be unsatisfiable, the search

for a satisfying assignment may fail, i.e., the satisfiability problem is not a total search

problem.

More formally, we define the class FNP to be the set of search problems as-

sociated with polynomial time, polynomially balanced relations R(x, y). Polynomially

balanced means that there exists some polynomial p such that if R(x, y) holds, then

|y| ≤ p(|x|). For a relation R, the search problem associated with R is: given x, find a y

such that R(x, y) holds or state that no such y exists. A relation is total if every x has a

y such that R(x, y) holds. The class of total NP search problems [53], that is the total

problems in FNP, is denoted TFNP.

Returning to the previous example, satisfiability is in FNP because the relation

R can treat x as an encoding of a CNF, y as an encoding of an assignment to the

variables of x, and can evaluate x according to the assignment of the variables given by

y in polynomial time. It is not, however, in TFNP because some CNFs are unsatisfiable.

Consider the problem Pigeonhole-Circuit: the input is a boolean circuit

8

with n inputs and n outputs. A solution is either two different assignments to the

variables that give the same output, or one assignment of the variables that outputs

~0 (that is, every output bit is 0). By the pigeonhole principle, every circuit has such

solutions. Therefore Pigeonhole-Circuit is in TFNP.

Let FP denote the subclass of problems in TFNP with the property that a

solution can be found in polynomial time. By definition FP ⊆ TFNP ⊆ FNP. We

relate FP, TFNP, and FNP to more traditional decision problems in complexity. It’s

straightforward to see the following:

Theorem 1.8 ([53]). P = NP iff FP = FNP.

Theorem 1.9 ([53]). FP = TFNP implies that P = NP ∩ co−NP.

To show that a relation is in TFNP requires a proof that the relation is total.

There seems to be many reasons why relations are total, and so this makes it unlikely

that TFNP has any complete problems. This makes TFNP what is called a semantic

class. The notion of a semantic class is difficult to make precise, so for our purposes, a

semantic class is a class that complexity theorists generally conjecture does not any have

complete problems in it. Semantic classes are often contrasted with syntactic classes.

For our purposes, a syntactic class is a class that is known to have complete problems

in it. For example, NP ∩ co−NP is currently a semantic class and not a syntactic

class. However, if it is shown that P = NP ∩ co−NP, then NP ∩ co−NP will become a

syntactic class and not a semantic class. Papadimitriou [53] defined several interesting

syntactic subclasses of TFNP. Each subclass is associated with a combinatorial lemma

that guarantees that relations in the subclass are total. For example, PPP is defined

to be the class of problems proved total by the pigeonhole principle. The problem

Pigeonhole-Circuit described above is complete for that class.

We will now shift to the oracle (type 2) setting, following the treatment in [7].

We do this both so that we can discuss separation results between subclasses of TFNP

(absolute separations are difficult, in light of Theorem 1.8), and also because it simplifies

the presentation.

Define the class FNP2 to be the set of search problems on relations R(α, x, y)

where α is an oracle, R is computable in polynomial time with oracle access to α, and R

is polynomially balanced. A solution to the search problem associated with R on input

(α, x) is any y such that R(α, x, y) holds. The class TFNP2 is defined to be the subclass

of FNP2 where every input (α, x) has a y such that R(α, x, y).

9

Each subclass of TFNP2 that we will define will have a standard problem in it.

The class is formed by taking the smallest class that contains the problem, and is closed

under many-one reductions.

A problem R1 is many-one reducible to R2 if there are polynomial time type 2

functions F , G, and H such that H(α, x, y) is a solution to R1 on input (α, x) for any

y that is a solution to R2 on input (G[α, x], F (α, x)), where G[α, x] is a function that

takes a string z as input, and outputs G(α, x, z).

We are ready to define the subclasses of TFNP2. PPP is the subclass of TFNP2

whose problems are proved total by the pigeonhole principle [53]. The standard problem

for PPP is Pigeon.

Definition 1.10. An instance of Pigeon is a function f : {1, . . . , n} → {1, . . . , n− 1}.

A solution to such an instance is one of the following:

1. A pair a, b ∈ {1, . . . , n} such that a 6= b and f(a) = f(b), or

2. an a ∈ {1, . . . , n} such that f(a) /∈ {1, . . . , n− 1}.

Formally, an instance of Pigeon is (α, x) where α is a function oracle that

computes f and n = 2|x|. A solution to Pigeon is guaranteed to exist by the pigeonhole

principle. In the definition of Pigeon, solutions of type 2 seem redundant, after all f was

specified to be a map into {1, . . . , n−1}, so of course every f(a) will be in {1, . . . , n−1}.

The reason to include a solution of type 2 is that we do not assume that the input is

valid. In other words, Pigeon is not a promise problem. Solutions of type 2 allow invalid

inputs to be considered.

PPA is the subclass of TFNP2 whose problems are proved total by the parity

principle on undirected graphs [53]. The parity principle states that every undirected

graph has an even number of nodes with odd degree. This principle is simplified as

follows: every undirected graph where each nodes has degree 2 or less that has a leaf

must have another. The standard problem for PPA is Leaf.

Definition 1.11. An instance of Leaf is an undirected graph G = (V,E) on n many

nodes, where each node has at most two neighbors, and there is a standard leaf ~0 with

exactly one neighbor. The edges E of the graph G are determined by given by a neighbor

set N : for a node v ∈ V , the set of neighbors of v is N(v). A solution to G as an instance

of Leaf is one of the following:

10

1. a v 6= ~0 ∈ V with |N(v)| = 1,

2. a v1, v2 ∈ V such that v2 ∈ N(v1) but v1 /∈ N(v2),

3. a v ∈ V such that |N(v)| > 2, or

4. ~0 with |N(~0)| 6= 1.

Formally, an instance of Leaf is (α, x) where α is a function oracle computing

the neighbor relation N(v), and n = 2|x|. Solutions of type 1 are leaves that are not

the standard leaf. Solutions of type 2-4 are for rejecting invalid inputs. Solutions are

guaranteed to exist by the parity argument.

PPAD is the subclass of TFNP2 whose problems are proved total by the parity

argument on directed graphs [53]. The parity argument on directed graphs states that

every directed graph where each node has in-degree ≤ 1 and out-degree ≤ 1 with a

source must have another node that is either a source or a sink. The standard problem

for PPAD is LeafD.

Definition 1.12. An instance of LeafD is a directed graph G = (V,E) on n many

nodes, where each node has in-degree ≤ 1 and out-degree ≤ 1 with a standard source ~0.

For a node v ∈ V in the graph, the set of outgoing neighbors of v is Nout(v) and the set

of incoming neighbors of v is Nin(v). A solution to G as an instance of LeafD is one of

the following:

1. a v 6= ~0 ∈ V with |Nin(v)| 6= |Nout(v)|,

2. a v1, v2 ∈ V such that v2 ∈ Nout(v1) and v1 /∈ Nin(v2),

3. a v1, v2 ∈ V such that v2 ∈ Nin(v1) and v1 /∈ Nout(v2),

4. a v ∈ V such that |Nout(v)| > 1 or |Nin(v)| > 1, or

5. ~0 with |Nout(~0)| 6= 1 or |Nin(~0)| 6= 0.

Formally, an instance of LeafD is (α, x) where α is a function oracle computing

the incoming and outgoing neighbor sets Nin(v) and Nout(v), and n = 2|x|. Solutions of

type 1 are unbalanced nodes that are not the standard source. Solutions of type 2–5 are

for rejecting invalid inputs.

Since LeafD is many-one reducible to Leaf (by ignoring the direction infor-

mation), it follows that PPAD ⊆ PPA. A straightforward argument also shows that

11

PPAD ⊆ PPP [53]. [7] shows that relative to a fixed generic oracle, these inclusions are

proper, and also that relative to a fixed generic oracle PPA and PPP are incomparable.

We will not define generic oracles here, but only remark that these claims are equiv-

alent to showing that Leaf is not many-one reducible to LeafD, that Pigeon is not

many-one reducible to LeafD, and that Leaf and Pigeon are not many-one reducible

to each other.

We describe how the type 2 classes PPP, PPA and PPAD defined above relate

to the usual type 1 classes. These type 1 classes are closed under type 1 many-one

reductions. If R1 and R2 are type 1 problems in FNP, then we say that R1 is many-one

reducible to R2 if there are polynomial time computable functions f and g such that if

x is an input to R1, then R2(f(x), y) implies that R1(x, g(y)). That is, an input x to

R1 can be converted into an input f(x) to R2 in polynomial time in such a way that a

solution y to R2 can be converted back to a solution g(y) to R1 in polynomial time.

Each standard problem Pigeon, Leaf, and LeafD takes an input (α, x) where

α is an oracle and x is a string. If we insist that α is computable in polynomial time

with access to x, then we obtain a type 1 search problem. Taking the closure under

type 1 many-one reductions yields the usual classes PPP, PPA and PPAD defined by

Papadimitriou [53].

1.2 Summary of main results

Chapters 2 and 3 concern the proof complexity of Frankl’s theorem and the

Kneser-Lovász theorem. As mentioned before, an important open question in proposi-

tional proof complexity is whether Frege systems (quasi)polynomially simulate extended

Frege systems. It is widely believed that they do not; however, there are few candidates

of combinatorial principles that could witness such a separation [9]. Chapter 2, which is

reproduced with permission from [1], discusses a long standing candidate for separating

Frege and extended Frege: Frankl’s theorem on the trace of finite sets (Theorem 2.1).

Bonet, Buss, and Pitassi [9] showed that Frankl’s theorem has polynomial size

extended Frege proofs. The extension rule was used to construct a hereditary coun-

terexample to Frankl’s theorem from an arbitrary counterexample by carrying out a

polynomial time procedure. Chapter 2 shows that the polynomial time procedure can

be replaced by a procedure computable by AC1 circuits. This allows us to show (Theo-

rems 2.8 and 2.9, respectively):

12

Theorem 1.13. Propositional translations of Frankl’s theorem have quasipolynomial size

Frege proofs.

Theorem 1.14. Fix t > 0. The propositional translations of Frankl’s theorem have

polynomial size proofs in constant-depth Frege systems where the pigeonhole principle

tautologies are taken as additional axioms.

Chapter 3, which is reproduced with permission from [3], discusses the proof

complexity of the Kneser-Lovász theorem, a more recent [40] candidate for separation

Frege and extended Frege. Prior work [40] showed that propositional translations of the

Kneser-Lovász theorem have polynomial size Frege proofs for k = 2, and polynomial size

extended Frege proofs for k = 3. It was left open if the k = 3 case could separate Frege

and extended Frege, and whether the fixed k > 3 case could show that extended Frege

was not super. The main contribution of Chapter 3 eliminates these possibilities. We

show that (Theorems 3.4 and 3.5, respectively):

Theorem 1.15. For fixed parameter k ≥ 1, the propositional translations of the Kneser-

Lovász theorem have polynomial size extended Frege proofs.

Theorem 1.16. For fixed parameter k ≥ 1, the propositional translations of the Kneser-

Lovász theorem have quasipolynomial size Frege proofs.

The key ingredient behind the proofs of both these theorems is a new proof

of the Kneser-Lovász theorem based on counting that mostly avoids the topological

reasoning of prior proofs.

Because our argument circumvented the topological reasoning of prior proofs,

it does not address the question of whether or not Frege systems can carry out such

arguments. To clarify this, we define a family of tautologies based on a version of the

Tucker lemma that we call the truncated Tucker lemma. The truncated Tucker lemma

has parameter k that matches the k of the Kneser-Lovász theorem. In other words, there

are short Frege proofs of the Kneser-Lovász tautologies for fixed parameter k taking the

truncated Tucker tautologies with fixed parameter k as additional axioms. We show

(Theorem 3.26):

Theorem 1.17. The k = 1 case of the truncated Tucker lemma has polynomial size

extended Frege proofs.

13

It is open whether Frege systems have subexponential size proofs of the k = 1

truncated Tucker tautologies. Thus, they are a candidate for separating Frege and ex-

tended Frege systems. We also leave open whether the k > 1 truncated Tucker tautologies

have subexponential size extended Frege proofs.

Chapters 4 and 5 concern the computational complexity of Frankl’s theorem,

the Kneser-Lovász theorem, the Tucker lemma, and the truncated Tucker lemma in the

context of total NP search problems. Chapter 4, which is reproduced with permission

from [2], discusses the complexity of the search problem associated with the Tucker

lemma. The search problem associated with the Tucker lemma was erroneously claimed

to be PPAD-complete [53]. We show instead that (Theorem 4.1):

Theorem 1.18. 2-D Tucker is PPA-complete under many-one reductions.

It was known that 2-D Tucker is in PPA [53]. The proof of Theorem 4.1 in-

volves showing that 2-D Tucker is PPA-hard. This construction builds off of Pálvölgyi’s

construction for showing that 2-D Tucker is PPAD-hard [52], while taking advantage

of the boundary.

Chapter 5 defines a number of total NP search problems based on the combina-

torial principles considered in earlier chapter, discusses some basic relationships between

them, and poses a number of open questions. In particular, Frankl’s theorem, the trun-

cated Tucker lemma, and the Kneser-Lovász theorem all give rise to total NP search

problems, and these search problems are all shown to be PPP-hard.

Chapter 2

Quasi-polynomial size Frege

proofs of Frankl’s Theorem on the

trace of sets

2.1 Introduction

This paper extends results of Bonet, Buss, and Pitassi [9] and Nozaki, Arai, and

Arai [51] by proving that Frankl’s Theorem [29] has quasi-polynomial size Frege proofs. A

Frege system is a “textbook” style proof system for propositional logic based on schematic

axioms and inferences such as modus ponens. An extended Frege system is a Frege system

augmented with the extension rule allowing the introduction of abbreviations, cf. Cook-

Reckhow [25]. Lines in a Frege proof are Boolean formulas, whereas lines in an extended

Frege proof can express Boolean circuits. It is generally conjectured that some Boolean

circuits can only be expressed by exponentially larger Boolean formulas. For this reason,

it is also generally conjectured that Frege proofs cannot polynomially simulate extended

Frege proofs; however this is an open question.

Bonet, Buss, and Pitassi [9] looked for examples of tautologies that might be

conjectured to provide exponential separations between the Frege and extended Frege

proof systems. They found only a small number of examples other than partial consis-

tency statements. The first type of examples were based on linear algebra, and included

the Oddtown Theorem, the Graham-Pollack Theorem, the Fisher Inequality, and the

Ray-Chaudhuri-Wilson Theorem. The remaining example was Frankl’s Theorem on the

14

15

trace of sets.

The four principles based on linear algebra all have short extended Frege proofs

using facts about determinants and eigenvalues. The same is true for the “AB=I ⇒
BA=I” tautologies about square matrices A and B over GF2 that was subsequently sug-

gested by S. Cook. Recently, Hrubeš and Tzameret [38] showed that determinant iden-

tities such as det(A) det(B) = det(AB) and AB = I ⇒ BA = I have quasi-polynomial

size Frege proofs. Thus it seems highly likely (as was already conjectured by [9]) that

all these principles have quasi-polynomial size Frege proofs.

The remaining principle, Frankl’s Theorem, was shown to have polynomial size

extended Frege proofs by [9]. The main result of the present paper, Theorem 2.8, shows

that the propositional formulations of Frankl’s Theorem also have quasi-polynomial size

Frege proofs.

Very few other other candidates (other than partial consistency principles)

for exponentially separating Frege and extended Frege systems have been proposed.

Ko lodziejczyk, Nguyen, and Thapen [44] suggested the propositional translations of var-

ious local improvement principles LI, LIlog and LLI as candidates, motivated by results

on their provability in the bounded arithmetic theory V 1
2 . They proved the LI principle

is equivalent to partial consistency statements for extended Frege systems, but the other

two remained as candidates. However, Beckmann and Buss [8] subsequently proved that

LIlog is provably equivalent (in S1
2) to LI and that the linear local improvement princi-

ple LLI is provable in U1
2 . Therefore the former is equivalent to a partial consistency

statement, and the latter has quasi-polynomial size Frege proofs. Thus neither of these

provide good candidates for exponentially separating Frege and extended Frege systems.

The rectangular local improvement principles RLIk ([44, 8] for k ≥ 2 are possible can-

didates for separation, as they are neither known to be provable in U1
2 nor known to be

many-complete for the provably total NP search problems of V 1
2 .

Another family of propositional tautologies based on the Kneser-Lovász The-

orem was recently proposed by Istrate and Crăciun [40]. They showed that the k = 3

versions of these tautologies have polynomial size extended Frege proofs, but left open

whether they have (quasi-)polynomial size Frege proofs. However, subsequent work of

Aisenberg, Bonet, Buss, Crăciun, and Istrate [3] has established that the Kneser-Lovász

tautologies have polynomial size extended Frege proofs and quasi-polynomial size Frege

proofs.

16

We thus lack many good candidates for super-quasipolynomially separating

Frege and extended Frege systems, apart from partial consistency principles (cf., [25, 17])

or principles such as LI and LIlog which are equivalent to partial consistency principles.

This raises the question of whether Frege systems can quasi-polynomially simulate ex-

tended Frege systems. This seems very unlikely since none of the cases where Frege

proofs (quasi-)polynomially simulate extended Frege proofs use methods that generalize

to simulate arbitrary extended Frege proofs. The known simulations, such as the results

of the present paper, may instead be useful to help show what kinds of techniques will

be needed to separate Frege and extended Frege proofs.

The two restricted cases of Frankl’s Theorem (Theorem 2.1) where the parame-

ter t is equal to 1 or 2 have already been shown to have polynomial size Frege proofs. The

t = 1 case is Bondy’s Theorem, which Bonet, Buss, and Pitassi [9] proved to have poly-

nomial size Frege proofs. They proved more than this in fact; namely, Bondy’s Theorem

is equivalent over AC0-Frege to the pigeonhole principle PHPn+1
n . Their proof involved

showing that the bounded arithmetic theories I∆0 + ∆0-PHP and I∆0 + ∆0-Bondy are

equivalent. Nozaki, Arai, and Arai [51] improved this by showing that the t = 2 case of

Frankl’s Theorem (known as Bollobás’ Theorem) also has polynomial size Frege proofs.

They did not explicitly address the question of AC0-Frege reducibility to the pigeonhole

principle, but it is easy to see that their constructions give such a reduction. In other

words, their proof shows that there are polynomial size AC0-Frege proofs of the proposi-

tional translations of Bollabás’ Theorem from instances of the pigeonhole principle, and

that Bollobás’ Theorem is provable in I∆0 + ∆0-PHP.

We extend these results to general t. Theorem 2.9 states that, for any fixed

value of t, Frankl’s Theorem has polynomial size Frege proofs. In fact, for a fixed value

of t, Frankl’s Theorem has polynomial size AC0-Frege proofs from the ∆0-PHP formulas.

Likewise, for fixed values of t, Frankl’s Theorem is provable in I∆0 + ∆0-PHP.

Our proof methods substantially extend the constructions of [29, 9]. Like the

original proof of Frankl [29], we reduce from the general case of Frankl’s Theorem to

the case where the matrix is hereditary. However, the direct transformation to a hered-

itary matrix as described by Frankl does not yield quasi-polynomial size propositional

formulas. Thus, we need to use a different, more complicated construction that builds a

hereditary matrix that is AC1-definable. This construction can be translated into quasi-

polynomial size Frege proofs and is the main new contribution of the present paper. The

17

prior constuction of [29, 9] could only be translated to polynomial size extended Frege

proofs, but required exponential size Frege proofs. Surprisingly, our more complicated

construction produces the same hereditary matrix as the prior construction, at least if

the Frankl construction is carried out column by column.

Once the general case of Frankl’s Theorem has been reduced to the case of

hereditary matrices, the remainder of the proof of Frankl’s Theorem is carried out by

using the Kruskal-Katona Theorem [43, 47] in the same way as was done by both Frankl

and Bonet-Buss-Pitassi. Additional work is need for the case of constant t, where we

show that Frankl’s Theorem has AC0-Frege + PHP proofs. For this, we use a sharpened

“functional” form (Theorem 2.7) of the Kruskal-Katona Theorem, which is based on

AC0-definable bijections. For constant values of t, we show that the functional form of

the Kruskal-Katona Theorem has polynomial size AC0-Frege proofs, and this allows us

to construct the needed AC0 reduction to the pigeonhole principle.

2.1.1 Frankl’s Theorem and the Kruskal-Katona Theorem

Throughout the paper, A is an m × n 0/1 matrix with m distinct rows. We

identify rows r of A with strings in {0, 1}n.

Theorem 2.1. (Frankl [29]) Let t be a positive integer and m ≤ n2t−1
t . Then for any

m×n 0/1 matrix with distinct rows, there is a column such that if this column is deleted,

the resulting m× (n− 1) matrix will contain fewer than 2t−1 pairs of equal rows.

We can rephrase this theorem using the following terminology.

Definition 2.2. Let r1 and r2 be two rows of A, and j ∈ {0, . . . , n − 1}. Row r1 is

equivalent modulo column j to row r2 if r1 and r2 differ in exactly column j. We define

Pj to be the set of rows r1 for which there exists such a row r2.

Note that j ∈ {0, . . . , n− 1}; columns are numbered from left to right, starting

with j = 0. Since the rows of A are distinct, there can be at most one row equivalent to r1

modulo column j; thus, |Pj | is even. When column j is deleted, there are |Pj |/2 pairs of

equal rows in the resulting m × (n − 1) matrix. Frankl’s Theorem can be rephrased as

follows.

Theorem 2.3. Let t be a positive integer, and let m ≤ n2t−1
t . Then for any m × n

0/1 matrix with distinct rows, there is a j such that |Pj | < 2t.

18

Theorem 2.3 is trivial if m < 2t since |Pj | ≤ m. Also, if m ≤ n, we can

take t = 1 and then Theorem 2.3 follows from Bondy’s Theorem; and we already know

Bondy’s theorem has polynomial size Frege proofs. Thus we may assume that m ≥ 2t

and m > n.

Our proof, like the usual proof of Frankl’s Theorem, goes through hereditary

matrices and the Kruskal-Katona Theorem.

Definition 2.4. Let F = {S1, . . . , Sm} be a family of subsets of {0, . . . , n − 1}. The

incidence matrix for F is an m × n 0/1 matrix with matrix element ai,j = 1 iff j ∈ Si.

The family F is hereditary if X ⊂ Y ∈ F implies X ∈ F . A 0/1 matrix is hereditary if

it is the incidence matrix of some hereditary family.

Equivalently, a 0/1 matrix A is hereditary provided that, for any row r, changing any

entry 1 in r to 0 yields another row of A.

Definition 2.5. If r ∈ {0, 1}n, we write |r|1 to denote the number of ones in r. If A is

an m × n 0/1 matrix and k ≥ 0, we write |A≤k| to denote the number of rows r of A

such that |r|1 ≤ k.

For r ∈ N, we let |r|1 denote the number of 1’s in the binary representation

of r. For X a set of natural numbers, we write |X≤k| to denote the number of r ∈ X

such that |r|1 ≤ k.

We next state the Kruskal-Katona Theorem needed for the proof of Frankl’s

Theorem. This is actually only a corollary to the Kruskal-Katona Theorem, see [29, 9],

but we henceforth refer to it as the “Kruskal-Katona Theorem”.

Theorem 2.6. Let A be an m× n 0/1 hereditary matrix with distinct rows, and k ≥ 0.

Then

|A≤k| ≥ |{0, 1, 2, . . . ,m− 1}≤k|. (2.1)

Theorem 2.6 was shown to have polynomial size Frege proofs by [9]. When

discussing AC0-Frege proofs of Frankl’s Theorem, we need the following functional form

of the Kruskal-Katona Theorem.

Theorem 2.7. Let A be an m × n 0/1 hereditary matrix with distinct rows. Then

there is a bijection f from {0, 1, 2, . . . ,m− 1} onto the rows of A such that for every i,

|i|1 ≥ |f(i)|1.

19

Theorem 2.7 is an immediate consequence of Theorem 2.6. Its advantage is

that, for constant values of m, the bijection f can be defined with a constant depth

formula.

2.1.2 Frege, extended Frege, and the main theorems

Frege proof systems are implicationally sound and complete propositional proof

systems formalized with a finite set of schematic axioms and the inference rule modus

ponens using, without loss of generality, the connectives ¬, ∧, ∨, and →. The length

of a Frege proof is defined to be the total number of symbols in the proof. Extended

Frege systems can be defined to be the same as Frege systems, but with proof length

equal to the number of formulas (lines) in the proof instead of the number of symbols.

An AC0-Frege proof is a Frege proof in which all lines have alternation depth O(1). For

more information on Frege and extended Frege systems, see [25] or [9, 16, 45].

Frankl’s Theorem, in the form of Theorem 2.3, is formalized as an infinite

family of propositional tautologies as follows. Fix positive values n, m and t such that

m ≤ n · (2t − 1)/t. For 0 ≤ i < m and 0 ≤ j < n, let pi,j be a propositional variable

with the intended interpretation that pi,j is true iff the (i, j) entry of A is equal to 1.

For i 6= i′, the formula Eq(i, i′, j) expresses that rows i and i′ differ only in column j as

Eq(i, i′, j) :=
∧

j′ 6=j

(pi,j′ ↔ pi′,j′).

By [16], there are polynomial size formulas expressing counting which allow polynomial

size Frege proofs to reason about sizes of sets. This enables us to define the cardinality

of Pj as

CardP(j) :=
∣∣{i : 0 ≤ i < m and

∨

i′ 6=i

Eq(i, i′, j)
}∣∣.

The size of CardP(j) is polynomially bounded by the total size of the m many formulas
∨

i′ Eq(i, i′, j); hence polynomially bounded by m and n. Letting DistinctRows be

the formula
∧

i 6=i′
∨

j(¬pi,j ↔ pi′,j), Frankl’s Theorem (for these values of m,n, t) can be

expressed by the polynomial size propositional formula

DistinctRows →
∨

j

(CardP(j) < 2t).

This formula has size polynomially bounded by m, n and t. We next state our two

main results precisely. A proof is said to be quasi-polynomially bounded if it is quasi-

polynomially bounded by the size of the formula that is proved.

20

Theorem 2.8. There are quasi-polynomial size Frege proofs Pm,n,t of the propositional

translations of Frankl’s Theorem.

As already remarked, Theorem 2.8 is trivial if m < 2t, and is known (via

Bondy’s Theorem) for m ≤ n. In other cases, the Frege proof Pm,n,t will have quasi-

polynomially (in m) many steps, and each formula in Pm,n,t will be equivalent to an AC1-

circuit. Namely, each formula will have only polynomially many distinct subformulas,

and will have only O(logm) many alternations of ∧’s and ∨’s.

For the next theorem, we assume t is constant. In this case, there are polynomial

size formulas with O(1) alternations of ∧’s and ∨’s (that is, AC0-circuits) that express

the condition “CardP(j) < 2t”. To see this, note that its negation “CardP(j) ≥ 2t”

can be expressed as the disjunction over all 2t-tuples i1 < i2 < · · · < i2t of the assertions

that every iℓ ∈ Pj . Thus, for a constant value for t, the propositional translations of

Frankl’s Theorem can be expressed as constant depth, polynomial size formulas.

As is customary (cf. [23]), we let AC0-Frege + PHP denote the Frege proof

system augmented with all substitution instances of the n+1 into n pigeonhole principle

for all n ≥ 1, and restricted so that all formulas have alternation depth O(1).

