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ABSTRACT OF THE DISSERTATION

Two flows in non-Kähler geometry

By

Jess Eugene Boling

Doctor of Philosophy in Mathematics

University of California, Irvine, 2016

Professor Jeffrey D. Streets, Chair

We consider various geometric flows which are well adapted for the study of non-Kähler

complex manifolds. We first study solutions to the pluriclosed flow on compact complex

surfaces, giving a complete classification of the long time behavior of homogeneous solutions

to the flow and constructing non-trivial, non-Kähler expanding soliton solutions to the pluri-

closed flow. We also give a simple expression for the evolution of the Lee form on a complex

surface, and use this to give simplified proofs of various classification results for fixed points

of the flow.

We also consider a functional which is closely related to the Dirichlet energy of maps between

two Hermitian manifolds and which has holomorphic maps as global minimizers. We derive

it’s first and second variations and consider the associated parabolic flow. We provide con-

ditions under which the flow converges to a critical point of the functional and give explicit

examples of nice solutions to the flow in Hopf surfaces. We additionally demonstrate so

called ’bubbling’ criteria for solutions of the flow on surfaces and, using this functional, we

give a variational proof that submanifolds of Vaisman manifolds are Vaisman.

vi



Chapter 1

Introduction

1.1 Preamble and Statement of Results

Complex geometry has for many years been dominated by the study of Kähler manifolds,

that is Hermitian manifolds where the metric and complex structure satisfy a rather strong

integrability condition. The intense interest in Kähler manifolds is driven from physics

by supersymmetry requirements coming from field theory, while within geometry Kähler

manifolds are of independent interest as they form a class of Riemannian manifolds where

many historically significant geometric problems have tractable and beautiful solutions. For

example, a classical problem in geometry is to determine whether or not a manifold admits

an Einstein metric. This problem has not been solved in general as there are very few

known obstructions to the existence of an Einstein Riemannian metric. In contrast, when

restricted to Kähler manifolds this problem has a definitive solution determined by Chern

classes and notions of bundle stability coming from geometric invariant theory. Such a result

is obtainable as Kähler geometry provides is the existence of Kähler potentials and torsion-

free Hermitian connections, reducing many problems in this setting to studying a partial
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differential equation for a single function.

The motivation for this thesis is that the world of complex geometry is not entirely Kähler,

and while the classification of compact complex surfaces which are Kähler is essentially

completely solved through the work of Kodaira, the classification of non-Kähler surfaces is

incomplete. The simplest non-Kähler surface is perhaps the Hopf manifold S3×S1, but other

famous examples are provided by the Kodaira-Thurston manifold and the Inoue surfaces;

explicit constructions of these will be given in Chapter 2. There is a long standing conjecture

concerning the structure of compact complex surfaces with first Betti number b1 = 1 and

second Betti number b2 > 0, namely

Conjecture 1.1 (Due to Kato, [11]). A minimal compact complex surface with first Betti

number b1 = 1 and second Betti number b2 > 0 is a small deformation of a Hopf surface

blown up at b2 > 0 points.

Here the word minimal is meant in the sense that the surface has no curves with self inter-

section −1. Much of the work in this thesis it to study geometric analytic tools which, the

author believes, can be brought to bear on this problem.

In trying to solve geometric problems in non-Kähler settings, the primary difficulty arises

from the lack of Kähler potentials and torsion-free connections. Without these tools, the

complexity of many calculations is magnified by the inclusion of torsion terms, terms which

in local Riemannian normal coordinates involve derivatives of the complex structure. Never-

theless, careful consideration of such terms can give good estimates and classification results.

The flow approach to solving any geometric problem is to start with one geometric struc-

ture and evolve it over time toward one which, hopefully, better solves the problem. In

Riemannian geometry, the Ricci flow gt = −2Rc(g) is one such flow and is an essential tool

for obtaining classification results for Riemannian manifolds satisfying a variety of curvature

conditions. The issue with using the Ricci flow in Hermitian geometry is that the Ricci
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tensor is defined only using the Levi-Civita connection, and so the Ricci flow is ignorant of

any background complex geometry. In particular, a metric which is initially Hermitian need

not remain Hermitian along the flow, see for example the Ricci flow on a Hopf surface with

a product metric.

For this reason, it is natural to consider flows which are constructed out of curvature tensors

associated to Hermitian compatible connections. Streets and Tian have studied a family of

such flows, and Chapter 2 of this thesis studies solutions to a particularly important member

of this family, the pluriclosed flow. Specifically, in Chapter 2 the complete classification

of locally homogeneous solutions to pluriclosed flow on compact complex surfaces is given.

Particularly notable results here are that Hopf surface solutions converge to metrics which are

unique up to homothety and Inoue surface solutions converge in the Gromov-Hausdorff sense

to circles whose length depends on the complex structure. These results are obtained by first

listing all the possible locally homogeneous compact complex surfaces and providing local

moving frames for them which simplify the necessary curvature calculations. The qualitative

long-time behavior of the resulting ODE is then determined and an understanding of the

fundamental group of these spaces gives the Gromov-Hausdorff limits.

A solution to a given geometric flow will often not exist for all time and even if it does it will

become singular in some limit. Blowing up the singularity, i.e. rescaling and re-centering

near the singular points, often gives specialized blowup or soliton solutions to the flow. This

is the subject of the latter half of Chapter 2, where non-trivial expanding soliton solutions

to pluriclosed flow are constructed by taking blowdown limits of the homogeneous solutions.

This is done because a good knowledge of soliton solutions to any flow is but one step toward

using the flow to obtain classification results.

We also provide a very simple evolution equation for the torsion Lee form θ along the

pluriclosed flow on a surface, and use it to give an elementary and self contained proof

that non-Kähler fixed points of the flow on complex surfaces are Hopf surfaces, bypassing
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the current known proof which requires an understanding of low dimension Einstein-Weyl

structures.

Another commonly studied flow is the harmonic map heat flow ft = τ(f) for maps f :

M → N between Riemannian manifolds. This flow arises from gradient descent applied

to the Dirichlet energy functional E = 1
2

∫
M
|Df |2dV . The subject of harmonic maps and

the harmonic map heat flow is at this point classical, with many famous results concerning

their existence, classification, and singular structure. For example, returning to what can be

done with Kähler geometry there is Siu’s [21] strong rigidity result for Kähler manifolds of

strongly negative curvature. This is a celebrated theorem which exploits the work of Eells

and Sampson on the harmonic map heat flow. Similarly, Siu-Yau’s proof of the Frankel

conjecture [22] uses Kahler geometry to give curvature conditions under which a harmonic

S2 is holomorphic.

Given that much information can be inferred from a complex manifold by studying it’s com-

plex submanifolds, it is natural to study functionals of maps f : M → N between Hermitian

manifolds which are small when f is holomorphic. If JM and JN are the corresponding

complex structures, the functional E+ = 1
4

∫
M
|Df + JN ◦ Df ◦ JM |2dV exactly serves this

purpose, and it’s critical points are called ∂̄-harmonic maps. Chapter 3 is devoted to study-

ing this functional, it’s critical points, and it’s associated parabolic flow for maps between

almost Hermitian manifolds. We start by computing the first and second variations of this

functional, noting that the Euler-Lagrange equation differs from the harmonic map equation

by two terms, both of which are first order in derivatives of f with one linear and the other

quadratic. As holomorphic maps are automatically stable critical points of this functional,

we derive a positivity result for a certain elliptic operator on vector fields which holds on

any almost-Hermitian manifold. We then apply this positivity result to derive an eigenvalue

bound for almost-Kähler manifolds with positive Ricci curvature.

We then study the parabolic flow associated to E+, giving conditions for the long time
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existence and convergence of the flow. In particular we show the long time existence of the

flow for any almost-Kähler target manifold N with strictly negative sectional curvature. The

central difficulty in obtaining compactness or convergence results for E+ is that it is non-

coercive, and so the Dirichlet energy E may blow up along a sequence which is minimizing

E+. As an attempt to circumvent this, we give a family of coercive functionals which contain

E+ as a limiting case, and demonstrate convergence for every member of this family. We

also give some additional conditions where the energy E is finite along a solution the flow.

A solution to a geometric flow which is becoming singular is said to develop bubbles if near

the singularity the solution is ’pinching off’ a non-trivial solution, obtained by localizing

and rescaling around the singular point. Bubbling phenomena are often encountered when

studying conformally invariant functionals like the Dirichlet energy or Yang-Mills functional.

Since the functional E+ is conformally invariant if the source is a complex curve, bubbling

phenomena does indeed occur and we show that on Riemann surfaces if a finite time singu-

larity does occur then a non-trivial ∂̄-harmonic S2 bubbles off.

We end the discussion of the functional E+ by applying the variational structure of this

functional to giving an elementary proof that an immersed complex curve in a Vaisman

manifold is a torus.

1.2 Notation and Hermitian Manifolds

In what follows if some geometric structure is fixed along a flow, we will assume that structure

is smooth; we will not focus on the weakest assumptions under which the results of this

thesis hold, but someone who is analytically minded will notice that we rarely take more

than two derivatives of anything. We begin by establishing some notation that is common

in Hermitian geometry but for which every author follows slightly different conventions. A
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standard reference for this material is the book [12].

Definition 1.1. An almost-complex manifold we mean a smooth manifold M together with

a smooth section J , the almost-complex structure, of the bundle T ∗M ⊗ TM such that

J2 = −Id. If M is provided with a Riemannian metric, g, we say that (M, g, J) is almost-

Hermitian if g(JX, JY ) = g(X, Y ) for all tangent vectors X, Y ∈ TM . If (M, g, J) is an

almost-Hermitian manifold it’s fundamental 2-form ω, also known as it’s Kähler form, is

ω(X, Y ) = g(JX, Y ). If α ∈ T ∗M is a one-form the action of J on α will be given by

Jα = −α ◦ J . If J restricts to an immersed submanifold N then we say that N is a complex

submanifold of M .

We note that Hermitian metrics are readily available for any almost-Complex structure. If we

view the metric and Kähler form as providing isomorphisms g, ω : TM → T ∗M, g(X)(Y ) =

g(X, Y ), then in this notation we would have ω = gJ and the Hermitian condition on g is

equivalent to saying that gJ = Jg. Next, the complexified bundle of one-forms C ⊗ T ∗M

admits a decomposition according to the ±
√
−1-eigenspaces of J . Note that we will often

use the same notation for T ∗M and it’s complexification.

Definition 1.2. Elements of the −
√
−1-eigenspace, Λ1,0, of the action of J on T ∗M are

called 1, 0-forms. Elements of the
√
−1-eigenspace, Λ0,1, of the action of J on T ∗M are

called 0, 1-forms. This decomposition extends to k-forms via

ΛkT ∗M =
k∑
i=0

Λi(Λ1,0) ∧ Λk−i(Λ0,1) =
k∑
i=0

Λi,j.

The previous conventions laid out, we demonstrate with a simple example why this notation

is convenient. In C = R2 let ∂x and ∂y denote two tangent vectors with J∂x = ∂y. With

dx and dy the dual forms, in this notation we have Jdx = −dx ◦ J = dy. Therefore, with

dz = dx+
√
−1dy, we have Jdz = dy−

√
−1dx = −

√
−1dz, and so dz spans the (1, 0)-forms

while dz̄ spans the (0, 1)-forms.
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Definition 1.3. The operators ∂ and ∂̄ are defined as follows. Let πi,j denote the projection

of k-forms, k = i + j, onto Λi,j. Then, viewing d as mapping smooth sections of Λk to

Λk+1, let ∂ = πi+1,j ◦ d and ∂̄ = πi,j+1 ◦ d. We say the complex structure J is integrable if

∂̄2 = 0 and in this case (M,J) is said to be a complex manifold. Complex manifolds of real

dimension two are called complex curves, while complex manifolds of real dimension four are

called complex surfaces.

If we decompose the exterior derivative d = ∂ + ∂̄ + N into the three pieces correspond-

ing to the above definition, then the action of N on differential forms is tensorial, i.e.

N(fα) = fN(α). N is called the Nijenhuis tensor and can be expressed in terms of first

order derivatives of J at a point. The integrability of J is equivalent to N = 0 and unless

otherwise noted we will assume the complex structure is integrable.

On a complex manifold we would have d = ∂̄ + ∂, motivating us to naively think that the

exterior derivative d is two times the real part of ∂. The following definition then concerns

the imaginary part.

Definition 1.4. Let (M,J) be a complex manifold. The operator dc, mapping smooth k-

forms to smooth k + 1-forms, is given by

dc =
√
−1(∂̄ − ∂).

Note that dc is a real operator, meaning it maps real k-forms to real k + 1-forms. This is

made precise in the following lemma, where dc can be expressed as a composition of other

real operators. Also we caution the reader that elsewhere in the literature the notation for

dc often differs from the one here by a sign or a factor of 2.

Lemma 1.1. Let J act on differential k-forms in the obvious way, i.e. J(α ∧ β ∧ . . .) =

Jα ∧ Jβ ∧ . . .. Then dc = JdJ−1.
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It is also important to note the following lemma relating the composition of d and dc.

Lemma 1.2. Let (M,J) be a complex manifold. Then ∂∂̄ = −∂̄∂ and −dcd = ddc =

2
√
−1∂∂̄.

1.2.1 Metric Integrability Conditions

In this section ∇ will denote the Levi-Civita connection of an almost-Hermitian manifold.

In Hermitian geometry, a metric integrability condition is a vanishing assumption about one

or more covariant derivatives of the complex structure, or combinations thereof. The most

basic first order condition one could then impose, ∇J = 0, is the strongest.

Definition 1.5. An almost-Hermitian manifold (M, g, J) is said to be Kähler if ∇J = 0.

Note that a Kähler manifold is automatically a complex manifold as the Nijenhuis tensor

depends on first derivatives of J and would therefore vanish at a point in Riemannian normal

coordinates. In addition to this, a complex manifold for which dω = 0 satisfies ∇J = 0,

as ∇J can be expressed in terms of N and dω, see [12] Chapter 3. The following lemma

provides many examples of Kähler manifolds.

Lemma 1.3. Any complex submanifold of a Kähler manifold is a Kähler manifold. In par-

ticular any complex submanifold of CP n, and so every complex variety, is a Kähler manifold.

Through Hodge theory considerations, every compact Kähler manifold has the property that

it’s odd Betti numbers are even. Using this, one can check if a compact Hermitian manifold

admits any Kähler metrics. For example it is easy to see from this that the Hopf surface

S3 × S1 admits no Kähler metrics at all but has a natural complex structure coming from

the quotient S3 × S1 ' (C2 \ {0})/Γ by the action (z, w) 7→ (2z, 2w).

There are numerous other, less restrictive integrability conditions which are encountered in
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the literature. We will list the more commonly found ones, together with examples of such

a manifold in each case.

Definition 1.6. An almost-Hermitian manifold (M2n, g, J) is...

1. Almost-Kähler if dω = 0 but J is not integrable. Gromov [7] has shown that any sym-

plectic manifold has a compatible almost-Hermitian metric, and so symplectic manifolds

provide a large class of examples in this case.

2. Nearly-Kähler if the component dω2,1+1,2 = 0 vanishes. S6 with it’s standard complex

structure is one example.

3. Balanced if d∗ω = 0, equivalently dωn−1 = 0. Twistor spaces often have balanced

metrics but no Kähler metrics, for constructions, see for example [10].

4. Gauduchon if ddcωn−1 = 0 and J is integrable. By a result of Gauduchon [5], every

compact Hermitian manifold is conformal to a Gauduchon metric.

5. Pluriclosed if ddcω = 0. By Gauduchon’s result, any compact complex surface is pluri-

closed. Chapter 2 is devoted to the study of a flow of pluriclosed metrics and we

construct many examples in this case.

There is an additional integrability condition that is of interest for conformal geometry and

the classification of compact complex surfaces.

