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Abstract: 24 

As one of the major agricultural production areas in the world, the United States (U.S.) 25 

Midwest plays a vital role in the global food supply and agricultural ecosystem services. Although 26 

significant efforts have been made in modeling the carbon cycle dynamics over this area, large 27 

uncertainty still exists in the previous simulations in terms of reproducing individual components 28 

of the carbon cycle and their responses to environmental variability. Here we evaluated the 29 

performance of an advanced agroecosystem model, ecosys, in simulating carbon budgets over the 30 

U.S. Midwest, considering both the magnitude of carbon flux/yield and its response to the 31 

environmental (climatic and soil) variability. We conducted model simulations and evaluations at 32 

7 cropland eddy-covariance sites as well as over 293 counties of Illinois, Indiana, and Iowa in the 33 

U.S. Midwest. The site-level simulations showed that ecosys captured both the magnitude and 34 

seasonal patterns of carbon fluxes (i.e., net ecosystem carbon exchange, ecosystem gross primary 35 

production (GPP), and ecosystem respiration), leaf area index, and dynamic plant carbon allocation 36 

processes, with R2 equal to 0.92, 0.87, 0.87, and 0.78 for GPP, NEE, Reco, and LAI, respectively 37 

across all the sites compared with the observations. For regional scale simulations, ecosys 38 

reproduced the spatial distribution and interannual variability of corn and soybean yields with the 39 

constraints of observed yields and a new remotely sensed GPP product, with R2 of multi-year 40 

averaged simulated and observed yield equal 0.83 and 0.80 for corn and soybean, respectively. 41 

The simulated responses of carbon cycle dynamics to environmental variability were consistent 42 

with that from the empirical observations at both site and regional scales. Our results demonstrated 43 

the applicability of ecosys in simulating the carbon cycle and soil carbon sequestration of the U.S. 44 

Midwestern agroecosystems under different climate and soil conditions. 45 
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 48 

1. Introduction 49 

The terrestrial carbon balance of agroecosystems plays an important role in the global 50 

carbon cycle (Dold et al., 2017; Verma et al., 2005). Depending on the temporal and spatial scales 51 

used for accounting as well as the geographical regions, croplands can be either carbon sinks or 52 

sources for the atmospheric CO2 (Blanco-Canqui and Lal, 2004; Kimble et al., 1998). In the U.S. 53 

Midwest, about 30–50% of soil organic carbon (SOC) has been lost when compared with that 54 

before cultivation for most croplands (Lal, 2002). Since SOC content is often positively related to 55 

soil fertility, SOC loss may enhance crop yield loss risk under future climate conditions (Lal, 2011, 56 

2004, 2001). Fortunately, with recommended management practices (RMPs, i.e., conservation 57 

tillage, cover crops, and biosolids and manure, etc.),  prior studies show that U.S. croplands have 58 

the potential to sequester about 75-208 Tg C/year, which may recover 50–70% of the depleted soil 59 

carbon (Jarecki and Lal, 2003; Lal, 2011, 2007, 2002; Meena et al., 2020; Hutchinson et al., 2007; 60 

Chambers et al., 2016). Hence, in order to help realize this carbon sequestration potential in U.S. 61 

croplands, and meanwhile ensure global food security, it is critical to accurately quantify the 62 

carbon balance of agroecosystems, including carbon fixation and emission.    63 

 The carbon inventory (West et al., 2013, 2010, 2008; West and Marland, 2002), derived 64 

from crop yield survey reports (Vogel, 2018), SOC measurements (van Wesemael et al., 2010), 65 

and observation-based gross primary production (GPP) estimations (Jiang et al., 2021), can 66 

provide several components of cropland carbon budget. Among these carbon inventory methods, 67 

soil-sampling-based SOC measurement is the most direct approach to investigate SOC change, but 68 

https://paperpile.com/c/kyGOIN/J0pp+L0sK
https://paperpile.com/c/kyGOIN/JHLg+gdTl
https://paperpile.com/c/kyGOIN/0Vpy
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it still has uncertainties associated with soil sampling strategies (i.e., sampling location, depth, and 69 

time), measurement methods, and duration of measurements(Jandl et al., 2014; Schrumpf et al., 70 

2011; VandenBygaart and Angers, 2006). More importantly, it is difficult to scale up the soil 71 

sampling due to its high labor and financial costs. In the framework of carbon balance, SOC change 72 

can in principle be derived from the whole carbon mass balance, which requires different carbon 73 

cycling components (i.e., GPP, ecosystem respiration, and harvest etc.). However, most of the 74 

carbon inventories cover only part of the carbon cycling components, such as agroecosystem 75 

carbon input (i.e., GPP) or outputs (i.e., yield). Measurements of other key carbon cycling 76 

components (i.e., respiration and litterfall) of agroecosystems are still difficult and insufficient, 77 

especially at large scales (e.g. U.S. Midwest) (Osborne et al., 2010). All these factors limit wide 78 

and robust applications of carbon inventory to quantify agroecosystem carbon budgets and SOC 79 

change.  80 

Alternatively, we can use process-based models to quantify the cropland carbon budget 81 

(Brilli et al., 2017; Huang et al., 2009; Wattenbach et al., 2010; Zhang et al., 2015). However, 82 

existing studies using process-based models for cropland carbon quantification have suffered from 83 

one or few of the following limitations. First, very few model-based quantifications of the cropland 84 

carbon budget have gone through rigorous model validation covering the whole agroecosystem 85 

carbon cycle (i.e., carbon fixation, carbon allocation, and respiration), especially at regional scales. 86 

Most process-based modeling studies for agroecosystems evaluated and constrained their models 87 

with a limited number of observational variables, such as crop yield (Gilhespy et al., 2014; Stehfest 88 

et al., 2007) and/or measured SOC (Li et al., 1997; Liu et al., 2006; Shirato, 2005). This lack of 89 

sufficient model constraint may cause simulations to be apparently right  with wrong reasons (Peng 90 

et al., 2018). For example, models can generate the same crop yield with higher carbon fixation 91 

https://paperpile.com/c/kyGOIN/cJKL+tHB2+fNig
https://paperpile.com/c/kyGOIN/cJKL+tHB2+fNig
https://paperpile.com/c/kyGOIN/yiSM
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https://paperpile.com/c/kyGOIN/KU48+UbFx
https://paperpile.com/c/kyGOIN/KU48+UbFx
https://paperpile.com/c/kyGOIN/puBb+MQvX+lTCW
https://paperpile.com/c/kyGOIN/YOhP
https://paperpile.com/c/kyGOIN/YOhP
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but lower harvest index compared to the correct ones, because errors in plant carbon fixation can 92 

be reconciled by unconstrained fluxes of respiration and litterfall. Therefore, to ensure that the 93 

model simulates carbon emission and sequestration correctly in both short and long terms, we need 94 

to use more carbon-related observations with fine temporal resolution (i.e., daily GPP, NEE, Reco, 95 

LAI, plant carbon allocation, and phenology) to sufficiently constrain and validate the carbon 96 

cycling processes of the models. 97 

Second, most existing model-based studies only calibrated and validated the models at a 98 

few specific sites due to limited availability of observations. In general, models involve both 99 

parameters that are site-specific (i.e., maturity group and climate zone) and parameters that are 100 

shared among sites at a regional scale (i.e., parameters controlling the temperature responses of 101 

activity of RuBP carboxylase-oxygenase) (Kuppel et al., 2012; Mäkelä et al., 2007). Thus 102 

optimizing a model at specific sites will tie the resultant model parameterization closely to the site 103 

information (e.g. climate, soil, groundwater depth, field microtopography, and land management 104 

practices etc.), so that the model may not be suitable for other sites and regions with different soil 105 

and climate conditions. To ensure the model parameterization can be robustly transferred to other 106 

sites or regions, systematic evaluations are needed. Specifically, we need to constrain and evaluate 107 

models under a wide range of soil and climate conditions, using diverse data such as large-scale 108 

carbon inventories (e.g. crop yield reports and crop progress reports) and satellite remote sensing 109 

carbon-related observations (e.g. GPP and LAI).   110 

Finally, current model calibrations and validations have generally focused on matching the 111 

magnitude or time series of the target variables (e.g., GPP and yield) (Gurung et. al., 2020; Wang 112 

et al., 2020; Jin et al., 2017), which is achieved by minimizing a cost function (which measures 113 

model-data discrepancy) that does not take into account the relationship between these target 114 

https://paperpile.com/c/kyGOIN/t2FV+F1Vk
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variables and environmental drivers. From the perspective of Bayesian inference (Tarantola, 2013), 115 

since only uncertainties in model parameters are constrained, such a practice leads to an 116 

underestimation of the prior information associated with the environmental drivers. To make a 117 

more comprehensive use of the information contained in observations and model driving variables, 118 

as well as to deliver more confident predictions of how agroecosystems will respond to 119 

environment changes, we thus further need to verify relationships between environment variables 120 

and model predicted variables to test whether the model can simulate emergent responses of those 121 

variables to environmental factors from empirical observations (Peng et al., 2020). The accurate 122 

representation of the response of the target variables to environmental factors (i.e., climate 123 

variability and soil conditions) will help expand the models to broader soil and climate conditions.  124 