Theorem 2.9. Fix t > 0. There are AC0-Frege + PHP proofs P t
m,n of the propositional

translations of Frankl’s Theorem which have polynomial size (in m,n) and in which all

formulas have alternation depth O(t) = O(1).

The outline of the paper is as follows. Sections 2.2.1 through 2.2.3 give our

new reduction to the hereditary case of Frankl’s Theorem. The general strategy of the

proof is as follows. Given a 0/1 matrix A, we let T be the prefix tree for the rows of A.

The nodes of T are sets of rows of A that share a common prefix, and the ancestor

relation for T is set inclusion. We define a function χ that takes as input a node of T

and a list of column indices, and produces another node in T . This χ function is used to

define another m× n 0/1 matrix A′, which is hereditary. Furthermore, if A violates the

conditions of Frankl’s Thoerem, then so does A′, From here, we are in the situation for

the usual proof of Frankl’s Theorem, and we conclude our proof by using the Kruskal-

Katona Theorem. Section 2.2.4 describes the functional form of the Kruskal-Katona

Theorem which will be needed for polynomial size Frege proofs of the constant t case.

Section 2.3.1 discusses how to formalize this proof of Frankl’s Theorem in propo-

sitional logic. The key point is that (the graph of) the χ function can be defined with

21

AC1-circuits, and that the properties of the χ function can be established with quasi-

polynomial size Frege proofs. Section 2.3.2 discusses the formalization of the constant t

case of Frankl’s Theorem with AC0-Frege + PHP proofs. The key new tool is that

the bijective form of the Kruskal-Katona Theorem can be formulated and proved in

AC0-Frege.

Section 2.4 shows that the matrix A′ is identical to the hereditary counterexam-

ple produced in the usual proof of Frankl’s Theorem when the reduction to a hereditary

matrix is carried out column by column.

2.2 Proof of Frankl’s Theorem

This section gives our reduction from the general case of Frankl’s Theorem

to the hereditary case. We define the reduction and prove its correctness in detail, so

that it will be clear in Section 2.3 that the arguments can be formalized with quasi-

polynomial size Frege proofs. Section 2.2.1 builds the prefix tree for the rows of A,

Section 2.2.2 defines the χ function and establishes its properties. Section 2.2.3 uses the

χ function to construct hereditary matrix, culminating with Theorem 2.25. Section 2.2.4

proves the bijective version of the Kruskal-Katona Theorem as will be needed for the

AC0-Frege + PHP proofs. We assume henceforth that A is an m × n 0/1 matrix with

distinct rows and m ≤ n2t−1
t .

2.2.1 The prefix tree for A

Recall that a row r is identified with a string in {0, 1}n. A binary string x is a

prefix of r when r equals the concatenation xy for some y.

Definition 2.10. Let x ∈ {0, 1}∗. Then JxK denotes the collection of the rows of A that

have prefix x:

JxK = {r : r is a row of A, x is a prefix of r}.

We call x the maximal length representative for JxK if there is no y with |y| > |x| and

JyK = JxK. The notation [x] is used to denote JxK in this case.

Of course, every non-empty JxK has a unique maximal representative. Whenever

we use the notation [x], it is (implicitly) required that JxK 6= ∅ and x is its maximal

representative. For |x| < n, we have JxK = Jx0K ∪ Jx1K. The string x is a maximal

22

representative for JxK iff JxK 6= ∅ and either |x| = n or both Jx0K and Jx1K are non-

empty.

The classes [x] are the nodes of a binary tree T called the prefix tree of A. The

root of T is JǫK, where ǫ is the empty string and thus JǫK is the set of all rows of A. The

root JǫK is equal to [y] for y the longest common initial substring of the rows. The leaves

of T are the singleton nodes [r], where r ∈ {0, 1}n is a row of A.

The parent-child relationships of T are defined so that [x] is an ancestor of [y]

in T precisely when [x] 6= [y] and x is a prefix of y. In more detail, if [x] is not a leaf

node (in other words |x| < n) then the only two children of [x] are its left child Jx0K and

its right child Jx1K. Thus T is an ordered binary tree, and since T has m leaves, it has

m− 1 internal nodes.

As an example, Figure 2.1 shows the prefix tree for the matrix

A =

0 0 0 0 0

0 0 0 0 1

0 0 0 1 0

0 0 1 0 0

0 0 1 1 0

0 1 0 0 0

1 0 0 0 0

1 0 0 0 1

1 1 0 0 0

.

Our single/double bracket notation means, for instance, that the rightmost leaf [11000] of

the tree is also equal to J11K = J110K = J1100K. The sets Pj of rows which are equivalent

modulo column j were defined in Section 2.1.1. In this example, the sets Pj are:

P0 = {00000, 10000, 00001, 10001, 01000, 11000}

P1 = {00000, 01000, 10000, 11000}

P2 = P3 = {00000, 00100, 00010, 00110}

P4 = {00000, 00001, 10000, 10001}.

Each set Pj has prefix tree Tj. Formally, the nodes of Tj will identified with

nodes of T , making it an induced subtree of T .

23

0-line

1-line

2-line

3-line

4-line

5-line

[ǫ]

[0] [1]

[00]

[01000]

[1000]

[11000]

[000]

[001]
[0000]

[00010][00100][00110][00000][00001] [10000][10001]
P0, P1

P2, P3

P4

P0, P4 P2, P3 P2, P3 P2, P3 P0, P1 P0, P1

P4

P0, P4 P0, P1

Figure 2.1: The prefix tree T of A.

Definition 2.11. Let j ∈ {0, . . . , n − 1}. The tree Tj has leaves [r] for r ∈ Pj , and

has as internal nodes the least common ancestors of every pair of [r]’s. The ancestor

relationship is inherited from T .

Definition 2.12. Let j ∈ {0, . . . , n− 1}. The j-line through the tree T is defined to be

{[x] : [x] ∈ T and |x| = j}.

In other words, the j-line is the set of nodes [x] in T such that Jx0K 6= Jx1K with

|x| = j. In the above, J10K = [1000] is on the 4-line. The j-line corresponds to column j

of the matrix, in that two rows of A which differ first in column j give rise to a node

on the j-line. Note that any node on the j-line is in the tree Tj , but Tj has other nodes

as well. We picture the tree T with root at the top and j-lines ordered accordingly, and

say that the j-line and its nodes in T are above the j′-line if j < j′.

In Figure 2.2, the tree T0 has one node on the 0-line, [ǫ]. Its two children are

roots of isomorphic subtrees of T0. The next lemma shows this property always holds.

Definition 2.13. Let S be T or one of its induced subtrees Tj . Let [x] be an internal

node of S. The left subtree of [x] in S is the subtree of S rooted at the left child of [x]

in S. The right subtree of [x] is defined similarly.

Lemma 2.14. Let [x] ∈ Tj lie on the j-line. Then the right and left subtrees of [x] in Tj

are isomorphic in the following strong sense: For each node [x0u] in the left subtree,

24

[ǫ]

[0] [1]

[0000] [1000]

[00000][00001] [10000][10001][01000] [11000]

0-line

1-line

4-line

5-line

Figure 2.2: The prefix tree T0 associated with P0.

there is a corresponding node [x1u] in the right subtree; and conversely, for each node

[x1u] in the right subtree, there is a corresponding node [x0u] in the left subtree.

Proof. The leaves of the left (resp., right), subtrees of [x] in Tj are the classes [r] for r a

row of A of the form r = x0y (resp., r = x1y). In fact, [x0y] is in Pj if and only if [x1y]

is in Pj. The internal nodes of these two subtrees are least common ancestors of these

leaves. From this, the lemma follows.

A consequence of Lemma 2.14 is that every leaf node of Tj has a ancestor on

the j-line. Indeed, every node of Tj below the j-line has an ancestor on the j-line. This

is because every node [x0u] of Tj has a corresponding node [x1u] in Tj, and their least

common ancestor is [x] on the j-line.

2.2.2 The χ function

The χS function takes a node [x] of a tree S and a sequence of columns, and

produces a node in the subtree of S rooted at [x]:

Definition 2.15. Let S be either T or one of its induced subtrees Tj . Let [x] be an

internal node of S and let j1 < j2 < · · · < jℓ be a (possibly empty) sequence of columns

with ℓ ≥ 0. The function χS([x], j1, j2, . . . , jℓ), with ℓ + 1 arguments, is defined by

induction on ℓ, and will equal either [x] or a node below [x] in S. For the base case

ℓ = 0, define χS([x]) = [x].

Now let ℓ ≥ 1. Suppose [x] has the property that its left and right subtrees

in S each contain a node [y] on the j1-line for which χS([y], j2, . . . , jℓ) is defined. Let

[y] be the leftmost such node in the right subtree of [x] in S. Then χS([x], j1, . . . , jℓ) is

defined (written χS([x], j1, . . . , jℓ)↓) and

χS([x], j1, . . . , jℓ) = χS([y], j2, . . . , jℓ).

25

[u]

[x0] [x1] = χ(u, j1)

[y0] [y1] = χ(x0, j2) [y2] = χ(u, j2) [y3] = χ(u, j1, j2)

[z0] [z2] [z4] [z6][z1] [z3] [z5] [z7]

χ(y0, j3) χ(x0, j3) χ(x0, j2, j3)χ(u, j3) χ(u, j2, j3)χ(u, j1, j3)χ(u, j1, j2, j3)

j

j1

j2

j3

Figure 2.3: An example of a tree T with χ values specified.

In all other cases, χS([x], j1, . . . , jℓ) is undefined.

When S = T , we write χ([x], j1, . . . , jℓ) instead of χT ([x], j1, . . . , jℓ). Addition-

ally, to simplify the notation, χ([x], j1, . . . , jℓ) = [z] will be written as χ(x, j1, . . . , jℓ) = z.

We use the notation ~ to stand for an increasing sequence j1, . . . , jℓ. Addition-

ally, |~| = ℓ is the length of the sequence ~. Finally, we write ~′ ⊆ ~ to denote that the

sequence ~′ is a subsequence of ~. Note that χS(x,~) is defined only for internal nodes [x],

and its value is also an internal node of S.

Later, Lemma 2.36 will describe the meaning of the χ function when A is

hereditary. (The reader may skip ahead to read the statement and proof of Lemma 2.36

if desired.) The general intuition is that when χ(x, j1, . . . , jℓ)↓ then the subtree rooted

at [x] contains a complete binary subtree of height ℓ as an induced subtree; the internal

nodes of this binary tree lie on the ji-lines for i = 1, . . . , ℓ.

Lemma 2.16. Let S be T or one of its induced subtrees Tj . For fixed ℓ ≥ 0, the map

(x, j1, . . . , jℓ) 7→ χS(x, j1, . . . , jℓ) is injective.

Proof. We will suppress the subscript S from χS in what follows. First we prove the

following subclaim: For fixed j1, . . . , jℓ, the map x 7→ χ(x, j1, . . . , jℓ) is injective. We

prove this by induction. The base case ℓ = 0 is the injectivity of the identity function.

For the induction step, suppose ℓ ≥ 1 and the map x 7→ χ(x, j2, . . . , jℓ) is injective.

Suppose [x] 6= [x′] and that χ(x, j1, . . . , jℓ) = χ(x′, j1, . . . , jℓ) and these quantities are

26

χ(x0, j4) χ(u, j4) χ(v, j4) χ(u, j2, j4)

χ(u, j5)

[u]

[v]

[x0] [x1] = χ(u, j2)

[y0] [y1] = χ(u, j3)

[z0] [z2] = χ(y0, j4) [z4] [z6] = χ(u, j3, j4)[z1] [z3] [z5]

[w0]

[w1]

j

j1

j2

j3

j4

j5

χTj
(x0, j4) χTj

(u, j4) χTj
(u, j2, j4)

χTj
(u, j5)

[u]

[v]

[x0] [x1] = χTj
(u, j2)

[y0] [y1] = χTj
(u, j3)

[z0] [z2] = χTj
(y0, j4) [z4] [z6] = χTj

(u, j3, j4)[z1] [z5]

[w0] [w1]

j

j1

j2

j3

j4

j5

Figure 2.4: An example of a tree T (top) and Tj (bottom) with χ values specified. Each

node is an internal node; the leaf nodes are not drawn.

27

defined. This means that χ(y, j2, . . . , jℓ) = χ(y′, j2, . . . , jℓ), where [y] is the leftmost

node on the j1-line in [x]’s right subtree for which χ(y, j2, . . . , jℓ)↓, and similarly for

[y′] in [x′]’s right subtree. By the induction hypothesis, z 7→ χ(z, j2, . . . , jℓ) is injective.

Therefore [y] = [y′], and [y] is in the right subtrees of both [x] and [x′]. Thus, one of [x]

and [x′] is an ancestor of the other, say [x] is an ancestor of [x′]. Since χ(x′, j1, . . . , jℓ)

is defined, there must be some element [u] on the j1-line in [x′]’s left subtree for which

χ(u, j2, . . . , jℓ)↓. This element is to the left of [y] on the j1-line, and, since it is in the

left subtree of [x′], it is in [x]’s right subtree. This is a contradiction, because [y] is the

leftmost node on the j1-line in [x]’s right subtree for which χ(y, j2, . . . , jℓ) is defined.

This completes the proof of the subclaim.

To prove the lemma from the subclaim, we again argue by induction. The

base case ℓ = 0 is again the injectivity of the identity map. For the induction step,

suppose that (x, j2, . . . , jℓ) 7→ χ(x, j2, . . . , jℓ) is injective. Suppose χ(x, j1, . . . , jℓ) =

χ(x′, j′1, . . . , j
′
ℓ) (and are defined). Let [y] be the leftmost node on the j1-line in [x]’s

right subtree such that χ(y, j2, . . . , jℓ)↓ and [y′] be the leftmost node in on the j′1-line in

[x′]’s right subtree such that χ(y′, j′2, . . . , j
′
ℓ)↓. So,

χ(y, j2, . . . , jℓ) = χ(x, j1, . . . , jℓ) = χ(x′, j′1, . . . , j
′
ℓ) = χ(y′, j′2, . . . , j

′
ℓ).

By the induction hypothesis, [y] = [y′], and jk = j′k for k = 2, . . . , ℓ. Since [y] = [y′] and

these are on the j1- and j′1-lines, it follows that j1 = j′1. Therefore, χ(x, j1, . . . , jℓ) =

χ(x′, j1, . . . , jℓ). By the subclaim, it follows that [x] = [x′].

Lemma 2.17. Let S be T or one of its induced subtrees Tj .

1. Suppose χS(x, j1, . . . , jℓ) = z, and 0 ≤ k ≤ ℓ. Then there is a [y] such that

χS(y, jk+1, . . . , jℓ) = z.

2. For fixed [x], the map ~ 7→ χS(x,~) is injective.

3. Suppose χS(x,~)↓ and that ~′ ⊆ ~. Then χS(x,~′)↓.

4. Suppose χS(x, j1, . . . , jℓ) = χS(y, j′1, . . . , j
′
ℓ′) with [x] on the j0-line, and ℓ < ℓ′.

Then ji = j′i+ℓ′−ℓ for 0 ≤ i ≤ ℓ; in other words, j0, . . . , jℓ is a suffix of j′1, . . . , j
′
ℓ′ .

Proof. In what follows, we suppress the subscript from χS .

Part 1. is proved by induction on k. When k = 0, just use [y] = [x]. The

induction step is immediate from the definition of χ. Note that the k = ℓ case corresponds

to [y] = [z].

28

Suppose part 2. fails with χ(x, j1, . . . , jℓ) = z and χ(x, j′1, . . . , j
′
ℓ′) = z. By

Lemma 2.16, ℓ 6= ℓ′; w.l.o.g., ℓ > ℓ′. By part 1., there is a [y] on the jℓ−ℓ′-line such that

χ(y, jℓ−ℓ′+1, . . . , jℓ) = z. By Lemma 2.16, [y] = [x], which is a contradiction.

Part 3. is proved by induction on |~′|. If ~′ is the empty sequence, χ(x,~′) is

equal to [x] and hence defined. Otherwise, let k be such that jk is the first entry in ~′,

namely ~′ is the sequence jk,~
′′. The value χ(x, jk,~

′′) is defined if and only if there are

nodes [u] and [v], on the jk-line in the left and right subtrees of [x] respectively, such

that both χ(u,~′′)↓ and χ(v,~′′)↓. By part 1. and since χ(x,~)↓, there are nodes [u′]

and [v′] on the jk-line such that χ(u′, jk, jk+1, . . . , jℓ)↓ and χ(v′, jk, jk+1, . . . , jℓ)↓. Thus,

applying the the induction hypothesis twice, χ(u′,~′′)↓ and χ(v′,~′′)↓. Letting u = u′

and v = v′, this proves part 3.

Part 4. follows from part 1. and Lemma 2.16.

It is an immediate consequence of parts 2. and 3. of Lemma 2.17 that if χ(x,~j)↓
then |~| ≤ logm. In particular, we need only consider values of ℓ which are ≤ logm.

This is because there are 2ℓ many ~′ ⊆ ~ and each value χ(x,~′) maps to a distinct node

of the tree T , and T has only m− 1 internal nodes.

Lemma 2.18. Let S be T or one of its induced subtrees Tj. For [y] a node in S, let

ℓS(y) be the largest value ℓ such that y = χS(x, j1, . . . , jℓ) for some [x], j1, . . . , jℓ.

1. If y = χS(x, j1, . . . , jℓ) and [x] is the leftmost node on the j-line such that

χ(x, j1, . . . , jℓ)↓, then ℓ = ℓS(y).

2. Conversely, if χS(x, j1, . . . , jℓS(y)) = y with [x] on the j-line, then [x] is the leftmost

node on the j-line such that χS(x, j1, . . . , jℓS(y))↓.

Proof. To prove part 1., suppose there are [x′] and j′1, . . . , j
′
ℓ′ with ℓ′ > ℓ such that

χS(x′, j′1, . . . , j
′
ℓ′) = y. By Lemma 2.17, part 4., j1, . . . , jℓ is a proper suffix of j′1, . . . , j

′
ℓ′

By the definition of χ, there is a [z] in the left subtree of [x′] such that χS(z, j′2, . . . , j
′
ℓ′)↓.

Thus, by Lemma 2.17, part 1., and the suffix property, there is a node [v] in the left

subtree of [x] such that χS(v, j1, . . . , jℓ)↓. This [v] is on the same j-line as [x], and it is

to the left of [x].

For part 2., suppose there is a node [x′] on the j-line to the left of [x] such that

χS(x′, j1, . . . , jℓS(y))↓. Pick [x′] to be the rightmost such node to the left of [x]. Let [z]

be the least common ancestor of [x] and [x′]. Then χS([z], j, j1, . . . , jℓS(y)
) = y, and this

contradicts the definition of ℓS(y).

29

Lemma 2.19. For fixed [x] ∈ Tj, [x] on the j-line, the function ~ 7→ χTj
(x,~) maps

surjectively onto the internal nodes of the right subtree of Tj rooted at [x].

Proof. The left and right subtrees of [x] in Tj are isomorphic by Lemma 2.14. For each

[y] ∈ Tj in the right subtree of [x], let [ỹ] ∈ Tj denote the corresponding node in the

left subtree. Recall that ỹ is the same as y except the (j+1)-st bit is changed from “1”

to “0”.

Fix an internal node [z] in the right subtree of [x]. Let ℓ be the maximum

value such that there exists [y] in the subtree rooted at [x] and exists j1, . . . , jℓ so that

χTj
(y, j1, . . . , jℓ) = z. We claim that [y] = [x] for the maximum value of ℓ. Suppose

[y] 6= [x]. The node [y] is on some line j0 < j1. Since [y] 6= [x], [y] is in [x]’s right

subtree. Furthermore, [ỹ] is on the j0-line in [x]’s left subtree, and by Lemma 2.14,

χTj
(ỹ, j1, . . . , jℓ)↓. Let [u] be the rightmost node on the j0-line to the left of [y] such

that χTj
(u, j1, . . . , jℓ)↓. There must exist such a [u] since [ỹ] has these properties. Let

[v] be the least common ancestor of [u] and [y]. From the choice of [u], it follows that

χTj
(v, j0, j1, . . . , jℓ) = z. This contradicts the maximality of ℓ.

An example of Lemma 2.19 can be seen in Figure 2.4. Observe that every node

in the right subtree of [u] in the tree Tj (bottom) is of the form χ(u, . . .).

Lemma 2.20. If [x] ∈ Tj and χTj
(x, j1, . . . , jℓ) is defined, then χ(x, j1, . . . , jℓ) is defined

(in T).

Proof. The claim is proved by induction on ℓ. The base case is trivial, since χTj
(x) =

χ(x) = x. For the induction step, suppose χTj
(x, j1, . . . , jℓ) is defined. The left and right

subtrees of [x] in Tj both contain nodes [y] on the j1-line such that χTj
(y, j2, . . . , jℓ)↓. By

the induction hypothesis, χ(y, j2, . . . , jℓ)↓ for both [y]’s. Thus χ(x, j1, . . . , jℓ) is defined.

An example of Lemma 2.20 can be seen in Figure 2.4. Observe that χTj
(u, j4)

is defined, and equals z4. So the lemma guarantees that χ(u, j4) is defined. However,

χ(u, j4) = z3 6= χTj
(u, j4).

2.2.3 The hereditary matrix A′

We use the χ function to define a hereditary matrix associated with A.

30

Definition 2.21. The hereditary matrix A′ associated with A is the 0/1 matrix with

n columns such that:

• For all x, j0, . . . , jℓ, if [x] is on the j0-line, and χ(x,j1, . . . , jℓ) is defined, then there

is a row in A′ with 1’s in columns j0, . . . , jℓ and 0’s elsewhere.

• A′ consists only of these rows, together with the zero row.

Later, Corollary 2.37 will show that if A is hereditary, then A′ = A. For

general A, we have:

Lemma 2.22. If A′ is the hereditary matrix associated with A, then A′ is hereditary.

Moreover, A′ has the same dimensions as A.

Proof. Let r be a row of A′, with 1’s in the ℓ + 1 columns j0 < j1 < · · · < jℓ, and 0’s

in all other columns. We must show that the row obtained by replacing any 1 in r with

a 0 is also in A′. This holds for the 1’s in any of the columns j1, . . . , jℓ by part 3. of

Lemma 2.17. So, consider replacing the leftmost 1, in column j0, with a 0. By definition

of A′, χ(x, j1, . . . , jℓ) is defined for some [x] on the j0-line. Therefore, there is a node [y]

on the j1-line such that χ(y, j2, . . . , jℓ)↓, and thus A′ contains a row with 1’s in columns

j1, . . . , jℓ and 0’s elsewhere.

To prove that A′ has m rows, we define a bijection Θ from the non-zero rows

of A′ onto the internal nodes of T . Let r be a row of A′ with 1’s in (only) columns

j0, . . . , jℓ. Let [x] be the leftmost node on the j0-line for which χ(x, j1, . . . , jℓ) is defined.

Then Θ is defined by Θ(r) = χ(x, j1, . . . , jℓ).

To prove that Θ is a bijection, we show it has an inverse. Let [y] be an internal

node of T . Then there are [x] on the j-line and j1, . . . , jℓ(S) which satisfy all the properties

of Lemma 2.18. Thus, A′ contains a row r with 1’s in (only) columns j, j1, . . . , jℓS(y),

and Θ(r) = y. By Lemmas 2.17 and 2.18, r is the only row with Θ(r) = y.

Definition 2.23. For 0 ≤ j < n, let Xj denote the set of rows of A′ with a 1 in column j.

Lemma 2.24. |Xj | ≥ |Pj |/2.

Proof. Recall the bijection Θ defined in the proof of Lemma 2.22, which maps rows

of A′ to internal nodes of T . By part 4. of Lemma 2.17, if [x] is on the j-line, and

χ(x, j1, . . . , jℓ)↓, then Θ−1(χ(x, j1, . . . , jℓ)) ∈ Xj. So it suffices to show that there are at

least |Pj |/2 many nodes [z] such that χ(x,~) = z for some [x] on the j-line and some

sequence ~.

31

Let [x] be an internal node of T on the j-line, and let S be the subtree of T

rooted at [x]. We claim that there are at least |Pj ∩S|/2 many distinct nodes of the form

χ(x,~). This will prove the lemma, because Pj is the union over all such S’s of Pj ∩ S.

The claim is trivial if Pj ∩S = ∅. Otherwise, we have |Pj ∩S| ≥ 2. The subtree

of Tj rooted at [x] has |Pj ∩S|−1 many internal nodes. Thus, by Lemma 2.14, the right

subtree has (|Pj ∩ S| − 2)/2 = |Pj ∩ S|/2 − 1 many internal nodes. By Lemma 2.19,

it follows that there are |Pj ∩ S|/2 − 1 many ~’s for which χTj
(x,~) is defined. By

Lemma 2.20, it follows that there are at least that many ~’s for which χ(x,~) is defined

(in T). Furthermore, the node χ(x) is also defined, so there are at least |Pj ∩S|/2 many

nodes of the form χ(x,~).

The results above are summarized in the following lemma. An m × n coun-

terexample to Frankl’s Theorem for t is an m × n 0/1 matrix A of distinct rows such

that |Pj | ≥ 2t for all j.

Theorem 2.25. If A is an m× n counterexample to Frankl’s Theorem for t, then A′ is

an m× n hereditary counterexample to Frankl’s Theorem for t.

Proof. We have already shown that A′ is an m× n hereditary matrix. Define P ′
j for A′

in the same way that Pj was defined for A. Since A′ is hereditary, |P ′
j | = 2|Xj |. That A′

is a counterexample to Frankl’s theorem for t follows immediately from Lemma 2.24 and

the hypothesis that A is a counterexample.

Theorem 2.25 brings us back to the usual proof of Frankl’s Theorem. Namely

the usual proof of Frankl’s Theorem is by contradiction and constructs a hereditary

matrix violating the conditions of Frankl’s Theorem and then gives a simple argument

based on the Kruskal-Katona Theorem to show that no such hereditary matrix exists.

We are interested in quasi-polynomial size Frege proofs of Frankl’s Theorem.

Section 2.3.1 will argue that Theorem 2.25 can be expressed and proved with quasi-

polynomial size Frege proofs. Furthermore, Bonet, Buss, and Pitassi [9] showed that

there are polynomial size Frege proofs of the Kruskal-Katona Theorem (in the form of

Theorem 2.6), and from this, that there are polynomial size Frege proofs of Frankl’s

Theorem for hereditary matrices. These constructions, with Theorem 2.25, suffice to

prove Theorem 2.8.

32

2.2.4 The functional Kruskal-Katona Theorem

To prove Theorem 2.9 with t constant we need to use the functional form of

the Kruskal-Katona Theorem (Theorem 2.7). This allows proving Theorem 2.7 with an

argument that that can be formalized with constant depth Frege proofs. In addition,

we restructure the proof of Frankl’s Theorem to use the pigeonhole principle instead of

a counting argument; this will allow us to prove Frankl’s Theorem from the Kruskal-

Katona Theorem with arguments that can be formalized with constant depth Frege

proofs.

We next prove Theorem 2.7. Our argument will be somewhat circular: for

m = m0 + m1 > 1 with m0 ≥ m1, we will assume the existence of a function

gm0,m1(x) : {0, . . . ,m− 1} → ({0} × {0, . . . ,m0 − 1}) ∪ ({1} × {0, . . . ,m1 − 1})

such that gm0,m1(a) = 〈0, b〉 implies |a|1 ≥ |b|1 and such that gm0,m1(a) = 〈1, b〉 implies

|a|1 ≥ |b|1 + 1. We claim that the fact that the Kruskal-Katona Theorem is true implies

that gm0,m1 exists. The range of gm0,m1 is

({0} × {0, . . . ,m0 − 1}) ∪ ({1} × {0, . . . ,m1 − 1})

and can be viewed as the set of rows of a hereditary matrix. The inequality (2.1) of the

Kruskal-Katona Theorem thus implies the existence of gm0,m1 .