Definition 1.7. A Hermitian manifold (M, g, J) is locally conformally Kähler if dω = θ∧ω

for a closed one-form θ called the Lee form. We say that M is Vaisman if the stronger

condition ∇θ = 0, θ 6= 0 holds.

In the previous definition if we have a locally defined function for which dq = θ, then the

metric ω̃ = e−qω is Kähler, motivating the name for this condition. Locally conformally
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Kähler manifolds are common among non-Kähler manifolds. For example, the Hopf surfaces

S3 × S1 admit Vaisman metrics and any blow up of a locally conformally Kähler manifold

is locally conformally Kähler. A good reference for this an related results is the book [2].

In particular, if Kato’s conjecture on surfaces is true, then all compact complex manifolds

with b1 = 1 and b2 > 0 have locally conformally Kähler metrics. A good reference for these

and other results is the survey article [19]. For later purposes it is important to note the

following proposition, see [2] Chapter 1.

Proposition 1.1. Let (M, g, J) be a Vaisman manifold with Lee form θ and let η = Jθ. Let

X = θ] be the dual Lee vector field and Y = JX. Then X is holomorphic and Killing.

Proof. From the Koszul formula, for any vector fields U, V,W

2g(∇UV,W ) = (LV g)(U,W ) + dV [(U,W ),

applying this to V = X and using the Vaisman condition gives LXg = 0. Now on a Hermitian

manifold where dω = θ ∧ ω the covariant derivative of J is

2(∇UJ)V = −η(V )U − θ(V )JU + g(U, V )Y + ω(U, V )X

and therefore

2(∇XJ)V = −η(V )X − θ(V )Y + g(X, V )Y + ω(X, V )X

= −ω(X, V )X − g(X, V )Y + g(X, V )Y + ω(X, V )X

= 0.

Since ∇X = 0, we have [X,U ] = LXU = ∇XU , so

(LXJ)U = [X, JU ]− J [X,U ] = ∇X(JU)− J∇XU = (∇XJ)U = 0.
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Vaisman metrics are therefore quite special as they split isometrically. Moreover, the geom-

etry in directions perpendicular to the Lee vector field is Sasakian [2].

1.2.2 Commutator Identities in non-Kähler Geometry

Any Hermitian manifold (M2n, g, J) comes equipped with a map on the algebra of forms

L : Λ∗ → Λ∗, given by

Lα = ω ∧ α,

which is nothing more than wedging a k-form with ω. It’s adjoint L∗ is of course defined

by 〈X,L∗Y 〉 = 〈LX, Y 〉, where we use the canonical inner product on forms where, for

i < j < k < . . . and so on, σi∧σj ∧σk ∧ . . . is an orthonormal basis whenever the σi form an

orthonormal basis of one-forms. In particular note that L∗β = 〈β, ω〉 for any β ∈ Λ2. The

following theorem relates the commutator of the operators L, d, and dc to their adjoints and

the form dω.

Theorem 1.1 ([1], page 306). Let (M2n, g, J) be a Hermitian manifold and let L,L∗ be given

as above. Let κ = [L∗, ∂ω] be the zero-th order operator on the algebra of forms given by the

commutator of L∗ with the operation of taking a (left) wedge product of a form with ∂̄ω and

note that κ : Λi,j → Λi+1,j. Then

1. [∂̄∗, L] =
√
−1(∂ + κ)

2. [∂∗, L] = −
√
−1(∂̄ + κ̄)

3. [L∗, ∂̄] = −
√
−1(∂∗ + κ∗)
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4. [L∗, ∂] =
√
−1(∂̄∗ + κ̄∗)

By adding together combinations of these identities we obtain similar statements for the real

operators d and dc.

Corollary 1.1. Let µ = κ+ κ̄ = [L∗, dω] and µc = [L∗, dcω]. Then

1. [d∗, L] = −(dc + µc)

2. [L∗, dc] = d∗ + µ∗

1.2.3 Simplifications for the Torsion on Almost-Complex Surfaces

If (M4, g, J) is an almost-Hermitian surface then it is easy to see that the map L : Λ1 → Λ3

is an isometry. In this case, one always has dω = θ ∧ ω for a uniquely defined one-form θ

which is called the Lee form of ω. We record a few fundamental lemmas which will be used

in a few places throughout the thesis.

Lemma 1.4. Let ∗ : Λk → Λ4−k denote the Hodge star operator induced by g and the

orientation determined by J .

• If α is a one-form, then ∗α = Jα ∧ ω.

• If β is a two-form, then ∗β = 〈β, ω〉ω − Jβ.

Lemma 1.5. Let (M4, g, J) be an almost-Hermitian surface. If β is a two-form then Lβ =

β ∧ ω = 〈ω, β〉dV . In particular, since dθ ∧ ω = d2ω = 0 we conclude 〈dθ, ω〉 = 0 and

∗dθ = −Jdθ.

Proof. Since these are tensorial identities we need only pick some frame at a point and

compute these to see if they are equal. Any oriented orthonormal basis σi of T ∗M such that
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Jσi = σi+1 for i odd will work. Then, for example ∗σ1 = σ234 = Jσ1∧ (σ12 +σ34) = Jσ1∧ω,

where σijk... = σi ∧ σj ∧ σk ∧ . . ..

As mentioned before, covariant derivatives of the complex structure can be compactly ex-

pressed in terms of the Lee form [12]

Lemma 1.6. Let (M4, g, J) be a complex surface. Let θ be its Lee form and η = Jθ, let X

denote the Lee vector field and Y = JX, and finally let ∇ denote the Levi-Civita connection

of g.

2(∇UJ)V = −η(V )U − θ(V )JU + g(U, V )Y + ω(U, V )X.

Integrability conditions of Hermitian metrics on complex surfaces can then be simplified

by expressing them in terms of the Lee form. By unwinding the results of the previous

subsections we get the following.

Lemma 1.7. A complex surface (M4, g, J) is almost-Kähler if, and only if, θ = 0. It is

Gauduchon or pluriclosed if, and only if, d∗θ = 0.
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Chapter 2

Pluriclosed Flow

2.1 Flows of Hermitian Metrics

Let (M2n, g, J) be a Hermitian manifold with complex structure J and compatible Rieman-

nian metric g. The fundamental or Kähler 2-form associated to the metric is ω = g(J ·, ·)

and we remind the reader that the metric is pluriclosed if

∂∂ω = 0.

In [23, 24], Streets and Tian introduce a parabolic flow of Hermitian metrics which, when

the metric is pluriclosed, is equivalent to the following

∂ω

∂t
= ∂∂∗ω + ∂∂

∗
ω +

√
−1

2
∂∂ log det g. (2.1)

In this chapter we present the long time behavior of (2.1) on all compact Hermitian surfaces

which are locally homogeneous. These include hyperelliptic, Hopf, Inoue, Kodaira, and non-

Kähler properly elliptic surfaces. We will also construct expanding soliton solutions of the
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flow on the universal covers of these spaces. Our theorem to this end will be:

Theorem 2.1. Let g(·) be a locally homogeneous solution of pluriclosed flow on a compact

complex surface which exists on a maximal time interval [0, T ). If T <∞ then the complex

surface is rational or ruled. If T =∞ and the manifold is a Hopf surface, the evolving metric

converges exponentially fast to a canonical form unique up to homothety. Otherwise, there

is a blowdown limit

g̃∞(t) = lim
s→∞

s−1g̃(st)

of the induced metric on the universal cover which is an expanding soliton in the sense that

g̃(t) = tg̃(1) up to automorphism.

This is analogous to the construction of expanding Ricci solitons in [16]. We also compute

the time-rescaled Gromov-Hausdorff limits of our solutions and observe collapse to points,

circles, and curves of high genus.

Theorem 2.2. Let g(·) be a locally homogeneous solution of pluriclosed flow on a compact

complex surface (M,J) which exists on the interval [0,∞) and suppose that (M,J) is not a

Hopf surface. Let ĝ(t) = g(t)
t

.

1. If the surface is a torus, hyperelliptic, or Kodaira surface, then the family (M, ĝ(t))

converges as t→∞ to a point in the Gromov-Hausdorff sense.

2. If the surface is an Inoue surface, then the family (M, ĝ(t)) converges as t → ∞ to a

circle in the Gromov-Hausdorff sense and moreover the length of this circle depends only on

the complex structure of the surface.

3. If the surface is a properly elliptic surface where the genus of the base curve is at least

2, then the family (M, ĝ(t)) converges as t→∞ to the base curve with a metric of constant

curvature.

4. If the surface is of general type, then the family (M, ĝ(t)) converges as t→∞ to a product
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of Kahler-Einstein metrics on M .

Remark: We note that homogeneous solutions of pluriclosed flow on Inoue and non-Kähler

properly elliptic surfaces have similar asymptotics and Gromov-Hausdorff limits as the ex-

ample solutions to Chern-Ricci flow on these surfaces considered in [27], and our arguments

for the Gromov-Hausdorff limits in these cases are the same as in [27].

The organization of the chapter is as follows. In Section 2 we will provide background

discussion and calculations for the homogeneous Hermitian geometries considered throughout

the chapter. In Section 3 we will analyze the long time behavior of the flow for each of the

geometries in Section 2 and prove Theorem 2.2. In Section 4 we complete the proof of

Theorem 2.1 by performing blowdown limits on the solutions of Section 3. We then study

the evolution of the Lee form under pluriclosed flow on surfaces, giving a simple evolution

equation for it and giving an elementary proof that compact fixed points of the flow are

locally conformally Kähler. Additionally, we construct a large class of non-compact and non-

complete fixed points by conformally modifying Ricci flat Kähler manifolds. We conclude

the chapter with a discussion of future work which would build off the results of this chapter.

2.2 Homogeneous and non-Kähler Hermitian Geome-

try

2.2.1 Hermitian Connections and Ricci Curvature Forms

Let (M2n, g, J) be a Hermitian manifold with fundamental 2-form ω. With a condition

on the torsion, Gauduchon [6] has shown that there is a canonical 1-dimensional family of

Hermitian connections ∇τ on M . When τ = 1 we obtain the Chern connection ∇c = ∇1. It
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is defined by

g(∇c
XY, Z) = g(∇g

XY, Z)− 1

2
dω(JX, Y, Z)

where ∇g is the Levi-Civita connection of g. In local holomorphic coordinates the Chern

connection ∇c has coefficients

Γkij = glkgjl,i

where

gjl,i =
∂

∂zi
gjl.

If Rc(X, Y )Z = ([∇c
X ,∇c

Y ]−∇c
[X,Y ])Z is the (3, 1) curvature tensor of the Chern connection,

its Ricci form is defined by

ρcω =
1

2
Σ
i
Rc(X, Y, Jei, ei).

Here ei is an orthonormal basis of the (real) tangent space. In local holomorphic coordinates

the Ricci form of the Chern connection is given by

ρcω = −
√
−1

2
∂∂ log det g.

In a more invariant form, if ω and ω0 are two Hermitian metrics, their Chern-Ricci forms

are related by

ρcω = ρcω0
−
√
−1∂∂ log

ωn

ωn0
,
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where ωn = ω ∧ ω ∧ . . . ∧ ω. This formula is useful for computing with invariant metrics.

For example, it is immediate that ρcω = ρcω0
whenever ω and ω0 have proportionally constant

volume forms, so the Chern-Ricci form of a left invariant metric is independent of the metric

used to compute it.

The Bismut connection is defined by

g(∇b
XY, Z) = g(∇g

XY, Z) +
1

2
dω(JX, JY, JZ)

and is the connection corresponding to τ = −1 in the family of Gauduchon. As with the

Chern connection, there is an associated Bismut-Ricci form

ρbω =
1

2
Σ
i
Rb(X, Y, Jei, ei).

The Bismut-Ricci and Chern-Ricci forms are related by

ρbω = ρcω − dd∗ω

and so we obtain

Lemma 2.1. Pluriclosed flow is given by

dω

dt
= ∂∂∗ω + ∂∂

∗
ω +

√
−1

2
∂∂ log det g = −(ρbω)(1,1).

2.2.2 Homogeneous Hermitian Geometries

In this section we will give a short summary of homogeneous Hermitian geometry in complex

dimension two. We will begin with a few notions from homogeneous Riemannian geometry.

Definition 2.1. A Riemannian manifold (Mn, g) is locally homogeneous if for any two
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points x, y ∈ M there exists an isometry θ : U → V between open neighborhoods x ∈ U and

y ∈ V such that θ(x) = y. (M, g) is globally homogeneous if the locally defined isometries θ

are defined on all of M .

Given that the universal cover of any complete, locally homogeneous Riemannian manifold

is globally homogeneous, in order to classify complete, locally homogeneous Riemannian

manifolds it is enough to classify the simply connected, complete, homogeneous Riemannian

manifolds together with their co-compact lattices. With a globally homogeneous Riemannian

manifold the isometry group Iso(M, g) acts transitively on M . Then the isotropy groups

Gx = {θ ∈ Iso(M, g) θ(x) = x}

are all conjugate, isomorphic to closed subgroups of O(n), and M is diffeomorphic to the

quotient G/Gx. A first step toward the classification of such spaces, then, is to find closed

subgroups of O(n) of dimension k and embeddings of these subgroups into unimodular Lie

groups of dimension n+ k. That the same manifold M can arise from different quotients in

this way is addressed with the following definition.

Definition 2.2. A (minimal) model geometry is

1. A complete, simply connected, homogeneous Riemannian manifold (M, g) where the metric

g is the pullback of a metric on some compact manifold whose universal cover is M , together

with

2. A closed subgroup G of Iso(M, g) acting transitively on M such that G is minimal with

this property.

A list of the four dimensional model geometries can be found in [9] in the context of ho-

mogeneous Ricci flows and is summarized below. Note that we have omitted the groups

G.
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Proposition 2.1. The four-dimensional model geometries are either

1. Products of two-dimensional model geometries S2,R2 and H2,

2. S4,CP 2, H3 × R,CH2, H4, or

3. A simply connected 4-dimensional Lie group which has a co-compact lattice.

The metrics in the first and second cases are products of canonical, well known Einstein

metrics, while the metrics on each of the Lie groups are left invariant.

Here Hn is hyperbolic space of dimension n, CP n is complex projective space with a Fubini-

Study metric, and CHn is complex hyperbolic space: an open ball in Cn with the Bergman

metric.

Definition 2.3. A complex structure J is compatible with a model geometry (M, g,G) if

G acts by holomorphic isometries. If J is compatible we say that (M, g, J) is homogeneous

Hermitian.

Wall [30] classified the (integrable) complex structures up to isomorphism and conjugation

which are compatible with a given 4-dimensional model geometry.

Proposition 2.2. The 4-dimensional model geometries which admit a compatible integrable

complex structure are either

1. Products of the two-dimensional model geometries S2 = CP 1, R2 = C, and H2 = CH1,

with canonical product complex structures,

2. CP 2 and CH2, with canonical complex structures, or

3. A 4-dimensional Lie group with a left invariant integrable complex structure

Proof. We will give a brief sketch; for details see [30]. Let J be a compatible integrable

complex structure on a four-dimensional model geometry (M, g,G). First, note that J must

commute with the action of the isotropy group on the tangent space at each point. For the

model geometries S4, H3 × R, and H4 where the isotropy group contains a copy of SO(3),
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there can be no such commuting J . The remaining cases are either Lie groups, CP 2, CH2,

or products of two-dimensional models. The standard complex structures on CP 2, CH2,

and the product cases are compatible with the model geometry structure and are the unique

compatible complex structures up to automorphism and conjugation. The Lie group cases

are treated as follows.

A compatible complex structure on a Lie group G is determined by its action on the Lie

algebra g of left invariant vector fields. Note that J is integrable if, and only if, the
√
−1-

eigenspace of the complexification JC : gC → gC is a Lie subalgebra of gC. Let ei be a basis

of g and let ckij be the structure constants of g with respect to such a basis, so that

[ei, ej] = ckijek.