Based on the above rationale, to demonstrate a new standard to achieve a comprehensive 125 

constraint and evaluation of an agroecosystem simulator, in this study we used an advanced 126 

ecosystem model, ecosys, to simulate surface carbon fluxes and corn/soybean yield in the U.S. 127 

Midwest at both eddy-covariance sites and county scales for the three I states (Illinois, Iowa and 128 

Indiana). As one of the world’s largest crop production areas, the U.S. Midwest produces about 129 

85% of U.S. corn and soybean (USDA, 2020). The soil health and crop yield of the U.S. Midwest 130 

in the future is vital to the global food supply and agricultural ecosystem services. To improve the 131 

quantification of carbon cycle dynamics in the U.S. Midwest, both the absolute values of the 132 

simulated carbon fluxes and yield as well as the responses of those variables to the environmental 133 

variabilities were evaluated. Through the evaluations, we aim to evaluate the capability of ecosys 134 

in conducting spatiotemporal extrapolations of agroecosystem carbon cycle by addressing the 135 

following two questions: (1) To what extent can ecosys simulate agroecosystem carbon dynamics 136 

at different individual sites as well as across the broader regions in the U.S. Midwest? (2) How 137 

https://paperpile.com/c/kyGOIN/Qc4M
https://paperpile.com/c/kyGOIN/cvKf
https://paperpile.com/c/kyGOIN/cFOB
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well can ecosys capture responses of carbon fluxes and crop yield to environmental variabilities? 138 

Although we use ecosys as an example, the procedures for model evaluation described in this study 139 

are applicable to many other agroecosystem models. 140 

 141 

2. Data and method 142 

2.1 The process-based model ecosys 143 

Ecosys is an advanced mechanistic ecosystem model developed to simulate water, energy, 144 

carbon, and nutrient cycles simultaneously for various ecosystems, including agroecosystems at 145 

the hourly step (Figure 1a) (Grant, 2001). It is one of the very few models that are formulated 146 

primarily based on biophysical and biochemical principles, with fully connected balances and 147 

interactions for water, energy, carbon and nutrient cycles in the soil-plant-atmosphere continuum, 148 

and has been extensively validated in various ecosystems ranging from agricultural (Grant et al., 149 

2007, 2011; Mezbahuddin et al., 2020) to forest systems (Grant et al., 2010, 2006).  150 

The ecosys model was built based on the strategy that pursues the mechanistic 151 

representations and model outputs as directly comparable to observations as possible to 152 

realistically inform agricultural practices, by combining reactive transport modeling and state of 153 

the art knowledge of biogeochemistry (Grant, 2001). For example, photosynthesis and plant 154 

hydraulics in ecosys are coupled through leaf osmotic pressure, and then turgor pressure and leaf 155 

water potential that is linked to stomatal conductance (Grant, 1995; Grant and Flanagan, 2007), 156 

rather than empirical stress functions (Van den Hoof et al., 2011; Liu et al., 2016; Yokohata et al., 157 

2020), and all of which can be measured in the field (Salmon et al., 2020; Shekoofa et al., 2021; 158 

Xue et al., 2021). As it integrates the plant hydraulics closely with the plant photosynthesis (Grant 159 

et al., 1999), the plant stomata conductance in ecosys is directly controlled by the balance between 160 

https://paperpile.com/c/kyGOIN/QerC
https://paperpile.com/c/kyGOIN/8ZXF+GivQ+4hxT
https://paperpile.com/c/kyGOIN/8ZXF+GivQ+4hxT
https://paperpile.com/c/kyGOIN/LVQN+0xIH
https://paperpile.com/c/kyGOIN/QerC
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photosynthetic carbon assimilation and plant water hydraulics calculated for the soil-plant-161 

atmosphere continuum, which can properly resolve the plant response to drought (Mekonnen et 162 

al., 2017). Due to the explicit simulation of plant hydraulic impacts on stomatal conductance, the 163 

empirical crop response to atmospheric vapor pressure deficit does not need be prescribed as in 164 

many other models (Van den Hoof et al., 2011; Liu et al., 2016; Yokohata et al., 2020). In response 165 

to soil water and plant carbon stress, ecosys also dynamically adjusts the plants’ carbon and 166 

nutrient allocation strategies (Grant et al., 2001a), so that all plant organs will balance their 167 

respective growth to help the plants survive the harsh growth conditions and flourish under 168 

favorable conditions. In addition, the plant carbon and nutrient allocation is represented following 169 

the source-storage-sink balance approach, rather than the fixed allometric relationship approach 170 

adopted by most existing models (Grant, 1989b; Drewniak et al., 2013; Liu et al., 2016).  171 

Moreover, ecosys employs much more complete physical and chemistry theories in 172 

simulating soil related processes. Specifically, ecosys mechanistically resolves the oxygen stress 173 

throughout the soil and plant roots (Grant, 1998), such that a flood condition will suppress plants’ 174 

growth and alter the soil carbon and nutrient cycling. In addition, ecosys explicitly includes 175 

microbes’ competitive and symbiotic nutrient interactions with plants (Grant and Pattey, 2003; 176 

Grant et al., 2006; Grant and Pattey, 2008; Grant et al., 2016), enabling a nutrient-based analysis 177 

of how various management practices could affect plant productivity. Meanwhile, soil organic 178 

carbon dynamics in ecosys are driven explicitly by microbial community dynamics that emerge 179 

from the interactions between bacteria and fungi, and another five functional groups carrying out 180 

fermentation, methane and nitrogen cycling (Grant, 2013; Grant and Rochette, 1994). Emergent 181 

microbial population structure, e.g. bacteria to fungi ratio, can be directly evaluated with respect 182 

to field measurements (Anderson and Domsch, 1975; Bardgett and McAlister, 1999). Moreover, 183 

https://paperpile.com/c/kyGOIN/rF2g
https://paperpile.com/c/kyGOIN/rF2g
https://paperpile.com/c/kyGOIN/rF2g
https://paperpile.com/c/kyGOIN/rF2g
https://paperpile.com/c/kyGOIN/hsh1+eNvf
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the partitioning of soil carbon in ecosys is amenable to the density fractionation that is often used 184 

by empiricists to characterize soil organic matter. In addition, ecosys outputs profiles and fluxes 185 

of many easily measurable chemicals, including different phase existences of CO2, CH4, N2O, NH3, 186 

NO3, HPO4
(2-), etc. Finally, ecosys resolves many common agricultural practices, such as mixed 187 

cropping, depth dependent irrigation and tillage (Grant, 1997), banded vs broadcast fertilization 188 

(Grant et al., 2001b), soil liming, manure application (Grant et al., 2001c), denitrification inhibitor 189 

(Grant et al., 2020), and tile-drainage system (Mezbahuddin et al., 2017) etc. Finally, ecosys 190 

generally requires no calibration for the soil and hydrological processes due to its complete 191 

mechanistics thus provides scalability to regional scale applications (Grant et al., 2012). All these 192 

features make ecosys stand out as an unique simulator as compared to many other models that tend 193 

to lump processes into simplified representations. We here refer detailed information about the 194 

processes represented in ecosys to the supplement of Grant et al. (2019), and the code of ecosys 195 

can be obtained from the online repository (https://github.com/jinyun1tang/ECOSYS). Below we 196 

only describe major carbon cycling processes of agroecosystems simulated in ecosys (Eq. 1 and 197 

2).  198 

-NEE = GPP - Reco = GPP - (Ra + Rh) = GPP - ((Rm + Rg) + Rh)       (Eq. 1) 199 

                        NBP = -NEE - Yield - ε                                           (Eq. 2) 200 

where NEE is net ecosystem exchange, GPP is gross primary production, Ra is ecosystem 201 

autotrophic respiration, Rh is ecosystem heterotrophic respiration, Reco is ecosystem respiration,  202 

Rm and Rg are plant maintenance and growth respiration, NBP is net biome productivity, Yield is 203 

harvested crop yield, and ε is the carbon losses caused by disturbances (e.g., fire) excluding harvest.  204 

 In ecosys, the change of SOC (△SOC) is equal to the difference between plant litter fall, 205 

Rh, and ecosystem carbon leakage, including CH4 emission, dissolved organic (DOC) and 206 

https://paperpile.com/c/kyGOIN/bw60
https://paperpile.com/c/kyGOIN/rxfA
https://paperpile.com/c/kyGOIN/rxfA
https://paperpile.com/c/kyGOIN/rxfA
https://paperpile.com/c/kyGOIN/tBCX
https://paperpile.com/c/kyGOIN/tBCX
https://paperpile.com/c/kyGOIN/tBCX
https://paperpile.com/c/kyGOIN/ZbsA
https://paperpile.com/c/kyGOIN/ZbsA
https://paperpile.com/c/kyGOIN/ZbsA
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inorganic carbon (DIC) lenching, etc (Eq. 3a). For annual cropping system in most of the U.S. 207 

Corn Belt regions, we can use NBP to approximate △SOC at long term scales (≥annual scale). By 208 

using Eq. 3, most part of simulated cropland soil carbon balance can be directly backuped with the 209 

eddy covariance measurements or carbon inventory data, which provided another approach to 210 

evaluate and verify the model performance in carbon budget estimations (Baker and Griffis, 2005).    211 