This circularity of using the Kruskal-Katona Theorem for its own proof should

not be too disturbing however. The point is that we know the Kruskal-Katona Theorem

is true. As it turns out, we only need the Kruskal-Katona Theorem for small values of m,

namely the parameter m of the Kruskal-Katona Theorem will be equal to the value 2t−1

of Frankl’s Theorem (not the value m of Frankl’s Theorem!). Thus, we only need to

appeal to constantly many of the functions gm0,m1 , and these can just be hard-coded

into the Frege proofs.

Proof of Theorem 2.7. We argue by induction on m. Let j be the leftmost column in A

with a 1 appearing column j. Let A0 be the set of rows in A with a 0 in column j. Let

A1 be all the other rows in A. Let A∗
1 be the strings in {0, 1}n which are obtained from

rows of A1 by replacing the 1’s in column j with 0’s.

Let m0 = |A0| and m1 = |A∗
1| = |A1|. By choice of j and the fact that A is

hereditary, m > m0 ≥ m1. By two applications of the induction hypothesis, there are

33

maps

f0 : {0, . . . ,m0 − 1} → A0 and f1 : {0, . . . ,m1 − 1} → A∗
1

with the property that fi(b) = a implies |a|1 ≤ |b|1.

To define the function f : {0, . . . ,m− 1} → A, set

f(b) =

f0(x) if gm0,m1(b) = 〈0, x〉
f1(x) + 2j if gm0,m1(b) = 〈1, x〉

where f1(x) + 2j denotes the row f1(x), with a 1 replacing the 0 in column j. As before,

columns are numbered from left to right, beginning with column j = 0.

To finish the proof, we claim that f(b) = a implies |a|1 ≤ |b|1. If gm0,m1(b) =

〈0, x〉, then |a|1 = |f0(x)|1 ≤ |x|1 ≤ |b|1. And if gm0,m1(b) = 〈1, x〉, then |a|1 = |f1(x)|1 +

1 ≤ |x|1 + 1 ≤ |b|1.

Frankl’s Theorem for hereditary matrices follows as an immediate consequence

of the next lemma and the pigeonhole principle.

Lemma 2.26. Let A be an m × n 0/1 hereditary matrix with distinct rows and with

|Pj | ≥ 2t for all j. Let D be the least common multiple of the integers 1, 2, 3, . . . , t. Then

there is an injection from a set of size 2t−1
t ·D · n to a set of size (m− 1) ·D.

The least common multiple D = D(t) of 1, 2, . . . , t satisfies D = O(t), see

e.g. [37, Thm. 414].

Proof. Let Yj be the set of rows in A with a 1 in column j. Let Y ∗
j be the strings

r ∈ {0, 1}n obtained from rows of Yj by replacing the 1’s in column j with 0’s. By

hypothesis, |Y ∗
j | ≥ 2t−1. The set Y ∗

j is hereditary since A is. Let Zj ⊂ Y ∗
j be a

hereditary subset with |Zj | = 2t−1, for example the least 2t−1 elements of Y ∗
j in the

lexicographic ordering. Let B = {0, . . . , 2t−1 − 1}. Define A+ and B+ as follows:

A+ = {〈a, k〉 : a 6= ~0 is a row of A and 0 ≤ k < D}

B+ = {〈b, k〉 : b ∈ B and 0 ≤ k < D
|b|1+1}.

The matrix A is hereditary with m distinct rows, ~0 is a row of A, and so,

|A+| = (m− 1) ·D.

34

Since B can be viewed as the set of all strings in {0, 1}t−1,

|B+| =

t−1∑

i=0

(
t− 1

i

)
D

i + 1
=

t∑

i=1

(
t

i

)
D

t
=

(2t − 1) ·D
t

.

We show there is an injection from {0, . . . , n − 1} × B+ to A+. By Theorem 2.7, now

with m = |B| = 2t−1, there are bijections fj : B → Zj so that |fj(b)|1 ≤ |b|1 for all

b ∈ B.

Define Φ : {0, . . . , n− 1} ×B+ → A+ by

〈j, b, k〉 7→
〈
fj(b) + 2j ,

D

|fj(b)|1 + 1
· j′ + k

〉
,

where j′ is the number of 1’s to the left of column j in fj(b). Note that the fraction is

always an integer by choice of D. To see that Φ maps into A+, observe that fj(b)+2j 6= ~0

and
D

|fj(b)|1 + 1
· j′ + k < D.

since j′ ≤ |fj(b)|1 and k < D
|b|1+1 ≤ D

|fj(b)|1+1 .

We show that Φ is injective by showing that it has an inverse. Given Φ(j, b, k) =

〈a, k′〉, we show how to recover j, b and k. We have a = fj(b) + 2j , and k′ = D
|a|1

j′ + k

with j′ the number of 1’s to the left of column j in a.

From a, we compute D
|a|1

. Since k < D
|a|1

, we can obtain j′ and k using k′ =

D
|a|1

j′ + k. Then, from j′ and a, we can recover j; and from j and a, we can recover

b = f−1
j (a− 2j).

2.3 Formalization in the Frege system

This section sketches the proofs of Theorems 2.8 and 2.9 by showing how to

transform the above proofs of Theorem 2.25 and Lemma 2.26 into families of quasi-

polynomial size Frege proofs (respectively, polynomial size, constant depth Frege proofs).

2.3.1 Quasi-polynomial size Frege proofs

Recall that an m×n 0/1 matrix A is represented by propositional variables pi,j

where 0 ≤ i < m and 0 ≤ j < n. Section 2.1.2 already introduced the formulas

Eq(i, i′, j), CardP(j), and DistinctRows. We shall argue that the other concepts

used in the proof of Theorem 2.3 can all be expressed by polynomial or quasi-polynomial

size Boolean formulas.

35

First, we need formulas that define the tree T . The leaves of T are just the

rows of A. Accordingly, a leaf is specified by a value i with 0 ≤ i < m. An internal

node [x] of T will be specified by giving a pair (i, i′) of leaves, one in each of the two

subtrees of [x] in T . In order to make the choices for i and i′ unique, we always use the

least values i and i′. Accordingly, we define

EqTo(i, i′, j) :=

j−1∧

j′=0

(pi,j′ ↔ pi′,j′)

FirstEqTo(i, j) :=

i−1∧

i′=0

¬EqTo(i, i′, j).

For i 6= i′, we define TNodeLn(i, i′, j) to mean that the rows i and i′ define a node [x] ∈ T

on the j-line, as:

EqTo(i, i′, j) ∧ FirstEqTo(i, j+1) ∧ FirstEqTo(i′, j+1) ∧ ¬pi,j ∧ pi′,j.

For i = i′, TNodeLn(i, i, n) is defined to be the constant True. For j < n,

TNodeLn(i, i, j) is the constant False. Finally, the nodes of T are defined by the pairs

(i, i′) satisfying

TNode(i, i′) :=

n∨

j=0

TNodeLn(i, i′, j).

It is straightforward to give formulas defining structural properties of T . For

instance, the node (i2, i
′
2) is in the left subtree below the node (i1, i

′
1) iff

InLeft(i1, i
′
1; i2, i

′
2) :=

∨

j1<j2

(
TNodeLn(i1, i

′
1, j1) ∧TNodeLn(i2, i

′
2, j2)

∧EqTo(i1, i2, j1)
)
∧ ¬pi2,j1

)
.

InRight is defined similarly, but with ¬pi2,j1 replaced with pi2,j1 .

The rows of A are ordered by

LeftOf(i, i′) :=
n−1∨

j=0

(
¬pi,j ∧ pi′,j ∧ EqTo(i, i′, j)

)

which expresses that row i precedes row i′ in lexicographic order. Since nodes of T

correspond to (prefixes of) rows of A, LeftOf also induces a left to right ordering on T .

We now give quasi-polynomial size formulas defining the graph of the χ func-

tions. Chi(i1, i
′
1; j1, . . . , jℓ; i2, i

′
2) defines the property χ(x, j1, . . . , jk) = z where (i1, i

′
1)

36

and (i2, i
′
2) represent nodes [x] and [z] in T . For ℓ = 0, Chi(i1, i

′
1; i2, i

′
2) is true iff i1 = i2,

i′1 = i′2, i1 6= i′1, and TNode(i1, i
′
1). Then, inductively for ℓ ≥ 1, define (the indices

k, k′, k1, k
′
1, . . . range over rows, i.e., are in {0, . . . ,m−1}):

Chi(i1, i
′
1; j1, . . . , jℓ; i, i

′) :=

∨

k1<k′1

∨

k2<k′2

[
TNodeLn(k1, k

′
1, j1) ∧ InLeft(i1, i

′
1; k1, k

′
1)

∧ TNodeLn(k2, k
′
2, j1) ∧ InRight(i1, i

′
1; k2, k

′
2)

∧ Chi(k2, k
′
2; j2, . . . , jℓ; i, i

′) ∧
∨

k<k′

Chi(k1, k
′
1; j2, . . . , jℓ; k, k

′)

∧ ¬
(∨

k3<k′3

[
TNodeLn(k3, k

′
3, j1) ∧ InRight(i1, i

′
1; k3, k

′
3)

∧LeftOf(k3, k2) ∧
∨

k<k′

Chi(k3, k
′
3; j2, . . . , jℓ; k, k

′)
])
]
.

The Chi formulas are readily modified to define the functions χT , for T = Tj . The leaves

of T that are in Pj are definable by letting Pj(i, j) be
∨

i′ 6=iEq(i, i′, j). The formula

TjNode(i, i′, j) that defines the property of (i, i′) being a node in Tj can be defined

similarly to TNode(i, i′) but restricting to leaves that lie in Tj . The χTj
function can

be defined similarly to the χ function by a formula ChiTj(i1, i
′
1; j1, . . . , jℓ; i, i

′; j) which

has j as an extra parameter. We leave the details of formalizing TjNode and ChiTj to

the reader.

All of the formulas defined above except Chi and ChiTj are constant depth

and have polynomial size (in m,n). The formulas Chi and ChiTj, however, are defined

inductively on ℓ, and have depth O(ℓ) using AND and OR gates with fan-in as large

as n or m2 (for example, the AND gate in FirstEqTo and the big OR gates in the

definition of Chi, respectively). Thus, these formulas have size bounded by (m+n)O(ℓ) =

(m+n)O(logm). In other words, Chi and ChiTj are quasi-polynomial size formulas, and

the χ function is NC2-definable. In fact, since the values of j1, . . . , jℓ are fixed, the Chi

and ChiTj have polynomial size, unbounded fan-in circuits of depth O(ℓ), so (the graph

of) the function χ is even in AC1.

The number of different formulas Chi and ChiTj that need to be constructed is

bounded by m4nO(logm). This is because the Chi formula has four parameters i1, i
′
1, i, i

′

that range over the m rows of A and ℓ many parameters j1, . . . , jℓ (ℓ + 1 many for

ChiTj) that range over the n columns of A. The value ℓ is bounded by logm by part 3.

37

of Lemma 2.17 and the injectivity of the χ function (Lemma 2.16). This means there

are quasi-polynomially many formulas Chi(· · ·) and ChiTj(· · ·).
We have shown how to express concepts such as the trees T and Tj and the χ and

χj functions with quasi-polynomial size formulas. It is now straightforward to formulate

and prove the propositional translations of Lemmas 2.14-2.24 and Theorem 2.25 with

quasi-polynomial size Frege proofs. Indeed the proofs of these lemmas are all very

concrete and constructive, and they are readily translated into propositional logic.

Although it is left to the reader to verify that the translations to propositional

logic can be carried out straightforwardly, we do mention a couple points. First, as usual,

the propositional proofs replace the use of induction with a “brute-force induction”

or “exhaustive” enumeration of cases. For example, the propositional translation of

Lemma 2.16 becomes the propositional formulas

¬
(
Chi(i1, i

′
1; j1, . . . , jℓ; i3, i

′
3) ∧Chi(i2, i

′
2; j′1, . . . , j

′
ℓ; i3, i

′
3)
)

for all choices of sequences i1, i
′
1, j1, . . . , jℓ not identical to i2, i

′
2, j

′
1, . . . , j

′
ℓ. The proposi-

tional proof derives all these statements, for all such values, successively for ℓ equal to 0

up to logm. Second, note that the hereditary matrix A′, as defined in Definition 2.21 has

quasi-polynomially many possible rows. The proof of Theorem 2.25 gives an injection

from the rows of A′ to the rows of A, and, with this injection, propositional proofs can

be used to bound the number of rows of A′.

As already discussed, [9] showed that polynomial size Frege proofs can prove the

hereditary case of Frankl’s Theorem. This completes the proof of Theorem 2.8 that the

propositional translations of Frankl’s Theorem have quasi-polynomial size Frege proofs.

2.3.2 Polynomial size constant depth proofs

For t fixed, Theorem 2.9 asserts the existence of polynomial size, constant depth

Frege proofs of Frankl’s Theorem. The first difficulty is that the predicates Chi and

ChiTj are defined with formulas of depth O(logm), since the function χ(x, j1, . . . , jℓ)

is invoked with ℓ as large as logm. To avoid this, we modify Definition 2.21 of the

hereditary matrix A′ to restrict attention to rows that have at most t many 1’s, and we

prove an analogue of Lemma 2.22.

Definition 2.27. The matrix A′
≤t is the 0/1 matrix that contains as rows exactly those

rows of A′ with no more than t many 1’s.

38

Lemma 2.28. A′
≤t is an m′ × n hereditary matrix, where m′ ≤ m and m′ < nt.

Proof. The fact that A′
≤t is hereditary follows immediately by the same argument that

showed A′ is hereditary. The fact that m < nt follows from the fact that there are fewer

than nt many subsets of {1, . . . , n} of size ≤ t. Finally, m′ ≤ m is proved by showing, as

in the proof of Lemma 2.22, that the function Θ is an injective map from the nonzero

rows of A′
≤t into the internal nodes of T . (It may not be surjective, however.)

We also need to modify the definition of Xj , and prove an analogue of

Lemma 2.24.

Definition 2.29. For 0 ≤ j < n, let Xj,≤t denote the set of rows of A′
≤t with a 1 in

column j.

Lemma 2.30. |Xj,≤t| ≥ min{|Pj |/2, 2t−1}.

Proof. This is similar to the proof of Lemma 2.24, but now we reason with only the rows

of A′
≤t, not the rows of A′. The argument splits into two cases. First suppose there is

some row r of Xj,≤t that contains t many 1’s. There are 2t−1 many rows that can be

obtained from r by deleting 1’s from columns other than column j. These all lie in Xj,≤t,

so |Xj,≤t| ≥ 2t−1.

Second suppose that all rows in Xj,≤t contain fewer than t many 1’s. Then the

argument used in the proof of Lemma 2.24 applies to show that |Xj,≤t| ≥ |Pj |/2.

Similarly to Theorem 2.25, we obtain the following.

Theorem 2.31. If A is an m×n counterexample to Frankl’s Theorem for t. Then A′
≤t

is an m′ × n hereditary counterexample to Frankl’s Theorem for t with m′ ≤ m.

We claim that, using Lemmas 2.28 and 2.30 and Theorem 2.31, the entire proof

of Frankl’s Theorem for constant t can by formalized by constant depth, polynomial size

Frege proofs in which all formulas have depth O(t). We sketch the proof of this claim

below.

First, the basic properties of the tree T , using formulas TNodeLn, TNode,

InRight, etc., can be expressed with constant depth, polynomial size formulas. Second,

counting sets up to a constant cardinality, say s = O(t) or s = O(2t), can be done

with polynomial size formulas (for fixed t). To see this, let φ1, . . . , φn be formulas.

The condition that at least s of the φi’s are true can be expressed by letting I range

39

over subsets of {1, . . . , n} of size exactly s, and writing
∨

I

∧
i∈I φi. This allows the

statement CardP(j) < 2t to be expressed by a constant depth, polynomial size formula.

Therefore, for fixed t, Frankl’s Theorem can be stated with constant depth, polynomial

size formulas.

Thirdly, as can be straightforwardly checked, the predicates Chi and ChiTj,

when retricted to ℓ ≤ t can be expressed by Boolean formulas of depth O(t) and size

nO(t).

These considerations allow Lemmas 2.14-2.20, 2.28 and 2.30 and Theorem 2.31

to be expressed with constant depth, polynomial size Boolean formulas, and proved with

constant depth, polynomial size Frege proofs. The assertion “m′ ≤ m” of Lemma 2.28

and Theorem 2.31 cannot be expressed explicitly as constant depth polynomial size

formulas. Instead, it is formalized by defining an injection from the rows of A′
≤t into the

rows of A. Recall that Θ is an injection from the nonzero rows of A′
≤t into the internal

nodes of T . The rows of A are the same as the leaves of T , and it is easy to explicitly

define an injection between the internal nodes of T and the leaves of T , omitting one leaf

(say, the leftmost leaf). By composition, there is an injection from the rows of A′
≤t into

the rows of A. Constant depth, polynomial size Frege proofs can define this injection

and prove its properties.

Finally, we need to argue that the arguments in Section 2.2.4 can be formalized

as polynomial size, constant depth Frege proofs.

We sketch how to formalize Section 2.2.4’s proof of Theorem 2.7 as polynomial

size, constant depth Frege proofs, when m is a constant.1 The difficulty is that the proof

given above defines the function f by induction in a way that is not readily formalizable

with constant depth formulas. However, the key point is that f is a map from {0, . . . ,m−
1} onto the rows of A, and since m is constant, there are only finitely many possibilities

for f . It is now convenient to work with the inverse of f , which we denote F . Theorem 2.7

is proved by using “brute-force” induction, for ℓ ranging from n down to 1 to prove the

following assertion. We let Eℓ,i denote the set of rows of A that agree with row i in their

first ℓ entries. We let rℓ,i be the last n− ℓ columns of row i (that is, discarding the first

ℓ columns).

There is a function Fℓ (not necessarily injective) from the m many rows of A

1Recall that the variable m is used in different ways for Frankl’s Theorem and the Kruskal-Katona
Theorem. In our applications, the value for the Kruskal-Katona Theorem is m = 2t−1, and this is
constant since t is.

40

into {0, . . . ,m − 1} such that: for each row i, 0 ≤ i < m − 1, (a) |F (i)|1 ≥
|rℓ,i|1, and (b) Fℓ restricted to Eℓ,i is a bijection onto {0, . . . , |Eℓ,i| − 1}.

This assertion is expressible as a polynomial size, constant depth formula, since m is

constant and there are only finitely many possibilities for Fℓ. Furthermore, the argument

from the proof of Theorem 2.7 readily shows that the existence of Fℓ follows from the

existence of the Fk’s for k > ℓ (and from the finitely many functions gm0,m1). Finally,

the f of Theorem 2.7 is just the inverse of F0.

The proof of Lemma 2.26 is straightforward to formalize with polynomial size,

constant depth Frege proofs. This follows from the facts that, since t is constant, the

value D = D(t) is a fixed constant, and that the proof of Lemma 2.26 gives an explicit

construction of the injection and only involves counting up to a constant. This completes

the proof of Theorem 2.9.

2.4 Equivalent definitions of the hereditary matrix

The usual proof of Frankl’s Theorem uses a much simpler construction of a

hereditary counterexample matrix than the χ function procedure of Definition 2.21. The

construction starts with a matrix A which, by hypothesis, violates Frankl’s Theorem. If

A is not hereditary, there is some entry 1 in A such that if this 1 is replaced with a 0

the matrix still contains distinct rows. A hereditary counterexample matrix is formed by

iteratively replacing such 1’s with 0’s until a hereditary matrix is obtained. It is easy to

verify that this process preserves the property that the matrix violates Frankl’s Thoerem.

This construction as described in [29, 9] did not specify the order in which 1’s are to be

replaced with 0’s. We shall prove that there is some order for changing 1’s to 0’s such

that this construction yields the same matrix as our matrix A′ from Section 2.2.3.

The next definition describes the effect of replacing all 1’s in column j with 0’s

which do not identify any pair of rows. Recall that if r ∈ {0, 1}n is a row with a 1

in column j, then r − 2j represents the same row but with that 1 replaced with 0.

Throughout this section, let A be an m× n 0/1 matrix with distinct rows.

Definition 2.32. Let 0 ≤ j < n, and let A0, respectively A1, denote the set of rows of A

with a 0, respectively a 1, in column j. The downshift of A in column j is the matrix

DownShift(A, j) containing the rows

A0 ∪ {r : r ∈ A1, r − 2j ∈ A0} ∪ {r − 2j : r ∈ A1, r − 2j /∈ A0}.

41

Definition 2.33. Let 0 ≤ j < n. Then A is hereditary in column j if, for any row r

of A with a 1 in column j, r − 2j is also a row in A.

By definition, the matrix DownShift(A, j) is hereditary in column j.

Definition 2.34. Define the sequence of matrices A(n), A(n−1), . . . , A(1), A(0) by letting

A(n) equal A, and A(j) equal DownShift(A(j+1), j) for each j < n.

Lemma 2.35. The matrix A(j) is hereditary in columns j, j+1, . . . , n−1. In particular,

A(0) is hereditary.

Proof. The proof is by induction on j = n, . . . , 1, 0. The base case of j = n is trivial.

For the induction step, suppose A(j+1) is hereditary in columns j+1, . . . , n−1. By the

definition of DownShift, A(j) is hereditary in column j, so we need to prove that it is

hereditary in all columns k > j. Consider a row w = u1z is in A(j), where |u| = k > j.

We need to prove that u0z is a row of A(j).

Write u in the form xiy where |x| = j and i ∈ {0, 1} and |y| = k−j−1. Thus w

is equal to xiy1z. First suppose i = 1 and w = x1y1z. Since x1y1z is a row of A(j) and

has a 1 in column j, both x1y1z and x0y1z are present as rows in A(j+1). Since A(j+1)

is hereditary in column k, x1y0z and x0y0z are rows of A(j+1). Thus, by the definition

of DownShift, x1y0z = u0z is also a row of A(j).

Otherwise, i = 0 and w = x0y1z. If w is also a row of A(j+1), then since

A(j+1) is hereditary in column k, x0y0z is also a row of A(j+1). Therefore, x0y0z = u0z

is a row of A(j). Otherwise, x1y1z is a row of A(j+1), but x0y1z is not. Since A(j+1)

is hereditary in column k, x1y0z is a row of A(j+1). Therefore, by the definition of

DownShift, x0y0z = u0z is a row of A(j).

Lemma 2.36. Let A be hereditary in columns j, . . . , n− 1, let [x] be a node of T on the

j0-line, j ≤ j0, and let u be the string

x10j1−j0−110j2−j1−11 · · · 10jℓ−jℓ−1−110n−jℓ−1. (2.2)

In other words, u is x plus 1’s in columns j0, . . . , jℓ. Then χ(x, j1, . . . , jℓ)↓ iff u is a row

of A.

Proof. Suppose χ(x, j1, . . . , jℓ)↓. We argue by induction on ℓ. For the base base, ℓ = 0,

we have u equal to x10n−j0−1 and since x is a maximal representative for [x], A has a

row x1w for some w ∈ {0, 1}n−j0−1 By the hereditary property, u is also a row of A.

42

For the induction step, suppose ℓ > 0. Then there is a [y] in the right

subtree of [x] on the j1-line such that χ(y, j2, . . . , jℓ)↓. We have y = x1w for some

w ∈ {0, 1}j1−j0−1. By the induction hypothesis,

x1w10j2−j1−11 · · · 10jℓ−jℓ−1−110n−jℓ−1

is a row of A. Thus, by the hereditary property, u is also a row of A.

For the converse, suppose u is a row of A. We again argue by induction on ℓ.

First suppose ℓ = 0. By the hereditary property, x0n−j0−1 is a row of A. Thus, [x] exists

as an internal node of T , and we have χ(x)↓. Second, suppose ℓ > 0. Let y0 = x0j1−j0

and y1 = x10j1−j0−1. Using the hereditary property of A, both [y0] and [y1] exist as nodes

of A. Using the hereditary property of A with respect to the row u, and applying the

induction hypothesis twice, both χ(y0, j2, . . . , jℓ)↓ and χ(y1, j2, . . . , jℓ)↓. Since [y0] and

[y1] lie on the j1-line in the left and right subtrees of [x], respectively, χ(x, j1, . . . , jℓ)↓.

Corollary 2.37. If A is hereditary, and A′ is the hereditary matrix associated with A,

then A′ = A.

Proof. If v is a non-zero row of A′ with 1’s in columns j0, . . . , jℓ and 0’s elsewhere, then

by the definition of A′, there is a node [x] on the j0-line such that χ(x, j1, . . . , jℓ)↓. By

Lemma 2.36, A contains a row of the form (2.2) with 1’s in columns j0, . . . , jℓ. Since A

is hereditary, v is also a row of A. Therefore every row of A′ is a row of A, and since the

matrices have the same number of rows, A′ = A.

Lemma 2.38. Let T (j+1) and T (j) be the prefix trees for A(j+1) and A(j). Let [x] be a

node of T (j+1) on the j0-line with χT (j+1)(x, j1, . . . , jℓ)↓. Then there exists a node [x′]

of T (j) on the j0-line such that χT (j)(x′, j1, . . . , jℓ)↓. Moreover, if j0 ≤ j, then we can

take [x′] = [x].

Proof. If ℓ = 0, then the claim is trivial, so assume that ℓ > 0. The proof is by induction

on the number of elements of j0, . . . , jℓ that are less than or equal to j. For the first

base case (when j0 > j), we have j0 ≥ j + 1, so Lemmas 2.35 and 2.36 and the fact that

χT (j+1)(x, j1, . . . , jℓ)↓ imply that the u of Equation (2.2) is a row of A(j+1). Let x′ be x,

except modified to have a 0 in column j. By definition of DownShift,

x′10j1−j0−110j2−j1−11 · · · 10jℓ−jℓ−1−110n−jℓ−1

is a row of A(j). By Lemmas 2.35 and 2.36, χT (j)(x′, j1, . . . , jℓ)↓.

43

The second base case is when j0 = j. Since χT (j+1)(x, j1, . . . , jℓ)↓, there are

nodes [y0] and [y1] in [x]’s left and right subtrees on the j1-line in T (j+1) such that

χT (j+1)(yi, j2, . . . , jℓ)↓ for i = 0, 1. We have y0 = x0w0 and y1 = x1w1 for some strings

w0, w1 of length j1−j0−1. By Lemma 2.36, A(j+1) contains the rows ui = xiwi1~0 · · ·~01~0

for i = 0, 1, where the indicated 1’s are in columns j1, . . . , jℓ. A(j+1) is hereditary

in columns j + 1, . . . , n − 1, therefore the presence of the row u1 implies that v =

x1~01~01 · · ·~01~0 with the indicated 1’s in columns j0, . . . , jℓ is a row of A(j+1). Similarly

the presence of u0 implies that v − 2j is a row of A(j+1). Because v and v − 2j are rows

of A(j+1), by definition of DownShift, v is a row of A(j). So by Lemmas 2.35 and 2.36,

χT (j)(x, j1, . . . , jℓ)↓.