Because there are only two 2-dimensional complex Lie algebras up to isomorphism, if J is

integrable there is a basis Z1, Z2 of the
√
−1-eigenspace of JC where either [Z1, Z2] = 0 or

[Z1, Z2] = Z2. Writing Zi = ajiej for some aji ∈ C, the integrability condition becomes

ai1a
j
2c
k
ij = εak2 (2.2)

where ε = 0 or 1 depending on whether or not the
√
−1-eigenspace is abelian. Once a

solution aji to the above equations is known, if we let

X1 = (<aj1)ej, X2 = −(=aj1)ej, X3 = (<aj2)ej, X4 = −(=aj2)ej,

then an integrable complex structure is given by JX1 = X2 and JX3 = X4. As there are

possibly many solutions to the above system, automorphisms of g substantially reduce the

number of cases that one needs to consider. Doing this on a case by case basis for each

of the Lie algebras in Proposition (2.1) completes the proof and gives the list of complex

structures.

21



We now list the complex structures and corresponding groups of the previous proposition.

In each case we will use a left invariant basis Zi of T 1,0M and give the Lie brackets with

respect to this basis; the complex structure is JCZi =
√
−1Zi. When there is more than one

compatible complex structure we list a family of Lie brackets with respect to such a basis.

1. On R4 there is a unique compatible complex structure. Quotients by a cocompact

lattice in this case give complex tori.

2. On Ẽ(2)×R there is a unique compatible complex structure. Here Ẽ(2) is the universal

covering group of the rigid motions of the Euclidean plane. The non-vanishing Lie

brackets with respect to a T 1,0 frame are

[Z1, Z2] = Z1 [Z1, Z2] = −Z1

and compact quotients in this case are hyperelliptic surfaces.

3. On R×SU2 there is a one parameter family of compatible complex structures (param-

eterized by α ∈ R) with brackets

[Z1, Z2] = Z2 [Z1, Z2] = −Z2

[Z2, Z2] = (
√
−1α− 1)Z1 + (

√
−1α + 1)Z1.

Here the compact quotients give Hopf surfaces.

4. On S̃L2(R)×R there is a one parameter family of compatible complex structures with

brackets

[Z1, Z2] =
√
−1Z1 [Z1, Z2] =

√
−1Z1

[Z1, Z1] = (
√
−1− α)Z2 + (

√
−1 + α)Z2.
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Quotients by a cocompact lattice in this case give non-Kähler, properly elliptic surfaces.

5. On Nil3 × R there is a unique compatible complex structure whose brackets are

[Z1, Z1] =
√
−1(Z2 + Z2).

The quotients in this case form Kodaira surfaces.

6. There is a semi-direct product Nil3 oR with two compatible complex structures given

by

[Z1, Z2] = εZ1 [Z1, Z2] = −εZ1,

[Z1, Z1] = −ε
√
−1(Z2 + Z2).

where ε = ±1. Compact quotients in this case are Kodaira surfaces.

7. There is a family of solvable Lie groups with complex structures

[Z1, Z2] = λZ1 [Z1, Z2] = −λZ1,

[Z2, Z2] = 2a
√
−1(Z2 + Z2),

where λ = −b +
√
−1a is a complex number. These do not always have a cocompact

lattice; when such a lattice exists the quotient forms an Inoue surface.

8. The solvable Lie group Sol41 has two compatible complex structures. The first is given

by

[Z1, Z2] = −Z2 [Z1, Z2] = −Z2,

[Z1, Z1] = Z1 − Z1,

23



and we will call Sol41 with this complex structure Sol1. The second is given by

[Z1, Z2] = −Z2 [Z1, Z2] = −Z2,

[Z1, Z1] = Z1 − Z1 + Z2 − Z2,

which we will call Sol′1. The quotients in each these cases form Inoue surfaces.

2.2.3 The Bismut-Ricci Form of a Left Invariant Metric

We next record a basic lemma concerning the left invariant Hermitian metrics that we will

consider on the previous Lie groups.

Lemma 2.2. Let (M4, J) be a 4-dimensional Lie group with a left invariant complex struc-

ture. With a basis Zi of left invariant T 1,0M vector fields, any Hermitian metric g is deter-

mined by complex valued functions x = g(Z1, Z1), y = g(Z2, Z2), and z = g(Z1, Z2) satisfying

x, y > 0 and xy− |z|2 > 0. If ζ i is the dual basis to the Zi, the Kähler form ω(·, ·) = g(J ·, ·)

is given by

ω =
√
−1(xζ11 + yζ22 + zζ12 + zζ21),

where ζ ij = ζ i ∧ ζj is the wedge product. The metric g is left invariant if and only if x, y,

and z are constant on M .

A formula for the Ricci form associated to each of the canonical connections ∇τ for a left

invariant Hermitian metric was computed in [29]; the following proposition concerns the

specific case of the Bismut connection.

Proposition 2.3 ([29], Proposition 4.1). Let (M2n, g, J) be a Lie group with a left invariant
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Hermitian structure. Then the Bismut-Ricci form can be written as ρb = dη, where

η = ηiζ
i + ηiζ

i

ηi =
√
−1cjij −

√
−1gjkcl

kj
gil

and ckij, c
k
ij

are the structure constants of the Lie algebra with respect to the Zi, Zi

2.3 Pluriclosed Flow on the Model Geometries

We are now ready to compute the pluriclosed flow equations

dω

dt
= −(ρbω)(1,1)

for the homogeneous Hermitian metrics of the previous section and to prove Theorem 2.2.

Recall that our metrics have the form

ω =
√
−1(xζ11 + yζ22 + zζ12 + zζ21)

with respect to the above T 1,0M frames.

2.3.1 Hyperelliptic Surfaces

Lemma 2.3. Let ω be a left invariant Hermitian metric on Ẽ(2)×R and let ζ i be a (T 1,0)∗M

frame satisfying

dζ1 = −ζ12 + ζ12 dζ2 = 0.
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Then

η1 =
√
−1

zx

xy − |z|2
,

ρb =
√
−1

zx

xy − |z|2
(−ζ12 + ζ12) + conjugates.

Corollary 2.1. Pluriclosed flow for a left invariant metric on Ẽ(2)× R satisfies

x′ = y′ = 0

z′ = − xz

xy − |z|2
.

Where x′, y′, z′ denote time derivatives of x, y, z. In particular, |z| = O(e−Ct) for some

positive constant C depending on the initial condition.

Corollary 2.2. Under pluriclosed flow a homogeneous Hermitian metric g on a hyperelliptic

surface converges exponentially fast in the C∞ topology to a flat Kähler metric. Under the

family of metrics g(t)
t

, a hyperelliptic surface converges to a point in the Gromov-Hausdorff

sense.

Remark : Notice that ω is a flat Kähler metric if and only if z = 0. This is therefore an

example of pluriclosed flow taking non-Kähler initial data to a Kähler metric.

Proof. A direct calculation gives the Bismut-Ricci form and the resulting pluriclosed ODE.

From here, we compute

(|z|2)′ = −2
x0|z|2

x0y0 − |z|2
≤ −2

|z|2

y0

,

and so

|z| ≤ |z0|e−
1
y0
t
.
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2.3.2 Hopf Surfaces

Lemma 2.4. Let ω be a left invariant Hermitian metric on R × SU2. With respect to a

frame satisfying

dζ1 = (1−
√
−1α)ζ22 dζ2 = −ζ12 − ζ21

we have

η1 =
αx2 +

√
−1(xy − x2 − 2|z|2)

xy − |z|2

η2 =
αxz −

√
−1z(x+ y)

xy − |z|2
,

and so

ρb = (1−
√
−1α)

αx2 +
√
−1(xy − x2 − 2|z|2)

xy − |z|2
ζ22+

−αxz +
√
−1z(x+ y)

xy − |z|2
(ζ12 + ζ21) + conjugates.

Corollary 2.3. Pluriclosed flow for a left invariant metric on R× SU2 is given by

x′ = 0

y′ = 2
x((α2 + 1)x− y) + 2|z|2

xy − |z|2

z′ =
α
√
−1xz − z(x+ y)

xy − |z|2

in particular, |z| = O(e
− 1

x0
t
) and y → (1 + α2)x0.
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Corollary 2.4. Under pluriclosed flow, a locally homogeneous Hermitian metric on a Hopf

surface converges in the C∞ topology to a metric which is independent of the initial condition

and is unique up to homothety.

Proof. We compute

(|z|2)′ = −2
|z|2(x0 + y)

x0y − |z|2

and so

(|z|2)′ ≤ −2
|z|2

x0

.

Thus

|z|2 ≤ |z0|2e−
2
x0
t
.

Note that y is increasing whenever y < (1 + α2)x0 and if y is nondecreasing then

y ≤ (α2 + 1)x0 + 2
|z0|2

x0

e
− 2

x0
t
.

Therefore y → (1 + α2)x0.

Remark: A homogeneous Hopf surface is a compact complex surface whose universal cover

is C2\{0} and which has a finite index subgroup of the fundamental group generated by

the map θ(z, w) = (az, bw), where a, b ∈ C∗ and |a| = |b| < 1. One can identify R × SU2

with C2\{0} so that the induced complex structure is left invariant and the map θ is given

by left multiplication by the element (|a|, id) ∈ R × SU2. The parameter α then encodes
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information on the angles arg a and arg b of a and b. Because |a| = |b|, the metric

ω =
√
−1

1

r2
∂∂̄r2

descends to the quotient Hopf surface. Up to homothety this can be the only non-Kähler

fixed point of the flow on compact complex surfaces. This result was proved initially by

Ivanov and Gauduchon [4] through their study of Hermitian-Einstein-Weyl manifolds. We

will give a different proof of this result later in this chapter which is much simpler and

requires only basic knowledge of Hermitian geometry.

2.3.3 Non-Kähler, Properly Elliptic Surfaces

Lemma 2.5. Let ω be a left invariant Hermitian metric on ˜SL2(R) × R. With the frame

given by

dζ1 = −
√
−1(ζ12 + ζ12) dζ2 = (α−

√
−1)ζ11,

we compute

η1 =
z(y − x)

xy − |z|2
+
√
−1

−αyz
xy − |z|2

η2 =
xy + y2 − 2|z|2

xy − |z|2
+
√
−1

−αy2

xy − |z|2
,

and therefore

ρb = (
−αyz +

√
−1z(x− y)

xy − |z|2
)(ζ12 + ζ12)+

(α−
√
−1)(

xy + y2 − 2|z|2 −
√
−1αy2

xy − |z|2
)ζ11 + conjugates.
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Corollary 2.5. Pluriclosed flow of a left invariant Hermitian metric on ˜SL2(R)×R is given

by

x′ = 2(1 +
(1 + α2)y2 − |z|2

xy − |z|2
) y′ = 0

z′ =
−
√
−1αyz + z(y − x)

xy − |z|2
.

In particular, z = O(e−Ct) for some positive constant C depending on the initial condition

and x ∼ 2t.

Corollary 2.6. If ω(t) is a locally homogeneous solution to pluriclosed flow on a non-Kähler

properly elliptic surface, then under the family of metrics ω(t)
t

the surface converges to the

base curve in the Gromov-Hausdorff sense.

Proof. We compute that xy − |z|2 is increasing since

2xy2 + 2(1 + α2)y3 − 4|z|2y + 2|z|2(x− y) > 0

whenever xy − |z|2 > 0. Then note that x′ ≥ 4 whenever x ≤ y, so for any δ > 0

(|z|2)′ ≤ |z|22(δ − 1

y0

)

for sufficiently large t. Thus

|z| ≤ Ce
(δ− 1

y0
)t

for some constant C. x ∼ 2t is then immediate.

If π : Γ\ ˜SL2(R) × R → Σ is the projection of a non-Kähler properly elliptic surface to the

base curve Σ, the fibers are the leaves of the distribution spanned by the real and imaginary

30



parts of Z2. Moreover, there is a unique metric ωΣ on Σ such that π∗ωΣ = 2
√
−1ζ11̄. Now,

if f : Σ → Γ\ ˜SL2(R) × R is any function (not necessarily continuous) such that π ◦ f = id

then, for any ε > 0, π and f are ε-Gromov-Hausdorff approximations with respect to the

metrics ω(t)
t

and ωΣ as long as t is sufficiently large.

2.3.4 Kodaira Surfaces

Lemma 2.6. Let ω be a left invariant metric on Nil3 × R. With a frame satisfying

dζ1 = 0 dζ2 = −
√
−1ζ11,

we compute

η2 =
y2

xy − |z|2
,

and so

ρb = −
√
−1

y2

xy − |z|2
ζ11 + conjugate.

Corollary 2.7. Pluriclosed flow of a left invariant metric on Nil3 × R is given by

x′ = 2
y2

xy − |z|2

y′ = z′ = 0.

In particular

1

2
x2y0 − x|z0|2 = 2y2

0t+
1

2
x2

0y0 − x0|z0|2
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for all t.

Corollary 2.8. Let g(t) be a homogeneous solution of pluriclosed flow on a primary Kodaira

surface. Then under the metrics g(t)
t

the surface converges to a point in the Gromov-Hausdorff

sense.

Proof. This is a direct computation.

Lemma 2.7. Let ω be a left invariant Hermitian metric on NiloR. With a frame satisfying

dζ1 = ε(−ζ12 + ζ12) dζ2 = ε
√
−1ζ11,

we compute

η1 = ε(− yz

xy − |z|2
+
√
−1

xz

xy − |z|2
),

η2 = ε(− y2

xy − |z|2
+
√
−1

2|z|2 − xy
xy − |z|2

),

and therefore

ρb =
−yz +

√
−1xz

xy − |z|2
(−ζ12 + ζ12)+

xy − 2|z|2 −
√
−1y2

xy − |z|2
ζ11 + conjugates.

Corollary 2.9. Pluriclosed flow of a left invariant metric on Nil oR is given by

x′ = 2
y2

xy − |z|2
y′ = 0

z′ = −(x+
√
−1y)z

xy − |z|2
.

In particular x ∼ 2
√
y0t and |z| = O(e−Ct) for some positive constant C depending on the
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initial data.

Corollary 2.10. Let g(t) be a homogeneous solution of pluriclosed flow on a secondary

Kodaira surface. Then under the metrics g(t)
t

the surface converges to a point in the Gromov-

Hausdorff sense.

Proof. Similar to the previous cases, we compute

(|z|2)′ ≤ −|z|
2

y0

,

and so |z| = O(e−Ct). Then note that

2y0

x
≤ x′ ≤ 2y2

0

xy0 − |z0|2
.

2.3.5 Inoue Surfaces

Lemma 2.8. Let ω be a left invariant Hermitian metric on the solvable Lie group with frame

satisfying

dζ1 = −λζ12 + λζ12 dζ2 = −2a
√
−1ζ22.

Then we compute

η1 =
2azx+

√
−1λ̄zx

xy − |z|2
,

η2 =

√
−1(λ+ λ̄)|z|2 + (2a−

√
−1λ)xy

xy − |z|2
.
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Therefore the Bismut-Ricci form is

ρb =
2azx+

√
−1λ̄zx

xy − |z|2
(−λζ12 + λζ12)+

(
2a(λ+ λ̄)|z|2 + (−4a2

√
−1− 2aλ)xy

xy − |z|2
)(ζ22) + conjugates.

Corollary 2.11. Pluriclosed flow of a left invariant metric on the solvable family is given

by

x′ = 0,

y′ = 12a2(1 +
|z|2

xy − |z|2
),

z′ = −(3a2 + b2 + 2ab
√
−1)

xz

xy − |z|2
.

In particular, y ∼ 12a2t and |z| is bounded.