 △SOC = Litter_Fall - Rh - ε                                                                                          (Eq. 3a) 212 

= (GPP-Ra-Yield + Seed_C) - Rh – ε      (≥annual scale for annual cropping systems)               213 

(Eq. 3b) 214 

            = -NEE  + Seed_C - Yield - ε = NBP  + Seed_C - ε   (≥annual scale for annual cropping 215 

systems)    (Eq. 3c) 216 

where Litter_Fall is the litter fall from plants, including leaf senescence, harvest residue, and root 217 

carbon exudation, Seed_C is the seed mass at planting, ε is the carbon leakage through CH4 218 

emission, and DOC and DIC are leaching terms. 219 

 220 

Figure 1. (a) Major processes represented in the ecosys model (revised from (Grant, 2004)), and 221 

(b) locations of the seven flux towers and the three I states in the U.S. Midwest. 222 

2.1.1 Photosynthesis (GPP) 223 

https://paperpile.com/c/kyGOIN/Es5x
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The ecosys model uses a multiple-layer canopy module to simulate canopy light absorption 224 

and carbon assimilation (Grant et al., 1989). Photosynthesis of each individual leaf  is calculated 225 

independently using the Farquhar model for C3 plants and explicitly considering the mesophyll-226 

bundle sheath carbon exchange for C4 plants at hourly time step (Farquhar et al., 1980; Grant, 227 

1989a) with specific azimuth, leaf inclination, exposure of light conditions (i.e., sunlit and shaded 228 

leaves), and canopy height. The canopy stomatal resistance (rc) is controlled by canopy turgor 229 

potential (ψt = ψc - ψπp, where ψt, ψc, and ψπp represent canopy turgor potential, total water potential 230 

and osmotic potential, respectively) and canopy photosynthesis (Eq. 4) (Grant, 1995; Grant et al., 231 

1993). ψc is calculated through explicitly modeling the plant hydraulics, i.e., by balancing the root 232 

water uptake from different soil layers with that transferred from root to canopy, and transpired 233 

from the canopy to the atmosphere (Grant, 1995). Canopy photosynthesis is calculated by 234 

summing the photosynthesis of all individual leaves, and is coupled with the calculation of canopy 235 

stomatal resistance as:  236 

rcmin = 0.64 (Cb – Ci') / Vc'                  rc driven by rates of carboxylation vs. diffusion (Eq. 4a) 237 

rc = rcmin + (rcmax – rcmin) e(-β ψ
t
)                           rc constrained by water status            (Eq. 4b) 238 

where rc is canopy stomatal resistance to vapor flux, rcmin is the minimum rc at ψc = 0 MPa, Cb is 239 

the CO2 concentration in canopy air, Ci' is the intercellular CO2 concentration at ψc = 0 MPa, Vc' 240 

is the potential canopy CO2 fixation rate at ψc = 0 MPa, rcmax is canopy cuticular resistance to vapor 241 

flux, and β is the stomatal resistance shape parameter.  242 

2.1.2 Carbon allocation, crop yield, and autotrophic respiration (Ra) 243 

Ecosys simulates phenologically-driven plant carbon allocation to shoot and root (Grant, 244 

1989b, 1989c). The dynamic ratio of shoot and root carbon allocation are functions of the number 245 

of phyllochron intervals and of the water and nutrient status of the plant (Grant, 1989b). The 246 

https://paperpile.com/c/kyGOIN/sKI5
https://paperpile.com/c/kyGOIN/MJAu+2jJe
https://paperpile.com/c/kyGOIN/MJAu+2jJe
https://paperpile.com/c/kyGOIN/Q1L9+Vdhb
https://paperpile.com/c/kyGOIN/Q1L9+Vdhb
https://paperpile.com/c/kyGOIN/Q1L9
https://paperpile.com/c/kyGOIN/rF2g+kRic
https://paperpile.com/c/kyGOIN/rF2g+kRic
https://paperpile.com/c/kyGOIN/rF2g
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allocated carbohydrate will be first used for maintenance respiration (Rm) in both shoot and root, 247 

which is calculated based on the canopy temperature (shoot)/soil temperature (root), shoot/root 248 

dry biomass, and nutrient stoichiometry. If the allocated carbohydrate can not meet the 249 

maintenance respiration, the unmet requirement is remobilized from the existing foliage 250 

carbohydrate pool, driving leaf senescence. Remaining carbohydrate after subtracting the 251 

maintenance respiration from total carbohydrate is used for growth respiration (Rg) and dry mass 252 

(DM) formation. For shoots, DM is partitioned to as many as seven organs, including leaf, sheath, 253 

stalk, soluble reserves, husk, cob, and grain, with dynamic partitioning coefficients varying with 254 

growth stages (Grant, 1989b). Before floral induction, the shoot DM only consists of leaf and 255 

sheath compartments. After floral induction and before anthesis, the shoot DM is allocated to all 256 

seven compartments except grain, which begins after anthesis, with partition coefficients 257 

calculated from organ growth curves (Grant, 1989b). The modelled yield upon harvest is 258 

determined by the seed number and kernel mass set during pre- and post-anthesis growth stages. 259 

The plant growth status during stem elongation and the length of post anthesis period together 260 

determine the seed number formulation. The kernel mass is determined by the seed growth during 261 

the early grain filling stage, limited by the predefined maximum kernel mass  (Grant et al., 2011). 262 

The grain filling rate in ecosys is limited by canopy temperature, and soluble reserve carbon and 263 

reserve nutrients in the grain. 264 

2.1.3 Heterotrophic respiration (Rh) and soil carbon dynamics 265 

Ecosys computes Rh with explicit microbial dynamics that considers the stoichiometric 266 

interactions among carbon, nitrogen and phosphorus (Grant, 2013; Grant and Rochette, 1994). 267 

Specifically, organic matter and their transformation occur in five organic matter-microbial 268 

complexes, which are coarse woody litter, fine nonwoody litter (including root exudates), animal 269 

https://paperpile.com/c/kyGOIN/rF2g
https://paperpile.com/c/kyGOIN/rF2g
https://paperpile.com/c/kyGOIN/GivQ
https://paperpile.com/c/kyGOIN/hsh1+eNvf
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manure (if applied), particulate organic matter (POM) and humus. Each complex has five organic 270 

states, including solid organic matter, sorbed organic matter, microbial residue, dissolved organic 271 

matter, and the decomposition agents (microbes), all of which are vertically resolved from the 272 

surface litter layer to the bottom of the soil column. The microbes include diverse functional groups, 273 

such as obligate aerobes (bacteria and fungi), aerobic and facultative nitrifiers, facultative 274 

anaerobes (denitrifiers), obligate anaerobes (fermenters), heterotrophic (acetotrophic) and 275 

autotrophic (hydrogenotrophic) methanogens, and aerobic and anaerobic heterotrophic 276 

diazotrophs (non-symbiotic N2 fixers). In computing the organic matter transformation, solid 277 

organic matter is first decomposed by microbes as a function of active microbial biomass (as an 278 

approximation to the exoenzyme hydrolysis), the product (aka soluble organic matter) is then taken 279 

up by microbes in the presence of mineral soil sorption to support microbial catabolic activity (i.e., 280 

heterotrophic respiration), which drives microbial biomass growth and mortality. Mineralization 281 

associated with heterotrophic respiration produces ammonium, CO2 and inorganic phosphorus to 282 

drive the metabolism of lithotrophic groups. To maintain the elemental stoichiometry, all microbial 283 

groups compete with plants for inorganic nutrients, such as ammonium, nitrate and dissolved 284 

inorganic phosphorus. Besides, aerobic microbes also compete with plant roots for oxygen. 285 

Therefore, the heterotrophic respiration simulated by ecosys comprehensively resolves important 286 

process constraints from microbial population dynamics, organic matter formation and 287 

destabilization, nutrient limitation and plant-microbial interaction as influenced by the soil 288 

physical conditions. Mechanistically, ecosys is well positioned to conduct a comprehensive 289 

assessment of SOC change and greenhouse gas budget of agroecosystems. More details on the soil 290 

biogeochemistry in ecosys can be found at Grant (2014).   291 

2.2 Model setup 292 

https://paperpile.com/c/kyGOIN/Ykw9
https://paperpile.com/c/kyGOIN/Ykw9
https://paperpile.com/c/kyGOIN/Ykw9
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2.2.1 Site-scale simulation, calibration, and validation  293 

We evaluated the performance of ecosys using seven agricultural sites from the AmeriFlux 294 

network (https://ameriflux.lbl.gov/) that span a wide range of climate and soil conditions (Figure 295 

1b and Table 1) located in the U.S. Midwest. Among these sites, US-Ne1 planted corn during the 296 

study period, whereas other sites had corn-soybean rotations; US-Ne1 and US-Ne2 are irrigated 297 

sites, whereas other sites are rainfed. Ecosystem CO2, water, and energy fluxes were measured 298 

using the eddy covariance technique at these sites (Baldocchi et al., 2001; Baldocchi, 2003). 299 

The hourly gap-filled meteorological variables (i.e., air temperature, precipitation, 300 

downward shortwave radiation, humidity, and wind speed) from AmeriFlux and soil information 301 