In the final base case, j0 < j < j1. Since χT (j+1)(x, j1, . . . , jℓ)↓, there are

nodes [y0] and [y1] in [x]’s left and right subtrees on the j1-line in T (j+1) such that

χT (j+1)(yi, j2, . . . , jℓ)↓ for i = 0, 1. So by Lemmas 2.35 and 2.36,

yi10j2−j1−110j3−j2−11 · · · 10jℓ−jℓ−1−110n−jℓ−1

for i = 0, 1 are rows of A(j+1). Let y′i be yi modified to have a 0 in column j. By

definition of DownShift,

y′i10j2−j1−110j3−j2−11 · · · 10jℓ−jℓ−1−110n−jℓ−1

for i = 0, 1 are elements of A(j). By Lemmas 2.35 and 2.36 again, χT (j)(y′i, j2, . . . , jℓ)↓
for i = 0, 1. Since j0 < j, it follows that [y′0] and [y′1] are in the left and right subtrees of

[x], therefore χT (j)(x, j1, . . . , jℓ)↓.

For the induction step we have j0 < j1 < j. Since χT (j+1)(x, j1, . . . , jℓ)↓, it

follows that T (j+1) has nodes [y0] and [y1] on the j1-line in [x]’s left and right subtrees

such that χT (j+1)(yi, j2, . . . , jℓ)↓ for i = 0, 1. By the “moreover” clause of the induction

hypothesis, χT (j)(yi, j2, . . . , jℓ)↓ for i = 0, 1. Thus χT (j)(x, j1, . . . , jℓ)↓.

Recall that Definition 2.21 defined the matrix A′ associated with A.

Theorem 2.39. A(0) = A′.

Proof. Define (A(j))′ to be the hereditary matrix associated with A(j) in the sense of

Definition 2.21. By Lemma 2.38, Definition 2.21, and the fact that (A(j+1))′ and (A(j))′

both have m rows, (A(j+1))′ = (A(j))′. Therefore, (A(0))′ = (A(n))′ = A′. Moreover, by

Corollary 2.37, since A(0) is hereditary, A(0) = (A(0))′ = A′.

44

Chapter 2, in full, is a reprint of material that will appear in the Journal of

Symbolic Logic. Aisenberg, James; Bonet, Maria L.; Buss, Sam. The dissertation author

was the primary investigator and author of this paper.

Chapter 3

Short Proofs of the

Kneser-Lovász Coloring Principle

3.1 Introduction

This paper discusses proofs of Lovász’s theorem about the chromatic number

of Kneser graphs and the proof complexity of propositional translations of the Kneser-

Lovász theorem. Our main results give a new proof of the Kneser-Lovász theorem,

which, for fixed parameter k, uses a simple counting argument instead of the topological

arguments used in prior proofs, for all but finitely many cases. These arguments can

be formalized in propositional logic to give polynomial size extended Frege proofs and

quasi-polynomial size Frege proofs.

The proof complexity of Frege and extended Frege systems was first studied by

Cook and Reckhow [24, 25] and Statman [60]. Frege systems (denoted F) are sound and

complete proof systems for propositional logic with a finite set of schemes for axioms and

inference rules. The typical example is a “textbook style” propositional proof system

using modus ponens as its only rule of inference. In fact, all Frege systems are equivalent

to this system [25]. Extended Frege systems (denoted eF) are Frege systems augmented

with the extension rule, which allows variables to abbreviate complex formulas. The

reader unfamiliar with Frege systems can consult the surveys [9, 18, 19, 25, 45, 59] for

more information.

The size of a Frege or extended Frege proof is the number of symbols in the

proof. A proof system P1 simulates a proof system P2 if and only if there is a polynomial

45

46

p(n) such that, for any propositional formula ϕ, if ϕ has a P2-proof of size n, then ϕ has

a P1-proof of size ≤ p(n). Also, P1 quasi-polynomially simulates P2 if and only if there

is a k > 0 such that, if ϕ has a P2-proof of size n then ϕ has a P1-proof of size 2(log n)
k

.

It is trivial that extended Frege systems simulate Frege systems.

It is generally conjectured that the extension rule can provide substantial short-

ening of proof length, and therefore that Frege systems do not (quasi-polynomially) sim-

ulate extended Frege systems. The intuition is that Frege proofs are able to reason

using Boolean formulas; whereas extended Frege proofs can reason using Boolean cir-

cuits. (See [41] for a formalization of this intuition.) Boolean formulas are conjectured

to require exponential size to simulate Boolean circuits. There is no known direct con-

nection to proof complexity, but it is generally conjectured by analogy that there is an

exponential separation between the sizes of Frege proofs and extended Frege proofs, and

thus that Frege systems do not (quasi-polynomially) simulate extended Frege systems.

Bonet, Buss, and Pitassi [9] systematically looked for combinatorial tautologies

that could be candidates for exponentially separating proof sizes for Frege and extended

Frege systems. Surprisingly, they found only a small number. The first candidates were

based on linear algebra, including the Oddtown theorem, the Graham–Pollack theorem,

the Fisher Inequality, the Ray-Chaudhuri–Wilson theorem, and the AB = I ⇒ BA = I

tautology (the last was suggested by S. Cook). The remaining candidate was Frankl’s

theorem on the trace of sets. All of these principles were shown to have polynomial size

extended Frege proofs, but it was open whether they had polynomial size Frege proofs.

Hrubeš and Tzameret [39] recently showed that the five tautologies based on

linear algebra have quasi-polynomial size Frege proofs by showing that there are quasi-

polynomial size definitions of determinants whose properties can be established by quasi-

polynomial Frege proofs (as was conjectured by [9]). Subsequently, Aisenberg, Bonet,

and Buss [1] showed that Frankl’s theorem also has quasi-polynomial size Frege proofs.

With these results, none of the principles considered by Bonet-Buss-Pitassi provide an

exponential separation of Frege and extended Frege systems.

An earlier combinatorial candidate was the pigeonhole principle, introduced by

Cook and Reckhow [25]. They showed this has polynomial size extended Frege proofs.

Buss [16] later showed this also has polynomial size Frege proofs. Buss’s proof was based

on “counting”, and showed that Frege proofs can use polynomial size formulas (based

on carry-save addition) to define sizes of sets, and can reason about sizes effectively.

47

Carry-save addition also allows Frege systems to reason about integer multiplication and

about adding vectors of integers. The ability of Frege proofs to “count” and to reason

about sizes of sets will be important for our Frege proofs of the Kneser-Lovász theorem.

The counting proofs were quite different than Cook and Reckhow’s inductive proofs of

the pigeonhole principle, so these were sometimes taken as evidence that Frege systems

do not (quasi-polynomially) simulate Frege proofs. However, [14] recently showed that

Cook and Reckhow’s inductive proofs can be reformulated as quasi-polynomial size Frege

proofs.

Another class of candidates is based on consistency statements. We write

ConP(n) for the propositional statement expressing the condition that the proof sys-

tem P does not have a proof of p ∧ ¬p of size ≤ n. For “natural” systems P (including

Frege and extended Frege systems), the formula ConP(n) has size polynomially bounded

by n (e.g., [22, 17]). Propositional consistency statements have been studied for first-

order systems by Pudlák [54, 55] and Friedman [unpublished]. Pudlák showed that

axiomatizable theories of arithmetic have polynomial size (first-order) proofs of their

partial consistency statements; Pudlák and Friedman independently proved polynomial

lower bounds as well. Cook [22] showed that an extended Frege system has polynomial

size proofs of its own partial consistency statements ConeF (n). Buss [17] proved simi-

larly that a Frege system has polynomial size proofs of its partial consistency statements

ConF (n).

It also follows from [17] that Frege systems (quasi-)polynomially simulate ex-

tended Frege systems iff there are (quasi-)polynomial size Frege proofs of ConeF (n). In

addition, ConeF (n) is a “logical” principle not really a “combinatorial” principle.1 For

these reasons, partial consistency statements such as ConeF (n) do not serve as the kinds

of candidates for separating Frege and extended Frege system that we are seeking.

Other candidates for exponentially separating Frege and extended Frege sys-

tems arose from the work of Ko lodziejczyk, Nguyen, and Thapen [44] in the setting of

bounded arithmetic [15]. These include various forms of the local improvement principles

LI, LIlog and LLI. The results of [44] showed that the LI principle is many-one complete

for the NP search problems of V 1
2 ; it follows that LI is equivalent to partial consistency

statements for extended Frege systems. Beckmann and Buss [8] subsequently proved

that LIlog is provably equivalent (in S1
2) to LI and that the linear local improvement

1However, see Avigad [6] for a combinatorial version of ConeF (n).

48

principle LLI is provable in U1
2 . The LLI principle thus has quasi-polynomial size Frege

proofs. Combining the results of [8, 44] shows that LIlog and LLI are many-one complete

for the NP search problems of V 1
2 and U1

2 , respectively, and thus equivalent to partial

consistency statements for extended Frege and Frege systems, respectively.

Thus, apart from partial consistency statement, none of the above princi-

ples serve as combinatorial candidates for showing that Frege systems do not quasi-

polynomially simulate extended Frege systems.

A new candidate based on the Kneser-Lovász theorem was recently proposed

by Istrate and Crãciun [40]. As defined below, the Kneser-Lovász theorem gives a lower

bound on the chromatic of the (n, k)-Kneser graphs. Istrate and Crãciun showed that

the k = 3 case of these tautologies have polynomial size extended Frege proofs, but left

open whether they have (quasi-)polynomial size Frege proofs. However, the main results

of the present paper show that, for any fixed k ≥ 1, the Kneser-Lovász tautologies have

quasi-polynomial size Frege proofs. Thus these also do not give an exponential separation

of Frege from extended Frege systems.

With these last results, we have few remaining combinatorial candidates for

showing Frege systems do not quasi-polynomially simulate extended Frege systems. One

remaining candidate is tautologies based on the Rectangular Local Improvement prin-

ciples, RLIk, of Beckmann-Buss [8] for fixed k ≥ 2. The only other combinatorial

candidate we know of is introduced in Section 3.6 below. This is the k = 1 case of the

“truncated Tucker lemma”. Theorem 3.26 shows it has polynomial size extended Frege

proofs; however, we have been unable to show that it has quasi-polynomial size Frege

proofs.

The outline of the paper is as follows. First, in Section 3.2 we define the (n, k)-

Kneser graphs and state Lovász’s theorem about their chromatic numbers. Theorems 3.4

and 3.5 state our main results about Frege and extended Frege proofs of that theorem.

Section 3.3 gives an informal (“mathematical”) proof of the Kneser-Lovász theorem

using a new proof method based on a simple counting argument. Prior proofs used, at

least implicitly, a topological fixed-point lemma. The most combinatorial proof is by

Matoušek [49] and is inspired by the octahedral Tucker lemma; see also Ziegler [63]. Our

new proofs mostly avoid topological arguments and use a counting argument instead.

The counting arguments are used to prove the existence of “star-shaped” color classes.

These counting arguments can be formalized with Frege proofs. For the Kneser-Lovász

49

theorem, the counting arguments reduce the general case to “small” instances of size

n ≤ 2k4. For fixed k, there are only finitely many small instances, and they can be verified

by exhaustive enumeration. As we shall see, this leads to polynomial size extended Frege

proofs, and quasi-polynomial size Frege proofs for the Kneser-Lovász principles. Sections

3.3.1 and 3.3.2 give two “mathematical” versions of the counting proofs, which will be

formalized as extended Frege proofs and Frege proofs (respectively). Section 3.3.3 is

a short diversion and considers whether there are colorings of the Kneser graphs with

many non-star-shaped color classes.

Section 3.4 discusses some of the details of formalizing the arguments in Sec-

tion 3.3 in the Frege and extended Frege systems, establishing our two main theorems.

We focus on expressing the concepts described in Section 3.3 in propositional logic, and

we only sketch some of the details of how Frege systems can prove properties of these

concepts.

The proofs of the Kneser-Lovász theorem in Sections 3.3 and 3.4 reduce the

general case of the Kneser-Lovász theorem to finitely many base cases, which are then

handled by exhaustive enumeration. It would be interesting to give a uniform proof that

does not need to handle the base cases in this way. Motivated by this, Section 3.5 defines

new “truncated” forms of the Tucker lemma. These truncated Tucker lemmas can be

be expressed as families of polynomial size propositional tautologies. The octahedral

Tucker lemma, on the other hand, can only be expressed by exponential size formulas.

Matoušek showed that the Kneser-Lovász theorem follows from the Tucker lemma. We

refine this by showing that the Tucker lemma implies the two truncated Tucker lemmas,

the two versions of the truncated Tucker lemma are equivalent, and that the truncated

Tucker lemmas imply the Kneser-Lovász theorem. Since the truncated Tucker lemmas

can be expressed as polynomial size tautologies, it is natural to ask about their proof

complexity in (extended) Frege systems. Section 3.6 proves that the k = 1 cases of the

truncated Tucker lemmas have polynomial size extended Frege proofs. It is open whether

these have (quasi-)polynomial size Frege proofs. Thus, this is a candidate for separating

the Frege and extended Frege systems. Likewise, it is open whether the truncated Tucker

lemmas for k > 1 have subexponential size extended Frege proofs. It is tempting to try

to modify the combinatorial proof of the Tucker lemma by Freund and Todd [32] (see

also Matoušek [49]), but we have been unable to express this argument with polynomial

size extended Frege proofs. Freund and Todd’s argument uses a version of the parity

50

principle PPA [53]. The difficulty with translating these arguments to extended Frege

proofs is that they apply the parity principle on exponentially large graphs.

3.2 The Kneser-Lovász Principle and Statement of the

Main Theorems

The (n, k)-Kneser graph is defined to be the undirected graph whose vertices

are the k-subsets of {1, . . . , n}; there is an edge between two vertices iff those vertices

have empty intersection. The Kneser-Lovász theorem states that Kneser graphs have a

large chromatic number:

Theorem 3.1 (Lovász [48]). Let n ≥ 2k > 1. The (n, k)-Kneser graph has no coloring

with n− 2k + 1 colors.

It is well-known that the (n, k)-Kneser graph has a coloring with n−2k+2 colors

(see Section 3.3.3), so the bound n − 2k + 1 is optimal. For k = 1, the Kneser-Lovász

theorem is just the pigeonhole principle.

Istrate and Crăciun [40] noted that, for fixed values of k, the propositional

translations of the Kneser-Lovász theorem have polynomial size in n. They presented

proofs that can be formalized by polynomial size Frege proofs for k = 2, and by polyno-

mial size extended Frege proofs for k = 3. This left open the possibility that the k = 3

case could exponentially separate the Frege and extended Frege systems. It was also left

open whether the k > 3 case of the Kneser-Lovász theorem gave tautologies that require

exponential size extended Frege proofs. As discussed above, the present paper refutes

these possibilities. Theorems 3.4 and 3.5 summarize these results.

Let [n] be the set {1, . . . , n}; members of [n] are called nodes. We identify
(n
k

)

with the set of k-subsets of [n], the vertices of the (n, k)-Kneser graph.

Definition 3.2. An m-coloring of the (n, k)-Kneser graph is a map c from
(n
k

)
to [m],

such that for S, T ∈
(n
k

)
, if S ∩ T = ∅, then c(S) 6= c(T). If ℓ ∈ [m], then the color class

Pℓ is the set of vertices assigned the color ℓ by c.

The formulas Knesernk are the natural propositional translations of the state-

ment that there is no (n− 2k + 1)-coloring of the (n, k)-Kneser graph:

51

Definition 3.3. Let n ≥ 2k > 1, and m = n − 2k + 1. For S ∈
(n
k

)
and i ∈ [m], the

propositional variable pS,i has the intended meaning that vertex S of the Kneser graph

is assigned the color i. The formula Knesernk is

∧

S∈(nk)

∨

i∈[m]

pS,i →
∨

S,T∈(nk)
S∩T=∅

∨

i∈[m]

(pS,i ∧ pT,i) .

Theorem 3.4. For fixed parameter k ≥ 1, the propositional translations Knesernk of the

Kneser-Lovász theorem have polynomial size extended Frege proofs.

Theorem 3.5. For fixed parameter k ≥ 1, the propositional translations Knesernk of the

Kneser-Lovász theorem have quasi-polynomial size Frege proofs.

When both k and n are allowed to vary, it is open whether the Knesernk tau-

tologies have quasi-polynomial size (extended) Frege proofs, or equivalently, have proofs

with size quasi-polynomially bounded in terms of nk.

3.3 Mathematical Arguments

Section 3.3.1 gives the new proof of the Kneser-Lovász theorem; this is later

shown to be formalizable with polynomial size extended Frege proofs. Section 3.3.2

gives a slightly more complicated but more efficient proof, later shown to be formalizable

with quasi-polynomial size Frege proofs. The next definition and lemma are crucial for

Sections 3.3.1 and 3.3.2.

Any two vertices in a color class Pℓ have nonempty intersection. One way this

can happen is for the color class to be “star-shaped”:

Definition 3.6. A color class Pℓ is star-shaped if
⋂

Pℓ is nonempty. If Pℓ is star-shaped,

then any i ∈ ⋂Pℓ is called a central node of Pℓ.

The next lemma bounds the size of color classes that are not star-shaped. It

will be used in our proof of the Kneser-Lovász theorem to establish the existence of

star-shaped color classes. The idea is that non-star-shaped color classes are too small to

cover all
(
n
k

)
vertices.

Lemma 3.7. Let c be a coloring of
(
n
k

)
. If Pℓ is not star-shaped, then

|Pℓ| ≤ k2
(
n− 2

k − 2

)
.

52

Proof. Suppose Pℓ is not star-shaped. If Pℓ is empty, the claim is trivial. So suppose

Pℓ 6= ∅, and let S0 = {a1, . . . , ak} be some element of Pℓ. Since Pℓ is not star-shaped,

there must be sets S1, . . . , Sk ∈ Pℓ with ai /∈ Si for i = 1, . . . , k.

To specify an arbitrary element S of Pℓ, we do the following. Since S and S0

have the same color, S ∩ S0 is nonempty. We first specify some ai ∈ S ∩ S0. Likewise,

S ∩ Si is nonempty; we second specify some b ∈ S ∩ Si. By construction, ai 6= b, so S is

fully specified by the k possible values for ai, the k possible values for b, and the
(n−2
k−2

)

possible values for the remaining members of S. Therefore, |Pℓ| ≤ k2
(n−2
k−2

)
.

3.3.1 Argument for Extended Frege Proofs

Let k > 1 be fixed. We prove the Kneser-Lovász theorem by induction on n.

The base cases for the induction are n = 2k, . . . ,N(k) where N(k) is the constant

depending on k specified in Lemma 3.8. We shall show that N(k) is no greater than k4.

Since k is fixed, there are only finitely many base cases. Since the Kneser-Lovász theorem

is true, these base cases can all be proved by a fixed Frege proof of finite size (depending

on k). Therefore, in our proof below, we only show the induction step.

Lemma 3.8. Fix k > 1. There is an N(k) so that, for n > N(k), any (n − 2k + 1)-

coloring of
(n
k

)
has at least one star-shaped color class.

Proof. Suppose that a coloring c has no star-shaped color class. Since there are n−2k+1

many color classes, Lemma 3.7 implies that

(n− 2k + 1) · k2
(
n− 2

k − 2

)
≥
(
n

k

)
. (3.1)

For fixed k, the left-hand side of (3.1) is Θ(nk−1) and the right-hand side is Θ(nk). Thus,

there exists an N(k) such that (3.1) fails for all n > N(k). Hence for n > N(k), there

must be at least one star-shaped color class.

To obtain an upper bound on the value of N(k), note that (3.1) is equivalent

to

(n − 2k + 1)k3(k − 1) ≥ n(n− 1). (3.2)

Since 2k − 1 ≥ 1, (3.2) implies that (n − 1)k4 > n(n − 1) and thus that n < k4. Thus,

(3.1) will be false if n ≥ k4; so N(k) < k4.

We are now ready to give our first proof of the Kneser-Lovász theorem.

53

Proof of Theorem 3.1, except for base cases. Fix k > 1. By Lemma 3.8, there is

some N(k) such that for n > N(k), any (n− 2k + 1)-coloring c of
(n
k

)
has a star-shaped

color class. As discussed above, the cases where n ≤ N(k) are handled by exhaustive

search and the truth of the Kneser-Lovász theorem. For n > N(k), we prove Theorem 3.1

by infinite descent. In other words, we show that if c is an (n− 2k + 1)-coloring of
(n
k

)
,

then there is some c′ that is an ((n − 1) − 2k + 1)-coloring of
(
n−1
k

)
.

By Lemma 3.8, the coloring c has some star-shaped color class Pℓ with central

node i. Without loss of generality, i = n and ℓ = n− 2k + 1. Let

c′ = c ↾
(n−1

k

)

be the restriction of c to the domain
(n−1

k

)
. This discards the central node n of Pℓ, and

thus all vertices with color ℓ. Therefore, c′ is an ((n − 1) − 2k + 1)-coloring of
(n−1

k

)
.

This completes the proof.

3.3.2 Argument for Frege Proofs

We now give a second proof of the Kneser-Lovász theorem. The proof above

required n − N(k) rounds of infinite descent to transform a Kneser graph on n nodes

to one on N(k) nodes. Our second proof replaces this with only O(log n) many rounds,

and this efficiency will be key for formalizing this proof with quasi-polynomial size Frege

proofs in Section 3.4.2.

We refine Lemma 3.8 to show that for n sufficiently large, there are many (i.e.,

a constant fraction) star-shaped color classes. The idea is to combine the upper bound

of Lemma 3.7 on the size of non-star-shaped color classes with the trivial upper bound

of
(n−1
k−1

)
on the size of star-shaped color classes.

Lemma 3.9. Fix k > 1 and 0 < β < 1. Then there exists an N(k, β) such that for

n > N(k, β), if c is an (n−2k+1)-coloring of
(n
k

)
, then c has at least n

kβ many star-shaped

color classes.

Proof. The value of N(k, β) can be set equal to k3(k−β)
1−β . Let n > k3(k−β)

1−β , and suppose

c is an (n − 2k + 1)-coloring of
(n
k

)
. Let α be the number of star-shaped color classes

of c. It is clear that an upper bound on the size of each star-shaped color class is
(n−1
k−1

)
.

There are n − α − 2k + 1 many non-star-shaped classes, and Lemma 3.7 bounds their

size by k2
(
n−2
k−2

)
. This implies that
(
n− 1

k − 1

)
α + k2

(
n− 2

k − 2

)
(n− α− 2k + 1) ≥

(
n

k

)
. (3.3)

54

Assume for a contradiction that α < n
kβ. Since n > k3(k−β)

1−β , 0 < β < 1, and k ≥ 2, we

have n− 1 > k3(k − 1) > k2(k − 1). Therefore,
(n−1
k−1

)
> k2

(n−2
k−2

)
, and if α is replaced by

the larger value n
kβ, the left hand side of (3.3) increases. Thus,

(
n− 1

k − 1

)
n

k
β + k2

(
n− 2

k − 2

)(
n− n

k
β − 2k + 1

)
>

(
n

k

)
.

Since
(n−1
k−1

)
n
k =

(n
k

)
and n− n

kβ − 2k + 1 = k−β
k n− 2k + 1,

k2
(
n− 2

k − 2

)(k − β

k
n− 2k + 1

)
> (1 − β)

(
n

k

)
.

Expanding the binomial coefficients yields

k3(k − 1)
(k − β

k
n− 2k + 1

)
> (1 − β)n(n− 1).

We have k−β
k (n− 1) > k−β

k n− 2k + 1. Therefore,

k3(k − 1)
k − β

k
(n− 1) > (1 − β)n(n − 1).

Dividing by n− 1 gives k3(k − β) > (1 − β)n, contradicting n > k3(k−β)
1−β .

We now give our second proof of the Kneser-Lovász theorem.

Proof of Theorem 3.1, except for base cases. Fix k > 1. By Lemma 3.9 with β = 1/2, if

n > N(k, 1/2) and c is an (n − 2k + 1)-coloring of
(n
k

)
, then c has at least n/2k many

star-shaped color classes. We prove the Kneser-Lovász theorem by induction on n. The

base cases are where 2k ≤ n ≤ N(k, 1/2), and there are only finitely of these, so they

can be exhaustively proven. For n > N(k, 1/2), we structure the induction proof as an

infinite descent. In other words, we show that if c is an (n − 2k + 1)-coloring of
(
n
k

)
,

then there is some c′ that is an ((n− n
2k) − 2k + 1)-coloring of

(n− n
2k

k

)
. For simplicity of

notation, we assume n
2k is an integer. If this is not the case, we really mean to round up

to the nearest integer ⌈ n
2k ⌉.

By permuting the color classes and the nodes, we can assume w.l.o.g. that the

n
2k color classes Pℓ for ℓ = n− n

2k−2k+2, . . . , n−2k+1 are star-shaped, and each such Pℓ

has a central node in {n−(n/2k)+1, . . . , n}. That is, the last n
2k many color classes are

star-shaped, and they all have a central node among the last n
2k nodes in [n]. We shall

discard these n/2k many star-shaped color classes, and the topmost n/2k many nodes.

This discards the central nodes of the discarded color classes, thereby removing all the

vertices of the Kneser graph which are assigned discarded color classes. (It is possible

55

that some star-shaped color classes share central nodes. We only need to be sure to

discard at least one central node for each color classes, and thus, in this case, additional

nodes can be discarded so that n/2k are discarded in all.)

More formally, define c′ to be the coloring of
(n−n/2k

k

)
which assigns the same

colors as c. The map c′ is a (2k−1
2k n−2k+ 1)-coloring of

(2k−1
2k n

k

)
, since n− n

2k = 2k−1
2k n.

This completes the proof of the induction step.

When formalizing the above argument with quasi-polynomial size Frege proofs,

it will be important to know how many iterations of the procedure are required to reach

the base cases, so let us calculate this.

After s iterations of this procedure, we have a ((2k−1
2k)sn − 2k + 1)-coloring of(

(2k−1
2k)sn

k

)
. We pick s large enough so that (2k−1

2k)sn is less than N(k, 1/2). In other

words, since k is constant,

s = log 2k
2k−1

(n

k3(2k − 1)

)
= O(log n)

will suffice, and only O(log n) many rounds of the procedure are required.

3.3.3 Optimal Colorings of Kneser Graphs

This section is a brief diversion motivated by the question of whether Lemma 3.9

about the number of non-star-shaped colors is optimal.

It is well-known that
(n
k

)
has an (n−2k+2)-coloring [48]. A simple construction

of such a coloring, which we call c1, is given here for completeness as follows. For S ∈
(n
k

)
,

define c1(S) by:

(1) If S 6⊆ [2k − 1], let c1(S) = max(S) − (2k − 2). Clearly 1 < c1(S) ≤ n− 2k + 2.

(2) If S ⊆ [2k − 1], let c1(S) = 1.

We claim that c1 defines a proper coloring. By construction, if c1(S) > 1, then c1(S) +

(2k − 2) ∈ S. Thus, if c1(S) = c1(S′) > 1, then S ∩ S′ 6= ∅ and S and S′ are not joined

by an edge in the Kneser graph. On the other hand, if c1(S) = 1, then S contains k

elements from the set [2k − 1]. Any two such subsets have nonempty intersection, and

therefore if c1(S) = c1(S′) = 1, then again S ∩ S′ 6= ∅. Note that c1 contains n− 2k + 1

many star-shaped color classes, and only one non-star-shaped color class.

56

In view of Lemma 3.9, it is interesting to ask whether it is possible to give

(n − 2k + 2)-colorings with fewer star-shaped color classes and more non-star-shaped

color classes. The next theorem gives the best construction we know.