Proof. We compute

(|z|2)′ = −(3a2 + b2)
x0|z|2

x0y − |z|2
,

which shows that |z| is bounded. It is then immediate that y(t)/t→ 12a2.

Corollary 2.12. Let ω(t) be a locally homogeneous solution to pluriclosed flow on an Inoue

surface of type SA. Then under the family of metrics g(t)
t

, SA converges to a circle of length
√

6|a| in the Gromov-Hausdorff sense.

Proof. We recall the construction of an Inoue surface of type SA. Choose a matrix A ∈

SL3(Z) with eigenvalues α, ᾱ, and c = |α|−2, where α 6= ᾱ and |α| 6= 1. Write α = |α|eiθ.
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Consider the solvable Lie group G of matrices of the form


αs 0 w

0 cs r

0 0 1

 ,

where r, s ∈ R, w ∈ C. This group has Lie brackets given by [X4, X1] = aX1 + bX2,

[X4, X2] = −bX1 + aX2, and [X4, X3] = −2aX3, where a = log |α| and b = θ. There

is a natural identification of G with C × CH1 given by sending an element as before to

(w, r + cs
√
−1). Under such an identification, left multiplication is a biholomorphism. Let

(a1, a2, a3)T be an eigenvector of α and (c1, c2, c3)T be a real eigenvector of c. Consider the

lattice Γ generated by the elements

g0 =


α 0 0

0 c 0

0 0 1

 gi =


1 0 ai

0 1 ci

0 0 1

 .

As shown by Inoue [8], the quotient Γ\G = SA forms a compact complex surface of class

V II0 with the property that it has no complex curves. Moreover, SA is a T 3 bundle over

S1, where the projection π : SA → S1 is given by mapping (the equivalence classes of)

(w, r+ cs
√
−1) to cs; this projection is induced by the natural projection of C×CH1 to the

imaginary axis of the second factor.

Consider the closed curve γ : S1 → SA given by γ(s) = (0, cs
√
−1). Note that this is well

defined as a map of equivalence classes and π ◦ γ = id. Let ω(t) be a left invariant solution

to pluriclosed flow on G. With respect to ω(t), γ has length Lω(γ) =
√

y(t)
2

. Therefore, with

respect to the metrics ω(t)
t

, the length of γ approaches
√

6|a| as t → ∞. Because there are

no curves in SA, the real and imaginary parts of Z1 form an integrable distribution whose

leaves are dense in each T 3 fiber. Now, because the length of Z1 with respect to ω(t) is fixed
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in time, for any ε > 0 the diameter of each T 3 fiber with respect to the metric ω(t)
t

is less

than ε for t sufficiently large. Therefore γ and π are ε-Gromov-Hausdorff approximations

between the circle of length
√

6|a| and SA with the metric ω(t)
t

for t sufficiently large.

Lemma 2.9. Let ω be a left invariant Hermitian metric on Sol1 with frame given by

dζ1 = ζ11̄ dζ2 = ζ12 + ζ12̄.

Then

η1 = −
√
−1

2xy − |z|2 − z2

xy − |z|2
,

η2 = −
√
−1

y(z̄ − z)

xy − |z|2
,

and so

ρb11̄ = −
√
−1

4xy − (z + z̄)2

xy − |z|2
,

ρb22̄ = 0,

ρb12̄ = −
√
−1

y(z̄ − z)

xy − |z|2

Corollary 2.13. Pluriclosed flow of a left invariant metric on Sol1 is given by

x′ =
4xy − (z + z̄)2

xy − |z|2

y′ = 0

z′ =
y(z̄ − z)

xy − |z|2
.

In particular, x ∼ 4t and z is bounded.

36



Proof. We compute

(|z|2)′ =
y(z − z̄)2

xy − |z|2
≤ 0,

which shows that |z| is bounded. Then, noting that x′ ≥ 4, we conclude the result.

Lemma 2.10. Let ω be a left invariant Hermitian metric on Sol′1 with frame satisfying

dζ1 = ζ11̄ dζ2 = −ζ11̄ + ζ12̄ + ζ12.

Then

η1 = −
√
−1

2xy − yz − |z|2 − z2

xy − |z|2
,

η2 = −
√
−1

y(z̄ − z)− y2

xy − |z|2
,

and so

ρb11̄ = −
√
−1

4xy − y(z + z̄)− (z + z̄)2 + 2y2

xy − |z|2
,

ρb22̄ = 0

ρb12̄ = −
√
−1

y(z̄ + z)− y2

xy − |z|2

Corollary 2.14. Pluriclosed flow of a left invariant metric on Sol′1 is given by

x′ =
4xy − y(z + z̄)− (z + z̄)2 + 2y2

xy − |z|2
y′ = 0,

z′ =
y(z̄ − z)− y2

xy − |z|2
.

In particular, x ∼ 4t and |z| = O(log t).
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Proof. First, note that the imaginary part of z is bounded and it suffices to assume that z

is real. For simplicity, rescale the initial condition so that y0 = 1. Then x and z satisfy the

system

x′ = 4 + 2
1− z
x− z2

z′ = − 1

x− z2
.

This implies that

0 > z′ ≥ − 1

4t+ x0 − z2
0

,

which gives |z| = O(log t).

Corollary 2.15. Let ω(t) be a locally homogeneous solution to pluriclosed flow on an Inoue

surface of type S+. Then under the family of metrics ω(t)
t

the surface S+ converges to a circle

of length
√

2| log λ| in the Gromov-Hausdorff sense, where λ depends on the construction of

S+. For an Inoue surface of type S− the surface converges to a circle of length 2
√

2| log λ|.

Proof. We recall the construction of an Inoue surface of type S+. Let N ∈ SL2(Z) have

positive eigenvalues λ 6= 1, λ−1 and corresponding eigenvectors (a1, a2)T , (b1, b2)T . Choose

integers j, k, l with l 6= 0 and a complex number κ. Let Sol41 be the group of matrices of the

form 
1 u v

0 q r

0 0 1


where q, r, u, v ∈ R and q > 0. For m ∈ R this group has transitive actions on CH1×C with

trivial stabilizers so that an element as before maps (
√
−1, 0) to

(r +
√
−1q, v +

√
−1(u+m log q),
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with Sol1 corresponding to the m = 0 and Sol′1 corresponding to the m 6= 0 cases. By taking

m = =(κ)
log λ

we can obtain a cocompact lattice Γ generated by

g0 =


1 0 <(κ)

0 λ 0

0 0 1

 gi =


1 bi ci

0 1 ai

0 0 1

 g3 =


1 0 b1a2−b2a1

l

0 1 0

0 0 1

 ,

where ci are determined by the previously chosen data. The quotient by this lattice gives an

Inoue surface of type S+. An Inoue surface of type S− is formed by a similar quotient where

m = 0 and λ is replaced with λ2. As shown by Inoue, these are compact complex surfaces

of class V II0 with no curves and, similarly to the type SA case, these are bundles over S1

such that the real and imaginary parts of Z2 span an integrable distribution whose leaves

are dense in each fiber. The curve γ : [0, 1] → S given by γ(t) = (
√
−1λt, 0) provides the

relevant Gromov-Hausdorff approximation for t sufficiently large and we observe that the

fibers are shrinking with respect to the metrics ω(t)
t

as in the case of Inoue surfaces of type

SA.

We can now complete the proof of Theorem 2.2.

Proof. Let ω(t) be a locally homogeneous solution to pluriclosed flow on a compact complex

surface which exists on [0,∞). If ω0 is Kähler then it is a product of Kähler-Einstein

metrics with non-positive scalar curvatures. Under the rescaled metrics ω(t)
t

the surface

either converges to a product of Kähler-Einstein metrics with negative scalar curvature, as

in the case where the universal covering metric is CH2 or CH1 × CH1, collapses to a curve

of genus g ≥ 2, as in the case CH1 × C, or collapses to a point, as in the case of a flat

metric on C2. If ω0 is non-Kähler, note that it must be a left invariant Hermitian metric on

one of the Lie groups considered before. Given that it is not a solution on the Hopf surface,

the claimed Gromov-Hausdorff convergence follows from the case by case analysis considered
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throughout this section.

2.4 Blowdown Limits of Homogeneous Solutions

Let (M, g(t)) be a 1-parameter family of Riemannian manifolds for t ∈ (0,∞). Suppose that

a blowdown limit g∞(t) = lim
s→∞

s−1g(st) exists in the sense that there is a 1-parameter family

of diffeomorphisms θs of M such that θs1 ◦ θs2 = θs1s2 and g∞(t) = lim
s→∞

θ∗ss
−1g(st) uniformly

on compact subsets of M × (0,∞). Fix some a > 0. Then

g∞(at) = lim
s→∞

θ∗ss
−1g(sat) = aθ∗a−1 lim

s̃→∞
θ∗s̃ s̃
−1g(s̃t) = aθ∗a−1g∞(t).

This implies that

g∞(t) = tg∞(1)

up to diffeomorphisms of M . Therefore, if g∞(t) satisfies some geometric flow then it is

an expanding soliton solution of that flow. This construction has been used in [16] to

give expanding soliton solutions to Ricci flow by performing blowdown limits of type III

homogeneous Ricci flows.

In this section we will construct expanding soliton solutions to pluriclosed flow by applying

blowdown limits to the homogeneous solutions of the previous section. We will write X1 and

−X2 for the real and imaginary parts of Z1 respectively, and similarly for X3, −X4, and Z2.

With respect to the dual basis σi to the Xi we see that

ζ1 =
1

2
(σ1 +

√
−1σ2) ζ2 =

1

2
(σ3 +

√
−1σ4),
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and so our metrics have the form

ω =
1

2
(xσ12 + yσ34 −=(z)(σ13 + σ24) + <(z)(σ14 − σ23)).

2.4.1 The Hyperelliptic Case

Proposition 2.4. Let ω(t) be a left invariant solution of pluriclosed flow on Ẽ(2)×R. There

is a blowdown limit ω∞(t) = lims→∞ s
−1ω(st) of the form

ω∞(t) =
1

2
(x0σ

12 + y0σ
34)

which is an expanding soliton solution. It is isometric to the flat metric on C2.

Proof. Recall that x′ = y′ = 0, and |z| = O(e−Ct) for some positive constant C depending

on the initial conditions. Define diffeomorphisms ψs : R4 → Ẽ(2)× R by

ψs(q, r, u, v) = αs(q, r)βs(u, v),

where

αs(q, r) = exp(
√
s(qX1 + rX2))

and

βs(u, v) = exp(
√
s(uX3 + vX4)).

Write θs = ψs ◦ ψ−1
1 . We see that

s−1θ∗s(ω(st)) =
1

2
(x0σ

12 + y0σ
34) +O(e−Cst)
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and so there is a blowdown limit

ω∞(t) =
1

2
(x0σ

12 + y0σ
34).

2.4.2 The Non-Kähler, Properly Elliptic Case

Recall that our T 1,0 frame has Lie brackets

[Z1, Z2] =
√
−1Z2 [Z1, Z2] =

√
−1Z1

[Z1, Z1] = (
√
−1− α)Z2 + (

√
−1 + α)Z2.

With respect to the basis Xi described above, the Lie brackets are

[X1, X2] = X3 − αX4 [X3, X2] = X1 [X1, X3] = X2

and the complex structure is given by JX1 = X2 and JX3 = X4.

Lemma 2.11. Any element of ˜SL2(R)× R can be written uniquely as

exp(qX1 + rX2) exp(uX3 + vX4).

Proof. This follows from [16], Lemma 3.34, where we note that X4 is central and our X1,

X2, and X3 correspond, respectively, to X3, X2, and X1 of that Lemma.

Proposition 2.5. Let ω(t) be a left invariant solution to pluriclosed flow on ˜SL2(R) × R.

Then there is a blowdown limit ω∞(t) given by a product metric

ω∞(t) = ωCH1(t)⊕ ωC
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on CH1 × C which is an expanding soliton solution.

Proof. The argument is the same as in [16] for the blowdown limit for a homogeneous Ricci

flow on S̃L2(R). Recall that x ∼ 2t, y′ = 0, and |z| = O(e−Ct) for some positive constant C.

Consider the family of diffeomorphisms ψs : R4 → S̃L2(R)× R given by

ψs(q, r, u, v) = exp(qX1 + rX2) exp(s
1
2 (uX3 + vX4)),

write A(q, r) = exp(qX1 + rX2) and Bs(u, v) = exp(s
1
2 (uX3 + vX4)) and let

h−1dh = B−1
s A−1dABs + s

1
2 (duX3 + dvX4)

be the Maurer-Cartan form. We compute

s−1ψ∗sω(st) ∼ 1

2
(2t((B−1

s A−1dABs)1 ∧ (B−1
s A−1dABs)2) + y0(du ∧ dv)).

The proof is concluded by noting that conjugation by Bs gives a rotation in the (q, r)-plane,

so there is a blowdown limit

ω∞(t) =
1

2
(2t(A−1dA)1 ∧ (A−1dA)2 + y0du ∧ dv),

which is now a product metric solution on CH1 × C.

2.4.3 The Kodaira Surface Cases

Proposition 2.6. Let ω(·) be a left invariant solution to pluriclosed flow on Nil×R. Then

there is a blowdown limit

ω∞(t) =
1

2
(2
√
y0tσ

12 + y0σ
34)
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of ω(·) which is an expanding soliton solution.

Proof. Recall that x ∼ 2
√
y0t and y′ = z′ = 0. Define diffeomorphisms ψs : R4 → Nil × R

by

ψs(q, r, u, v) =




1 s
1
4 r s

1
2u

0 1 s
1
4 q

0 0 1

 , s
1
2v

 ,

and let θs = ψs ◦ ψ−1
1 . We see that

s−1θ∗sω(st) =
1

2
(2
√
y0tσ

12 + y0σ
34) +O(s−

1
4 ).

Therefore the blowdown limit is given by

ω∞(t) =
1

2
(2
√
y0tσ

12 + y0σ
34)

Proposition 2.7. Let ω(t) be a left invariant solution to pluriclosed flow on NiloR. Then

there is a blowdown limit

ω∞(t) =
1

2
(2
√
y0tσ

12 + y0σ
34)

given by the expanding soliton solution on Nil × R

Proof. Recall that x ∼ 2
√
y0t, y

′ = 0, and |z| = O(e−Ct) for some positive constant C. Note

that these groups NiloR and Nil×R are diffeomorphic. For the same coordinates as in the

previous case, use the same diffeomorphisms θs to obtain the desired blowdown limit.
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2.4.4 The Inoue Surface Cases

Let ω(t) be a left invariant solution to pluriclosed flow on the solvable family. Recall that

x′ = 0, y ∼ 12a2t, and |z| = O(1).

Proposition 2.8. There is a blowdown limit

ω∞(t) =
1

2
(x0σ

12 + 12a2tσ34)

Proof. Define diffeomorphisms ψs : R4 → G by

ψs(q, r, u, v) =



eav cos(bv) −eav sin(bv) 0 s
1
2 q

eav sin(bv) eav cos(bv) 0 s
1
2 r

0 0 e−2av u

0 0 0 1


and let θs = ψs ◦ ψ−1

1 . Then

s−1θ∗sg(st) =
1

2
(x0σ

12 + 12a2tσ34) +O(s−
1
2 )

Proposition 2.9. Let ω(t) be a left invariant solution to pluriclosed flow on Sol1. There is

a blowdown limit

ω∞(t) =
1

2
(4tσ12 + y0σ

34)

Proof. Recall that x ∼ 4t, y′ = 0, and z is bounded. Define diffeomorphisms ψs : R3×R+ →
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Sol1 by

ψs(u, v, r, q) =


1 s

1
2u s

1
2v

0 q r

0 0 1


and let θs be as before. We see that

s−1θ∗sg(st) =
1

2
(4tσ12 + y0σ

34) +O(s−
1
2 )

Proposition 2.10. Let ω(t) be a left invariant solution to pluriclosed flow on Sol′1. There

is a blowdown limit

ω∞(t) =
1

2
(4tσ12 + y0σ

34)

given by the expanding soliton solution with respect to the other complex structure Sol1.