(i.e., bulk density (BD), field capacity (FC), wilting point (WP), soil texture, saturated hydraulic 302 

conductivity (KSat),  soil organic carbon (SOC), pH, and cation exchange capacity (CEC)) from 303 

the Gridded Soil Survey Geographic Database (gSSURGO) at these sites were used to drive ecosys. 304 

For US-Ne1, US-Ne2 and US-Ne3, detailed land management practices (including planting time 305 

and density, irrigation and fertilizer time and amount, tillage time and intensity) from the site 306 

records were also available as inputs for the model. For other sites, we used 7.5 plants/m2 and 37.1 307 

plants/m2 for corn and soybean with the planting date from the Risk Management Agency (RMA) 308 

of United States Department of Agriculture (USDA) (Lobell et al., 2014), and applied 18g 309 

N/m2/year fertilizer before planting for corn years. 310 

The time series of GPP, NEE, and Reco of US-Ne1-3 during 2001–2012 were obtained 311 

from the FLUXNET2015 Tier 1 dataset (http://fluxnet.fluxdata.org/data/fluxnet2015-dataset/), 312 

and the LAI and carbon allocation data at different growth stages for those three sites during 2003–313 

2012 were obtained from Carbon Sequestration Program (CSP) at University of Nebraska-314 

Lincoln’s Agricultural Research and Development Center (http://csp.unl.edu/Public/sites.htm). 315 

https://ameriflux.lbl.gov/
https://paperpile.com/c/kyGOIN/TrHT+VbXL
https://paperpile.com/c/kyGOIN/P628
http://fluxnet.fluxdata.org/data/fluxnet2015-dataset/
http://csp.unl.edu/Public/sites.htm
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For other four sites, the gap-filled GPP, NEE, Reco, and LAI from the AmeriFlux website were 316 

used for the model evaluation. We fine tuned the rubisco carboxylation activity and plant maturity 317 

group parameters of corn and soybean to match the seasonal patterns and magnitude of GPP and 318 

LAI at US-Ne1, US-Ne2 and US-Ne3 sites. The tuned model was evaluated at US-Ne sites using 319 

NEE, Reco, and carbon allocation measurements, and at other sites using the observed GPP, NEE, 320 

Reco, and LAI data.  321 

 322 

Table 1. Site information of selected flux towers in the U.S. Midwest for model evaluation.  323 

Site 

Latit

ude 

Longit

ude 

MAT 

(℃) 

MAP 

(mm) 

Simulate

d Period 

Site 

Condition 

Crop Types References 

US-

Ne1 

41.17 -96.48 10.4 710 2001-2012 Irrigated Continuous corn 

(Suyker et al., 2005; Suyker 

and Verma, 2012; Verma et 

al., 2005) 

US-

Ne2 

41.16 -96.47 10.4 710 2001-2012 Irrigated 

Soybean in even 

years before 

2009, corn in 

other years 

(Suyker et al., 2005; Suyker 

and Verma, 2012; Verma et 

al., 2005) 

US-

Ne3 

41.17 -96.44 10.4 710 2001-2012 Rainfed 

Corn in odd years 

and soybean in 

even years 

(Suyker et al., 2005; Suyker 

and Verma, 2012; Verma et 

al., 2005) 

US-

Bo1 

40.01 -88.29 11.5 821 2001-2008 Rainfed 

Corn in odd years 

and soybean in 

even years 

(Bernacchi et al., 2005; 

Meyers, 2004) 

US-

Br1 

41.69 -93.69 9.1 938 2005-2011 Rainfed 

Corn in odd years 

and soybean in 

(Hernandez-Ramirez et al., 

2011) 

https://paperpile.com/c/kyGOIN/J0pp+fmdS+B91u
https://paperpile.com/c/kyGOIN/J0pp+fmdS+B91u
https://paperpile.com/c/kyGOIN/J0pp+fmdS+B91u
https://paperpile.com/c/kyGOIN/J0pp+fmdS+B91u
https://paperpile.com/c/kyGOIN/J0pp+fmdS+B91u
https://paperpile.com/c/kyGOIN/J0pp+fmdS+B91u
https://paperpile.com/c/kyGOIN/J0pp+fmdS+B91u
https://paperpile.com/c/kyGOIN/J0pp+fmdS+B91u
https://paperpile.com/c/kyGOIN/J0pp+fmdS+B91u
https://paperpile.com/c/kyGOIN/jT30+TooQ
https://paperpile.com/c/kyGOIN/jT30+TooQ
https://paperpile.com/c/kyGOIN/hAB5+h3Ns
https://paperpile.com/c/kyGOIN/hAB5+h3Ns


16 

even years 

US-

Ib1 

41.86 -88.22 9.5 972 2005-2011 Rainfed 

Corn in even 

years and soybean 

in odd years 

(Allison et al., 2005) 

US-

Ro1 

44.71 -93.09 7.7 764 2004-2012 Rainfed 

Corn in odd years 

and soybean in 

even years 

(Baker and Griffis, 2005; 

Griffis et al., 2008) 

 324 

2.2.2 Regional-scale crop yield and GPP simulation, calibration, and validation 325 

 For regional-scale simulations, we focused on the three I states (Illinois, Indiana, and Iowa), 326 

which is the major corn and soybean production area of the U.S. We conducted simulations at each 327 

county within three I states from 2001 to 2018 using corn-soybean rotation without irrigation (the 328 

major planting strategies within this area), using the North American Land Data Assimilation 329 

System (NLDAS-2) hourly meteorological data and gSSURGO soil data as inputs. NLDAS-2 330 

meteorological data is from the integration of observation-based and model reanalysis data, with 331 

0.125° spatial resolution covering central North America. The county scale meteorological 332 

variables were aggregated from the NLDAS-2 grids within that county. The National 2020 333 

Cultivated Layer (based on 2016-2020 USDA Cropland Data Layer) (USDA, 2021) and 334 

gSSURGO datasets were used to obtain the county-scale soil properties (i.e., BD, soil texture, WP, 335 

FC, KSat, SOC, pH, and CEC) that correspond to the county-scale cropland majority soil type.  336 

For regional scale simulations, corn and soybean were also planted with 7.5 plants/m2 and 37.1 337 

plants/m2 at the county scale based on the RMA planting date (2001–2012) (Lobell et al., 2014) 338 

and the state-scale/agricultural district-scale crop progress reports (2013–2018) depending on the 339 

https://paperpile.com/c/kyGOIN/WsAj
https://paperpile.com/c/kyGOIN/JAvQ+220X
https://paperpile.com/c/kyGOIN/JAvQ+220X
https://paperpile.com/c/kyGOIN/P628
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data availability (Figure S4), and all crops were harvested on October 31. The state-wise crop 340 

specific fertilizer information provided by USDA  (USDA, 2019) was applied in the simulations.  341 

 For model calibration and evaluation, we used county-scale rainfed corn and soybean yield 342 

from USDA National Agricultural Statistics Service (NASS), and a new 250m resolution daily 343 

GPP estimation using MODIS-based soil-adjusted near‐infrared reflectance of vegetation 344 

(SANIRv) and photosynthetically active radiation (PAR) (Jiang et al., 2021). The fixed linear yield 345 

trend was calculated from the NASS crop yield data for corn and soybean respectively for each 346 

county, and was used to adjust the simulated yield to year 2009 (the midpoint of 2001-2018). To 347 

constrain ecosys efficiently, we built the surrogate models for crop yield and GPP separately using 348 

the Long Short Term Memory networks (LSTM) to predict daily GPP and end-of-seasonal crop 349 

yield under different corn and soybean parameters. In these models, the daily climate 350 

meteorological data, three layers soil parameters (i.e., 0-5, 5-30, and 30-100cm), crop type, corn 351 

parameters, soybean parameters, fertilizer amount, planting and harvest date, and day of year 352 

(DOY) were used as input, and GPP or crop yield were used as output, respectively. The RMSE 353 

of the surrogate models are 13.5 gC/m2 and 0.46 gC/m2/day for yield and GPP, respectively. The 354 

parameters for soybean include rubisco carboxylation activity, plant maturity group, maximum 355 

number of fruiting sites per reproductive node, and maximum rate of kernel filling, and for corn 356 

include fraction of leaf protein in bundle sheath chlorophyll, plant maturity group, maximum 357 

number of fruiting sites per reproductive node, and maximum rate of kernel filling.  We conducted 358 

the parameter calibration for each county based on the surrogate models, and used data from even 359 

years during 2001 to 2018 for model constraint and those from odd years for model validation. In 360 

applying the constraint, the difference between simulated and observed yield, accumulated 361 

https://paperpile.com/c/kyGOIN/gxnJ
https://paperpile.com/c/kyGOIN/zOQX
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growing season (i.e., May to September) GPP, and monthly growing season GPP were minimized 362 

using the cost function in Eq. 5c. 363 

L(soybean) =NRMSEyield(soybean) + NRMSEGPP(soybean) + NRMSEGPP_monthly(soybean)         (Eq. 5a) 364 

L(corn) = NRMSEyield(corn) + NRMSEGPP(corn) +  NRMSEGPP_monthly(corn)                     (Eq. 5b) 365 