Theorem 3.10. Let k ≥ 1 and n ≥ 3k + 3. There is an (n−2k+2) coloring ck−1 of
(n
k

)

which has k−1 many non-star-shaped color classes and only n−3k+3 many star-shaped

color classes.

Proof. To construct ck−1, partition the set [n] into n−2k+2 many subsets T1, . . . , Tn−2k+2

as follows. For i ≤ n − 3k + 3, Ti is chosen to be a singleton set, say Ti = {n − i + 1}.

The remaining k − 1 many Ti’s are subsets of size 3, say Ti = {j − 2, j − 1, j} where

j = 3(i − (n − 3k + 3)). Since n = (n − 3k + 3) + 3(k − 1), the sets Ti partition [n],

and each Ti has cardinality either 1 or 3. For S a subset of n of cardinality k, define the

color ck−1(S) to equal the least i such that

|S ∩ Ti| >
1

2
|Ti|.

We claim there must exist such an i. If not, then S contains no members of the singleton

subsets Ti and at most one member of each of the subsets Ti of size three. But there are

only k − 1 many subsets of size three, contradicting |S| = k.

It is easy to check that if ck−1(S) = ck−1(S′) then S ∩ S′ 6= ∅. Thus ck−1 is a

coloring. Furthermore, ck−1 has k−1 many non-star-shaped color classes and n−3k+ 3

many star-shaped color classes.

Theorem 3.10 can be extended to show that when n < 3k + 3, there is a

n−2k+2 coloring with no star-shaped color class. The proof construction uses a similar

idea, based on the fact that [n] can be partitioned into n− 2k + 2 many subsets, each of

odd cardinality ≥ 3. We leave the details to the reader.

Question 3.11. Do there exist (n − 2k + 2)-colorings of the (n, k)-Kneser graphs with

more than k − 1 many non-star-shaped color classes?

3.4 Formalization in Propositional Logic

3.4.1 Polynomial Size Extended Frege Proofs

We sketch the formalization of the argument in Section 3.3.1 as a polynomial

size extended Frege proof, establishing Theorem 3.4. We concentrate on showing how

57

to express concepts such as “star-shaped color class” with polynomial size propositional

formulas. For expository reasons, we omit the straightforward details of how (extended)

Frege proofs can prove properties of these concepts.

Fix values for k and n with n > N(k). We describe an extended Frege proof

of Knesernk . We have variables pS,j (recall Definition 3.3), collectively denoted ~p . The

proof assumes Knesernk(~p) is false, and proceeds by contradiction. The main step is to

define new variables ~p ′ with the extension rule and prove that Knesern−1
k (~p ′) fails. This

will be repeated until reaching a Kneser graph over only N(k) nodes.

For this, let Star(i, ℓ) be a formula that is true when i ∈ [n] is a central node

of the color class Pℓ; namely,

Star(i, ℓ) :=
∧

S∈(nk), i/∈S

¬pS,ℓ.

Note that Pℓ may have more than one central node. Conversely, a node i may be a

central node for more than one color class.

We use Star(ℓ) :=
∨

i Star(i, ℓ) to express that Pℓ is star-shaped.

The extended Frege proof defines an instance of the Kneser-Lovász principle

Knesern−1
k by discarding one node and one color. The first star-shaped color class Pℓ is

discarded; accordingly, we let

DiscardColor(ℓ) := Star(ℓ) ∧
∧

ℓ′<ℓ

¬Star(ℓ′).

The node to be discarded is the least central node of the discarded Pℓ:

DiscardNode(i) :=
∨

ℓ

[
DiscardColor(ℓ) ∧ Star(i, ℓ) ∧

∧

i′<i

¬Star(i′, ℓ)
]
.

After discarding the node i and the color ℓ, the remaining nodes and colors are renum-

bered to the ranges [n − 1] and [n − 2k], respectively. In particular, the “new” color j

(in the instance of Knesern−1
k) corresponds to the “old” color j−ℓ (in the instance of

Knesernk) where

j−ℓ =

j if j < ℓ

j + 1 if j ≥ ℓ.

And, if S = {i1, . . . , ik} ∈
(
n−1
k

)
is a “new” vertex (for the Knesern−1

k instance), then it

corresponds to the “old” vertex S−i ∈
(n
k

)
(for the instance of Knesernk), where S−i =

58

{i′1, i′2, . . . , i′k} with

i′t =

it if it < i

it + 1 if it ≥ i.

For each S ∈
(n−1

k

)
and j ∈ [n−2k], the extended Frege proof uses the extension rule to

introduce a new variable p′S,j defined as follows

p′S,j ≡
∨

i,ℓ

(
DiscardNode(i) ∧ DiscardColor(ℓ) ∧ pS−i,j−ℓ

)
.

As seen in the definition by extension, p′S,j is defined by cases, one for each

possible pair i, ℓ of nodes and colors such that the node i is the least central node of

the Pℓ color class, where Pℓ is the first star-shaped color class. The extended Frege

proof then shows that ¬Knesernk(~p) implies ¬Knesern−1
k (~p ′), i.e., that if the variables

pS,j define a coloring, then the variables p′S,j also define a coloring. The first step for

the extended Frege proof is to show that there is at least one star-shaped color class,

and then there is a unique ℓ such that DiscardColor(ℓ) holds. In fact, we claim there are

polynomial size Frege proofs of

∨

ℓ

DiscardColor(ℓ)

and
∧

ℓ1<ℓ2

(¬DiscardColor(ℓ1) ∨ ¬DiscardColor(ℓ2)) .

These assertions are proved using the proof of Lemma 3.8, and the counting techniques

which can be formalized in Frege proofs. Note that we only need to count numbers of

vertices in
(n
k

)
; hence, for fixed k, we are only counting sets of polynomial size. Therefore,

polynomial size Frege proofs can carry out the proof of Lemma 3.8. For similar reasons,

there are polynomial size Frege proofs that there is a unique value i ∈ [n−2k+1] which

satisfies DiscardNode(i).

For fixed values of ℓ and i, a polynomial size Frege proof now establishes

DiscardColor(ℓ) ∧ DiscardNode(i) ∧ Knesern−1
k (~p ′) → Knesernk(~p).

This Frege proof argues as follows, assuming DiscardColor(ℓ) and DiscardNode(i) and

Knesern−1
k (~p ′). Since Knesern−1

k (~p ′) is true, either (a) its hypothesis is false and we have
∧n−2k

j=1 ¬p′S,j for some S ∈
(n
k

)
or (b) its conclusion is true and there are S, T ∈

(n
k

)
and

j such that S ∩ T = ∅ and p′S,j and p′T,j. If (a) holds then ¬pS−i,j−ℓ for all j ∈ [n−2k]

59

and this together with the fact that i /∈ S−i and i and ℓ were discarded further implies

that the hypothesis of Knesernk(~p) is false so Knesernk(~p) is true. Likewise, if (b) holds,

then using S−i and T−i and j−ℓ shows that that the conclusion of Knesernk is true.

Putting all these arguments together gives the desired Frege proof of

¬Knesernk(~p) → ¬Knesern−1
k (~p ′).

The extended Frege proof iterates this process of removing one node and one

color until it is shown that there is a coloring of
(N(k)

k

)
. This is then refuted by exhaus-

tively considering all graphs with ≤ N(k) nodes.

3.4.2 Quasi-polynomial Size Frege Proofs

This section discusses some of the details of the formalization of the argument

in Section 3.3.2 as quasi-polynomial size Frege proofs, establishing Theorem 3.5. First

we will form an extended Frege proof, then modify it to become a Frege proof. As before,

the proof starts with the assumption that Knesernk(~p) is false. As we describe next, the

extended Frege proof then introduces variables ~p ′ by extension so that Kneser
n−n/2k
k (~p ′)

is false. This process will be repeated O(log n) times. The final Frege proof is obtained

by unwinding the definitions by extension.

For a set X of formulas and t > 0, we now use the notation “|X| ≤ t” to denote

a formula that is true when the number of true formulas in X is less than or equal

to t. As already discussed, “|X| ≤ t” can be expressed by a formula of size polynomially

bounded by the total size of the formulas in X, using the construction in [16]. “|X| = t”

is defined similarly.

The formulas Star(i, ℓ) and Star(ℓ) are the same as in Section 3.4.1. A color ℓ

is now discarded if it is among the least n/2k star-shaped color classes.

DiscardColor(ℓ) := Star(ℓ) ∧
(
|{Star(ℓ′) : ℓ′ ≤ ℓ}| ≤ n/2k

)

The discarded nodes are the least central nodes of the discarded color classes.

DiscardNode(i) :=
∨

ℓ

[
DiscardColor(ℓ) ∧ Star(i, ℓ) ∧

∧

i′<i

¬Star(i′, ℓ)
]
.

DiscardNode(i) will hold for at most n/2k many nodes i, since there are only n/2k many

discarded colors. We could modify the definition of DiscardNode to discard exactly n/2k

many nodes; however, this is not strictly necessary, as the only use of DiscardNode is

60

to define the predicate RenumNode(i′, i) below, and that definition effectively discards

exactly n/2k many nodes even if DiscardNode(i) picks out fewer than n/2k many nodes

to be discarded.

The remaining, non-discarded colors and nodes are renumbered to form an

instance of Kneser
n−n/2k
k . For this, the formula RenumNode(i′, i) is true when the node i′

is the ith node that is not discarded; similarly RenumColor(j′, j) is true when the color j′

is the jth color that is not discarded.

RenumNode(i′, i) :=
(
|{¬DiscardNode(i′′) : i′′≤i′}| = i

)
∧ ¬DiscardNode(i′)

RenumColor(j′, j) :=
(
|{¬DiscardColor(j′′) : j′′≤j′}| = j

)
∧ ¬DiscardColor(j′)

The predicate RenumNode(i′, i) defines a bijection between the sets [n−n/2k] and the

non-discarded nodes of [n]. Likewise, the predicate RenumColor(j′, j) defines a bijection

between [(n−n/2k)−2k+1] and the non-discarded colors.

For each S = {i1, . . . , ik} ∈
(n−n/2k

k

)
and j ∈ [(n − n/2k) − 2k + 1], we define

by extension

p′S,j ≡
∨

i′1,...i
′

k
,j′

(
k∧

t=1

(
RenumNode(i′t, it)

)
∧ RenumColor(j′, j) ∧ p{i′1,...,i′k},j′

)
.

The Frege proof then argues that if the variables pS,j define a coloring, then

the variables p′S,j define a coloring, i.e., that ¬Knesernk(~p) → ¬Kneser
n−n/2k
k (~p ′). The

first step for this is proving that there are at least n/2k star-shaped color classes by

formalizing the proofs of Lemmas 3.7 and 3.9. Those proofs were “counting” arguments:

they involved counting the number of members of
(n
k

)
that are contained in the color

classes Pℓ. Since
(
n
k

)
< nk, there are only polynomially many members of

(
n
k

)
. Likewise

there are < n color classes. The proofs of Lemmas 3.7 and 3.9 used binonomial coefficients
(n′

k′

)
, but only with n′ ≤ n and k′ ≤ k, thus the proofs only used counting for polynomial

size sets. Therefore, all these counting arguments can be carried out using polynomial

size Frege proofs with the techniques from [16]. From this, the fact that RenumNode(i′, i)

and RenumColor(j′, j) define bijections follows easily.

After that, it is straightforward to prove that, for each S ∈
(n−n/2k

k

)
and j ∈

[(n − n/2k) − 2k + 1], the variable p′S,j is well-defined. In addition, a polynomial size

Frege proof can prove that that if Knesernk(~p) is false, then Kneser
n−n/2k
k (~p ′) is false.

This is iterated O(log n) times until fewer than N(k, 1/2) nodes remain. The

proof concludes with a hard-coded proof that there are no such colorings of the finitely

61

many small Kneser graphs.

To form the quasi-polynomial size Frege proof, we unwind the definitions by

extension. Each definition by extension was polynomial size; they are nested to a depth

of O(log n). So the resulting Frege proof is quasi-polynomial size.

3.5 The Tucker Lemma and the Truncated Tucker Lemmas

A natural question arising from the previous sections is the possibility of giving

short uniform Frege proofs of the Kneser-Lovász theorem for fixed k, namely, proofs that

avoid handling finitely many base cases separately. A possible approach to this problem

is formalizing the proof of Matoušek [49] in the Frege system. A significant obstacle in

carrying this out is that Matoušek’s proof goes through the octahedral Tucker lemma,

and, as will be discussed below, näıve propositional translations of the octahedral Tucker

lemma are exponential size. To overcome this, we describe two miniaturizations of the

octahedral Tucker lemma, called the truncated Tucker lemmas. The truncated Tucker

lemmas have polynomial size propositional translations, and are strong enough to imply

the Kneser-Lovász theorem with polynomial size, constant depth Frege proofs.

Our definitions and proofs below borrow techniques and notation from Ma-

toušek [49].

Definition 3.12. Let n ≥ 1. The octahedral ball Bn is:

Bn := {(A,B) : A,B ⊆ [n] and A ∩B = ∅}.

Definition 3.13. Let n > 1. A mapping λ : Bn → {1,±2, . . . ,±n} is antipodal if

λ(∅, ∅) = 1, and for all other pairs (A,B) ∈ Bn, λ(A,B) = −λ(B,A).

Note that −1 is not in the range of λ, and (∅, ∅) is the only member of Bn that

is mapped to 1 by λ.

Definition 3.14. Two pairs (A1, B1) and (A2, B2) in Bn are complementary with respect

to an antipodal map λ on Bn if A1 ⊆ A2, B1 ⊆ B2 and λ(A1, B1) = −λ(A2, B2).

Theorem 3.15 (Octahedral Tucker lemma). If λ : Bn → {1,±2, . . . ,±n} is antipodal,

then there are two elements in Bn that are complementary.

For a proof of Theorem 3.15, see [49].

62

Definition 3.16. Let 1 ≤ k ≤ n. The truncated octahedral ball Bn
≤k is:

Bn
≤k :=

{
(A,B) ∈ Bn : |A| ≤ k, |B| ≤ k}.

We write
(n
≤k

)
for {A ⊆ [n] : |A| ≤ k}.

The octahedral Tucker lemma used the subset relation ⊆ on [n] to define com-

plementary. The truncated Tucker lemma uses an analogous partial order � to define

k-complementary. For A ⊆ [n], let A≤k denote the least k elements of A. By convention,

if |A| < k, then A≤k = A.

Definition 3.17. Let � be the partial order on sets in
(n
≤k

)
defined by A � B iff

(A ∪B)≤k = B.

Remark: Note that when n = k, Bn = Bn
≤k, and the � relation is identical to the subset

relation.

Lemma 3.18. The relation � is a partial order with ∅ its least element.

Proof. It is clearly reflexive. For anti-symmetry, A1 � A2 and A2 � A1 imply that

A1 = (A1 ∪A2)≤k = (A2 ∪A1)≤k = A2. For transitivity, suppose A1 � A2 and A2 � A3.

Then (A1 ∪A2)≤k = A2 and (A2 ∪A3)≤k = A3. This implies that

A3 = (A2 ∪A3)≤k = ((A1 ∪A2)≤k ∪A3)≤k = (A1 ∪ (A2 ∪A3)≤k)≤k = (A1 ∪A3)≤k.

Therefore A1 � A3. That ∅ is the least element is clear from the definition.

Definition 3.19. For (A1, B1) and (A2, B2) in Bn
≤k, write (A1, B1) � (A2, B2) when

A1 � A2, B1 � B2, and Ai ∩ Bj = ∅ for i, j ∈ {1, 2}. The pairs (A1, B1) and (A2, B2)

are k-complementary with respect to an antipodal map λ on Bn
k if (A1, B1) � (A2, B2)

and λ(A1, B1) = −λ(A2, B2).

We are ready to state the version of the truncated Tucker lemma for Bn
≤k.

Theorem 3.20 (Truncated Tucker lemma on Bn
≤k). Let n ≥ k ≥ 1. If λ :

Bn
≤k → {1,±2 . . . ,±n} is antipodal, then there are two elements in Bn

≤k that are k-

complementary.

When k = n, this is equivalent to the octahedral Tucker lemma. The truncated

Tucker lemma on Bn
≤k follows from the octahedral Tucker lemma:

63

Proof of Theorem 3.20 from Theorem 3.15. We argue by contradiction. Suppose λ :

Bn
≤k → {1,±2, . . . ,±n} is antipodal. We define λ′ : Bn → {1,±2, . . . ,±n}. For

(A,B) ∈ Bn, define λ′(A,B) = λ(A≤k, B≤k). The map λ′ is clearly antipodal, so

by Theorem 3.15, there are (A,B), (C,D) in Bn that are complementary with respect

to λ′. We claim that (A≤k, B≤k) and (C≤k,D≤k) are k-complementary with respect

to λ. By definition of λ′, λ(A≤k, B≤k) = −λ(C≤k,D≤k), so it remains to show that

(A≤k, B≤k) � (C≤k,D≤k). Since C ∩D = ∅ and A ⊆ C and B ⊆ D, it follows that

C≤k ∩D≤k = A≤k ∩D≤k = A≤k ∩B≤k = B≤k ∩ C≤k = ∅.

Moreover, A ⊆ C implies that A≤k � C≤k. This is because

(A≤k ∪ C≤k)≤k = (A ∪ C)≤k = C≤k.

The same argument shows that B≤k � D≤k.

Definition 3.21. Let 1 < 2k ≤ n. The truncated octahedral ball Bn
k is:

Bn
k :=

{
(A,B) : A,B ∈

(
n

k

)
∪ {∅}, A ∩B = ∅, and (A,B) 6= (∅, ∅)

}
.

The fact that (∅, ∅) is excluded from Bn
k is only a technical convenience. Cor-

responding to this, the value “1” will now be omitted from the range of λ. We say

that λ : Bn
k → {±2k . . . ,±n} is antipodal provided that λ(A,B) = −λ(B,A) for all

(A,B) ∈ Bn
k .

Theorem 3.22 (Truncated Tucker lemma on Bn
k). Let n ≥ 2k > 1. If λ : Bn

k →
{±2k . . . ,±n} is antipodal, then there are two elements in Bn

k that are k-complementary.

Proof of Theorem 3.22 from Theorem 3.20. Suppose that λ : Bn
k → {±2k, . . . ,±n} is

antipodal; we must show it has k-complementary pairs. We extend λ to an anitipodal

λ′ : Bn
≤k → {1,±2, · · · ± n}. Let “≤” be any total order on

(
n
≤k

)
that extends �. Let

(A,B) ∈ Bn
≤k. The value of λ′(A,B) is defined by cases:

Case 1: If |A| < k and |B| < k, then define

λ′(A,B) =

1 + |A| + |B| if A ≤ B

−(1 + |A| + |B|) if B < A.

64

Case 2: If max{|A|, |B|} = k and min{|A|, |B|} < k, then define

λ′(A,B) =

λ(A, ∅) if |B| < k

λ(∅, B) if |A| < k.

Case 3: If |A| = |B| = k, then define λ′(A,B) = λ(A,B).

The map λ′ is clearly antipodal; hence by Theorem 3.20 there are (A1, B1) �
(A2, B2) that are k-complementary with respect to λ′, so λ′(A1, B1) = −λ′(A2, B2). We

prove this gives rise to k-complementary pairs for λ. The argument splits into cases

depending on how λ′ assigns values to (A1, B1) and (A2, B2).

Suppose that λ′(A1, B1) is assigned by case 1, then λ′(A2, B2) must also be

assigned by case 1, since case 1 only assigns values to {1,±2, . . . ,±(2k − 1)}, and cases

2 and 3 only assign values to {±2k, . . . ,±n}. Also, A1 � A2 and B1 � B2 where at least

one of these precedences is proper; this implies that |A1| ≤ |A2| and |B1| ≤ |B2| where at

least one of these inequalities must be proper. Thus 1 + |A1|+ |B1| < 1 + |A2|+ |B2|, so

λ′(A1, B1) and λ′(A2, B2) differ in absolute value. This contradicts the fact that (A1, B1)

and (A2, B2) are k-complementary w.r.t. λ′. Thus it is impossible that both λ′(A1, B1)

and λ′(A2, B2) are assigned by case 1.

Suppose λ′(A1, B1) and λ′(A2, B2) are both assigned by case 2. Without loss

of generality |B1| < k, which implies |A1| = |A2| = k and |B2| < k. This implies that

λ(A1, ∅) = −λ(A2, ∅). But (A1, ∅) � (A2, ∅), so these form a k-complementary pair for λ.

Suppose λ′(A1, B1) is assigned by case 2 and λ′(A2, B2) is assigned by case 3.

Without loss of generality |B1| < k. This implies that λ(A1, ∅) = −λ(A2, B2). But

(A1, ∅) � (A2, B2), so these form a k-complementary pair for λ.

Suppose λ′(A1, B1) and λ′(A2, B2) are both assigned by case 3. Thus

λ(A1, B1) = −λ(A2, B2), so these form a k-complementary pair for λ.

Suppose λ′(A1, B1) is assigned by case 3 and λ′(A2, B2) is assigned by case 2.

This is impossible because |A1| = |B1| = k, and A1 � A2, B1 � B2, so |B1| = |B2| =

k.

For fixed parameter k, the two truncated Tucker lemmas have polynomial size

propositional translations. We will only describe the translation of the truncated Tucker

lemma on Bn
k . A similar translation works for the truncated Tucker lemma on Bn

≤k. For

each (A,B) ∈ Bn
k , and for each i ∈ {±2k, . . . ,±n}, let pA,B,i be a propositional variable

65

with the intended meaning that pA,B,i is true when λ(A,B) = i. The following formula

Ant(~p) states that the map is total and antipodal:

∧

(A,B)∈Bn
k

∨

i∈{±2k,...,±n}

(pA,B,i ∧ pB,A,−i).

The following formula Comp(~p) states that there exists two elements in Bn
k that are

k-complementary:
∨

(A1,B1),(A2,B2)∈Bn
k
,

(A1,B1)�(A2,B2)
i∈{±2k,...,±n}

(pA1,B1,i ∧ pA2,B2,−i) .

The truncated Tucker tautology Tuckernk is defined to be Ant(~p) → Comp(~p). (We

could add an additional hypothesis, that for each A,B there is at most one i such that

pA,B,i, but this is not needed for the Tucker tautologies to be valid.) There are < n2k

members (A,B) in Bn
k . Hence, for fixed k, there are only polynomially many variables

pA,B,i, and the truncated Tucker tautologies have size polynomially bounded by n. On

the other hand, the propositional translation of the octahedral Tucker lemma requires

an exponential number of propositional variables in n, since the cardinality of Bn is

exponential in n.

The proof of Theorem 3.22 from Theorem 3.20 can be readily translated into

polynomial size Frege proofs. That is, if propositional translations of the truncated

Tucker lemma on Bn
≤k are given as hypotheses, there are polynomial size Frege proofs

of the polynomial translations of the truncated Tucker lemma on Bn
k . Section 3.5.1 will

prove a converse: the truncated Tucker lemma on Bn
≤k follows from the truncated Tucker

lemma on Bn+2k−1
k by polynomial size Frege proofs.

We next show that the Kneser-Lovász theorem (Theorem 3.1) follows from the

truncated Tucker lemma on Bn
k .

Proof of Theorem 3.1 from Theorem 3.22. Suppose for sake of contradiction that c :
(
n
k

)
→ {2k, . . . , n} is an (n−2k+1)-coloring of

(
n
k

)
. Let ≤ be a total order on

(
n
k

)
∪ {∅}

that refines the partial order �. Let (A,B) ∈ Bn
k . Define λ(A,B) as follows:

λ(A,B) =

c(A) if A > B

−c(B) if B > A

The map λ is clearly antipodal, so by Theorem 3.22, there is a pair (A1, B1) � (A2, B2) ∈
Bn
k that is k-complementary. Since λ must assign (A1, B1) and (A2, B2) opposite signs,

66

it must be that either A1 < B1 ≤ B2 < A2 or B1 < A1 ≤ A2 < B2. In the former case,

c(B1) = c(A2) and in the latter case c(A1) = c(B2). Since B1 ∩ A2 = A1 ∩ B2 = ∅, in

either case we have a contradiction.

The above proof of the Kneser-Lovász theorem from the truncated Tucker

lemma can be readily translated into polynomial size constant depth Frege proofs.

Question 3.23. Do the propositional translations of the truncated Tucker lemma have

short (extended) Frege proofs?

3.5.1 Equivalence Between the Truncated Tucker Lemmas

Theorem 3.24. The truncated Tucker lemma on Bn
k implies the truncated Tucker lemma

on Bn−2k+1
≤k .

Proof. Let 1 < 2k ≤ n. Suppose that λ : Bn−2k+1
≤k → {1,±2, . . . ,±(n − 2k + 1)} is an

antipodal map. By renaming the range elements, we can instead write λ : Bn−2k+1
≤k →

{1,±2k, . . . ,±(n−1)}. We will define λ′ : Bn
k → {±2k, . . . ,±n} as follows: For (A,B) ∈

Bn
k ,

λ′(A,B) =

λ(A∗, B∗) if A 6= ∅ and B 6= ∅

n if A = ∅

−n if B = ∅

where A∗ = {a ∈ A : a ≤ n − 2k + 1}. For (A,B) ∈ Bn
k , we clearly have (A∗, B∗) ∈

Bn−2k+1
≤k . We also claim that λ′(A,B) is never equal to 1. To prove this, suppose

λ′(A,B) = 1. By the definition of λ′, both A and B are nonempty. Thus λ(A∗, B∗) =

1 and consequently A∗ = B∗ = ∅. This means that A and B are both subsets of

{n−2k+2, . . . , n}, a set of cardinality 2k − 1. But this contradicts A ∩ B = ∅ and

|A| = |B| = k.

The map λ′ is clearly antipodal by definition. By the truncated Tucker lemma

on Bn
k , there are pairs (A1, B1) � (A2, B2) ∈ Bn

k such that λ′(A1, B1) = −λ′(A2, B2). We

claim that λ(A1, B1) 6= n. Otherwise, λ(A2, B2) = −n, so A1 = ∅ and B2 = ∅, and this

contradicts (A1, B1) � (A2, B2). Similarly, λ(A1, B1) 6= −n. It follows that all four sets

A1, B1, A2, B2 are nonempty. Therefore, by the choice of (A1, B1) and (A2, B2),

λ(A∗
1, B

∗
1) = −λ(A∗

2, B
∗
2).

67

We now claim that (A∗
1, B

∗
1) � (A∗

2, B
∗
2). Since A1 ∩ B2 = ∅ and A2 ∩ B1 = ∅, we have

A∗
1 ∩B∗

2 = ∅ and A∗
2 ∩B∗

1 = ∅. Also, since A1 � A2,

(A1 ∪A2)≤k = A2

From this we obtain

(A∗
1 ∪A∗

2)≤k = ((A1 ∪A2)≤k)∗ = A∗
2.

Thus A∗
1 � A∗

2. The same argument shows B∗
1 � B∗

2 . This establishes that (A∗
1, B

∗
1) and

(A∗
2, B

∗
2) are k-complementary with respect to λ.

Since the proofs of the equivalence of the two truncated Tucker lemmas can be

translated into polynomial size Frege proofs, we have established:

Corollary 3.25. The propositional translations of the truncated Tucker lemma on Bn
k

have (quasi-)polynomial size Frege proofs if and only if the same holds for the truncated

Tucker lemma on Bn
≤k.