Proof. Recall that x ∼ 4t, y′ = 0, and |z| = O(log t). Let σi be one forms dual to the Xi

associated to the complex structure Sol1. The one forms σ̃i, dual to the X̃i associated to

the complex structure Sol′1, are given by

σ̃i = σi (i = 1, 2, 3) σ̃4 = σ4 − σ2.

If

ω =
1

2
(xσ̃12 + yσ̃34 −=(z)(σ̃13 + σ̃24) + <(z)(σ̃14 − σ̃23)
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is a left invariant Hermitian metric with respect to the complex structure Sol′1, we see that

ω =
1

2
(xσ12 + y(σ34 − σ32)−=(z)(σ13 + σ24) + <(z)(σ14 − σ12 − σ23)).

Therefore, using the same diffeomorphisms θs as in the previous proposition, we find a

blowdown limit

ω∞(t) =
1

2
(4tσ12 + y0σ

34)

We are now able to prove Theorem 2.1

Proof. Let ω(t) be a locally homogeneous solution to pluriclosed flow on a compact complex

surface M which exists on the maximal time interval [0, T ). If T is finite then M must be

either CP 2 or a product of CP 1 with a curve. Suppose then that T =∞. If ω(t) is Kähler

then the induced metric on the universal cover of M is one of CH2, CH1 ×CH1, CH1 ×C,

or C2. In each case, the induced metric is a product of Kähler-Einstein metrics and it is easy

to obtain the required diffeomorphisms to show the existence of a blowdown limit. If ω(t)

is non-Kähler, it is either a Hopf surface or one of the metrics considered in this section. It

was shown that the pluriclosed flow of a homogeneous metric on a Hopf surface converges to

a canonical metric up to homothety, and we have already constructed blowdown limits for

the remaining cases.
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2.5 Fixed Points and Locally Conformal Kähler Geom-

etry

Let (M4, g(t), J, ω(t)) be a solution to Pluriclosed flow on a complex surface. The Lee form

of ω is as always defined by dω = θ ∧ ω. In this section we will compute the evolution of

θ under the pluriclosed flow and derive classification results for the fixed points of the flow

from it.

Proposition 2.11. If ω(t) is a solution to pluriclosed flow ω′ = −ρ1,1 then the Lee form θ

evolves according to

θ′ ∧ ω = θ ∧ ρ1,1 +
1

2
ddcθ

θ′ =
1

2
∆dθ + L∗(θ ∧ ρ1,1)

Proof. We have

ω′ = −ρ1,1.

Applying this to dω = θ ∧ ω gives

θ′ ∧ ω − θ ∧ ρ1,1 = −dρ1,1.

Now recall that the Bismut-Ricci form ρ is related to the Chern-Ricci form ρc via

ρ = ρc + dJθ.
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In particular,

ρ1,1 = ρc +
dJθ + JdJθ

2
,

dρ1,1 =
dJdJθ

2
= −dd

cθ

2
,

using the fact that ρc is a closed (1, 1)-form. This proves the first equality.

The second equality is obtained by applying L∗ to the first. From the commutator identities

of Chapter 1 we have [L∗, dc] = d∗ + µ∗, and therefore

L∗(ddcθ) = −L∗dcdθ

= −dcL∗dθ − d∗dθ − µ∗dθ

= −d∗dθ

= ∆dθ.

The fourth equality comes from ∆d = −(dd∗ + d∗d) and the fact that d∗θ = 0 because the

metric is pluriclosed, while the second and third equalities follow from

µ = [L∗, dω] = L∗θL− θLL∗ = L∗θL− LθL∗,

µ∗ = L∗θ∗L− Lθ∗L∗

µ∗dθ = 0

A remarkable feature about the Bismut-Ricci form is that it behaves very well with respect

to conformal transformations of a Kähler metric. We will exploit this property to give an

elementary proof of the fact that pluriclosed, Bismut-Ricci flat metrics are Vaisman.

Proposition 2.12. Suppose that ω0 is a Kähler metric on the complex manifold M2n. Let
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u be some smooth function and consider the conformally equivalent Hermitian metric ω =

e2uω0. Then

ρbω = ρcω0
+ (2− n)ddcu.

In particular, on a locally conformally Kähler surface (M4, ω)

ρbω = ρcω0
,

where ω0 is the locally defined Kähler metric conformal to ω.

Proof. Let ω0 and ω be as above. Remember the two formulas for the Bismut and Chern

Ricci forms:

ρbω = ρcω + dJθ,

ρcω = ρcω0
−
√
−1∂∂̄ log(

ωn

ωn0
).

Note that the Lee form of ω is 2du and that dJdu = ddcu. Additionally

log(
ωn

ωn0
) = 2nu.

This combined with the fact that 2
√
−1∂∂̄ = ddc gives the result.

The previous proposition demonstrates that without assumptions of completeness or pluri-

closedness, there are many Bismut-Ricci flat surfaces.

Corollary 2.16. Let Ω ⊆ C2 be any domain with the standard flat metric ω0 and let e2u be

any positive function on Ω. Then e2uω0 is Bismut-Ricci flat. It is moreover pluriclosed if

e2u is a positive harmonic function.
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Proposition 2.13. Suppose that a locally conformally Kähler surface (M4, g, J) is Bismut-

Ricci flat. Then the Ricci curvature of g is

Rcg =
1

2
(|θ|2 + d∗θ)g − 1

2
θ ⊗ θ −∇θ.

Proof. By the previous proposition, if ω is locally conformally Kähler and Bismut-Ricci flat,

then the local conformal Kähler metric ω0 is Ricci flat. Recall next the formula for the

conformal change of the Ricci curvature: if g0 = e−2ug on a Riemannian manifold Mm then

Rcg0 = Rcg + (m− 2)(Hess(u) + du⊗ du)− (∆u+ (m− 2)|du|2)g,

the derivatives on the right hand side computed with respect to g. Under our hypothesis

we have local conformally Ricci flat metrics g0 and 2du = θ is a globally defined one-form.

Therefore

0 = Rcg +∇θ +
1

2
θ ⊗ θ +

1

2
(d∗θ − |θ|2)g.

Proposition 2.14. Under the same assumptions as the previous proposition, ∇θ = 0, so

(M4, g, J) is in fact Vaisman with non-negative Ricci curvature.

Proof. From the previous proposition we have

Rcg =
1

2
(|θ|2 + d∗θ)g − 1

2
θ ⊗ θ −∇θ.

Note that if θ is pluriclosed and locally conformally Kähler, then ∇θ is traceless and sym-

metric. We then take the inner product of the above identity with ∇θ and integrate over
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M , obtaining

∫
M

〈Rc,∇θ〉+
1

2
〈θ ⊗ θ,∇θ〉 = −

∫
M

|∇θ|2.

We conclude the proof by showing that both terms in the left hand side are divergences. For

the first, we integrate by parts and apply the second Bianchi identity to get

∫
M

〈Rc,∇θ〉 = −1

2

∫
M

〈ds, θ〉 = −1

2

∫
M

div(sθ]),

using that d∗θ = 0.

For the second, we have

∫
M

〈θ ⊗ θ,∇θ〉 = 2

∫
M

〈(d∗θ)θ, θ〉 = 0,

using the fact that ∇θ is symmetric.

We can use the previous calculations to give elementary proofs of classification results for

fixed points of the flow among compact surfaces.

Definition 2.4. A pluriclosed metric is static for pluriclosed flow if −ρ1,1 = λω for some

constant λ. It is respectively expanding, steady, or shrinking if λ > 0, λ = 0, or λ < 0.

Proposition 2.15. Suppose that ω is a pluriclosed metric on a compact complex surface

(M4, J) such that −ρ1,1 = λω. Then

∫
M

λ|θ|2 +
1

2
|dθ|2dV = 0.

In particular,

• If λ > 0 we must have θ = 0 and so ω is Kähler-Einstein.
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• If λ = 0 then M is locally conformally Kähler and Bismut-Ricci flat, and is therefore

Vaisman, splits locally as a product of a positively curved space form with a line, and

must therefore be a diagonal Hopf surface, a quotient of S3×S1 with a product metric.

Proof. With −ρ1,1 = λω we can apply the previous propositions to conclude

1

2
∆dθ = λθ.

Integrating this with θ gives us the desired identity. If λ > 0 then we must have θ = 0, while

if λ = 0 we conclude that dθ = 0 and by the previous propositions (M4, g, J) is a Vaisman

manifold with Ricci curvature

Rc =
1

2
(|θ|2g − θ ⊗ θ).

Note that |θ|2 6= 0 is a constant over M . If V,W are parallel to θ] then Rc(V,W ) = 0. If they

are perpendicular to θ] we have Rc(V,W ) = |θ|2
2
g(V,W ) so the Ricci curvature is a positive

constant in these directions. We conclude that g = θ
|θ| ⊗

θ
|θ| +

2
|θ|2Rc splits isometrically as a

product of a positively curved three dimensional space form. Therefore M must be a Hopf

surface.

2.6 Speculative Remarks

We have seen the long time behavior of pluriclosed flow on a wide variety non-Kähler complex

surfaces and have observed that information of the complex structure of such a surface is

contained in the asymptotic behavior of the flow. This is a small step toward using the

flow to study all non-Kähler complex surfaces, and the philosophy is that one would like
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to take a result which holds for the (Kähler-)Ricci flow and prove an analogous result in

this pluriclosed setting. We mention two directions of future work which would build off the

results in this chapter.

One might be interested in the behavior of the family of flows

dω

dt
= −(ρτω)(1,1),

for different values of τ . Here ρτω is the Ricci-form associated to the connection ∇τ in the

canonical family of Gauduchon [6] mentioned briefly before. The case τ = −1 gives the

Bismut connection and corresponds to the pluriclosed flow considered in this chapter. The

case τ = 1 gives the Chern connection and the flow corresponds to the Chern-Ricci flow

considered by Tosatti and Weinkove and, similar to what we have done here, homogeneous

and soliton solutions to Chern-Ricci flow on Lie groups have been studied in [13]. We are

interested in the bifurcation theory for this family of flows on homogeneous complex surfaces.

For example, the Chern-Ricci flow of a homogeneous metric on the Hopf surface must have a

finite time singularity, but we have seen that pluriclosed flow always converges to a canonical

metric in this case. Additionally, as shown in [13], any left invariant Hermitian structure on a

nilpotent Lie group is fixed under Chern-Ricci flow, while we have seen non-trivial solutions

to the pluriclosed flow on Nil×R. Therefore there are values of τ which induce qualitative

changes in the behavior of solutions to this family of flows. The corresponding connections

∇τ may be canonical for the complex surface in some sense.

We have given a self contained proof which classifies the fixed points of pluriclosed flow on

complex surfaces and have shown how to construct a large class of non-compact fixed points.

The proof of these facts involves the identity 2L∗dρ1,1 = −∆dθ and exploits the conformal

relationship between the Bismut and Chern-Ricci forms. The next step in this direction is

to classify and construct non-trivial soliton solutions to pluriclosed flow. This is equivalent
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to finding pluriclosed metrics where

−ρ1,1 = λω + LV ω

for some non-zero holomorphic vector field V . The work in [25] shows that any compact

expanding solitons, where λ > 0, are Kähler-Einstein. In contrast to this result we con-

structed non-compact, non-Kähler expanding solitons earlier in this chapter. Constructing

non-Kähler steady and shrinking pluriclosed solitons is still an open problem and the iden-

tities we obtained in this chapter for classifying the fixed points of the flow were initially

sought after in an attempt to construct such solitons and study their relationship to locally

conformally Kähler, Vaisman, and Sasakian geometry.
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Chapter 3

∂̄-Harmonic Maps

Given two Riemannian manifolds (M, g) and (N, h), a map f : M → N is said to be harmonic

if it is a critical point of the energy functional

E(f) =
1

2

∫
M

|Df |2dV

with respect to compactly supported test variations of f , where |Df |2 is the norm squared of

the derivative Df : TM → TN as a section of T ∗M⊗f−1TN . The Euler-Lagrange equation

associated to E is called the tension of f and has the local coordinate expression

(trg∇Df)i = τ i(f) = gαβ(f iαβ − f iγΓ
γ
αβ + f jαf

k
βΓijk).

Here we use the convention that coordinates on M are denoted with the Greek indices α,

β, . . . and so on while Roman indices i, j, . . . will denote coordinates on the target N .

Harmonic maps are well studied objects in geometric analysis, with many results obtained

toward their existence, regularity, and compactness; see the survey in the book [15]. We

remind the reader specifically of the celebrated existence result of Eells and Sampson.
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Theorem 3.1. Suppose that (M, g) and (N, h) are closed Riemannian manifolds where the

sectional curvatures of h are non-positive. Then any smooth f0 : M → N is homotopic to a

harmonic map.

This result, proved with gradient descent methods, has inspired many of the heat flows which

are topics of current research in differential geometry. In this chapter, inspired by the result

of Eells-Sampson, we study a functional of maps between almost Hermitian manifolds and

its associated parabolic flow.

Let f : M → N be a differentiable map between the almost Hermitian manifolds (M,JM , g)

and (N, JN , h), and let its derivative be Df : TM → TN . In the case where the complex

structures are integrable, f is holomorphic in local complex coordinates if, and only if,

JNDf = DfJM . In situations where complex coordinates do not exist, a map satisfying

JNDf = DfJM is said to be complex or pseudo-holomorphic. Note that the derivative

Df : TM → TN has an orthogonal decomposition

Df =
1

2
(Df + JNDfJM) +

1

2
(Df − JNDfJM)

where the first component of this decomposition vanishes if, and only if, f is pseudo-

holomorphic.

Holomorphic maps are important objects in complex and symplectic geometry, as their mod-

uli often contain information on the global structure of the source and target manifolds. For

example, Gromov invariants count families of holomorphic maps from curves into a fixed

symplectic manifold [7], while the classification of compact complex surfaces with b1 = 1

would be complete if certain homology classes in these surfaces had holomorphic represen-

tatives [18].

Counting such curves motivates the search for holomorphic maps in a given homotopy class,
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and a perhaps naive attempt towards finding these maps is to apply gradient descent methods

to functionals which are small when evaluated at holomorphic maps. For this reason, it is

natural to define the pseudo-holomorphic energy of a map f : (M, g, JM)→ (N, h, JN) to be

E+(f) =
1

4

∫
M

|Df + JNDfJM |2dVg.

This energy was first studied by Lichnerowicz in [14], where it is called E ′′(f). In that paper

the relationship between E+ and the harmonic map energy E is studied for maps between

almost Kähler manifolds.

The first result of this section is to give explicit formulas for the first and second variations

of E+, exact expressions of which are not found in the literature, and note that incorrect

forms of this variation have appeared in various preprints.

Proposition 3.1. Let f : M × (−ε, ε) → N be a smooth one parameter family of maps

between the almost Hermitian manifolds (M, g, JM) and (N, h, JN) with compactly supported

variation field ∂tf = v. Then

d

dt
E+(f) = −

∫
M

〈τ + A, v〉dV,

where τ is the tension of f and 2A = 〈d∗ωM , f×ωN〉 + 〈ωM , f×dωN〉, which has the local

coordinate expression

2Ai = (d∗ω)αf
j
βωljg

αβhli + ωαβf
j
γf

k
δ (dω)ljkg

αγgβδhli,

where ωM(X, Y ) = g(JX, Y ).