             L = L(soybean) + L(corn)                                                                                                    (Eq. 5c) 366 

where NRMSEyield(soybean) and NRMSEyield(corn) are normalized RMSE of model simulated and 367 

measured crop yield for corn and soybean, respectively based on Eq. 6; NRMSEGPP(soybean) and 368 

NRMSEGPP(corn) are normalized RMSE of model simulated and measured growing season 369 

accumulated GPP for corn and soybean, respectively based on Eq. 7; NRMSEGPP_monthly(soybean) 370 

and NRMSEGPP_monthly(corn) are normalized RMSE of model simulated and measured growing 371 

season monthly GPP for corn and soybean, respectively based on Eq. 8. 372 

𝑁𝑅𝑀𝑆𝐸𝑦𝑖𝑒𝑙𝑑 =  
√

1

9
∑ (𝑌𝑖𝑒𝑙𝑑𝑠𝑖𝑚(𝑦𝑒𝑎𝑟)−𝑌𝑖𝑒𝑙𝑑𝑜𝑏𝑠(𝑦𝑒𝑎𝑟))2

𝑦𝑒𝑎𝑟=𝑒𝑣𝑒𝑛_𝑦𝑒𝑎𝑟𝑠

1

9
∑ 𝑌𝑖𝑒𝑙𝑑𝑜𝑏𝑠(𝑦𝑒𝑎𝑟)𝑦𝑒𝑎𝑟=𝑒𝑣𝑒𝑛_𝑦𝑒𝑎𝑟𝑠

                      (Eq. 6) 373 

𝑁𝑅𝑀𝑆𝐸𝐺𝑃𝑃 =  
√

1

9
∑ (𝐺𝑃𝑃𝑠𝑖𝑚(𝑦𝑒𝑎𝑟)−𝐺𝑃𝑃𝑜𝑏𝑠(𝑦𝑒𝑎𝑟))2

𝑦𝑒𝑎𝑟=𝑒𝑣𝑒𝑛_𝑦𝑒𝑎𝑟𝑠

1

9
∑ 𝐺𝑃𝑃𝑜𝑏𝑠(𝑦𝑒𝑎𝑟)𝑦𝑒𝑎𝑟=𝑒𝑣𝑒𝑛_𝑦𝑒𝑎𝑟𝑠

                      (Eq. 7) 374 

𝑁𝑅𝑀𝑆𝐸𝐺𝑃𝑃_𝑚𝑜𝑛𝑡ℎ𝑙𝑦 =  
√1

5
 ∑ (

(∑ 𝐺𝑃𝑃𝑠𝑖𝑚(𝑦𝑒𝑎𝑟,𝑚𝑜𝑛𝑡ℎ))𝑦𝑒𝑎𝑟=𝑒𝑣𝑒𝑛𝑦𝑒𝑎𝑟𝑠

9
  −

(∑ 𝐺𝑃𝑃𝑜𝑏𝑠(𝑦𝑒𝑎𝑟,𝑚𝑜𝑛𝑡ℎ))𝑦𝑒𝑎𝑟=𝑒𝑣𝑒𝑛𝑦𝑒𝑎𝑟𝑠

9
)29

𝑚𝑜𝑛𝑡ℎ=5
1

45
∑ ∑ 𝐺𝑃𝑃𝑜𝑏𝑠(𝑦𝑒𝑎𝑟,𝑚𝑜𝑛𝑡ℎ)

9
𝑚𝑜𝑛𝑡ℎ=5𝑦𝑒𝑎𝑟=𝑒𝑣𝑒𝑛_𝑦𝑒𝑎𝑟𝑠

(Eq. 8) 375 

where Yieldsim(year) and Yieldobs(year) are the simulated and observed yield, GPPsim(year) and 376 

GPPobs(year) are the simulated and observed growing season accumulated GPP, GPPsim(year,month) and 377 

GPPobs(year,month) are the simulated and observed GPP at certain month, even_years is the years used 378 

for model constrain (i.e., 2002, 2004, ..., 2018).  379 

 380 

 381 

 382 



19 

3. Results 383 

3.1 Site-scale validation of ecosys in simulating carbon dynamics 384 

We compared observed and modelled GPP, NEE, Reco fluxes at 7 eddy-covariance sites 385 

in the U.S. Midwest (Figure 1b). The results indicate that ecosys can capture both the magnitude 386 

and seasonal patterns of these carbon fluxes with high accuracy at both daily and monthly scale 387 

(i.e., Figure 2, 3, S1, S2, and Table 2). The simulated GPP is consistent with the observations for 388 

both corn and soybean throughout the growing season, and can reflect the magnitude difference 389 

between corn and soybean during peak growing season. At the daily scale, R2 and RMSE are 0.94 390 

and 2.15 gC/m2/day for corn, and are 0.86 and 1.90 gC/m2/day for soybean at Ne3, respectively 391 

(Figure 2a). The seasonal pattern and magnitude of Reco, which is high during summer and low 392 

during winter in the U.S. Midwest, can be captured by ecosys for both corn and soybean with high 393 

modeling skills (i.e., R2=0.86 and RMSE=2.04 gC/m2/day for corn, and R2=0.80 and RMSE=1.37 394 

gC/m2/day for soybean at Ne3, Figure 2c). As for NEE, the magnitude, peaking time, and zero-395 

crossing points in observations are all captured by ecosys with R2=0.89 and RMSE=1.73 396 

gC/m2/day for corn, and R2=0.75 and RMSE=1.27 gC/m2/day for soybean, respectively, at Ne3 397 

(Figure 2b).  398 

The comparison of observed and modelled above ground biomass (AGB) and its partition 399 

showed that the dynamics of AGB and its allocation to leaf, stem, and reproductive organs can be 400 

reproduced by ecosys for both corn and soybean, ensuring the application of ecosys for crop yield 401 

simulation (Figure 2, S1, and S2). The R2 between the measured and simulated AGB and its leaf, 402 

stem, and reproductive percentages are 0.95, 0.92, 0.60, and 0.94 at Ne3. In both observations and 403 

simulations, during the early growing season, the AGB increase appears mostly as leaves to 404 

increase photosynthesis; during the peak growing season, the AGB increase is mostly found in 405 



20 

stem for plant structural support, and at the late stage, the AGB increase is mostly allocated to the 406 

reproductive organ for grain formulation. 407 

We also compared the responses of the modelled and observed GPP, Reco, and NEE to the 408 

air temperature (Ta) and vapor pressure deficit (VPD) at those eddy-covariance sites (Figure 4 and 409 

S3). The results indicate that ecosys captured the responses of major carbon fluxes e.g. GPP, Reco 410 

and NEE to variations in air temperature and VPD at the eddy-covariance sites reasonably well. 411 

Taking corn as an example, when Ta is less than 30℃, GPP increases quickly, but stays stable 412 

when Ta becomes higher. Both observations and simulations show such a response, which is 413 

primarily controlled by the limitation of temperature on leaf rubisco activity. As for the response 414 

of GPP to VPD, GPP increases when VPD is small, but decreases when VPD gets higher in both 415 

observations and simulations, which reveals the emergent influence of VPD on crop stomatal 416 

conductance. The observed Reco showed a strong response to Ta (i.e., increases quickly with 417 

higher Ta when Ta is below the optimal value) and no significant response to VPD, which can also 418 

be captured by the ecosys simulations. As for NEE, the balance of carbon fixation and respiration 419 

shows similar responses to Ta and VPD as that of GPP in both observations and simulations. The 420 

reason that results in the similar response of NEE and GPP to environmental factors is that NEE 421 

is dominated by crop photosynthesis during peak growing season. Similar responses of GPP, NEE, 422 

and Reco to Ta and VPD are also captured by ecosys simulations for soybean at the eddy-423 

covariance sites (i.e., Figure S3). 424 
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 425 

Figure 2. Comparing ecosys simulated GPP, NEE, Reco and carbon allocation with site 426 

observations at Mead Ne3 site in Nebraska for both corn (light yellow shaded) and soybean (light 427 

blue shaded). 428 
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 429 

Figure 3. Comparison of simulated and observed carbon fluxes (monthly) and LAI at the flux 430 

tower sites. Red dashed lines indicate the 1-to-1 line.  431 
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 432 

Figure 4. Responses of simulated and observed daily GPP, NEE, and Reco to air temperature and 433 

VPD for corn during peak growing season (June to August). 434 

 435 

 436 

 437 

 438 
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Table 2. Comparison statistics of ecosys simulated daily surface carbon fluxes with flux towers 439 

observations. 440 

Sites 

NEE GPP   Reco  

RMSE 

(gC/m2/day) 

Bias 

(gC/m2/day) 

R2 

RMSE 

(gC/m2/day) 

Bias 

(gC/m2/day) 

R2 

RMSE 

(gC/m2/day) 

Bias 

(gC/m2/day) 