3.6 Short eF Proofs of the Truncated Tucker Lemma, k = 1

Case

In this section we prove the k = 1 case of the truncated Tucker lemma. The

argument is readily formalizable as polynomial size extended Frege proofs. Note that

when k = 1 the two versions of the truncated Tucker lemma are equivalent.

Recall the partial order � of Definition 3.17. When k = 1, this partial order is

a total order where {i} � {j} iff i ≥ j. Thus,

∅ � {n} � {n − 1} � · · · � {2} � {1}

is a complete description of � on
(n
1

)
.

Theorem 3.26. The k = 1 case of the truncated Tucker lemma, Tuckern1 , has polynomial

size extended Frege proofs.

The polynomial size extended Frege proofs of the k = 1 case of the truncated

Tucker lemma are formed by formalizing the argument of Lemma 3.27 below.

68

Lemma 3.27. Let λ : Bn
1 → {±2, . . . ,±n} be an antipodal map with no 1-complementary

pairs. Then there is an antipodal map λ′ : Bn−1
1 → {±2, . . . ,±(n − 1)} with no 1-

complementary pairs.

Proof. Let λ : Bn
1 → {±2, . . . ,±n} be an antipodal map with no 1-complementary pairs,

and let ℓ = λ({n}, ∅). We will define an antipodal map λ′ : Bn−1
1 → {±2, . . . ,±n}\{±ℓ}.

Let (A,B) ∈ Bn−1
1 . The value λ′(A,B) will be defined by cases.

Case 1: If (A,B) ∈ Bn−1
1 with |A| = |B| = 1, then λ′(A,B) = λ(A,B).

Case 2: If (A, ∅) ∈ Bn−1
1 , then λ′(A, ∅) is defined by cases:

Case 2a: If ℓ 6∈ {λ(X, ∅) : {n− 1} � X � A}, then define λ′(A, ∅) to be λ(A, ∅).

Case 2b: If case 2a does not apply, then define λ′(A, ∅) to be λ(A, {n}).

Case 3: If (∅, B) ∈ Bn−1
1 , then λ′(∅, B) is defined to be −λ′(B, ∅), where λ′(B, ∅) has

already been defined by case 2.

The map λ′ is antipodal because λ is.

Claim 3.28. The map λ′ never maps to ℓ or −ℓ.

The argument splits into cases.

• Suppose (A,B) ∈ Bn−1
1 , with |A| = |B| = 1. Then λ′(A,B) = λ(A,B). Since

|A| = 1, {n} � A, and since B ∈
(n−1

1

)
, it follows that {n} ∩ B = ∅. Additionally

∅ � B, and ∅∩A = ∅. Therefore ({n}, ∅) � (A,B). Since λ has no 1-complementary

pairs, and λ({n}, ∅) = ℓ, it follows that λ(A,B) 6= −ℓ. Therefore λ′(A,B) 6= −ℓ.

Because λ′ is antipodal, this also proves λ′(A,B) 6= ℓ.

• Suppose (A, ∅) ∈ Bn−1
1 , and λ′(A, ∅) is assigned by case 2a. For case 2a to apply,

it must be that λ(A, ∅) 6= ℓ. Furthermore, λ({n}, ∅) = ℓ, ({n}, ∅) � (A, ∅), and

the fact that λ has no 1-complementary pairs imply that λ(A, ∅) 6= −ℓ. Therefore,

λ′(A, ∅) = λ(A, ∅) 6= ±ℓ.

• Suppose (A, ∅) ∈ Bn−1
1 , and λ′(A, ∅) is assigned by case 2b. This implies that

there is some X ∈
(n−1

1

)
with {n − 1} � X � A such that λ(X, ∅) = ℓ. Note

that {n − 1} � X implies that {n} ∩ X = ∅. Since (X, ∅) � (A, {n}), it follows

that λ(A, {n}) 6= −ℓ. Since λ(∅, {n}) = −ℓ and (∅, {n}) � (A, {n}) it follows that

λ(A, {n}) 6= ℓ. Thus λ′(A, ∅) = λ(A, {n}) 6= ±ℓ.

69

• Suppose (∅, B) ∈ Bn−1
1 . Then λ′(∅, B) = −λ′(B, ∅), and we have shown above that

λ′(B, ∅) 6= ±ℓ.

This completes the proof of Claim 3.28.

Claim 3.29. The map λ′ has no 1-complementary pairs.

We show the contrapositive. The argument splits into cases.

• Suppose (A1, B1) � (A2, B2) ∈ Bn−1
1 with |A1| = |B1| = |A2| = |B2| = 1. Then

λ′(A1, B1) and λ′(A2, B2) both are assigned by case 1. Thus,

λ(A1, B1) = λ′(A1, B1) = −λ′(A2, B2) = −λ(A2, B2)

Therefore λ has a 1-complementary pair.

• Suppose (A1, ∅) � (A2, B2) ∈ Bn−1
1 , with λ′(A1, ∅) assigned by case 2a and

λ′(A2, B2) assigned by case 1. So λ(A1, ∅) = −λ(A2, B2). Thus λ has a 1-

complementary pair.

• Suppose (A1, ∅) � (A2, B2) ∈ Bn−1
1 , with λ′(A1, ∅) assigned by case 2b and

λ′(A2, B2) assigned by case 1. So λ(A1, {n}) = −λ(A2, B2). Since (A1, {n}) �
(A2, B2), it follows that λ has a 1-complementary pair.

• Suppose (A1, ∅) � (A2, ∅) ∈ Bn−1
1 , with λ′(A1, ∅) and λ′(A2, ∅) both assigned by

case 2a. So then λ(A1, ∅) = −λ(A2, ∅), hence λ has a 1-complementary pair.

• Suppose (A1, ∅) � (A2, ∅) ∈ Bn−1
1 , with λ′(A1, ∅) and λ′(A2, ∅) both assigned by

case 2b. So then λ(A1, {n}) = −λ(A2, {n}), hence λ has a 1-complementary pair.

• Suppose (A1, ∅) � (A2, ∅) ∈ Bn−1
1 , with λ′(A1, ∅) assigned by case 2a and λ′(A2, ∅)

assigned by case 2b. Thus,

λ(A1, ∅) = λ′(A1, B1) = −λ′(A2, B2) = −λ(A2, {n})

and since (A1, ∅) � (A2, {n}), it follows that λ has a 1-complementary pair.

• Suppose (A1, B1) � (A2, ∅) ∈ Bn−1
1 where |A1| = |B1| = 1. This impossible,

because B1 � ∅, and no set of cardinality 1 precedes the emptyset under the

partial order �.

70

• Suppose (A1, ∅) � (A2, ∅) ∈ Bn−1
1 , and λ′(A1, ∅) is assigned by case 2b and λ′(A2, ∅)

is assigned by case 2a. Then there exists an X ∈
(n−1

1

)
such that {n−1} � X � A1

and λ(X, ∅) = ℓ. Since A1 � A2, it follows that {n − 1} � X � A2. This implies

that λ′(A2, ∅) is not assigned by case 2a, so this case is impossible.

• Suppose (A1, ∅) � (∅, B2) ∈ Bn−1
1 . This is impossible, because A1 � ∅ implies that

A1 = ∅, but (∅, ∅) /∈ Bn−1
1 .

• The remaining cases involving case 3 of the definition of λ′ follow from above,

using the fact that if (A1, B1) � (A2, B2) form a 1-complementary pair, then

(B1, A1) � (B2, A2) also form a 1-complementary pair.

This completes the proof of Claim 3.29. Claims 3.28 and 3.29 suffice to prove

Lemma 3.27.

We are now ready to sketch the proof of polynomial size extended Frege proofs

of Tuckern1 .

Proof of Theorem 3.26. To prove Tuckern1 (~p), where ~p is a set of propositional vari-

ables encoding a map λ, we introduce by extension new variables ~p ′ to encode λ′ as

in Lemma 3.27. It is straightforward to see that the definition of λ′ from λ can be car-

ried out by polynomial size formulas. Furthermore, it is straightforward to argue that

there are polynomial size proofs of ¬Tuckern1 (~p) → ¬Tuckern−1
1 (~p ′) by formalizing the

argument of Lemma 3.27. This process is repeated, introducing new propositional vari-

ables each round, until the proof reaches ¬Tucker21(~p ′′). From here, the proof concludes

with a constant size proof of Tucker21(~p
′′).

Chapter 3, in full, is a reprint of material that has been submitted for publica-

tion. Aisenberg, James; Bonet, Maria L.; Buss, Sam; Crac̆iun, Adrian; Istrate, Gabriel.

The dissertation author was the primary investigator and author of this paper.

Chapter 4

2-D Tucker is PPA complete

4.1 Introduction

PPA and PPAD are classes of total NP search problems introduced by Pa-

padimitriou [53]. The class PPA consists of the search problems reducible to the parity

principle for undirected graphs, whereas the class PPAD consists of those reducible to the

parity principle for directed graphs. The class PPAD has many complete problems from

diverse areas of mathematics: Brouwer’s theorem and Sperner’s lemma in topology [53],

Nash equilibria in game theory [26, 20, 21], and others. As discussed by [53, 27], several

natural problems are known to be in PPA but not known to be in PPAD. One example

is the Smith theorem about Hamiltonian cycles in cubic graphs [61]. Another is the in-

teger factoring problem [12, 42]. However, few natural problems have been shown to be

PPA-complete. By definition, the canonical problem Leaf is PPA-complete. For natural

topological problems, it has been shown that Sperner’s lemma and Tucker’s lemma on

two-dimensional non-orientable manifolds can be PPA-complete [35, 33, 27]. In addition,

Deng et al. [27] show they are PPA-complete in the Möbius band, in two-dimensional

projective space, and in the Klein bottle.

In this paper we show that the 2-D Tucker search problem is PPA-complete.

This is the usual

Tucker search problem in Euclidean space as defined by Papadimitriou [53].

This was erroneously claimed to be in PPAD by [53]. That paper used an argument

by Freund and Todd [32] (a similar argument is given by [50]) to show that Tucker is

in PPA; it was then claimed that directionality techniques of Freund [30, 31] can put

71

72

Tucker into PPAD. This last part is incorrect, as is discussed more in Section 4.3.

However, the argument in [53] that Tucker is in PPA is correct; likewise, the proofs

that Sperner and Brouwer are PPAD-complete are also correct.

The 3-D Tucker search problem was shown in [53] to be hard for PPAD.

Subsequently, it was shown that 2-D Tucker is PPAD-hard [52]. This was extended

by [28] to show that k-D Tucker is PPAD-hard for all fixed k ≥ 2. We improve these

constructions to establish the following:

Theorem 4.1. 2-D Tucker is PPA-complete under many-one reductions. The same

holds for k-D Tucker for all k ≥ 2.

It follows that 2-D Tucker is in PPAD if and only if PPAD = PPA. In the

Type II (oracle) setting, it is known that PPAD 6= PPA [7]. However, it is open whether

these classes are equal in the non-relativized setting.

We write Borsuk–Ulam for the search problem associated with the Bursuk–

Ulam theorem. Since Borsuk–Ulam and Tucker are many-one reducible to each

other [50, 53], another consequence of Theorem 4.1 is:

Corollary 4.2. Borsuk–Ulam is PPA-complete.

The search problems Necklace Splitting and Discrete Ham Sandwich

are known to be many-one reducible to Tucker [50, 53]. From this, we know they are

in PPA; it is now open whether they are in PPAD:

Question 4.3. Is Necklace Splitting in PPAD, or PPA-complete? Is Discrete

Ham Sandwich in PPAD, or PPA-complete? Are they PPAD-hard?

The octahedral Tucker lemma is a special case of the Tucker lemma in which

the dimension k varies and the triangulation is the first barycentric subdivision of the k-

dimensional hypercube. Thus, the size of the triangulation cannot be increased without

also increasing the dimension (and the number of available labels). For the precise

statement of the octahedral Tucker lemma, see [49, 63] or [3]. As a special case of

Tucker, the Octahedral Tucker search problem is known from [53] to be in PPA.

This leaves open the following (also asked by [52]):

Question 4.4. Is Octahedral Tucker PPA-complete? Is it in PPAD? Is it PPAD-

hard?

73

As already mentioned, it is open whether problems such as integer factoring, or

Smith’s theorem on cubic graphs give PPA-complete TFNP search problems. Papadim-

itriou [53] and Grigni [35] mention the Smith problem as a candidate for a PPA-complete

problem that does not have a Turing machine explicitly encoded in its input.

4.1.1 Definitions

We now briefly review the search problems discussed in this paper. We first state

the general form of Tucker’s lemma, and then give the “rectangular” 2-D version that we

will actually work with. For more information about Tucker’s lemma and triangulations,

see [50]. Let Bk ⊂ Rk be the closed k-dimensional ball, and Sk−1 be its boundary. A

triangulation T of Bk is antipodally symmetric if it is antipodally symmetric on the

boundary — that is, if each simplex σ ∈ T ∩ Sk−1 has the property that −σ ∈ T , where

the negation of a simplex is the negation of each of its vertices. The set V (T) of vertices

of T is the set of 0-simplices in T .

Theorem 4.5 (Tucker’s lemma). Let T be an antipodally symmetric triangulation of Bk,

and let λ : V (T) → {±1, . . . ,±k} be a function with the property that λ(−v) = −λ(v)

for all v ∈ Sk−1. Then there exists a 1-simplex {v1, v2} in T with λ(v1) = −λ(v2).

To simplify our constructions, we will work with a rectangular 2-D version

of Tucker’s lemma, following Pálvölgyi [52]. For m a natural number, define [m] =

{1, . . . ,m}.

Definition 4.6. Let m ≥ 2. An instance of the 2-D Tucker search problem is a

function λ : [m] × [m] → {±1,±2} with the property that for 1 ≤ i, j ≤ m, λ(i, 1) =

−λ(m−i+1,m) and λ(1, j) = −λ(m,m−j+1). A solution to such an instance of 2-D

Tucker is a pair of vertices (x1, y1), (x2, y2) with |x1 − x2| ≤ 1 and |y1 − y2| ≤ 1 such

that λ(x1, y1) = −λ(x2, y2). A solution (x1, y1), (x2, y2) is called a complementary pair.

Two points (i, 1) and (m−i+1,m) are called antipodal. Likewise, (1, j) and

(m,m−j+1) are antipodal.

The m×m rectangular grid can be triangulated by the addition of diagonals,

so it is clear that the existence of a solution to the 2-D Tucker search problem is

guaranteed by Tucker’s lemma.

Definition 4.7. An instance of the Leaf search problem is an undirected graph G where

74

each node has degree at most 2, and there is a given (“standard”) leaf ℓ with degree 1.

A solution to Leaf is any other node of G with degree 1.

The class PPA is the set of total NP search problems reducible to Leaf under

polynomial time many-one reductions [53]. As usual, we envision 2-D Tucker and

Leaf as Type II search problems in the sense of [7]. This means that instances of the

search problems are exponentially big and are given by oracles: For 2-D Tucker, the

oracle specifies the values of the function λ. For Leaf, the oracle specifies the neighbors

of any given node. In the Type II setting, it is known that PPAD is a proper subset of

PPA.

4.2 Reduction from Leaf

We now show that 2-D Tucker is PPA-hard. Since 2-D Tucker is in PPA,

this suffices to establish Theorem 4.1.

Theorem 4.8. 2-D Tucker is PPA-hard under many-one reductions.

Proof. We give a reduction from Leaf. Let G be an instance of Leaf. We will describe

λ, a labelling of the m×m grid with labels {±1,±2}. We will take m = 4 ·13 · |G|, where

|G| is the number of nodes in G. Our task is to define the values of λ(i, j) for (i, j) a

point on the m × m rectangular grid. The domain of λ will be referred to as the grid,

and points (i, j) on the grid will be called grid nodes.

The reduction is similar to constructions of Papadimitriou [53] and especially

Pálvölgyi [52]. The vast majority of the grid will be labelled with 1’s (this is called the

“environment”). The remainder of the grid will be filled with “wires”: a wire consists of a

strip of grid nodes of width three; the central “conductor” has label -1 and “insulators”

on either side have labels ±2. Wires are always directional. When travelling in the

forward direction, the insulator on the left always has label 2, and the insulator on the

right always has label −2.

We generally avoid exposing the conductor to the environment, as this would

create complementary pairs between the conductor (-1) and the environment (1). We

will route the wire in such a way that regions corresponding to solutions of G are the

only wires exposed to the environment.

The grid is partitioned into 13× 13 squares called tiles. A tile on the boundary

is called a boundary tile. Two boundary tiles are antipodal if one of them contains some

75

grid nodes antipodal to some grid nodes in the other. Specifically, this happens when

the right column (resp., top row) of nodes in one tile are antipodal to the left column

(resp., bottom row) of nodes in the other tile. In this case, since λ must be antipodal,

the λ values of the nodes in the right column (resp., top row) of the first tile are the

negations of the λ values of the nodes in the left column (resp., bottow row) in reverse

order.

The schematic representation and its realization on the grid of a horizontal wire

are shown in Figure 4.1. In figures representing the grid, 1’s are indicated with blank

space. The tile for the horizontal wire in the opposite direction can be obtained from

the tile in Figure 4.1 by rotating 180◦, or alternatively by reflecting about the horizontal

axis. The tiles for the vertical wires can be obtained by rotating the horizontal ones 90◦.

Our tiles will typically have the conductor meet the edge of the tile at row 7 or column

7.

Notice that two wires can be in adjacent tiles without creating a complementary

pair as long as they either are parallel or are joined head to tail. However, wires joined

head to head or tail to tail do create complementary pairs, because the insulator labelled

2 is adjacent to the insulator labelled −2.

Recall that one node of G is given as the standard leaf ℓ, a degree 1 node. All

other nodes x, y, . . . of G have degree ≤ 2; those of degree 1 are solutions to G as an

instance of Leaf. Each node of G other than ℓ is assigned a region in the grid with two

exposed edges: the inbound edge and the outbound edge, as pictured in Figure 4.2(a).

The idea for our construction is that, when x has degree 2, the two exposed edges of x

are wired to the edges of the two neighbors of x. If x has degree 0, its inbound and

outbound edges are connected to each other. If x has only one neighbor, then one edge

of x is exposed to the environment, creating a complementary pair. This is the only way

that a complementary pair is formed; thus any complementary pair for λ corresponds to

a solution to the instance G of Leaf.

Sometimes we are able to attach an outbound edge of a node x to an inbound

edge of a neighboring node y. This is pictured schematically in Figure 4.2(a). However,

since G is undirected, we will sometimes need to connect an outbound edge of x to an

outbound edge of y. As shown in Figure 4.3(a), this creates unwanted complementary

pairs. We thus use instead the construction shown in Figure 4.3(b). The outbound

edge of x is routed “across the boundary”, where it reverses direction (we shall see in

76

(a) Schematic representation

1 2 3 4 5 6 7 8 9 10 11 12 13

1 1
2 2
3 3
4 4
5 5
6 2 2 2 2 2 2 2 2 2 2 2 2 2 6
7 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 7
8 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 8
9 9
10 10
11 11
12 12
13 13

1 2 3 4 5 6 7 8 9 10 11 12 13

(b) Realization

Figure 4.1: A horizontal wire. (a) shows the schematic representation. (b) shows its

realization with values of the labelling λ. The center of the wire has labels −1; the

insulator labels 2 are on the left-hand side of the wire as it is traversed in its forward

direction. The blank space represents grid nodes with label values of 1.

x

y

(a) Two nodes x and y

x

y

(b) Connection of outbound to inbound

Figure 4.2: Two nodes and their connection. (a) Each node of G is assigned a region in

the grid with an inbound edge and an outbound edge. (b) The schematic representation

of connecting the outbound edge of x to the inbound edge of y.

77

x

y

(a) Incorrect connection

x

y

⋆

⋆

(b) Correct connection

Figure 4.3: The outbound edge of x is connected to the outbound edge of y. When the

boundary is crossed, the wire direction is reversed. The two locations in (b) marked with

⋆ are antipodal on the boundary.

Figure 4.5 how the reversal works), and then continues on to meet the outbound edge

of y. A similar construction works to join an inbound edge of x to an inbound edge of y.

The rest of the proof shows how to apply the ideas behind the schematic repre-

sentations shown in Figures 4.2(b) and 4.3(b) to define the labelling λ. For this, we must

describe how the boundary is labelled, how a wire can cross the boundary and reverse

direction, how two wires can cross each other in the grid, and the global strategy for

routing wires.

First, we consider how to label the boundary of the grid, while preserving the

antipodal property of λ. The underlying construction is shown in Figure 4.4; however

it will need modification for wires that cross the boundary (as in Figures 4.3(b), 4.5

and 4.7). The boundary is represented by a double line in the figures. As shown in

Figure 4.4, the outbound edge for the standard leaf ℓ emerges out the lower-left corner

of the grid. The standard leaf, being of degree 1 in G, has only an outbound edge and no

inbound edge. For simplicity, Figure 4.4(b) is shown scaled down to be 10 × 10 instead

of its actual size of m×m.

Let’s describe the details of how a wire crosses the boundary and reverses

direction. For this, refer first to Figures 4.3(b) and 4.5. There is a wire pointing to

the right exiting the right boundary, and a wire pointing to the left exiting the left

78

(a) Schematic representation

1 2 3 4 5 6 7 8 9 10

1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 1
2 -1 2 2 2 2 2 2 2 2 2 2
3 -1 2 1 3
4 -1 2 1 4
5 -1 2 1 5
6 -1 2 1 6
7 -1 2 2 1 7
8 -1 -1 -1 1 8
9 -2 -2 -2 1 9
10 1 1 1 1 1 1 1 1 1 1 10

1 2 3 4 5 6 7 8 9 10

(b) Realization (not to scale)

Figure 4.4: The boundary with no crossings. The figure shows a 10 × 10 grid, but in

actuality it is an m×m grid. For this reason, we say that it is “not to scale”.

boundary. Recall that blank space indicates label values 1; thus, by examination, the

antipodal property of λ holds on the boundary.

Figure 4.5 is “not to scale”, and shows only label values needed for the wire

crossing the boundary. The wire exiting to the left in Figure 4.5 is shown again inside

its 13 × 13 tile in Figure 4.6. Note that it jogs downward two rows. This is to maintain

the convention that the conductor of a wire, which is labelled −1, is in the middle row of

its tile. The ⋆’s in Figure 4.5(b) mark the middle rows of antipodal tiles, thus antipodal

boundary points of the grid. The left exiting wire, exiting from the antipodal tile, has

label value 1 (not −1) on the middle row in the leftmost column. Figure 4.6 shows how

this is implemented inside a 13 × 13 tile. The right column of Figure 4.6 has −1 in its

middle position, so as to correctly match up with the continuation of the wire into the

adjacent tile.

A similar construction allows wires to cross the boundary in the opposite di-

rection. This is shown in Figures 4.7 and 4.8.

Since we are routing wires in a two-dimensional grid, wires will need to “cross

each other”. For this, following [52], we use the “avoided crossing” construction shown

in Figure 4.9. We also need to let wires turn at right angles; this is very simple and

shown in Figure 4.10.

We will now describe the global layout of the grid. Fix a total order < on

the nodes of G, with the standard leaf ℓ as the least element. The nodes are arranged

79

⋆

⋆

(a) Schematic representation

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

1 -1 1
2 -1 2
3 -1 2 1 3
4 -1 2 1 4
5 -1 2 1 5
6 -1 2 1 6
7 2 2 -2 -2 -2 -2 -2 1 7

⋆ 8 -2 -1 -1 -1 -1 1 8
9 -2 -2 -2 -2 -2 -1 2 2 2 1 9

10 -1 -1 -1 -1 -1 -1 2 1 10
11 -1 2 2 2 2 2 2 1 11
12 -1 2 2 2 2 2 2 2 2 12
13 -1 2 -1 -1 -1 -1 -1 -1 -1 13 ⋆
14 -1 2 -2 -2 -2 -2 -2 -2 -2 14
15 -1 2 1 15
16 -1 2 1 16
17 -1 2 2 2 2 1 17
18 -1 -1 -1 -1 1 1 18
19 -2 -2 -2 -2 -2 1 19
20 1 20

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

(b) Realization (not to scale)

Figure 4.5: A wire crossing the boundary for joining two outbound edges. The realiza-

tion (b) is “not to scale”, and shown as 20 × 20. In actuality it is m×m, and row 8 on

the left is a row number i, and row 13 on the left is the antipodal point on row m+1− i.

The wire jogs down two rows as it reaches the left boundary so as to make the antipodal

property hold.

80

(a) Schematic representation

1 2 3 4 5 6 7 8 9 10 11 12 13

1 -1 2 1
2 -1 2 2
3 -1 2 3
4 -1 2 4
5 -1 2 5
6 2 2 -2 -2 -2 -2 -2 -2 -2 -2 6
7 -2 -1 -1 -1 -1 -1 -1 -1 7
8 -2 -2 -2 -2 -2 -2 -1 2 2 2 2 2 2 8
9 -1 -1 -1 -1 -1 -1 -1 2 9
10 -1 2 2 2 2 2 2 2 10
11 -1 2 11
12 -1 2 12
13 -1 2 13

1 2 3 4 5 6 7 8 9 10 11 12 13

(b) Realization

Figure 4.6: A boundary crossing tile.

vertically in the lower-left quadrant of the grid according to the total order. Each

inbound and outbound edge of each node has a horizontal lane that extends to the right

boundary. At the tile antipodal to where the lane reaches the boundary, a new lane

continues now in the upper half of the grid. Each inbound and outbound edge also has

a vertical lane that extends from the top boundary to the bottom boundary. Each node

of G has four horizontal lanes and two vertical lanes; since the lanes have width 13 and

since m = 4 · 13 · |G|, the grid has sufficient space to hold the construction. The layout

of the grid for a graph with three nodes is shown in Figure 4.11.

We will now describe how nodes are connected together. When x and y are

neighbors in G, we will connect one edge of x in the grid with one edge of y in the grid.

For this, we select either the outbound or inbound edge of x and either the outbound or

inbound edge of y. This works even though G is undirected.

1. If x is a node in G with two neighbors y and z, with y < z, then the outbound

edge of x connects to y and the inbound edge of x connects to z.

2. If x is a node with no neighbors, then the outbound edge of x connects to the

inbound edge of x.

3. If x is the standard leaf ℓ, then the outbound edge of x connects to its one neigh-

bor y. In this case, x has no inbound edge.

81

(a) Schematic representation

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

1 -1 1
2 -1 2
3 -1 2 1 3
4 -1 2 1 4
5 -1 2 2 2 2 2 2 2 2 1 5
6 -1 -1 -1 -1 -1 -1 -1 -1 2 1 6
7 -2 -2 -2 -2 -2 -2 -2 -1 2 2 2 1 7

⋆ 8 -2 -1 -1 -1 -1 1 8
9 2 2 -2 -2 -2 -2 -2 1 9

10 -1 2 1 10
11 -1 2 1 11
12 -1 2 -2 -2 -2 -2 -2 -2 -2 12
13 -1 2 -1 -1 -1 -1 -1 -1 -1 13 ⋆
14 -1 2 2 2 2 2 2 2 2 14
15 -1 2 1 15
16 -1 2 1 16
17 -1 2 2 2 2 1 17
18 -1 -1 -1 -1 1 1 18
19 -2 -2 -2 -2 -2 1 19
20 1 20

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

(b) Realization (not to scale)

Figure 4.7: A wire crossing the boundary for joining two inbound edges.