Maps f satisfying τ+(f) = τ(f) + A(f) = 0 will be called ∂̄-harmonic. We pause to make

some small observations about this expression. First, one immediately gets the result of

Lichnerowicz in [14] on the equivalence between E+ and E critical maps if the source is bal-
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anced and the target is almost Kähler; we will give explicit, non-Kähler examples which show

that E+ critical maps are distinct from E critical maps in general. The second observation is

that, independent of any integrability assumptions on source or target, the Euler-Lagrange

equation of E+ is elliptic and semi-linear. We then compute the second variation of E+ at a

C2 critical point.

Proposition 3.2. Let f : M → N be a C2 critical point of E+ with respect to all compactly

supported variations ∂tf = v, so that τ+(f) = τ(f) + A(f) = 0. Then the second variation

of E+ at f is given by

d2

dt2
|t=0E+(f) =

∫
M

〈Lv, v〉dV,

where L is the operator on sections of f−1TN given by

−Lv = ∆v + trgR(v,Df)Df +
1

2
{〈d∗ωM , ωN(·,∇v)〉]

+ 〈d∗ωM , (∇vωN)(·, Df)〉] + 〈ωM , (dωN)(·,∇v,Df)〉]

+ 〈ωM , (dωN)(·, Df,∇v)〉]

+ 〈ωM , (∇vdωN)(·, Df,Df)〉]}.

A simple corollary of the previous proposition is:

Corollary 3.1. Suppose that M is closed and f : M → N is pseudo-holomorphic. Then the

operator L : C∞(f−1TN) → C∞(f−1TN) in the previous proposition is non-negative. In

particular, if (M, g, J) is a closed almost Hermitian manifold the operator L : C∞(TM) →
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C∞(TM), given by

−Lv = ∆v +Rc(v) +
1

2
{〈d∗ω, ω(·,∇v) + (∇vω)(·, id)〉]

+ 〈ω, dω(·,∇v, id)〉] + 〈ω, dω(·, id,∇v)〉]

+ 〈ω, (∇vdω)(·, id, id)〉]},

is non-negative. Moreover, if v ∈ C∞(TM) is a pseudo-holomorphic vector field then Lv = 0.

The non-negativity of L and its relationship to holomorphic vector fields is known in the

Kähler setting. For example, by applying the non-negativity of L to the gradient of an

eigenfunction of the Laplacian, a version of the Obata-Lichnerowicz theorem for Kähler

manifolds is proved in [28]. We can then give a similar lowest eigenvalue bound in the

almost-Kähler setting.

Corollary 3.2. If (M, g, J) is a compact, almost Kähler manifold with Ricci curvature Rc ≥

α > 0 then the first eigenvalue of the Laplacian satsfies λ1 ≥ 2α.

Our next proposition concerns the well posedness of the gradient flow associated to E+ and

shows that it has the same obstructions to long time existence as the harmonic map heat

flow.

Proposition 3.3. Let f0 : M → N be a smooth map between the closed almost Hermitian

manifolds (M, g, JM) and (N, h, JN). Then there is a maximal T such that the initial value

problem

∂tf = τ+(f)

f |t=0 = f0
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has a unique smooth solution on M × [0, T ). Moreover, if T <∞ then

lim
t→T
|Df |C0 =∞.

Equipped with this proposition, we prove the following long time existence theorem for

solutions to the ∂̄-harmonic map heat flow with negatively curved, almost Kähler targets.

Theorem 3.2. Let f0 : M → N be a smooth map between the closed almost Hermitian

manifolds (M, g, JM) and (N, h, JN). Suppose that ωh is almost Kähler and the sectional

curvature of h is negative. Then the solution to the ∂̄-harmonic map heat flow with initial

condition f0 has a unique smooth solution on M × [0,∞).

In some cases, for example when JN is integrable, the negative curvature assumption in

this result can be weakened to non-positive curvature. We will also discuss the difficulties

in improving this result to the general case where dωN 6= 0; stronger conditions on the

curvature in relation to the complex structure are needed for our proof to go through without

substantial modification.

Convergence of the harmonic map heat flow at infinite time requires a parabolic Harnack

inequality to prove a bound on |Df |2 on all of M × [0,∞) given a uniform bound on |Df |L2 .

In the case of the harmonic map energy this bound is free because the flow is precisely

given by following the negative L2-gradient of E. In the context of the previous theorem,

we do not have such a bound because the pseudo-holomorphic energy E+ is in general non-

coercive; we do not expect the energy to be bounded at infinite time. In the presence of

such a bound, convergence to a ∂̄-harmonic map at infinite time follows. We attempt to get

around this difficulty by considering a family of energies Ea which are coercive if |a| < 1

and which contain E+ = E1 as a limiting case. This family is given by linear interpolation

Ea = (1−a)E+aE+ between the harmonic map energy E0 = E and the pseudo-holomorphic

energy E1 = E+. Because (1−|a|)E ≤ Ea, we obtain the following existence result for these
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modified functionals.

Theorem 3.3. Let f : M → N be a smooth map between the closed, almost Hermitian

manifolds (M, g, JM) and (N, h, JN). Suppose that the sectional curvatures of N are negative

and that ωh is almost Kähler. Then for all |a| < 1 the parabolic flow corresponding to the

functional Ea, beginning with f , exists for all time and has subsequential convergence to a

critical point of Ea.

An additional case of interest is when M = Σ is a compact Riemann surface and N is an

arbitrary compact almost Hermitian manifold, not necessarily almost Kähler. This is the

critical dimension for the functionals we consider, and just like the harmonic map energy,

E+ is conformally invariant in this case. Understanding ∂̄-harmonic maps in this case is

particularly important given the use of J-holomorphic curves in almost Hermitian geometry.

We consider examples of the flow in this case as well as prove the existence of ∂̄-harmonic

bubbles at a finite time singularity.

Specifically, we will work through an interesting example of the flow restricted to a family

of harmonic tori f : T 2 → S3 × S1 inside a Hopf surface. This family is parameterized by

orthonormal pairs in R4 and we show that the flow both preserves this family, restricting to

an ODE, and converges to a holomorphic or anti-holomorphic map at infinite time.

3.1 Background and Variation Computations

In this section we will give a brief overview of some calculations useful in the context of

harmonic maps, establish the notation which is used throughout this section, and derive the

first and second variations of the anti-holomorphic energy E+.

In what follows (M, g, JM) and (N, h, JN) are almost Hermitian manifolds, assumed complete

and without boundary. When writing some object in local coordinates we reserve Greek
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indices α, β, . . . for coordinates on M and Roman indices i, j, . . . for coordinates on N . We

will also use the standard summation convention unless stated otherwise, and will often

abbreviate coordinate derivatives of functions with subscripts: ∂αu = uα.

Let f : M×I → N be a smooth one-parameter family of maps defined on some open interval

I. For each t ∈ I, let Df : M → N be the derivative of the map f(·, t), viewed as a section

of T ∗M ⊗ f(·, t)−1TN , with f−1E denoting the pullback bundle. In local coordinates we

have Df = f iα∂i⊗ dα. Note that Df can also be viewed as a section of T ∗(M × I)⊗ f−1TN

by pre-composing the (full) derivative of the family f∗ : T (M × I)→ TN with the canonical

projection to TM .

The manifolds M , M × I, and N have Levi-Civita connections which induce connections on

the various tensor and pullback bundles that we will consider. The symbol ∇ will denote

the full covariant derivative operator with respect to spacial variables only, meaning if s is

a section of some bundle over M × I we pre-compose the full covariant derivative of s with

the projection to TM , so that (∇s)iα = siα + sjfkαΓikj in coordinates. We reserve ∇t for the

covariant derivative in the direction of ∂t. Let v = f it∂i denote the variational vector field of

f , which in various notations can be written

v =
∂f

∂t
= f∗(∂t).

By unwinding the notation we have:

Lemma 3.1. Let f be a smooth one-parameter family of maps with variational vector field

v. Then

∇tDf = ∇v.

We next recall the derivation of the tension tensor τ as the Euler-Lagrange equation of the

63



energy functional. Given a map f : M → N , let its energy density be e(f) = 1
2
|Df |2, where

in coordinates

|Df |2 = gαβf iαf
j
βhij.

The energy of f is then the integral E(f) =
∫
M
e(f)dVg of the energy density.

Proposition 3.4. Let f be a smooth one parameter family of maps whose variational vector

field v has compact support. Then

d

dt
E(f) =

∫
M

〈∇v,Df〉dVg = −
∫
M

〈v, τ〉dVg,

where τ = trg∇Df is the tension tensor of f , given in local coordinates by

τ i = gαβ(f iαβ − f iγΓ
γ
αβ + f jαf

k
βΓijk).

Proof. The first equality is immediate from the previous lemma by differentiating under the

integral, while the second follows from the divergence theorem applied to the vector field

X = 〈v,Df〉].

The next proposition concerns the second variation of the energy.

Proposition 3.5. Let f be a smooth one parameter family of maps whose variational vector

field v has compact support. Then

d2

dt2
E(f) = −

∫
M

〈∇tv, τ〉+ 〈v,∆v + trgR
N(v,Df)Df〉dVg,

where ∆v = trg∇2v.
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Proof. The variation of τ is given by

∇tτ = ∇ttrg∇Df = trg∇t∇Df

= trg∇∇tDf + trgR
N(v,Df)Df

= trg∇2v + trgR
N(v,Df)Df,

where RN(X, Y ) = ∇X∇Y −∇Y∇X−∇[X,Y ] is the curvature tensor of N . The result follows

from differentiation under the integral of the previous proposition, noting that ∂t〈v, τ〉 =

〈∇tv, τ〉+ 〈v,∇tτ〉.

Next we look at what can be done when the (almost) complex structures are taken into

account. We first focus on the orthogonal decomposition of Df and the norm of its various

pieces.

Lemma 3.2. Let f : M → N be a differentiable map between the almost Hermitian manifolds

(M, g, JM) and (N, h, JN). Then the derivative has an orthogonal decomposition

Df =
1

2
(Df + JNDfJM) +

1

2
(Df − JNDfJM)

Proof. We compute

〈Df + JNDfJM , Df − JNDfJM〉 = |Df |2 − |JNDfJM |2 = |Df |2 − |Df |2 = 0.

Lemma 3.3. With the same assumptions of the previous lemma, we have

1

4
|Df + JNDfJM |2 =

1

2
|Df |2 +

1

2
〈Df, JNDfJM〉
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and

〈Df, JNDfJM〉 = −〈ωM , f ∗ωN〉,

where the inner product on two-forms has the normalization 〈a, b〉 = aαβbγδg
αγgβδ, i.e. is

the inner product as real tensors. In particular, if M is a Riemann surface we have

−1

2
〈ωM , f ∗ωN〉dVg = −f ∗ωN

Proof. The first equality comes from expanding the inner product, while the second is done

in coordinates:

〈Df, JNDfJM〉 = f iαJ
k
j f

j
βJ

β
γ g

αγhik = −Jβγ gαγ(f ∗ωN)αβ

= −(ωM)γδg
γαgδβ(f ∗ωN)αβ.

The proof is completed by noting that on a Riemann surface |ωM |2 = 2 and dVg = ωM , so

that 1√
2
ωM is an orthonormal basis of Ω2 at each point and 〈ωM , f ∗ωN〉dVg = 2f ∗ωN .

The remark about the normalization of the inner product of forms is necessary because it is

not the convention used in the rest of geometry. For example, if M is 2m dimensional we

have |ωM |2 = 2m, while other authors would say |ωM |2 = m. We note that the volume form

is still given by dVg = 1
m!
ωmM and that our normalization does not change the adjoint d∗ of

the exterior derivative.

Our next proposition concerns how the pullback f ∗ω of a two-form varies with a variation

of f and is necessary for computing the first variation of E+. If f is a one parameter group

of diffeomorphisms of M , the following is nothing more than the familiar Cartan formula

LXω = dιXω+ιXdω, but for arbitrary smooth families of maps f : M → N the generalization

we give is perhaps unknown to the reader.
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Proposition 3.6. Let f : M × I → N be a smooth one parameter family of maps with

∂tf = v. Fix a differential two-form ω on N , and let f ∗ω be the pullback of ω with respect

to the map f(t) : M → N . Then as a one parameter family of forms on M we have

d

dt
f ∗ω = df ∗ιvω + f ∗ιvdω.

Proof. We compute directly in coordinates

(
d

dt
f ∗ω)αβ = viαf

j
βωij + f iαv

j
βωij + f iαf

j
βωij,kv

k.

On one hand we have

(dω)ijk = ωij,k + ωki,j + ωjk,i,

(ιvdω)ij = vk(ωij,k + ωki,j + ωjk,i),

and finally

(f ∗ιvdω)αβ = f iαf
j
βv

k(ωij,k + ωki,j + ωjk,i).

While on the other hand,

(ιvω)i = vjωji,

(f ∗ιvω)α = f iαv
jωji,
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and

(df ∗ιvω)αβ = f jβv
i
αωij − f

j
βv

kωjk,if
i
α + f iαv

j
βωij − f

i
αv

kωki,jf
j
β.

Adding these gives the result.

Now, given a smooth of map f : M → N between almost Hermitian manifolds, the anti-

holomorphic energy E+ and holomorphic energy E− of f decompose

E±(f) =
1

4

∫
M

|Df ± JNDfJM |2dVg = E(f)±K(f)

into a sum of the standard energy E(f) = 1
2

∫
M
|Df |2dVg and an additional term

K(f) = −1

2

∫
M

〈ωM , f ∗ωN〉dVg.

Some obvious relations between these functionals are:

E =
1

2
(E+ + E−)

K =
1

2
(E+ − E−).

These belong to a family Ea of energies which will be considered in a later section. These

are given by

Ea = aE+ + (1− a)E = E + aK.

We next give the first variation of K. Remarkably, its Euler-Lagrange equation depends

only on first derivatives of f .

Proposition 3.7. Let K = K(f) = −1
2

∫
M
〈ωM , f ∗ωN〉dVg be the difference E+ − E be-

tween the Dirichlet energy E(f) = 1
2

∫
M
|Df |2dVg and the anti-holomorphic energy E+(f) =
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1
4

∫
M
|Df + JNDfJM |2dVg. Let v = ∂tf be a variation of f with compact support. Then

d

dt
K(f) = −

∫
M

〈v,A〉dVg

where A is given by

2A = 〈d∗ωM , f×ωN〉] + 〈ωM , f×dωN〉],

f×ω denotes the pullback of a form ω on all indices except for the first, and ] : T ∗ → T is

the musical isomorphism given by the metric.

Proof. Given the generalized Cartan formula of the previous proposition we differentiate

under the integral to obtain:

d

dt
K(f) = −1

2

∫
M

〈ωM , df ∗ιvωN + f ∗ιvdωN〉dVg

= −1

2

∫
M

〈d∗ωM , f ∗ιvωN〉+ 〈ωM , f ∗ιvdωN〉dVg.

As a corollary we obtain the aforementioned result of Lichnerowicz in [14] for harmonic maps

between almost Kähler manifolds.

Corollary 3.3. If dωN = 0 and d∗ωM = 0 then K is a smooth homotopy invariant of f .

Therefore, under these assumptions, the critical points of E+ coincide with the critical points

of E, i.e. harmonic maps. In particular, a holomorphic map between closed almost Kähler

manifolds is harmonic and minimizes the energy in its homotopy class.

We are also equipped to give a complete proof of the first variation formula for E+.
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Proof. Noting that E+ = E+K, we combine the first variation of E with the first variation

of K to get the result.

We next compute the second variation of E+ and prove Proposition 3.2 and Corollaries 3.1

and 3.2.

Proof. From the first variation we have

∂

∂t
E+ = −

∫
M

〈v, τ+〉dVg.

We then compute

∇tτ+ = ∇tτ +∇tA = ∇ttrg∇Df +∇tA

= trg∇∇tDf + trgR(v,Df)Df +∇tA

= ∆v + trgR(v,Df)Df +∇tA,

therefore

∂2

∂t2
|t=0E+ = −

∫
M

〈v,∆v + trgR(v,Df)Df +∇tA〉dVg.