R2 

Ne1 1.96 -0.60 0.86 2.44 0.67 0.93 1.92 -0.07 0.87 

Ne2 1.67 -0.28 0.88 2.32 0.25 0.92 1.98 -0.03 0.83 

Ne3 1.51 -0.04 0.86 2.02 -0.18 0.91 1.72 -0.11 0.79 

Bo1 2.26 0.11 0.65 3.31 0.06 0.74 2.04 0.21 0.67 

Br1 2.34 0.04 0.59 2.66 -0.06 0.80 1.46 -0.01 0.77 

Ib1 1.90 -0.35 0.69 1.64 0.28 0.91 1.66 0.05 0.77 

Ro1 1.77 -0.15 0.69 2.12 -0.69 0.89 1.30 -0.78 0.89 

 441 

3.2 Regional-scale crop yield and gross primary productivity simulation 442 

3.2.1 Regional-scale corn and soybean yield simulation 443 

The comparison between modelled and NASS reported crop yield shows that ecosys can 444 

reproduce the spatial distribution and interannual variability of crop yield over three I States for 445 

both corn and soybean (Figure 5, Figure S5-7). Modeled long-term (2001–2018) averaged crop 446 

yield and NASS ground truth shows similar spatial patterns over three I States during both 447 

calibration years and validation years for both corn and soybean. The R2, RMSE, and bias between 448 

the spatial patterns of modelled and measured yield are 0.83, 8.23 Bu/Acre, and 2.72 Bu/Acre for 449 

corn, and 0.80, 2.39 Bu/Acre, and 0.07 Bu/Acre for soybean, respectively. Long-term averaged 450 
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corn and soybean yield in the northern part of three I States are higher than that of the southern part 451 

in both observations and simulations, which may be caused by the differences in soil (i.e., higher 452 

SOC in the northern part) and climate conditions (i.e., more frequent heat stress and extreme 453 

precipitation events in the southern part). The temporal variation of simulated average yield during 454 

2001 to 2018 is also consistent with the observations with R2 of 0.83 and 0.63 for corn and soybean, 455 

respectively.  456 

 457 
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 458 

Figure 5. Comparison of ecosys simulated crop yield and NASS reported crop yield. (a) Spatial 459 

patterns of simulated and observed multi-year averaged corn yield in calibration and validation 460 

years. (b) Density scatter plot of simulated and observed multi-year averaged corn yield. Different 461 

colors mean different normalized density (means the ratio of points density to maximum points 462 

density, similar for the density scatter plot in other figures). (c) Spatial patterns of simulated and 463 

observed multi-year averaged soybean yield in calibration and validation years. (d) Density scatter 464 
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plot of simulated and observed multi-year averaged soybean yield. (e) and (f) is the time series of 465 

three I states averaged corn and soybean yield respectively. Light green shaded years in (e) and (f) 466 

are calibration years, and grey shaded years are validation years. 467 

 468 

3.2.2 Regional-scale corn and soybean GPP simulation 469 

We also compared the modeled long-term averaged GPP and a new satellite-based GPP 470 

estimation during the peak growing season (June to August). The spatial patterns of simulated and 471 

NIRv-based peak growing season accumulated GPP are similar during calibration years and 472 

validation years for both corn and soybean (Figure 6), which are consistent with the spatial patterns 473 

of yield (Figure 5). The R2, relative RMSE between the spatial patterns of modelled and NIRv-474 

based GPP are 0.83 and 3.7% for corn, and 0.85 and 4.6% for soybean, respectively. The seasonal 475 

variation of GPP for both corn and soybean can also be captured by ecosys at regional scale when 476 

benchmarked with NIRv-based GPP (Figure 7, Figure S8, S10). For example, GPP of corn and 477 

soybean grows quickly from June to July, and peaks at July and August in both simulations and 478 

NIRv-based observations (Figure 7).  479 

 480 
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 481 

Figure 6. Comparison of ecosys simulated peak growing season accumulated (June to August) 482 

GPP and NIRv-based GPP. (a) Spatial patterns of simulated and NIRv-based multi-year averaged 483 

corn GPP in calibration and validation years. (b) Density scatter plot of simulated and NIRv-based 484 

multi-year averaged corn GPP. (c) Spatial patterns of simulated and NIRv-based multi-year 485 

averaged soybean GPP in calibration and validation years. (d) Density scatter plot of simulated 486 

and NIRv-based multi-year average soybean GPP.  487 

 488 
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 489 

Figure 7. Comparison of multi-year averaged ecosys simulated and NIRv-based monthly GPP for 490 

corn and soybean in validation years. (a) Simulated multi-year averaged monthly corn GPP during 491 

validation years. (b) NIRv-based multi-year averaged monthly corn GPP during validation years. 492 

(c) Comparison of simulated and NIRv-based multi-year averaged monthly corn GPP at 493 

Champaign, IL during validation years. (d) Simulated multi-year averaged monthly soybean GPP 494 

during validation years. (b) NIRv-based multi-year averaged monthly soybean GPP during 495 

validation years. (c) Comparison of simulated and NIRv-based multi-year averaged monthly 496 

soybean GPP at Champaign, IL during validation years. 497 

 498 

3.3 Response of crop yield to environmental variability in the U.S. Midwest  499 

Besides comparing the absolute value of modelled and observed yield and GPP, we also 500 

investigated the response of these variables to the environmental factors to evaluate whether the 501 

model could capture such response (Figure 8, Figure 9, and Figure S12). The LOWESS (LOcally 502 
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Weighted Scatterplot Smoothing) was used to fit the response of observed and modelled crop yield  503 

to key environmental factors, including Ta, precipitation , VPD, soil water content (SWC), bulk 504 

density, and SOC, in the U.S. Midwest for corn and soybean during the growing season (Figure 505 

8).  506 

We found that the trend and inflection points of the observation-based response curves can 507 

be simulated by ecosys at the regional scale for most of the months for climate variables and 508 

different depths for soil properties, demonstrating the ability of ecosys in capturing the response 509 

of crop yield to environmental variabilities in the U.S. Midwest. Both observations and simulations 510 

show that yield increases with increasing Ta until an optimal Ta value, and then decreases with 511 

higher Ta. The yield~Ta response is caused by the plant enzyme and growth activity with 512 

temperature, which is also reflected in the GPP~Ta response (Figure S12) during key growing 513 

months (i.e., July and August). For precipitation, the yield increases with increasing precipitation 514 

when precipitation is smaller and then decreases at higher precipitation, revealing the tradeoff 515 

between water limitation and excessive precipitation on crop growth (Li et al., 2019). For VPD, 516 

the yield increases with VPD when VPD is low, and decreases when VPD is higher, confirming 517 

the impacts of VPD on crop productivity in both photosynthesis (through the VPD control on 518 

stomatal conductance) (Ball, 1988; Grant et al., 1993) and crop yield (Kimm et al., 2020; Lobell 519 

et al., 2014; Zhou et al., 2020). The response of yield~SWC is similar to other environmental 520 

variables, revealing the tradeoff between water supply and oxygen stress at high soil moisture on 521 

crop growth. For both observations and simulations, the multi-year averaged crop yield decreases 522 

with larger bulk density and increases with larger SOC in the U.S. Midwest.  523 

 524 

 525 

https://paperpile.com/c/kyGOIN/GpmX
https://paperpile.com/c/kyGOIN/Vdhb+pwMc
https://paperpile.com/c/kyGOIN/P628+9dcm+HUzX
https://paperpile.com/c/kyGOIN/P628+9dcm+HUzX
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 526 

Figure 8. Fitted responses of ecosys simulated and observed crop yield to climate variables at three 527 

I States for corn and soybean using LOWESS. The shaded regions are the 95% confidence intervals 528 

of LOWESS.  529 

 530 

 531 

 532 

 533 
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 534 

Figure 9. Fitted responses of ecosys simulated and observed crop yield to soil conditions within 535 

different soil depths at three I States for corn and soybean using LOWESS. The shaded regions are 536 

the 95% confidence intervals of LOWESS. 537 

 538 

4. Discussion 539 

In this study, we used an advanced agroecosystem model, ecosys, to thoroughly simulate 540 

carbon budget for the U.S. Midwestern agroecosystems at both the site and regional scales. To 541 

address the gap that most previous model-based cropland carbon balance quantification studies 542 

with insufficient validations that only cover a small part of the carbon cycle components, we 543 

evaluated the model performance across a more comprehensive range of carbon cycle components, 544 

including carbon fixation, carbon allocation, and ecosystem respiration at site scale. In particular, 545 
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we tested ecosys performance at seven majority cropland eddy-covariance sites (with 55 site-years 546 

observations) across the U.S. Midwest regarding GPP, NEE, Reco, LAI, and carbon allocation. 547 

The model validation results reveal that ecosys can simulate the seasonal cycle and magnitude of 548 

agroecosystem carbon dynamics at different individual sites with high accuracy. Across all the 549 

sites, the R2 of the simulated and observed value for GPP, NEE, Reco, and LAI were 0.92, 0.87, 550 