82

(a) Schematic representation

1 2 3 4 5 6 7 8 9 10 11 12 13

1 -1 2 1
2 -1 2 2
3 -1 2 3
4 -1 2 2 2 2 2 2 2 4
5 -1 -1 -1 -1 -1 -1 -1 2 5
6 -2 -2 -2 -2 -2 -2 -1 2 2 2 2 2 2 6
7 -2 -1 -1 -1 -1 -1 -1 -1 7
8 2 2 -2 -2 -2 -2 -2 -2 -2 -2 8
9 -1 2 9
10 -1 2 10
11 -1 2 11
12 -1 2 12
13 -1 2 13

1 2 3 4 5 6 7 8 9 10 11 12 13

(b) Realization

Figure 4.8: A boundary crossing tile.

(a) Schematic representation

1 2 3 4 5 6 7 8 9 10 11 12 13

1 -2 -1 2 1
2 -2 -2 -2 -2 -2 -1 2 2
3 -2 -1 -1 -1 -1 -1 2 3
4 -2 -1 2 2 2 2 2 4
5 -2 -1 2 5
6 -2 -2 -1 2 -2 -2 -2 -2 6
7 -1 -1 -1 2 -2 -1 -1 -1 7
8 2 2 2 2 -2 -1 2 2 8
9 -2 -1 2 9
10 -2 -2 -2 -2 -2 -1 2 10
11 -2 -1 -1 -1 -1 -1 2 11
12 -2 -1 2 2 2 2 2 12
13 -2 -1 2 13

1 2 3 4 5 6 7 8 9 10 11 12 13

(b) Realization

Figure 4.9: An avoided crossing. This effectively allows wires to cross each other.

83

(a) Schematic representation

1 2 3 4 5 6 7 8 9 10 11 12 13

1 1
2 2
3 3
4 4
5 5
6 2 2 2 2 2 2 2 2 6
7 2 -1 -1 -1 -1 -1 -1 -1 7
8 2 -1 -2 -2 -2 -2 -2 -2 8
9 2 -1 -2 9
10 2 -1 -2 10
11 2 -1 -2 11
12 2 -1 -2 12
13 2 -1 -2 13

1 2 3 4 5 6 7 8 9 10 11 12 13

(b) Realization

Figure 4.10: A right angle.

ℓout
ℓ

x
xin

xout

y

yin

yout

ℓ∗out

x∗in

x∗out

y∗in

y∗out

ℓout xin xout yin yout

Figure 4.11: Global layout of the grid.

84

4. If x is a node that is not the standard leaf with only one neighbor y, then the

outbound edge of x connects to y, and the inbound edge of x is exposed to the

environment. This will create a complementary pair at x’s inbound edge as desired.

Suppose that x and y are neighbors in G, with x < y. We will describe how x

and y are connected together:

1. If x’s outbound edge connects to y’s inbound edge, then we add a wire that takes

the following route: x’s outbound edge, x’s horizontal outbound lane, x’s vertical

outbound lane, y’s horizontal inbound lane, and finally y’s inbound edge.

2. If y’s outbound edge connects to x’s inbound edge, then we add a wire that takes

the following route: y’s outbound edge, y’s horizontal outbound lane, x’s vertical

inbound lane, x’s horizontal inbound lane, and finally x’s inbound edge.

3. If x’s and y’s outbound edges connect together, then half of the route is as follows:

start at x’s outbound edge, continue along x’s horizontal outbound edge to the

boundary. The other half of the route is as follows: start at y’s outbound edge,

continue along y’s horizontal outbound lane to x’s vertical outbound lane. Follow

x’s vertical outbound lane up to x’s reflected outbound horizontal lane. Continue

along x’s reflected outbound horizontal lane to the boundary.

4. If x’s and y’s inbound edges are connected together, then one path originates from

the boundary at x’s horizontal inbound lane into x’s inbound edge. The other path

originates at the antipodal boundary point, travels along x’s reflected horizontal

inbound path to x’s vertical inbound lane, down to y’s horizontal inbound lane,

and into y’s inbound edge.

If x is a node of G with no neighbors, then we must connect the outbound edge

of x to the inbound edge of x. This is done by the following route: x’s outbound edge

to x’s horizontal outbound lane, to x’s vertical outbound lane, to x’s horizontal inbound

lane, to x’s inbound edge.

The paths formed by the above procedure can cross each: if so, we use the

avoided crossing construction. By inspection, at most two paths can intersect a given

tile, and if so, they meet at right angles.

Claim 4.9. The only complementary pairs in the grid that are formed by the above

construction are at the inbound edge of a node x 6= ℓ of degree 1 in G.

85

Claim 4.9 is obvious by inspection of the construction. It follows that there is a polyno-

mial time method to find a degree 1 node x 6= ℓ in G, given the location of a comple-

mentary pair for λ in the grid.

Claim 4.10. It is possible to decide in polynomial time which tile to place at a given

position in the grid using only constantly many oracle queries to G.

Claim 4.10 follows from the fact that a given tile can lie in at most two “lanes”.

To illustrate this, consider the following example. Consider a tile that is at the intersec-

tion of x’s horizontal inbound lane, and y’s vertical outbound lane. We query G about

x’s neighbors which, say, are u1 < u2. Thus the inbound edge of x connects to u2. We

then query G about u2’s neighbors in order to decide if x connects to u2 at u2’s inbound

or outbound edge. With this information, we can decide if the route taken on x’s hori-

zontal inbound lane passes through the tile, does not pass through this tile, or turns at

a right angle at the tile. We will similarly query G about y’s two neighbors, say v1 < v2,

and then query G about v1’s neighbors. This is enough to determine what happens in

the vertical lane. With all this information, we can decide how to assign λ values for

this tile, namely as a blank tile, a horizontal wire, a vertical wire, a right angle, or an

avoided crossing. This is accomplished with only queries to only four nodes G.

This completes the proof of Theorem 4.8 and hence Theorem 4.1.

4.3 Tucker, Leaf, and LeafD

This section gives a quick sketch of the reduction from Tucker to Leaf. The

constructions are due to Freund [30, 31], Freund and Todd [32], Matoušek [50], and Pa-

padimitriou [53]. However, it seems useful to repeat the arguments here to the illustrate

the reduction from Tucker to Leaf, as well as to point out why it does not give a

reduction to the directed analogue LeafD of Leaf. This illustrates the failure in the

earlier argument that Tucker is PPAD-complete. As we shall see, the reduction gives a

graph G in which many of the edges can be coherently directed, but edges which connect

antipodal simplices cannot be coherently directed.

Let a triangulation T of the unit ball in the L1-norm and a labelling λ satisfy

the hypotheses of the Tucker lemma in dimension 2. Further suppose (for sake of a

contradiction) that there are no complementary 1-simplices in T . A 1-simplex in T is

just an edge in T . Without loss of generality, refining T if necessary, we may assume that

86

the triangulation contains the origin, and no 1-simplex in T has endpoints in distinct

quadrants. A simplex is defined to be happy if it is a 1-simplex and certain labels are

present on its vertices, according to what region the simplex lies in, as given by the

following table:

Midpoint of 1-simplex lies in Required labels (λ values)

Positive x-axis 1
Negative x-axis −1
Positive y-axis 2
Negative y-axis −2

First quadrant (interior) 1, 2
Second quadrant (interior) −1, 2
Third quadrant (interior) −1, −2
Fourth quadrant (interior) 1, −2

By our assumptions on T , each 1-simplex has its interior lying in exactly one region.

Without loss of generality, the origin has label 1, so the 1-simplex that lies in the positive

x-axis with one endpoint at the origin is happy. This 1-simplex is called the initial 1-

simplex.

A graph G is defined on the happy 1-simplices of T . The initial 1-simplex is

a node of degree 1. All other happy 1-simplices will have degree 2 in G. The graph G

is undirected; nonetheless, many (but not all) of its edges can be coherently directed.

The different types of directed edges between happy 1-simplices are as shown in Figures

4.12 and 4.13: the curved arrows connect happy 1-simplicies; the arrows indicate the

directions. For example, an edge in G connecting two happy 1-simplices in the first

quadrant is directed so that the vertex with label 1 is on the left, and the vertex with

label 2 is on the right. Two adjacent happy 1-simplices that lie on an axis have their

edge directed away from the origin (e.g., rightward on the positive x-axis, leftward on

the negative x-axis, etc.).

There are additional undirected edges between antipodal happy 1-simplices

which lie on the boundary of the ball. These are as follows:

1. If σ is a happy 1-simplex, and both vertices of σ are on the boundary, then σ has

−σ as a neighbor in G. Note −σ is happy, since σ is. An example is illustrated in

Figure 4.13 with a dashed curve.

2. If σ is happy, σ lies in a 1-dimensional region (the x- or y-axis), one of σ’s vertices v

is on the boundary of the ball, and v has the required label to make σ happy, then

σ has neighbor τ , the unique (and happy) 1-simplex that has −v as a vertex.

87

Under the assumption that there are no complementary 1-simplices, a straightforward

case analysis shows that the initial 1-simplex has degree 1 in G, and all other nodes have

degree 2.

Since the construction of G from T is constructive, and the presence of edges

in G only depends locally on T , the above gives a many-one polynomial time reduction

from from Tucker to Leaf in the case of two dimensions. Higher dimensions work

analogously, but require considering k-simplices also for k > 1.

The edges in G that are not on the boundary of the ball can be coherently

oriented as illustrated in Figure 4.12. This can be easily checked in the two dimensional

case, and the general case is carried out by Freund [30, 31]. However, the undirected

edges connecting antipodal simplices cannot be directed coherently. For example, the

dashed curve of Figure 4.12 cannot be directed without creating a 1-simplex with two

incoming edges in G. It was exactly this ability to “reverse directions” by connecting

antipodal simplices that was exploited in the proof of Theorem 4.1.

Acknowledgements. We thank Christos Papadimitriou, Dömötör Pálvölgyi, and Xi-

aotie Deng for comments on early drafts of this paper.

Chapter 4, in full, is a reprint of material that has been submitted for publica-

tion. Aisenberg, James; Bonet, Maria L.; Buss, Sam. The dissertation author was the

primary investigator and author of this paper.

88

1

2

1

1

2

2
2

-1

2

2

-1

-1

-2

1

1
-2

1

-2

-1

-2

-2
-1

-2

-1
1

2

-1

-2

Figure 4.12: Happy 1-simplices, and their directed neighbors. 1-simplices which are

happy are drawn with thick lines. Happy 1-simplices in quadrant I, II, III or IV (respec-

tively) have their vertices labelled with a 1 and 2, with a −1 and 2, with a −1 and −2,

or with a 1 and −2 (respectively). A 1-simplex in the positive x-axis, the positive y-axis,

the negative x-axis, or the negative y-axis (respectively) have at least one vertex labelled

1, 2, −1, or −2 (respectively). The directed edges between happy vertices are shown by

the curved arrows.

89

1

2

2
2

-1

-1

2-1
-2

-2

-1

1

2

2

1

1

Figure 4.13: An example of an instance of Tucker, and the graph G. Happy 1-simplices

are indicated with thick lines. Arrows indicate the edges in G that can be directed. The

dashed curve indicates an edge in G that is not given a direction; it connects a pair of

antipodal happy 1-simplices.

Chapter 5

Total NP search problems

This chapter defines a number of total NP search problems based on the com-

binatorial principles discussed in the earlier chapters, establishes basic relationships be-

tween them, and poses a number of open questions. The new problems, based on Frankl’s

theorem, the truncated Tucker lemma, and the Kneser-Lovász theorem are shown to be

PPP-hard, which is of interest because there are few known examples of PPP-hard prob-

lems.

5.1 Frankl’s theorem

This section defines a total NP search problem based on Frankl’s theorem (The-

orem 2.1). One condition in the hypothesis of Frankl’s theorem is that the matrix in

question has distinct rows. For a total NP search problem, we must be able to recognize

invalid inputs using only local information. Our search problem will take matrices with

exponentially long rows as inputs. So one difficulty that we encounter with phrasing

Frankl’s theorem as a search problem is how to recognize that two exponentially long

rows are identical in a way that is verifiable in polynomial time. One approach is to

supply additional information about the matrix as part of the input to the problem. For

example, a function Diff(i, i′) that inputs two indices for rows i and i′ (with i 6= i′),

and outputs an index of a column where the rows i and i′ are different. A matrix has

distinct rows iff such a Diff(i, i′) function exists. Moreover, the invalidity of an input is

verifiable in polynomial time. To show that the input is invalid, it is only necessary to

give two rows i and i′ that the Diff says are supposed to disagree in some column j, but

90

91

do not. This approach could give a search problem based on Frankl’s theorem, but the

resulting search problem seems to be somewhat weak, as will be discussed below. To

give a stronger search problem, we relax the requirement in the hypothesis of Frankl’s

theorem that the matrix in question has distinct rows. Instead, we will only require that

certain rows of the matrix are distinct. The search problem we will define is based on the

following corollary to Frankl’s theorem. To state the corollary, recall from Section 2.1.1

that if r1 and r2 are rows in a matrix, then r1 is equivalent to r2 modulo column j if r1

and r2 differ only in column j.

Corollary 5.1. Let t be a positive integer, and m ≤ 2t−1
t n. It is not the case that there

exists a 0/1 matrix A (not necessarily with distinct rows) such that for each column j,

there is a set Qj of distinct rows of A with |Qj | ≥ 2t and for each r1 ∈ Qj, there exists

an r2 in Qj with r1 equivalent to r2 modulo column j.

Proof. Suppose A is an m× n 0/1 matrix in violation of the statement of the theorem.

Let Ã be the matrix obtained by deleting duplicate copies of rows (leaving the original

copy). The resulting matrix is an m′ × n 0/1 matrix with distinct rows where m′ ≤ m.

For j a column, let Pj denote the set of rows r1 of Ã such that there exists a row r2 of Ã

with r1 equivalent to r2 modulo column j. Observe that for each r ∈ Qj , there is some

r̃ ∈ Pj where r and r̃ are equal as rows (they may have different indices, however). This

mapping is injective. Thus |Pj | ≥ 2t. Thus Ã violates Frankl’s theorem.

The search problem based on Frankl’s theorem is as follows:

Definition 5.2. Let t > 0, and let m ≤ 2t−1
t n. An instance of the Frankl’s theorem

search problem, Frankl is a tuple of functions (A,Q,Diff,Pair) as follows:

A : [m] × [n] → {0, 1}

Q : [n] × [2t] → [m]

Diff : [n] × [2t] × [2t] → [n]

Pair : [n] × [2t] → [2t]

A solution to the search problem is one of the following:

1. a j, x, x′ with x 6= x′, Diff(j, x, x′) = j′, and A(Q(j, x), j′) = A(Q(j, x′), j′),

2. a j, x where Pair(j, x) = x′ and A(Q(j, x), j) = A(Q(j, x′), j), or

92

3. a j, x, j′ where j 6= j′, Pair(j, x) = x′, and A(Q(j, x), j′) 6= A(Q(j, x′), j′).

For an instance of Frankl, we think of n as being exponentially large, and

the functions A,P,Diff and Pair as given by function oracles (a type 2 search problem).

The function A thus defines an exponentially large 0/1 matrix. The Q(j, x) function

defines the set Qj in the corollary to Frankl’s theorem above, a set of 2t rows. These

rows are supposed to be distinct, and have the property that if r1 is a row in the set, then

there is some r2 6= r1 also in the set where r1 is equivalent to r2 modulo column j. To

establish that the rows of Q(j, x) are distinct, we supply a function Diff(j, x, x′), which

gives a column j′ where the rows Q(j, x) and Q(j, x′) are supposed to be different. The

Pair(j, x) function is supposed to say that the row Q(j, x) and the row Q(j,Pair(j, x))

are equivalent modulo column j.

The t = 1 case of Frankl’s theorem is called Bondy’s theorem. Bondy’s theorem

states that if A is a square matrix with distinct rows, there is a column that can be deleted

so that the resulting matrix also has distinct rows. Or, in our relaxed form, Bondy’s

theorem states that if A is a square matrix, then there is a column that can be deleted

such that the only identical rows of the resulting matrix were identical in A. Let Bondy

be the special case of Frankl where t = 1.

Theorem 5.3. Bondy is PPP-hard.

This is the same construction used to show that I∆0 + ∆0-Bondy proves the

pigeonhole principle [9].

Proof. We reduce Pigeon to Bondy. Let f : [n] → [n − 1] be an instance of Pigeon.

We construct an instance of Bondy as follows: let A(i, j) = 1 iff f(j) = i. For each

j, if column j is deleted, say that rows f(j) and n are identified. In other words,

Q(j, 0) = f(j), Q(j, 1) = n. Also Diff(j, 0, 1) = Diff(j, 1, 0) = j, and Pair(j, 0) = 1 and

Pair(j, 1) = 0. It’s clear that a solution to (A,Q,Diff,Pair) as an instance of Bondy

immediately gives a solution to f as an instance of Pigeon.

Question 5.4. Is Bondy in PPP? Is Frankl in PPP?

Observe that the matrix in the above proof does not necessarily have distinct

rows. Indeed, if the function f is not onto, then the row where every entry is 0 will

occur multiple times. This is why we defined Frankl without the requirement that

all rows be distinct. If instead we were working with the distinct rows version of the

93

Frankl’s theorem search problem, we could show that it was PPAD-hard, since the onto

pigeonhole principle is PPAD-complete [13].

5.2 The octahedral Tucker lemma

This section discusses the octahedral Tucker lemma as a total NP search prob-

lem and the geometry of the octahedral ball. Pálvölgyi [52] noted that the octahedral

Tucker lemma gives rise to a total NP search problem. We discuss it here only to provide

some geometric intuition, which will be helpful when discussing the truncated Tucker

lemma. Recall the octahedral ball Bn:

Bn = {(A,B) : A,B ⊆ [n] and A ∩B = ∅}.

and that for two points (A1, B1), (A2, B2) ∈ Bn, (A1, B1) ⊆ (A2, B2) iff A1 ⊆ A2 and

B1 ⊆ B2. Also recall the octahedral Tucker lemma (Theorem 3.15):

Theorem 5.5 (Octahedral Tucker lemma). If λ : Bn → {1,±2, . . . ,±n} is antipodal,

then there are (A1, B1) ⊆ (A2, B2) ∈ Bn with λ(A1, B1) = −λ(A2, B2).

Finally, recall from Section 4.1 the Tucker lemma (Theorem 4.5) states:

Theorem 5.6 (Tucker’s lemma). Let T be an antipodally symmetric triangulation of Bk,

and let λ : V (T) → {±1, . . . ,±k} be a function with the property that λ(−v) = −λ(v)

for all v ∈ Sk−1. Then there exists a 1-simplex {v1, v2} in T with λ(v1) = −λ(v2).

The octahedral Tucker lemma is stated without making reference to a trian-

gulation. To help understand the intuition behind the octahedral Tucker lemma, we

describe this triangulation, which we denote T n. In brief, T n is the first barycentric

subdivision of the standard triangulation of the n-ball in the ℓ1-norm.

Let’s briefly introduce the terminology needed to discuss triangulations. A set

S ⊆ Rn is convex if for any two points x, y ∈ S, the line segment with endpoints x

and y is a subset of S. For a set of points V , the convex hull of V , denoted conv(V),

is the minimum convex set containing V with respect to set inclusion. A set V =

{v0, v1, . . . , vk} is affinely dependent if there are real numbers α0, . . . , αk, not all αi’s

equal to 0 such that
∑

αivi = 0 and
∑

αi = 0. A set if affinely independent if it is

not affinely dependent. The set conv(V) is a k-simplex if |V | = k + 1 and V is affinely

independent. For such a k-simplex, conv(V), the elements of V are the vertices of

94

conv(V). We will sometimes refer to a k-simplex by its vertex set. The simplex V ′ is a

face of the simplex V if V ′ ⊆ V . If V ′ is a face of V and V ′ 6= V , then V ′ is a proper

face of V .

A simplicial complex is a set of simplices X with the following properties: (1)

if σ ∈ X then any face of σ is also in X, and (2) if σ, τ ∈ X with σ ∩ τ 6= ∅ then σ ∩ τ

is a face of both σ and τ . A simplicial complex X is a triangulation of a set S ⊆ Rn if

∪X = S.

If σ = {v0, . . . , vk} is a k-simplex, define the barycenter of σ to be the point

1
k+1(v0+· · ·+vk). In other words, the barycenter of a simplex is the average of its vertices.

The barycenter of σ is denoted σ̂. If X is a simplicial complex, the barycentric subdivision

of X is the set of simplices of the form {σ̂0, . . . , σ̂k} where the σi’s are simplices in X

and σi is a proper face of σi+1 for all i. Let X ′ denote the barycentric subdivision of X.

The following theorem is well-known:

Theorem 5.7. If X is a simplicial complex, then X ′ is a simplicial complex. Moreover,

X and X ′ triangulate the same space.

Proof. We prove the claim by induction on the number of simplices of X. For the base

case, if X contains only one simplex, then that simplex is a point, and the claim is

obvious. For the induction step, let σ be a simplex in X that is not the face of any other

simplex in X. Then Y = X \ {σ} is a simplicial complex, and the induction hypothesis

applies. There are three kinds of simplices in X ′: simplices in Y ′, the 0-simplex {σ̂} and

simplices whose vertex set is of the form ρ∪{σ̂} where ρ is the vertex set of a simplex in

Y ′. It is straightforward to see that if τ1 and τ2 are two simplices in X ′ with τ1∩ τ2 6= ∅,

then τ1 ∩ τ2 is a face of both τ1 and τ2.

To prove the moreover, take any point x in the space triangulated by X. If x

is in the space triangulated by Y , then x is in the space triangulated by Y ′, and so x is

in the space triangulated by X ′. Otherwise, x is in the interior of σ. If x = σ̂, then it

is clear that x is in the space triangulated by X ′, so suppose x 6= σ̂. Consider the line

passing through x and σ̂. It intersects the proper faces of σ in two points. Let y be the

unique point on a face of σ such that x is in the interior of the line segment connecting

σ̂ to y. Since y is in the space triangulated by Y , it is in the space triangulated by Y ′,

so y is in the interior of some simplex ρ ∈ Y ′. Furthermore, ρ ∪ {σ̂} is in X ′, and x is

in the interior of ρ ∪ {σ̂}. This shows that the space triangulated by X is a subset of

the space triangulated by X ′. The other direction is clear because every simplex in X ′

95

is contained in some simplex in X.

We now describe a triangulation of the surface of the n-ball in the ℓ1-norm.

Let x1, . . . , xn be the standard basis in Rn. The vertex sets of the simplices of the

triangulation are non-empty subsets S of {±x1, . . . ,±xn} with the property that x ∈
S implies −x /∈ S. It is clear that this is a triangulation of the surface of the n-

ball. Call this triangulation X. Note that the simplices of this triangulation can be

identified with elements in Bn \ {(∅, ∅)}. Moreover, the simplex identified with (A1, B1)

is a face of the simplex identified with (A2, B2) iff (A1, B1) ⊆ (A2, B2). Next, we take

the barycentric subdivision of this simplicial complex, X ′. The simplices of the resulting

complex correspond to chains in Bn \ {(∅, ∅)} in the ⊆ partial order. In other words, if

(A0, B0) (· · · ((Ak, Bk) then there is a simplex in the barycentric subdivision whose

vertex set consisting of the barycenters of the simplices (A0, B0), . . . , (Ak, Bk). The

triangulation T n is obtained from X ′ by “filling in” the n-ball:

T n := {{0}} ∪X ′ ∪ {ρ ∪ {0} : ρ ∈ X ′}.

The vertices in T n correspond to the points in Bn, with (∅, ∅) corresponding to the 0-

simplex at the origin. The octahedral ball in three dimensions is shown in Figure 5.1.

One hemisphere of the three-dimensional octahedral ball is shown in Figure 5.2.

The Tucker lemma applies to triangulations that are antipodally symmetric on

the boundary. In T n, the origin is the only vertex that is not on the boundary, and if

(A,B) 6= (∅, ∅), the vertex (A,B) is antipodal to the vertex (B,A). Thus, the require-

ment that for (A,B) 6= (∅, ∅), λ(A,B) = −λ(B,A) enforces the boundary condition for

the Tucker lemma.

The allowed labels are slightly different between the octahedral Tucker lemma

and the Tucker lemma. We explain why this is without loss of generality. For an

antipodal labelling of T n with no complementary 1-simplices, it must be that the label

of (∅, ∅) does not appear as a label of another vertex in T n. Suppose it did, say the

label of (∅, ∅) is a, and the label of (A,B) is also a for some (A,B) 6= (∅, ∅). So then

the label of (B,A) is −a. But there is a 1-simplex joining (∅, ∅) and (B,A), forming a

complementary 1-simplex. So then we can say without loss of generality that (∅, ∅) is

labelled 1, and ±1 does not appear as a label on the remaining vertices.

The octahedral Tucker lemma has an associated total NP search problem [52].

96

Figure 5.1: The octahedral ball for n = 3

97

{1}, ∅

{2}, ∅

{3}, ∅
∅, {1}

∅, {2}

{1, 2}, ∅

∅, {1, 2}

{2}, {1}

{1}, {2}

{1, 3}, ∅{3}, {1}

{2, 3}, ∅

{3}, {2}

{1, 2, 3}, ∅{2, 3}, {1}

{3}, {1, 2} {1, 3}, {2}

Figure 5.2: One hemisphere of the triangulation T 3 of the octahedral ball.

98

Definition 5.8. An instance of the octahedral Tucker search problem Octahedral-

Tucker is an antipodal map λ : Bn → {1,±2, . . . ,±n}. The solution to the search

problem is one of the following:

1. a pair (A1, B1), (A2, B2) ∈ Bn with (A1, B1) ⊆ (A2, B2), and λ(A1, B1) =

−λ(A2, B2),

2. an (A,B) ∈ Bn with (A,B) 6= (∅, ∅) and λ(A,B) 6= −λ(B,A), or

3. an (A,B) ∈ Bn with (A,B) 6= (∅, ∅) and λ(A,B) /∈ {±2, . . . ,±n}.

Observe that |Bn| = 3n. We think of n as growing linearly, which gives an

exponential size search space. The map λ is given by a function oracle (a type 2 search

problem [7]). A solution to the search problem is guaranteed to exist by the Tucker

lemma.

The size of an instance of octahedral Tucker lemma depends on the size of

Bn (i.e., the 0-simplices of T n). The known proofs of the octahedral Tucker lemma

(via the Tucker lemma) [30, 31, 32, 50, 49, 53] reduce to the parity principle on higher

dimensional simplices of T n. To show that Octahedral-Tucker is in PPA, we prove

an upper bound on |T n|, the number of simplices in the triangulation T n.

Proposition 5.9. n!2n ≤ |T n| ≤ 2(n!)4n.

Proof. We prove that the number of n-simplices in T n is exactly n!2n. Pick a permutation

of {1, . . . , n}, call it q1, . . . , qn. Also pick αi ∈ {1,−1} for i = 1, . . . , n. Define (A0, B0) =

(∅, ∅), and

(Ai, Bi) =

(Ai−1 ∪ {qi}, Bi−1) if αi = 1

(Ai−1, Bi−1 ∪ {qi}) if αi = −1.

The n-simplex {(A0, B0), . . . , (An, Bn)} corresponds uniquely to this permutation and

choices of αi’s. Thus there are exactly n!2n many n-simplices, and |T n| ≥ n!2n. For

the upper bound, observe that each k-simplex is a face of at least one n-simplex. An

n-simplex has 2n+1 many faces. Thus |T n| ≤ (n!2n)2n+1.