Finally,

∇tA =
1

2
{〈d∗ωM , ωN(·,∇v)〉]

+ 〈d∗ωM , (∇vωN)(·, Df)〉] + 〈ωM , (dωN)(·,∇v,Df)〉]

+ 〈ωM , (dωN)(·, Df,∇v)〉]

+ 〈ωM , (∇vdωN)(·, Df,Df)〉]}

accounts for the remaining terms.
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We clarify what is meant by the various inner products in the ∇tA term of the previous

proposition by expressing some of them in local coordinates. For example,

〈ωM , (∇vdωN)(·, Df,Df)〉i = ωαβ(∇vdωN)ijkf
j
γf

k
δ g

αγgβδ

and

〈ωM , (dωN)(·, Df,∇v)〉i = ωαβf
j
γf

l
δ(dω)ijkg

αγgβδ(∇lv)k.

Proof of Corollary 3.1. Consider maps f : M → N . Note that E+(f) ≥ 0 and E+(f) = 0

if, and only if, f is (pseudo) holomorphic. Therefore holomorphic maps are stable critical

points of E+ as they are global minimizers of this functional.

Now, the identity map id : M → M is always holomorphic and is therefore a stable E+

critical point, hence the operator L is non-negative. If v is a holomorphic vector field then

it generates a one parameter family of holomorphic maps beginning at the identity and so

Lv = 0.

Proof of Corollary 3.2. Let f : M → R satisfying ∆f = −λf be an eigenfunction. Recall

the Bochner formula ∆∇f = ∇∆f + Rc(∇f). If (M, g, J) is almost Kähler then by the

previous corollary the operator L = −∆ − Rc on smooth vector fields is non-negative. We

then compute

L∇f = −∆∇f −Rc(∇f) = −∇∆f − 2Rc(∇f) = λ∇f − 2Rc(∇f).

Thus, since Rc ≥ α, we have

0 ≤
∫
M

〈L∇f,∇f〉dV ≤ (λ− 2α)

∫
M

|∇f |2dV.
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3.2 The Gradient Flow of E+

In this section we will study the negative gradient flow corresponding to E+. Consider the

initial value problem

∂

∂t
f = τ+(f)

f |t=0 = f0.

A solution to this problem is said to solve the ∂̄-harmonic map heat flow with initial condition

f0. We’ve seen that τ+ = τ +A, while A consists of two terms, one linear and one quadratic

in Df . Therefore the linearized operator of τ+ has the same principal symbol as that of τ .

Applying a dose of semi-linear parabolic existence and regularity theory we therefore obtain

Proposition 3.8. Let M be a closed, smooth, almost Hermitian manifold and let f0 : M →

N be a smooth map from M to the smooth, almost Hermitian manifold N . Then there is a

T > 0 such that the initial value problem

∂

∂t
f = τ+(f)

f |t=0 = f0

has a unique smooth solution on [0, T )×M .

We next obtain some basic apriori estimates for the ∂̄-harmonic map heat flow which will

give sufficient conditions to conclude long time existence.
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Proposition 3.9. Let f be a solution to the τ+-flow. Then

∇tτ+ = ∆τ+ + trgR(τ+, Df)Df +∇tA,

and

∇tDf = ∆Df −Q+∇A.

Therefore

(∂t −∆)
1

2
|τ+|2 = −|∇τ+|2 + 〈trgRN(τ+, Df)Df, τ+〉+ 〈∇tA, τ+〉,

and

(∂t −∆)
1

2
|Df |2 = −|∇Df |2 − 〈Q,Df〉+ 〈∇A,Df〉,

Proof. We compute

∇tτ+ = ∇tτ +∇tA

= trg∇t∇Df +∇tA

= trg∇2τ+ + trgR
N(τ+, Df)Df +∇tA

= ∆τ+ + trgR
N(τ+, Df)Df +∇tA,

using the commutator formula ∇t∇−∇∇t = RN(ḟ , Df). This proves the first claim. The

second claim follows from a similar calculation

∇tDf = ∇τ+ = ∇τ +∇A

= ∆Df −Q+∇A,

73



where

Q(·) = −RN(Df ·, Dfα)Dfα +Df(RcM ·)

and we have used the Bochner formula

∆Df = ∇τ +Q.

The final claims follow from

∂t
1

2
|τ+|2 = 〈∇tτ+, τ+〉

= 〈∆τ+ + trgR
N(τ+, Df)Df +∇tA, τ+〉

= ∆
1

2
|τ+|2 − |∇τ+|2 + 〈trgRN(τ+, Df)Df +∇tA, τ+〉,

with a similar calculation for ∂t
1
2
|Df |2.

Proposition 3.10. If the solution to the ∂̄-harmonic heat flow between two compact, al-

most Hermitian manifolds exists on a maximal time interval [0, T ), with T < ∞, then

lim supt↑T |Df |∞ =∞.

Proof. This is a standard obstruction in semi-linear parabolic systems. If there is some

positive constant C such that |Df | < C on [0, T ) then we conclude convergence to a smooth

map at time T . Using this map as the new condition for the flow, we extend the solution

smoothly past T and contradict maximality.

We can now prove a long time existence result for ∂̄-harmonic map heat flow, a corollary of

which is Theorem 1.5.

Proposition 3.11. Suppose that M is compact and the target N is almost Kahler with

sectional curvature bounded above by a negative constant and with bounded Nijenhaus tensor.
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Then the ∂̄-harmonic map heat flow beginning at any smooth f0 : M → N exists smoothly

for all time.

Proof. Let f be the corresponding solution to the flow. It amounts to proving that |Df | is

bounded on any interval of the form [0, T ) where T <∞. Recall from 3.9 that

(∂t −∆)
1

2
|Df |2 = −|∇Df |2 − 〈Q,Df〉+ 〈∇A,Df〉.

Since the target is almost Kähler we have 2A[ = 〈d∗ωM , f×ωN〉. We then compute 〈∇A,Df〉,

which has the form

2〈∇A,Df〉 = ∇d∗ωM ∗Df ∧Df + d∗ωM ∗ ∇Df ∧Df + d∗ωM ∗ ∇hωN ∗ (Df ∧Df) ∗Df,

where we have used schematic notation. To clarify, if A and B are some tensors then A ∗B

denotes a tensor constructed from taking contractions, either with the metrics g, h or the

forms ωM , ωN , of A⊗B and B⊗A. We have also used the notation that, if A and B are in

T ∗M ⊗E for some vector bundle E then A ∧B(X, Y ) = A(X) ∧B(Y ). In particular, since

M is compact and ∇hωN is bounded, there is some constant C1 independent of f such that

〈∇A,Df〉 ≤ C1(|Df |2 + |∇Df ||Df |+ |Df ∧Df ||Df |).

Now, if the sectional curvatures of N are bounded above by K and the Ricci curvature of

M is bounded below by R, then the curvature term 〈Q,Df〉 satisfies

−〈Q,Df〉 ≤ K|Df ∧Df |2 −R|Df |2.
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An application of Young’s inequality ab ≤ 1
2
(εa2 + 1

ε
b2) then gives

−|∇Df |2 − 〈Q,Df〉+ 〈∇A,Df〉 ≤ C1(1 +
1

2ε1
+

1

2ε2
)|Df |2 −R|Df |2

+ (
C1ε1

2
− 1)|∇Df |2 + (

C1ε2
2

+K)|Df ∧Df |2.

Because K is negative, by choosing ε1 and ε2 small enough the last two terms of this expres-

sion are negative. Therefore there is some constant C such that

(∂t −∆) |Df |2 ≤ C|Df |2,

and so |Df | is bounded on any finite length time interval by the maximum principle.

We note that if the complex structure of N is integrable, so that N is genuinely Kähler,

then there is no ∇hωN term in the above estimates. This would mean we can weaken the

negative sectional curvature assumption to just non-positive curvature. With a more careful

analysis several of the assumptions in this theorem can be weakened using standard methods;

certainly regularity in f0 or compactness/boundedness assumptions can be weakened.

A quick look at the form of 〈∇A,Df〉 should indicate to the reader why obtaining a long

time existence result in the general non-Kähler case using a basic maximum principle type

argument as above is a little delicate. Without the almost Kähler assumption on N there

are three additional terms which have the schematic form

∇ωM ∗ dωN ∗Df ∧Df ∧Df + dωN ∗ ∇Df ∧Df ∧Df +∇hdωN ∗Df ∧Df ∧Df ∗Df,

each of which gives ”bad ODE terms” when trying to apply parabolic maximum principles.

It is not unreasonable to think that there are some curvature conditions on N of the form

RmN(X, Y, Y,X) +K|X ∧ Y |2 + P (X, Y, Y,X) ≤ 0, K > 0, which guarantees the long time

existence of this flow. Here P would be some algebraic curvature tensor depending on the
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torsion and it’s covariant derivatives.

3.3 Bubbling

In this section we will consider the ∂̄-harmonic map heat flow for maps f : Σ→ N between

a compact Riemann surface Σ and a compact, almost Hermitian manifold N . In this setting

the pseudoholomorphic energy E+ is conformally invariant, as is readily seen from the fact

that we now have

E+(f) =

∫
Σ

1

2
|Df |2dV −

∫
Σ

f ∗ωN .

The most important observation we can make is that in this form the functional is exactly

amenable to the result of Riviere [20] on the regularity of two variable conformally invariant

elliptic systems.

Theorem 3.4 (Theorem 1.1 of [20]). Let B be a ball in R2 and let u ∈ W 1,2(B,Rn) be a

weak solution to the system

∆ui = Ωi
j(∇uj),

where Ω ∈ L2(B, so(n)⊗ ∧1R2). Then u is locally Hölder continuous in B.

We derive a number of corollaries in applying this result to ∂̄-harmonic maps of surfaces.

Analogues of these are well known in the theory of harmonic maps and other conformally

invariant elliptic systems.

Corollary 3.4. Let N ⊆ Rn be a smooth, compact, almost Hermitian manifold. Let u ∈

W 1,2(B,N) be a weakly ∂̄-harmonic map. Then u is smooth. In particular, if u : B/{0} → N

is smooth and ∂̄-harmonic with finite energy, then u is smooth in B.
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Proof. As observed in Theorem 1.2 of [20], any conformally invariant quadratic energy func-

tional in two-dimensions has Euler-Lagrange equation in the form for which the previous

theorem applies. Specifically, any functional of the form

1

2

∫
Σ

|Tu|2dV +

∫
Σ

u∗ω,

where ω is any C1 section of ∧2T ∗N has Euler-Lagrange equation in the form required by the

theorem. The E+ energy is exactly of this form, so any weakly ∂̄-harmonic map u : B → N

for which E(u) <∞ is Hölder continuous. Smoothness of u then follows from the smoothness

of N , the Hölder continuity of u, and higher regularity theory of elliptic systems.

Note that in the previous corollary the assumption of finite energy is essential, as the map

z 7→ z−1 is clearly ∂̄-harmonic with E+ finite but is not smooth in a ball centered at the

origin.

Corollary 3.5. If u : R2 → N is ∂̄-harmonic and has finite energy, then u extends to a

smooth ∂̄-harmonic map ũ : S2 → N .

Proof. Consider the map given by composing u with stereographic projection from S2 to R2.

The previous proposition then implies that there is a smooth extension of this map to the

point at infinity.

Corollary 3.6. Suppose that a solution u to the ∂̄-harmonic map heat flow from a compact

Riemann surface Σ to a compact, almost Hermitian manifold N exists on a maximal time

interval [0, T ), where T < ∞, and there is a uniform energy bound on the solution. Then

there exists a point p ∈ Σ, a sequence of times ti ↗ T , and a sequence of ri ↘ 0 such that

the family of maps ui(x) = u(expp(rix), ti) converges to a limiting map u∞ : R2 → N in H2,2
loc

to a non-constant, smooth harmonic map with finite energy.

Proof. As shown in Proposition 3.3 we know there is a sequence of times ti ↗ T and points
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pi → p ∈ Σ such that limi→∞ |Df |(pi, ti) = ∞ and |Df |(pi, ti) = supp∈Σ,t≤ti |Df |(p, t). Let

r−1
i = |Df |(pi, ti) and consider a geodesic ball centered at p of some small radius ρ. For

x ∈ Br−1
i ρ(0) ⊂ TΣp let

ui(x, t) = u(expp(xri), t0 + r2
i t).

Note that ui solves the ∂̄-harmonic map heat flow with respect to the metric gi = expp(ri·)∗g.

Since this metric is converging in C2
loc to the flat metric on R2 we can extract a subsequence

ui → u∞ converging locally in C2(R2× (−∞, 0], N) where u∞ : R2× (−∞, 0]→ N is a non-

trivial solution to the ∂̄-harmonic map heat flow with finite energy and constant E+-energy,

in particular it is a ∂̄-harmonic map with finite energy.

Corollary 3.7. With the assumptions of the previous corollary, there must exist a ∂̄-harmonic

sphere in N . In particular, if N does not admit a non-trivial ∂̄-harmonic S2, then any so-

lution to the ∂̄-harmonic map heat flow with a uniform energy bound from any compact

Riemann surface Σ to N exists smoothly for all time.

Proof. By the previous corollary, if a finite time singularity occurs then there is a non-trivial

∂̄-harmonic map u∞ : R2 → N with finite energy. This u then extends by Corollary 4.3 to

a ∂̄-harmonic map of S2 into N .

3.4 Uniform Energy Bounds

The Dirichlet energy E of a solution to the ∂̄-harmonic map heat flow may not be bounded

along a solution to the flow, but such a uniform bound is necessary to conclude the existence

of weak solutions or obtain convergence results for the flow. We know of no examples where

such a uniform energy bound fails to hold along the flow, but we cannot rule it out in general.
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The non-coerciveness of E+ can be demonstrated with a simple example. Let ω0 =
√
−1
2
dz∧dz̄

be a flat metric on C and let ωΣ be a metric on some compact Riemann surface Σ. Consider

the metric ω = e2u(z)ωΣ + ω0 on the product Σ × C, where u is some smooth real valued

function on C which is unbounded above. For each z ∈ C consider the inclusion fz(p) = (p, z).

Then E+(fz) = 0 for each z while E(fz) = e2u(z)Area(ωΣ). Note that this example is locally

conformally Kähler with Lee form θ = 2du. In particular, if u is unbounded we can make

it as large as we want by following the Lee vector field of the metric. This motivates the

following investigation.

If f : Σ → N is a map from a complex curve to a locally conformally Kähler manifold,

we note that the energy takes the simple form E+ = E − K = E −
∫

Σ
f ∗ωN , and so if we

are looking to construct bad sequences of maps where where E+ is bounded but E becomes

large, we necessarily have to find ways of increasing K =
∫

Σ
f ∗ωN . Now with dω = θ ∧ ω,

the first variation of K through df
dt

= v is given by

d

dt
K =

∫
Σ

f ∗(θ(v)ω − θ ∧ ωv).

In particular, variations through v which are tangent to Jθ] do not increase K. In the

previous example, Jθ] = J∇u is directed tangentially to the level sets of u, and flowing in

these directions obviously does not increase the energy. If some initial map f0 is holomorphic

then the form f ∗0 (θ(v)ω − θ ∧ ωv) is maximized when v is parallel to θ]. In other words, to

rapidly increase K one should follow the Lee vector field.

If the target is almost Kähler we at least have such a bound on any finite length time interval.

Proposition 3.12. If N is almost Kähler then a solution to ∂̄-heat flow has bounded energy

on time intervals of finite length.
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Proof. Along a C2 solution to the flow

d

dt
E = −

∫
|τ |2 −

∫
M

〈τ, A〉

Since N is almost Kähler, we have that A is some tensor which is linear in Df and contracted

with only d∗ωM and ωN . Therefore there are some positive constants C1 and C2 such that

−〈τ, A〉 ≤ C1|τ ||Df | ≤ 1
2
(|τ |2 + C2|Df |2). Therefore

d

dt
E ≤ C3E

for some constant C3. Therefore E(t) ≤ E(0)eC3t.