0.87, and 0.78, respectively (Figure 3). In addition, the dynamics of above ground biomass and its 551 

allocation to leaf, stem, and reproductive can be reproduced by ecosys (Figure 3, S1, and S2). The 552 

overall model performance at Ne1, Ne2, and Ne3 sites are better than that at the other 4 sites in 553 

simulating GPP, NEE and Reco (Table 2), which may largely be attributed to the more accurate 554 

records of land management practice (i.e., planting date and planting density, tillage information, 555 

and irrigation information) at the Mead Ne sites. 556 

Since the crop cultivar (e.g., maturity group) and management practices (e.g., fertilizer rate, 557 

planting date) may varies in spatial, and is hard to obtain the information at high resolution, we 558 

calibrated the ecosys model using the existing observations from both USDA survey for yield and 559 

satellite-based novel GPP estimations in even years to take the spatial variation of cultivars and 560 

management practices into account, and validated the model in odd years at the regional scale by 561 

simulating over 293 counties in the three I States. The model validation results show that ecosys 562 

can capture the spatial and temporal variability of crop yield as well as the magnitude and seasonal 563 

patterns of GPP for both corn and soybean across the broader regions in the U.S. Midwest. The R2 564 

of the multi-year averaged simulated and observed yield for corn and soybean is 0.83 and 0.80, 565 

respectively, showing the advanced ability of ecosys in capturing the crop yield spatial variance. 566 

Based on our best knowledge, such a high performance in simulating crop yield with a direct 567 

benchmark with county-level NASS data has not been achieved before (Zhang et al., 2015, 2020), 568 

https://paperpile.com/c/kyGOIN/BcP0+tv3Z
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which is a strong demonstration of the ability of ecosys in simulating the carbon cycle for 569 

agroecosystems. The interannual variability of the observed crop yield can also be matched by 570 

ecosys simulations, but with some deviations at some years (i.e., 2003) between the observations 571 

and simulations for soybean, which may be caused by abiotic stress, such as pest, diseases, or 572 

uncaptured environmental impacts (e.g. hail, wind storm).  573 

To fill the gap that previous studies only focused on matching the magnitude of the 574 

simulated target variables with observations, we also corroborated the simulated and observed 575 

responses of carbon-related variables to climate and soil variabilities in both the site scale and 576 

regional scale simulations. The response of the carbon flux and crop yield to the environmental 577 

variabilities obtained from the observations can be captured well by ecosys. For the site scale 578 

simulation, the responses of the modelled and observed GPP, Reco, and NEE to the ambient 579 

climate conditions (i.e., temperature and VPD) at the eddy-covariance sites are consistent; For the 580 

regional scale simulations, the responses of simulated crop yield/GPP to the environmental factors 581 

were similar to those of the observations during the growing season (i.e., Figure 8, Figure 9, and 582 

Figure S12). These results indicate the ability of ecosys in simulating carbon fluxes and crop yield 583 

across the border soil and weather conditions. 584 

Through the comprehensive evaluation of the simulated carbon components with the 585 

observations (including GPP, Reco, and carbon allocation at eddy-covariance sites, and GPP and 586 

yield at regional scales), we are able to simulate the NBP at the regional scale (Figure 10). The 587 

simulated multi-year averaged NBP had higher negative correlation to the SOC and NEE in the 588 

same period with r of -0.88 and -0.52, respectively, which indicates that both SOC stock and NEE 589 

drives NBP dynamics across space. As indicated in Eq. 3, annually, the accumulated NBP is 590 

approximately equal to ΔSOC, assuming ε (carbon leakage through runoff and methane emission) 591 
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is sufficiently small. Our simulation results confirmed that using the carbon mass balance approach, 592 

we can regiously predict ΔSOC (Figure 10b). This means that our method has the potential to be 593 

applied for quantifying annual-scale soil carbon sequestration for agroecosystems. However, 594 

cautions are given that, in being able to ensure the carbon mass balance approach work or have a 595 

low uncertainty, rigorous tests of different carbon cycle components, i.e., GPP, Reco, and harvest 596 

carbon, all should be conducted - currently no existing modeling-based study has demonstrated 597 

such a capability except this current study. 598 

 599 

 600 
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 601 

Figure 10. Simulated multi-year averaged corn-soybean rotation cropland NBP during 2001-2018, 602 

and its correlation with △SOC, SOC content, NEE, and harvest over three I states. (a) Simulated 603 

multi-year averaged corn-soybean rotation cropland carbon budget over three I states during 2001 604 
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to 2018. (b) The scatter plot of simulated SOC change and the sum of seed mass at planting and 605 

NBP. (c) The scatter plot of averaged simulated SOC and NBP. (d) The scatter plot of simulated 606 

NEE and NBP. (e) The scatter plot of simulated harvest carbon and NBP. The black lines and 607 

shaded regions in (b)-(e) are the fitted linear regression models and the corresponding 95% 608 

confidence interval. 609 

Although we had validated the ability of ecosys in simulating the carbon cycle processes 610 

for both crop yield and GPP, there are still some limitations in the regional scale carbon balance 611 

simulation that need to be further addressed. Specifically, in current simulations, we only focus on 612 

the case that with no tillage and no cover crop. In the U.S. Midwest, tillage and cover crop are the 613 

commonly adopted conservation practices (Deines et al., 2019; Seifert et al., 2019), and may 614 

change the soil carbon sequestration rate compared with the no till and no cover crop situation 615 

(Baker et al., 2007; Poeplau and Don, 2015). For the tillage practice, it may redistribute SOC 616 

content in the soil profile, affect the crop growth by influencing soil minimization and soil water 617 

content, and also affect ecosystem respiration especially Rh (Mehra et al., 2018). For cover crops, 618 

it may influence the SOC sequestration rate by increasing GPP in the winter period and competing 619 

the water and nutrients with the main crops in the summer (Abdalla et al., 2019). Studying the 620 

impacts of cover crop and tillage is beyond the scope of the current paper, but they are under active 621 

investigation  in our other studies.  622 

 623 

5. Conclusion 624 

In conclusion, we evaluated an advanced agroecosystem model, ecosys, to thoroughly 625 

simulate carbon budget for the agroecosystems at 7 cropland eddy-covariance sites and 293 626 

counties in the U.S. Midwest. Both the magnitude of simulated carbon flux/yield and their response 627 
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to the environmental variabilities had been compared with that from the observations. For site 628 

scale simulation, the R2 of the simulated GPP, NEE, Reco, and LAI is 0.92, 0.87, 0.87, and 0.78, 629 

respectively. In addition, the dynamics of carbon allocation processes for both corn and soybean 630 

can also be reproduced by ecosys. For the regional scale simulation, the spatial pattern and 631 

interannual variance of crop yield are consistent with that from the USDA survey for both corn 632 

and soybean. Specifically, the R2 of the multi-year averaged simulated and observed yield is 0.83 633 

and 0.80 for corn and soybean, respectively; while the R2 of spatial-averaged simulated and 634 

observed crop yield from 2001to 2018 is 0.83 and 0.80 for corn and soybean, respectively. This 635 

study is a strong demonstration of the ability of ecosys in simulating the carbon cycle for 636 

agroecosystems. The response of carbon cycle processes/yield to the environmental variabilities 637 

obtained from the simulations is consistent with that from the observations at both site-scale and 638 

regional scale simulations, revealing the applicability of ecosys in simulating the impacts of future 639 

climate change on the carbon cycle of the U.S. Midwestern agroecosystems. In addition, by 640 

evaluating and constraining the majority carbon cycle process (i.e., GPP and yield at regional 641 

scale), we are able to simulate the net biome productivity, which can be applied to quantify the 642 

soil carbon sequestration of agroecosystems. The method and framework adopted in this study can 643 

also be applied to other  land surface models and terrestrial biosphere models to improve the 644 

accounting of  ecosystem carbon budget by integrating the mechanism models, observations, and 645 

advanced machine learning tools.  646 

 647 

Acknowledgement:  648 

Authors acknowledge the support from the National Science Foundation (NSF) Career Award 649 

(1847334), NASA Carbon Monitoring System Program (80NSSC18K0170), USDA National 650 



39 

Institute of Food and Agriculture (NIFA) Program (2017-67013-26253 and Hatch), Illinois 651 

Nutrient Research & Education Council (NREC), and Department of Energy (DOE) (25-1215-652 

0208-006). Research reported in the publication was also partially supported by the Foundation 653 

for Food and Agriculture Research under award number – Grant ID: 602757. The content of this 654 

publication is solely the responsibility of the authors and does not necessarily represent the official 655 

views of the Foundation for Food and Agriculture Research. We thank Andrew Suyker from 656 

University of Nebraska Lincoln for providing the crop growth data at the Nebraska Mead flux-657 

tower sites, and Junrui Ni from University of Illinois for processing the USDA crop planting date 658 

data at Illinois, Iowa, and Indiana. We acknowledge the following AmeriFlux sites for their data 659 

records: US-Ne1, US-Ne1, US-Ne3, US-Bo1, US-Br1, US-Ib1, and US-Ro1. Funding for 660 

AmeriFlux data resources was provided by the U.S. Department of Energy’s Office of Science. 661 

 662 

6. Reference 663 

Abdalla, M., Hastings, A., Cheng, K., Yue, Q., Chadwick, D., Espenberg, M., Truu, J., Rees, R.M., 664 

Smith, P., 2019. A critical review of the impacts of cover crops on nitrogen leaching, net 665 

greenhouse gas balance and crop productivity. Glob. Chang. Biol. 25, 2530–2543. 666 

https://doi.org/10.1111/gcb.14644 667 

Allison, V.J., Michael Miller, R., Jastrow, J.D., Matamala, R., Zak, D.R., 2005. Changes in Soil 668 