Proposition 5.9 together with the argument that Tucker is in PPA shows that

Octahedral-Tucker is in PPA. Its exact complexity within PPA is unknown:

Question 5.10. Is Octahedral-Tucker PPAD-hard? Is Octahedral-Tucker

PPA-hard?

99

5.3 The truncated Tucker lemma

The next total NP search problem we consider is based on the truncated Tucker

lemma. With the octahedral Tucker lemma, there was not a substantial difference be-

tween the growth rate of the size of the search space (the vertices, |Bn| = 3n) and

the size of the graph that gives an instance of the parity principle (the triangulation,

|T n| ∈ O(n!4n)). With the truncated Tucker lemma, we will see a substantial difference

in growth rates between vertices and the size of the triangulation. Recall from Section 3.5

the definition of the truncated octahedral ball, Bn
≤k:

Bn
≤k = {(A,B) ∈ Bn : |A| ≤ k, |B| ≤ k}

For A ⊆ [n], let A≤k denote the k-least elements of A. For A1, A2 ⊆ [n], write A1 � A2

iff (A1 ∪A2)≤k = A2. Write (A1, B1) � (A2, B2) iff A1 � A2, B1 � B2 and Ai ∩Bj = ∅
for i, j ∈ {1, 2}. Recall that the truncated Tucker lemma (Theorem 3.20) states:

Theorem 5.11 (Truncated Tucker lemma on Bn
≤k). Let n ≥ k ≥ 1. If λ : Bn

≤k →
{1,±2 . . . ,±n} is antipodal, then there are (A1, B1) � (A2, B2) ∈ Bn

≤k with λ(A1, B1) =

−λ(A2, B2).

We describe T n
≤k, the triangulation of the truncated octahedral ball. Recall that

we have previously associated the members of Bn with points in the n-ball. The vertices

of T n
≤k are the points in the n-ball associated with Bn

≤k ⊆ Bn. The higher dimensional

simplices of T n
≤k correspond to chains in Bn

≤k according to the partial order �. The

triangulation of the truncated octahedral ball for k = 1 and n = 3 is shown in Figures 5.3

and 5.4.

One way to understand the triangulation T n
≤k is as follows. Start with the

triangulation T n. There are vertices in T n that are not in Bn
≤k. Let (A,B) be such a

vertex. Move the point corresponding to (A,B) from its current location to coincide with

the point (A≤k, B≤k), adjusting higher-dimensional simplices that have (A,B) as a vertex

appropriately. This process will collapse some simplices. For example, in T n, there was

a 1-simplex {(A,B), (A≤k , B≤k)}. This procedure transforms this 1-simplex into the 0-

simplex {(A≤k, B≤k)}. It is clear that the result of this procedure is a simplicial complex

if the input to the procedure was a simplicial complex, and both simplicial complexes

triangulate the same space. Applying this procedure iteratively for every point in Bn\Bn
≤k

yields the triangulation T n
≤k. An example of this process is shown in Figure 5.5.

100

{1}, ∅

{2}, ∅

{3}, ∅

∅, {1}

∅, {2}

{2}, {1}

{1}, {2}

{3}, {1}

{3}, {2}

Figure 5.3: The triangulation T 3
≤1 of the truncated octahedral ball.

101

{1}, ∅

{2}, ∅

{3}, ∅
∅, {1}

∅, {2}

{2}, {1}

{1}, {2}

{3}, {1}

{3}, {2}

Figure 5.4: One hemisphere of the triangulation T 3
≤1 of the truncated octahedral ball.

102

{2}, ∅

{2}, {1}

∅, {1}
{3}, {1} {3}, ∅

{2, 3}, {1}
{2, 3}, ∅

Figure 5.5: One face in the triangulation T 3
≤1 of the truncated octahedral ball. The point

({2, 3}, {1}) is moved to coincide with the point ({2}, {1}) and the point ({2, 3}, ∅) is

moved to coincide with the point ({2}, ∅).

This way of obtaining T n
≤k from T n is reminiscent of the proof of the truncated

Tucker lemma from the octahedral Tucker lemma. For that proof, we assumed we had

violation of the truncated Tucker lemma on Bn
≤k, and we extended it to a violation of

the octahedral Tucker lemma on Bn by assigning (A,B) ∈ Bn \ Bn
≤k the same label as

(A≤k, B≤k).

Definition 5.12. Fix k > 0. An instance of the k-truncated Tucker search problem

k-Truncated-Tucker (on Bn
≤k) is an antipodal map λ : Bn

≤k → {1,±2, . . . ,±n}. A

solution to such an instance is one of the following:

1. a pair (A1, B1), (A2, B2) ∈ Bn
≤k with (A1, B1) � (A2, B2) and λ(A1, B1) =

−λ(A2, B2),

2. an (A,B) ∈ Bn
≤k such that λ(A,B) /∈ {1,±2, . . . ,±n}, or

3. an (A,B) ∈ Bn
≤k with (A,B) 6= (∅, ∅) and λ(A,B) 6= −λ(B,A).

Observe that |Bn
≤k| ∈ O(n2k). For an instance of k-Truncated-Tucker (on

Bn
≤k), we think of n as being exponentially big, and λ being given by a function oracle

(a type 2 search problem [7]). A solution is guaranteed to exist by the Tucker lemma.

Let’s prove a bound on the size of the triangulation.

103

Proposition 5.13. |T n
≤k| ∈ Ω(2n/

√
n)

Proof. Assume n is even. Consider subsets of [n] of size n/2. Take such a subset S in

decreasing sorted order: a1, . . . , an/2. Let A0 = ∅, and Ai = {a1, . . . , ai}≤k. Because the

ai’s are in decreasing sorted order, the Ai’s are all unique, and (A0, ∅) � · · · � (An/2, ∅).

The n/2-simplex {(A0, ∅), . . . , (An/2, ∅)} corresponds uniquely to this subset S of [n] of

size n/2. There are Ω(2n/
√
n) such subsets.

Although this bound is slightly worse than the one for the triangulation T n, it is

more interesting because k-Truncated-Tucker takes n to be exponentially big. Thus

we have the strange property that k-Truncated-Tucker is proved total by considering

the undirected parity principle on a double-exponentially big graph!

We define another total NP search problem based on the truncated Tucker

lemma. Recall that we had previously defined two closely related truncated Tucker

lemmas. Recall that

Bn
k = {(A,B) ∈ Bn : |A| = k or 0, |B| = k or 0, A ∪B 6= ∅}.

Definition 5.14. Fix k > 0. An instance of the k-truncated Tucker search problem k-

Truncated-Tucker (on Bn
k) is an antipodal map λ : Bn

k → {±2k, . . . ,±n}. A solution

to such an instance is one of the following:

1. a pair (A1, B1), (A2, B2) ∈ Bn
k with (A1, B1) � (A2, B2) and λ(A1, B1) =

−λ(A2, B2),

2. an (A,B) ∈ Bn
k such that λ(A,B) /∈ {±2k, . . . ,±n}, or

3. an (A,B) ∈ Bn
k such that λ(A,B) 6= −λ(B,A).

As with Bn
≤k, we have that |Bn

k | ∈ O(n2k). Similarly, for an instance of k-

Truncated-Tucker (on Bn
k), we think of n as being exponentially big, and λ being

given by a function oracle (a type 2 search problem). A solution is guaranteed to exist

by the Tucker lemma. Previously we have seen that the two truncated Tucker lemmas

were equivalent to each other. The same carries over for total NP search problems.

Theorem 5.15. Fix k > 0. The search problems k-Truncated-Tucker on Bn
≤k and

k-Truncated-Tucker on Bn
k are many-one reducible to one another.

Proof. One direction follows from the proof of Theorem 3.22 from Theorem 3.20. The

other direction follows by the proof of Theorem 3.24.

104

Theorem 5.16. The search problem 1-Truncated-Tucker is PPP-hard under many-

one reductions.

Note: this also follows by Theorems 5.23 and 5.25.

Proof. We reduce Pigeon to 1-Truncated-Tucker. Let f be an instance of Pigeon.

Define λ : Bn
1 → {±2, . . . ,±n} as follows:

λ(A,B) =

f(i) + 1 A � B, A = {i}

−(f(j) + 1) B � A, B = {j}

The map λ is an instance of 1-Truncated-Tucker. Consider any solution to λ. By

construction, λ is antipodal, so a solution is either a pair (A1, B1) � (A2, B2) with

λ(A1, B1) = −λ(A2, B2), or a λ(A,B) /∈ {±2, . . . ,±n}. For the latter case, by construc-

tion of λ, this clearly gives an x ∈ [n] such that f(x) /∈ [n − 1]. For the former case,

without loss of generality, A1 � B1. Thus B2 � A2. Say that A1 = {i} and B2 = {j}
By definition of �, i 6= j. Furthermore it must be that f(i) = f(j), therefore i and j

form a solution to f as an instance of Pigeon.

The truncated Tucker search problems form a hierarchy:

Theorem 5.17. Fix k > 0. There is a many-one reduction from k-Truncated-

Tucker to (k + 1)-Truncated-Tucker.

Proof. Let λ : Bn
≤k → {1,±2, . . . ,±n} be an instance of k-Truncated-Tucker. We

will use it to define λ′ : Bn
≤(k+1) → {1,±2, · · · ± n}, an instance of (k + 1)-Truncated-

Tucker. For (A,B) ∈ Bn
≤(k+1), define λ′(A,B) = λ(A≤k, B≤k) A solution to λ′ directly

gives a solution to λ. The only interesting case is when (A1, B1) � (A2, B2) ∈ Bn
≤(k+1)

and λ′(A1, B1) = −λ′(A2, B2). Therefore λ(A1,≤k, B1,≤k) = −λ(A2,≤k, B2,≤k). This is a

solution for λ because (A1,≤k, B1,≤k) � (A2,≤k, B2,≤k), which follows because

(X ∪ Y)≤(k+1) = Y =⇒ (X≤k ∪ Y≤k)≤k = Y≤k.

Question 5.18. Is the (relativized) k-Truncated-Tucker hierarchy proper?

Question 5.19. Is k-Truncated-Tucker in PPP for any value of k?

105

We remark that we have defined these truncated Tucker search problems so

that k is constant and n grows exponentially in order to obtain an exponential size

search space (Bn
≤k or Bn

k). We could modify this to let k be a function of n, and modify

the growth rate of n to ensure that the growth rate of the size of the search space is

exponential. The only additional requirement is that k < n to match the statement

of the truncated Tucker lemma on Bn
≤k, and k < n/2 to match the statement of the

truncated Tucker lemma on Bn
k . For example, if k(n) = n/3 and n grows linearly, then

Bn
k has an exponential growth rate, giving a total NP search problem. In fact, this

problem is reducible to Octahedral-Tucker, and so it is in PPA. It is interesting to

note that the constant k truncated Tucker search problems are PPP-hard and that the

linear k truncated Tucker search problems are in PPA. This raises the question of what

can be said about growth rates of k between constant and linear.

We conclude this section by defining a large semantic class in TFNP based

on the Tucker lemma that includes PPA and PPP. Let (X,�) be a partial order,

Boundary(x) be a relation on X, and Antipode(x) be a map from X to X. Say that

the tuple ((X,�),Boundary(x),Antipode(x)) is antipodally symmetric on the n-ball if

there exists an antipodally symmetric triangulation T of Bn so that (1) the points in

X are in one-to-one correspondence with the vertices of T , (2) if {v1, v2} is a 1-simplex

in T then the members of X corresponding to v1 and v2 are comparable by �, and (3)

for all x ∈ X, Boundary(x) holds if and only if the vertex corresponding to x is on the

boundary and it is antipodal to the vertex corresponding to Antipode(x). The following

is an immediate corollary to the Tucker lemma:

Corollary 5.20. Let ((X,�),Boundary(x),Antipode(x)) be antipodally symmetric on

the n-ball. If λ : X → {±1, . . . ,±n} has the property that for all x ∈ X where

Boundary(x) holds, λ(x) = −λ(Antipode(x)), then there exists x, y ∈ X with x � y

and λ(x) = −λ(y).

If the � relation, Boundary(x) and Antipode(x) are computable in polyno-

mial time, then the corollary above can be naturally translated into total NP search

problems. These problems fix �, Boundary(x) and Antipode(x) and take λ to be the in-

put. There is a different search problem for each appropriate choice of �, Boundary(x)

and Antipode(x). Define the class Poset-Tucker by taking the set of all such search

problems, then taking its closure under many-one reductions. Observe that for all k,

k-Truncated-Tucker is in Poset-Tucker, thus PPP ⊆ Poset-Tucker. Furthermore 2-

106

D Tucker is in Poset-Tucker, hence PPA ⊆ Poset-Tucker. So Poset-Tucker is a very

powerful class. Unfortunately it seems to be a semantic class.

Question 5.21. Does Poset-Tucker have complete problems in it? Does it have other

interesting syntactic subclasses?

A natural approach to finding a complete problem for Poset-Tucker is taking the

search problem based on Corollary 5.20 and making �, Boundary(x) and Antipode(x)

be part of the input (as descriptions of Turing machines, say). The difficulty with this

approach is that in order to ensure that the resulting search problem is total, it must be

able to handle invalid inputs.

5.4 The Kneser-Lovász theorem

In this section, we define the total NP search problems associated with the

Kneser-Lovász theorem, and relate them to the truncated Tucker search problems and

to PPP.

Definition 5.22. Fix k > 0. An instance of the k-Kneser-Lovász search problem k-

Kneser-Lovász is a function c :
(n
k

)
→ {2k, . . . , n}. The solution to the search problem

is one of the following:

1. two elements A,B ∈
(n
k

)
with A ∩B = ∅ and c(A) = c(B), or

2. an A ∈
(n
k

)
such that c(A) /∈ {2k, . . . , n}.

We think of n as being exponentially big, and c being computed by a function

oracle (a type 2 problem). A solution is guaranteed to exist by the pigeonhole principle.

Observe that 1-Kneser-Lovász is equivalent to Pigeon, and so we immediately have:

Theorem 5.23. 1-Kneser-Lovász is PPP-complete.

Question 5.24. Is k-Kneser-Lovász in PPP for any k other than k = 1?

Theorem 5.25. There is a many-one reduction from k-Kneser-Lovász to k-

Truncated-Tucker.

Proof. This follows from the proof of the Kneser-Lovász theorem from the truncated

Tucker lemma.

107

PPP

1-KL
2-KL 3-KL

1-TT

2-TT

3-TT

Figure 5.6: PPP, Kneser-Lovász hierarchy, and truncated Tucker hierarchy for k = 1, 2,

and 3, assuming all possible separations.

Theorem 5.26 (Istrate-Crăciun, private communication). For fixed k > 0, k-Kneser-

Lovász is many-one reducible to (k + 1)-Kneser-Lovász.

Proof. Let c :
(n
k

)
→ {2k, . . . n} be an instance of k-Kneser-Lovász. Define c′ :

(n+2
k+1

)
→

{2(k+1), . . . , n+2} by c′(A) = c(A≤k)+2. It is clear that a solution to c′ as an instance

of (k+1)-Kneser-Lovász immediately gives a solution to c as an instance of k-Kneser-

Lovász.

Question 5.27. Is the (relativized) k-Kneser-Lovász hierarchy proper?

The results described above are shown in Figure 5.6, assuming each level of the

Kneser-Lovász search problem and truncated Tucker search problem is distinct.

Bibliography

[1] James Aisenberg, Maria Luisa Bonet, and Sam Buss. Quasi-polynomial size Frege
proofs of Frankl’s theorem on the trace of finite sets. To appear in Journal of
Symbolic Logic.

[2] James Aisenberg, Maria Luisa Bonet, and Sam Buss. Tucker’s Lemma is PPA
complete. Preliminary manuscript, http://eccc.hpi-web.de/report/2015/163/, 2015.

[3] James Aisenberg, Maria Luisa Bonet, Sam Buss, Adrian Crăciun, and Gabriel Is-
trate. Short proofs of the Kneser-Lovász coloring principle. Submitted for publica-
tion, journal version of [4], 2015.

[4] James Aisenberg, Maria Luisa Bonet, Sam Buss, Adrian Crăciun, and Gabriel Is-
trate. Short proofs of the Kneser-Lovász coloring principle. In Proc. 42th Interna-
tional Colloquium on Automata, Languages, and Programming (ICALP’15), Lecture
Notes in Computer Science 9135, pages 44–55, 2015.

[5] M. Ajtai. The complexity of the pigeonhole principle. In Proceedings of the 29-
th Annual IEEE Symposium on Foundations of Computer Science, pages 346–355,
1988.

[6] Jeremy Avigad. Plausibly hard combinatorial tautologies. In Paul Beame and
Samuel R. Buss, editors, Proof Complexity and Feasible Arithmetics, pages 1–12.
American Mathematical Society, 1997.

[7] Paul Beame, Stephen Cook, Jeff Edmonds, Russell Impagliazzo, and Toniann
Pitassi. The relative complexity of NP search problems. Journal of Computer
and System Sciences, 57(1):3–19, 1998.

[8] Arnold Beckmann and Samuel R. Buss. Improved witnessing and local improvement
principles for second-order bounded arithmetic. ACM Transactions on Computa-
tional Logic, 15(1), 2014. Article 2, 35 pages.

[9] Maria Luisa Bonet, Samuel R. Buss, and Toniann Pitassi. Are there hard examples
for Frege systems? In P. Clote and J. Remmel, editors, Feasible Mathematics II,
pages 30–56, Boston, 1995. Birkhäuser.

[10] Maria Luisa Bonet, Toniann Pitassi, and Ran Raz. Lower bounds for cutting planes
proofs with small coefficients. Journal of Symbolic Logic, 62:708–728, 1997. An

108

109

earlier version appeared in Proc. Twenty-Seventh Annual ACM Symposium on the
Theory of Computing, 1995, pp. 575-584.

[11] Karol Borsuk. Drei Sätze über die n-dimensionale Euklidische Sphäre. Fundamenta
Mathematicae, 1(20):177–190, 1933.

[12] Josh Buresh-Oppenheim. On the TFNP complexity of factoring. Unpublished
manuscript, http://www.cs.toronto.edu/∼bureshop/factor.pdf, 2006.

[13] Josh Buresh-Oppenheim and Tsuyoshi Morioka. Relativized NP search problems
and propositional proof systems. In Proc. 19th IEEE Conference on Computational
Complexity (CCC), pages 54–67, 2004.

[14] Sam Buss. Quasipolynomial size proofs of the propositional pigeonhole principle.
To appear in Theoretical Computer Science, 2015.

[15] Samuel R. Buss. Bounded Arithmetic. Bibliopolis, 1986. Revision of 1985 Princeton
University Ph.D. thesis.

[16] Samuel R. Buss. Polynomial size proofs of the propositional pigeonhole principle.
Journal of Symbolic Logic, 52:916–927, 1987.

[17] Samuel R. Buss. Propositional consistency proofs. Annals of Pure and Applied
Logic, 52:3–29, 1991.

[18] Samuel R. Buss. Propositional proof complexity: An introduction. In U. Berger and
H. Schwichtenberg, editors, Computational Logic, pages 127–178. Springer-Verlag,
Berlin, 1999.

[19] Samuel R. Buss. Towards NP-P via proof complexity and proof search. Annals of
Pure and Applied Logic, 163(9):1163–1182, 2012.

[20] Xi Chen and Xiaotie Deng. Settling the complexity of two-player Nash equilibrium.
In Proceedings of the 47th Annual IEEE Symposium on Foundations of Computer
Science (FOCS’06), pages 261–272, 2006.

[21] Xi Chen, Xiaotie Deng, and Shang-Hua Teng. Settling the complexity of computing
the two-player Nash equilibrium. Journal of the ACM, 56(3):Article 14, 2009.

[22] Stephen A. Cook. Feasibly constructive proofs and the propositional calculus. In
Proceedings of the Seventh Annual ACM Symposium on Theory of Computing, pages
83–97, 1975.

[23] Stephen A. Cook and Phuong Nguyen. Foundations of Proof Complexity: Bounded
Arithmetic and Propositional Translations. ASL and Cambridge University Press,
2010. 496 pages.

[24] Stephen A. Cook and Robert A. Reckhow. On the lengths of proofs in the propo-
sitional calculus, preliminary version. In Proceedings of the Sixth Annual ACM
Symposium on the Theory of Computing, pages 135–148, 1974.

110

[25] Stephen A. Cook and Robert A. Reckhow. The relative efficiency of propositional
proof systems. Journal of Symbolic Logic, 44:36–50, 1979.

[26] Constantinos Daskalakis, Paul W. Goldberg, and Christos H. Papadimitriou. The
complexity of computing a Nash equilibrium. In Proceedings of the Thirty-Eighth
Annual ACM Symposium on Theory of Computing (STOC’06), pages 71–78, 2006.

[27] Xiaotie Deng, Jack Edmonds, Zhe Feng, Zhengyang Liu, Qi Qi, and Zeying Xu.
Understanding PPA-completeness. Technical Report ECCC-TR15-120, Electronic
Colloquium on Computational Complexity, August 2015.

[28] Xiaotie Deng, Qi Qi, and Jie Zhang. Direction preserving zero point computing
and applications (extended abstract). In Internet and Network Economics, 5th In-
ternational Workshop (WINE), Lecture Notes in Computer Science 5929. Springer,
2009.

[29] Peter Frankl. On the trace of finite sets. Journal of Combinatorial Theory, Series
A, 34:41–45, 1983.

[30] Robert M. Freund. Variable dimension complexes, part I: Basic theory. Mathematics
of Operations Research, 9(4):479–497, 1984.

[31] Robert M. Freund. Variable dimension complexes, part II: A unified approach
to some combinatorial lemmas in topology. Mathematics of Operations Research,
9(4):498–509, 1984.

[32] Robert M. Freund and Michael J. Todd. A constructive proof of Tucker’s combina-
torial lemma. Journal of Combinotorial Theory, Series A, 30:321–325, 1981.

[33] Katalin Friedl, Gábor Ivanyos, Miklos Santha, and Yves F. Verhoeven. Locally 2-
dimensional Sperner problems complete for the Polynomial Parity Argument classes.
In Algorithms and Complexity, 6th Italian Conference (CIAC), Lecture Notes in
Computer Science 3998, pages 380–391. Springer, 2006.

[34] Ira Gessel and Gian-Carlo Rota, editors. Classic Papers in Combinatorics.
Birkhäuser, 1987.

[35] Michelangelo Grigni. A Sperner lemma complete for PPA. Information Processing
Letters, 77(5-6):255–259, 2001.

[36] Armin Haken. The intractability of resolution. Theoretical Computer Science,
39:297–308, 1985.

[37] G.H. Hardy and E.M. Wright. An Introduction to the Theory of Numbers. Oxford
University Press, 6 edition, 2008.

[38] Pavel Hrubeš and Iddo Tzameret. The proof complexity of polynomial identities.
In Proc. 24th IEEE Conf. on Computational Complexity (CCC), pages 41–51, 2009.

[39] Pavel Hrubeš and Iddo Tzameret. Short proofs for determinant identities. SIAM J.
Computing, 44(2):340–383, 2015.

111

[40] Gabriel Istrate and Adrian Crăciun. Proof complexity and the Kneser-Lovász the-
orem. In Theory and Applications of Satisfiability Testing (SAT), Lecture Notes in
Computer Science 8561, pages 138–153. Springer Verlag, 2014.

[41] Emil Jeřábek. Dual weak pigeonhole principle, Boolean complexity, and derandom-
ization. Annals of Pure and Applied Logic, 124:1–37, 2004.

[42] Emil Jeřábek. Integer factoring and modular square roots. To appear in Journal of
Computer and System Sciences, 201?

[43] Gyula O.H. Katona. A theorem of finite sets. In Theory of Graphs: Proc. Coll.
Tihany, Hungary, Sept. 1966, pages 187–207. Akadémiai Kiadó and Academic Press,
1966. Reprinted in [34], pp. 361-380.

[44] Leszek Aleksander Ko lodziejczyk, Phuong Nguyen, and Neil Thapen. The provably
total NP search problems of weak second-order bounded arithmetic. Annals of Pure
and Applied Logic, 162(2):419–446, 2011.

[45] Jan Kraj́ıček. Bounded Arithmetic, Propositional Calculus and Complexity Theory.
Cambridge University Press, Heidelberg, 1995.

[46] Jan Kraj́ıček and Pavel Pudlák. The number of proof lines and the size of proofs in
first-order logic. Archive for Mathematical Logic, 27:69–84, 1988.

[47] Joseph B. Kruskal. The number of simplices in a complex. In R. Bellman, edi-
tor, Mathematical Optimization Techniques, pages 251–278. University of California
Press, 1963.

[48] László Lovász. Kneser’s conjecture, chromatic number, and homotopy. Journal of
Combinatorial Theory, Series A, 25(3):319 – 324, 1978.

[49] Jǐŕı Matoušek. A combinatorial proof of Kneser’s conjecture. Combinatorica,
24(1):163–170, 2004.

[50] Jǐŕı Matoušek. Using the Borsuk-Ulam Theorem: Lectures on Topological Methods
in Combinatorics and Geometry. Springer, second edition, 2008.

[51] Akihiro Nozaki, Toshiyasi Arai, and Noriko H. Arai. Polynomial-size Frege proofs
of Bollobás’ theorem on the trace of sets. Proceedings of the Japan Academy, Series
A. Math. Sci., 84(8):159–161, 2008.

[52] Dömötör Pálvölgyi. 2D-Tucker is PPAD-complete. In Internet and Network Eco-
nomics, 5th International Workshop (WINE), Lecture Notes in Computer Science
5929, pages 569–574. Springer, 2009.

[53] Christos H. Papadimitriou. On the complexity of the parity argument and other
inefficient proofs of existence. Journal of Computer and System Sciences, 48(3):498–
532, 1994.

[54] Pavel Pudlák. On the lengths of proofs of finitistic consistency statements in first
order theories. In Logic Colloquium ’84, pages 165–196. North-Holland, 1986.

112

[55] Pavel Pudlák. Improved bounds to the lengths of proofs of finitistic consistency
statements. In Logic and Combinatorics, volume 65 of Contemporary Mathematics,
pages 309–331. American Mathematical Society, 1987.

[56] Pavel Pudlák. Lower bounds for resolution and cutting planes proofs and monotone
computations. Journal of Symbolic Logic, 62:981–998, 1997.

[57] Alexander A. Razborov. Lower bounds for the polynomial calculus. Computational
Complexity, 7:291–324, 1998.

[58] Robert A. Reckhow. On the Lengths of Proofs in the Propositional Calculus. PhD
thesis, Department of Computer Science, University of Toronto, 1976. Technical
Report #87.

[59] Nathan Segerlind. The complexity of propositional proofs. Bulletin of Symbolic
Logic, 13(4):417–481, 2007.

[60] Richard Statman. Complexity of derivations from quantifier-free Horn formulae,
mechanical introduction of explicit definitions, and refinement of completeness the-
orems. In R. Gandy and M. Hyland, editors, Logic Colloquium ’76, pages 505–517,
Amsterdam, 1977. North-Holland.

[61] Andrew G. Thomason. Hamiltonian cycles and uniquely edge colorable graphs.
Annals of Discrete Mathematics, 3:259–268, 1978.

[62] Albert W. Tucker. Some topological properties of disk and sphere. In Proceedings of
the First Canadian Mathematical Congress, pages 285–309. University of Toronto
Press, 1946.

[63] Günter M. Ziegler. Generalized Kneser coloring theorems with combinatorial proofs.
Inventiones Mathematicae, 147(3):671–691, 2002.