If our manifolds are uniformly equivalent to balanced and almost Kähler manifolds, then

remarkably an energy bound does hold. This result stands in direct comparison to the well

known a priori energy bounds for pseudoholomorphic curves tamed by a symplectic structure.

Proposition 3.13. Suppose that (M, g, JM) is compact and uniformly equivalent to a JM -

compatible balanced metric g0, so that d∗ωg0 = 0. Suppose also (N, h, JN) is uniformly

equivalent to a JN -compatible almost Kähler metric h0, non necessarily complete. Suppose

further that ft is a smooth one-parameter family of maps such that E+(ft), computed with

respect to g and h, is uniformly bounded. Then there is a uniform bound on E(ft) computed

with respect to g and h.

Proof. Let Egh(ft) and Egh
+ (ft) denote the energy and pseudoholomorphic energy of ft com-

puted with respect to the metrics g and h, and let Kgh(ft) be the difference between these.

Note that Kg0h0(f0) is a smooth homotopy invariant of f0, and so Kg0h0(ft) is constant. By
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the uniform equivalence of the metrics, we have

Egh(ft) ≤ CEg0h0(ft) = C(Eg0h0
+ (ft)−Kg0h0(ft))

= C(Eg0h0
+ (ft)−Kg0h0(f0))

for some constant C > 0 witnessing the equivalence of the metrics. But again by the uniform

equivalence of the metrics

Eg0h0
+ (ft) ≤ CEgh

+ (ft).

and so Egh(ft) is uniformly bounded.

The following corollary is immediate from the previous proposition, and gives a rough picture

of what is occurring when we fail to have a uniform energy bound along a solution to the

∂̄-harmonic map heat flow.

Corollary 3.8. Let f : M × [0, T ) → N , 0 < T ≤ ∞ be a smooth solution to the ∂̄-

harmonic map heat flow between a compact, balanced, almost Hermitian manifold M and a

(not necessarily complete) almost Hermitian manifold N . If there is not a uniform energy

bound E(ft) ≤ C for all t ∈ [0, T ), then for each t0 ∈ [0, T ) no neighborhood of f(M× [t0, T ))

in N can admit a uniformly equivalent Kähler metric.

Coercive bounds for E+ with source manifold a complex curve can be obtained in special

settings from a smallness condition on the energy of the initial map. Such an estimate was

obtained by Toda [26]. We state the main estimate in a form which is directly applicable to

our flow.

Theorem 3.5. Suppose that Σ is a closed Riemann surface and N is a compact almost-

Hermitian manifold with Kähler form ω. Then there exists an absolute constant C depending
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only on dimensions such that, if

|dω̃|2E(u0) < C,

then this bound is preserved along the ∂̄-harmonic map heat flow beginning near this u0 and

there is a minimizing ∂̄-harmonic map in the free homotopy class of u0. Here we embed

N → Rl and ω̃ is some two-form on Rl which extends the one on N .

What this theorem essentially boils down to is showing a coercivity estimate for E+ under

the hypotheses given. Such an estimate is obtained as follows: for a given u in H1,2(Σ;N),

the map ω 7→
∫

Σ
u∗ω is a closed integral two-current. Once extended to Rl we can invoke

the Almgren, Federer-Fleming [3] isoperimetric inequality for two-currents to conclude

∫
Σ

u∗ω ≤ C|dω|E(u)3/2,

with C an absolute constant. We therefore conclude a bound of the form

E+ ≥ E − C|dω|E
3
2 ,

which assuming that E < δ sufficiently small gives a bound of the form

E+ ≥ C2E,

for some constant C2 depending on δ and C. Choosing δ appropriately ensures that this

bound is preserved along the flow.

The assumption that N is an almost Hermitian manifold whose Kähler form can be extended

to Rl
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3.5 The Perturbed Energies

In this section we will consider the perturbed energies Ea = E+aK. These should be viewed

as coercive approximations to the energy E+. Our first lemma is obvious from the previous

sections.

Lemma 3.4. The Euler-Lagrange equation of Ea is τa = τ + aA.

We also readily have a long time existence result for the flow associated to Ea, as well as an

Eells-Sampson type result if |a| < 1.

Proof. Let f be the solution to the flow. The long time existence of the flow was established

in 3.11, where we note that the change from E+ to Ea is a trivial modification of the proof.

Specifically, along a solution to the flow there is a constant C1 > 0 depending on a and

background data such that

(∂t −∆)|Df |2 ≤ C1|Df |2,

from which we conclude long time existence. We then must prove convergence at infinite

time, which we do so in essentially the same way as for the Eells-Sampson result.

Since (1 − |a|)E ≤ Ea, we have a uniform energy bound E < C along a solution to the

flow when |a| < 1. Recall Moser’s Harnack inequality for subsolutions to the heat equation

[17]: if g is non-negative and there is some positive constant C so that (∂t − ∆)g ≤ Cg in

a parabolic cylinder PR(x0, t0) = {(x, t)|d(x, x0) ≤ R, t0 − R2 ≤ t ≤ t0} centered at (x0, t0),

then there exists another constant C ′ > 0 such that

g(x0, t0) ≤ C ′R−(n+2)

∫
PR(x0,t0)

gdV.
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We then apply this inequality to g = |Df |2, giving, for some constant C depending only on

background data and a,

|Df |2(x, t) ≤ CR−(n+2)

∫
PR(x0,t0)

|Df |2

≤ CR−(n+2)

∫ t

t−R2

E(f(s))ds

≤ C

1− |a|
R−(n+2)

∫ t

t−R2

Ea(f(s))ds

≤ C

1− |a|
R−nEa(f0).

We therefore have a uniform bound on |Df | on all of [0,∞). By the higher regularity theory

for second-order parabolic equations we conclude the existence of constants C(f0,M,N, k, a)

such that supM×[0,∞) |∇kDf | ≤ C(f0,M,N, k, a). Note also that there is some constant C

such that

(∂t −∆)|τa|2 ≤ C|τa|2.

Again by Moser’s Harnack inequality we conclude

|τa|2(x, t) ≤ CR−(n+2)

∫ t

t−R2

∫
M

|τa|2dV ds

= CR−(n+2)

∫ t

t−R2

−∂sEads

= CR−(n+2)(Ea(t−R2)− Ea(t)),

and so |τa|2 → 0 as t→∞. Taking any sequence of ti going to∞, by the previous estimates

we can extract a subsequence such that f(ti) converges in any Ck norm to some f∞ satisfying

τa(f) = 0.

We note that if |a| is sufficiently small we can also invoke Toda’s estimate to get a long time
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existence result for this family of functionals.

3.6 An example of the Flow into a Non-Kähler Surface

Pick some α > 1 and let N = S3 × S1 = C2 \ {0}/Z be the Hopf surface generated by the

Z action given by (z, w) 7→ (αz, αw) on C2 \ {0}. N is a compact complex manifold which

cannot admit any Kähler metrics for Hodge theoretic reasons. If ρ denotes the distance to 0

in C2, a Hermitian metric h on N has corresponding two form ωN(·, ·) = h(JN ·, ·) given by

ωN =
1

2ρ2

√
−1∂∂̄ρ2.

Notice that this is indeed a metric on N , as it is invariant under scalar multiplication and

unitary transformations, and is moreover locally conformal to the standard Euclidean metric

on R4. A similar construction applied to C∗ gives a torus M = T 2 = C∗/Z, and Kähler metric

g with corresponding Kähler form

ωM =
1

2ρ2

√
−1∂∂̄ρ2,

which is likewise invariant, in fact it is a flat metric on M .

Pick some orthonormal basis ei of R4 so that the standard complex structure on C2 ∼ R4

takes the form Je1 = e2 and Je3 = e4. Take coordinates yi on R4 induced by this basis. Do

a similar construction for R2 ∼ C and call the corresponding coordinates xi. For any pair

(u, v) of orthonormal vectors in R4, consider the R-linear map f : R2 → R4 given by

f(x1, x2) = x1u+ x2v.

Notice that f is an orthogonal embedding since u and v are orthonormal. Linearity implies
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that f is equivariant with respect to the Z action and therefore descends to a map f : M → N

of the torus into the Hopf surface. By the orthogonality, it is evident that f ∗h = g and,

moreover, f is totally geodesic. This is most easily seen by noting that h can be viewed as

a bi-invariant metric with respect to some Lie group structure on N for which f : M → N

is the inclusion of a torus subgroup.

These f are therefore a family of harmonic maps f : M → N parameterized by orthonormal

pairs in R4. We can compute K(f) for these maps directly. First, note that since dimCM =

1,

K(f) = −1

2

∫
M

〈ωM , f ∗ωN〉ωM = −
∫
M

f ∗ωN .

In the coordinates yi

ωN =
1

ρ2
(dy1 ∧ dy2 + dy3 ∧ dy4),

and so

f ∗ωN =
1

ρ2
(u1v2 − u2v1 + u3v4 − u4v3)(dx1 ∧ dx2)

= (u1v2 − u2v1 + u3v4 − u4v3)ωM ,

therefore

K(f) = −(u1v2 − u2v1 + u3v4 − u4v3)V,

where V = 2π logα is the volume of T 2 with respect to g. In particular, it is clear from

this example that K is not a homotopy invariant. In fact, the homotopy invariance of K

is exactly what allows the pseudoholomorphic energy to distinguish holomorphic maps from

harmonic maps.
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Proposition 3.14. Let F denote the family of all such f : T 2 → S3 × S1 constructed

as above. Then this family is preserved by the ∂̄-harmonic map heat flow and, for any

f0 ∈ F , the flow exists for all time and converges subsequentially to a holomorphic or anti-

holomorphic map f∞ : T 2 → S3 × S1.

Proof. Note that 〈A(f), Df〉 = 0. This is because this depends on dωN(Df,Df,Df) but

Df only has rank 2. Therefore, since each f ∈ F is harmonic, we have that τ+ = τ +A = A

is perpendicular to the image of f at each point. This, together with the fact that f is linear

and so A is linear in the coordinates xi, implies that the evolution equation ∂tf = A preserves

the family. We can then view the flow in this family as given by a smooth vector field on the

space of oriented orthonormal 2-frames in R4, establishing long time existence. Convergence

to a ∂̄-harmonic map is then immediate from monotonicity of E+ and compactness of this

family.

To see that the limiting map must be holomorphic or anti-holomorphic, note that the energy

E+ is invariant E+(U ◦ f) = E+(f) under the unitary group of C2. Since these act transi-

tively on the unit vectors, we can assume the limiting map has u = e1. But then a direct

computation shows that, when u = e1, A(f) = 0 if, and only if, v = ±e2. Thus the limiting

map is holomorphic or anti-holomorphic.

This relatively simple example demonstrates that the flow can distinguish a holomorphic

map from a harmonic map in non-Kähler settings. In light of Corollary 3.9, if there is a

singularity in the flow and a uniform energy bound does not hold, then the image of the flow

near the singularity must be quite wild in S3 × S1; any proper compact subset of S3 × S1

admits a Kähler metric which, due to compactness, is uniformly equivalent to h. Therefore

the lack of a uniform energy bound would mean the solution leaves every proper compact

subset of the Hopf surface.
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3.7 A Variational Approach to Studying Submanifolds

of Vaisman manifolds

Let (N, h, J) be a Vaisman manifold with Kähler form ω(X, Y ) = g(JX, Y ) and Lee form θ.

Let f : Σ→ N be a holomorphic immersion of a smooth compact holomorphic curve Σ into

N , let g = f ∗h be the induced metric on Σ, and let j be the complex structure on Σ. The

functional

K =

∫
Σ

f ∗ω

has appeared a lot in this chapter as the defect between the Dirichlet energy E and the anti-

holomorphic energy E+ of a map. In this final section we demonstrate how the variational

structure of this and related functionals can be used to obtain results on the structure of

complex submanifolds of a Vaisman manifold. These results have appeared previously, see for

example [19], but the proofs we provide require nothing beyond studying the first variation

of these functionals.

Proposition 3.15. Let (M, g, J) be a Vaisman manifold. Then any holomorphic curve in

(M,J) is a torus and is tangent to the Lee vector field.

Proof. Let X = θ] be the Lee vector field of ω. Since N is Vaisman, X is parallel and

generates a one parameter group of holomorphic isometries of N . Consider the variation

of f given by X and let f : R × Σ → N, f : (t, x) 7→ ft(x) be the corresponding family of

maps, with the slight abuse of notation f0(x) = f(x). Since X is holomorphic and killing,

the energies E and E+ are constant along this family, and therefore

d

dt
|t=0

∫
Σ

f ∗ω = 0.
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Now for any one parameter family of maps with variation v, we recall that

d

dt
f ∗ω = df ∗ivω + f ∗ivdω,

where ivω = ω(v, ·) denotes interior multiplication by v. Therefore, as we are assuming

dω = θ ∧ ω

d

dt

∫
Σ

f ∗ω =

∫
Σ

f ∗(θ(v)ω − θ ∧ ωv).

Substituting v = θ], we get

∫
Σ

f ∗(|θ|2ω − θ ∧ Jθ) = 0.

Now consider a Hermitian vector space V with a complex structure J and associated sym-

plectic form ωV . Fix some 1-form θ ∈ V ∗ with dual vector field X. Let f : C → V be a

linear isometric holomorphic inclusion of C into V, so then f ∗ωN = ωC. Fix some (real) basis

σi of orthonormal 1-forms on V ∗, so that Jσi = σi+1 for i odd and where the vectors dual

to σ1 and σ2 span the image of f . Let τ 1 = f ∗σ1 and τ 2 = f ∗σ2, so that f ∗σi = 0 for all

i > 2. With θ = θiσ
i, we therefore have

f ∗(θ ∧ Jθ) = (θ2
1 + θ2

2)ωC,

and so

f ∗(|θ|2ω − θ ∧ Jθ) = (θ2
3 + θ2

4 + . . .)ωC.

We conclude that f ∗(|θ|2ω− θ∧Jθ) is a non-negative (1, 1)-form on Σ, and since its integral

is 0 it must vanish pointwise. But this implies that θi = 0 for all i > 2, giving us that X is
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in the image, i.e. that X is tangent to Σ in N .

Since X is parallel, |X| > 0 is constant. Since it is tangent to Σ we conclude that Σ admits

a nowhere vanishing tangent vector field and is therefore a torus.

In fact a similar result holds for any complex submanifold of a Vaisman manifold by consid-

ering a variation of the analogous functional in higher dimensions.

Proposition 3.16. If N2n is a complex submanifold of a Vaisman manifold M then N is

tangent to the Lee vector field and is therefore also Vaisman.

Proof. Consider the functional

K : f 7→
∫
N

f ∗ωn.

As before, if f0 is holomorphic then K is exactly (a universal constant multiple) of the area

of N . Let df
dt

= θ] be the variation of f0 determined by the Lee vector field. Since the

Lee vector field is Killing and holomorphic, K must be constant along this family because

the flow preserves the area and holomorphicity of submanifolds. But we can compute the

variation of K as

0 =
d

dt
K = n

∫
N

f ∗(|θ|2ωn − nθ ∧ Jθ ∧ ωn−1).

As f is holomorphic, a pointwise calculation shows that

f ∗(|θ|2ωn − nθ ∧ Jθ ∧ ωn−1) = n!(θ2
2n+1 + θ2

2n+2 + . . .+ θ2
2m)dV

in a local complex frame adapted to N at a point. Therefore, since the integral of this form

vanishes, we conclude θi = 0 for all i > 2n, so the Lee vector field is tangent.
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