Microbial Community Structure in a Tallgrass Prairie Chronosequence. Soil Science Society 669 

of America Journal. https://doi.org/10.2136/sssaj2004.0252 670 

Anderson, J.P.E., Domsch, K.H., 1975. Measurement of bacterial and fungal contributions to 671 

respiration of selected agricultural and forest soils. Can. J. Microbiol. 21, 314–322. 672 

https://doi.org/10.1139/m75-045 673 

http://paperpile.com/b/kyGOIN/WsAj
http://paperpile.com/b/kyGOIN/WsAj
http://paperpile.com/b/kyGOIN/WsAj
http://dx.doi.org/10.2136/sssaj2004.0252


40 

Baker, J.M., Griffis, T.J., 2005. Examining strategies to improve the carbon balance of 674 

corn/soybean agriculture using eddy covariance and mass balance techniques. Agricultural 675 

and Forest Meteorology. https://doi.org/10.1016/j.agrformet.2004.11.005 676 

Baker, J.M., Ochsner, T.E., Venterea, R.T., Griffis, T.J., 2007. Tillage and soil carbon 677 

sequestration—What do we really know? Agric. Ecosyst. Environ. 118, 1–5. 678 

https://doi.org/10.1016/j.agee.2006.05.014 679 

Baldocchi, D.D., 2003. Assessing the eddy covariance technique for evaluating carbon dioxide 680 

exchange rates of ecosystems: past, present and future. Global Change Biology. 681 

https://doi.org/10.1046/j.1365-2486.2003.00629.x 682 

Baldocchi, D., Falge, E., Gu, L., Olson, R., Hollinger, D., Running, S., Anthoni, P., Bernhofer, C., 683 

Davis, K., Evans, R., Fuentes, J., Goldstein, A., Katul, G., Law, B., Lee, X., Malhi, Y., 684 

Meyers, T., Munger, W., Oechel, W., Paw, K.T., Pilegaard, K., Schmid, H.P., Valentini, R., 685 

Verma, S., Vesala, T., Wilson, K., Wofsy, S., 2001. FLUXNET: A New Tool to Study the 686 

Temporal and Spatial Variability of Ecosystem–Scale Carbon Dioxide, Water Vapor, and 687 

Energy Flux Densities. Bulletin of the American Meteorological Society. 688 

https://doi.org/2.3.co;2">10.1175/1520-0477(2001)082<2415:fantts>2.3.co;2 689 

Ball, J.T., 1988. An Analysis of Stomatal Conductance. 690 

Bardgett, R.D., McAlister, E., 1999. The measurement of soil fungal:bacterial biomass ratios as 691 

an indicator of ecosystem self-regulation in temperate meadow grasslands. Biol. Fertil. Soils 692 

29, 282–290. https://doi.org/10.1007/s003740050554 693 

Bernacchi, C.J., Hollinger, S.E., Meyers, T., 2005. The conversion of the corn/soybean ecosystem 694 

to no-till agriculture may result in a carbon sink. Global Change Biology. 695 

https://doi.org/10.1111/j.1365-2486.2005.01050.x 696 

http://paperpile.com/b/kyGOIN/JAvQ
http://paperpile.com/b/kyGOIN/JAvQ
http://paperpile.com/b/kyGOIN/JAvQ
http://dx.doi.org/10.1016/j.agrformet.2004.11.005
http://paperpile.com/b/kyGOIN/VbXL
http://paperpile.com/b/kyGOIN/VbXL
http://paperpile.com/b/kyGOIN/VbXL
http://dx.doi.org/10.1046/j.1365-2486.2003.00629.x
http://paperpile.com/b/kyGOIN/TrHT
http://paperpile.com/b/kyGOIN/TrHT
http://paperpile.com/b/kyGOIN/TrHT
http://paperpile.com/b/kyGOIN/TrHT
http://paperpile.com/b/kyGOIN/TrHT
http://paperpile.com/b/kyGOIN/TrHT
http://paperpile.com/b/kyGOIN/TrHT
http://paperpile.com/b/kyGOIN/pwMc
http://paperpile.com/b/kyGOIN/TooQ
http://paperpile.com/b/kyGOIN/TooQ
http://paperpile.com/b/kyGOIN/TooQ
http://dx.doi.org/10.1111/j.1365-2486.2005.01050.x


41 

Blanco-Canqui, H., Lal, R., 2004. Mechanisms of Carbon Sequestration in Soil Aggregates. 697 

Critical Reviews in Plant Sciences. https://doi.org/10.1080/07352680490886842 698 

Brilli, L., Bechini, L., Bindi, M., Carozzi, M., Cavalli, D., Conant, R., Dorich, C.D., Doro, L., 699 

Ehrhardt, F., Farina, R., Ferrise, R., Fitton, N., Francaviglia, R., Grace, P., Iocola, I., Klumpp, 700 

K., Léonard, J., Martin, R., Massad, R.S., Recous, S., Seddaiu, G., Sharp, J., Smith, P., Smith, 701 

W.N., Soussana, J.-F., Bellocchi, G., 2017. Review and analysis of strengths and weaknesses 702 

of agro-ecosystem models for simulating C and N fluxes. Sci. Total Environ. 598, 445–470. 703 

https://doi.org/10.1016/j.scitotenv.2017.03.208 704 

Chambers, A., Lal, R., Paustian, K., 2016. Soil carbon sequestration potential of US croplands and 705 

grasslands: Implementing the 4 per ThoUSAnd Initiative. J. Soil Water Conserv. 71, 68A-706 

74A. https://doi.org/10.2489/jswc.71.3.68A 707 

Deines, J.M., Wang, S., Lobell, D.B., 2019. Satellites reveal a small positive yield effect from 708 

conservation tillage across the US Corn Belt. Environ. Res. Lett. 14, 124038. 709 

https://doi.org/10.1088/1748-9326/ab503b 710 

Dold, C., Büyükcangaz, H., Rondinelli, W., Prueger, J.H., Sauer, T.J., Hatfield, J.L., 2017. Long-711 

term carbon uptake of agro-ecosystems in the Midwest. Agric. For. Meteorol. 232, 128–140. 712 

https://doi.org/10.1016/j.agrformet.2016.07.012 713 

Drewniak, B., Song, J., Prell, J., Kotamarthi, V.R., Jacob, R., 2013. Modeling agriculture in the 714 

Community Land Model. Geosci. Model Dev. 6, 495–515. https://doi.org/10.5194/gmd-6-715 

495-2013 716 

Farquhar, G.D., von Caemmerer, S., Berry, J.A., 1980. A biochemical model of photosynthetic 717 

CO2 assimilation in leaves of C3 species. Planta. https://doi.org/10.1007/bf00386231 718 

Gilhespy, S.L., Anthony, S., Cardenas, L., Chadwick, D., del Prado, A., Li, C., Misselbrook, T., 719 

http://paperpile.com/b/kyGOIN/JHLg
http://paperpile.com/b/kyGOIN/JHLg
http://dx.doi.org/10.1080/07352680490886842
http://paperpile.com/b/kyGOIN/FzeV
http://paperpile.com/b/kyGOIN/FzeV
http://paperpile.com/b/kyGOIN/FzeV
http://paperpile.com/b/kyGOIN/FzeV
http://paperpile.com/b/kyGOIN/FzeV
http://paperpile.com/b/kyGOIN/FzeV
http://dx.doi.org/10.1016/j.scitotenv.2017.03.208
http://paperpile.com/b/kyGOIN/L0sK
http://paperpile.com/b/kyGOIN/L0sK
http://paperpile.com/b/kyGOIN/L0sK
http://dx.doi.org/10.1016/j.agrformet.2016.07.012
http://paperpile.com/b/kyGOIN/2jJe
http://paperpile.com/b/kyGOIN/2jJe
http://dx.doi.org/10.1007/bf00386231
http://paperpile.com/b/kyGOIN/UbFx


42 

Rees, R.M., Salas, W., Sanz-Cobena, A., Smith, P., Tilston, E.L., Topp, C.F.E., Vetter, S., 720 

Yeluripati, J.B., 2014. First 20 years of DNDC (DeNitrification DeComposition): Model 721 

evolution. Ecol. Modell. 292, 51–62. https://doi.org/10.1016/j.ecolmodel.2014.09.004 722 

Grant, R.F., Lin, S., Hernandez-Ramirez, G., 2020. Modelling nitrification inhibitor effects on 723 

N2O emissions after fall-and spring-Applied slurry by reducing nitrifier NH4+ oxidation rate. 724 

Biogeosciences 17, 2021–2039. https://doi.org/10.5194/bg-17-2021-2020 725 

Grant, R., 1997. Changes in Soil Organic Matter under Different Tillage and Rotation: 726 

Mathematical Modeling in ecosys. Soil Science Society of America Journal. 727 

https://doi.org/10.2136/sssaj1997.03615995006100040023x 728 

Grant, R., Arkebauer, T., Dobermann, A., Hubbard, K., Schimelfenig, T., Suyker, A., Verma, S., 729 

Walters, D., 2007. Net Biome Productivity of Irrigated and Rainfed Maize-Soybean 730 

Rotations: Modeling vs. Measurements. Agronomy Journal. 731 

https://doi.org/10.2134/agronj2006.0308 732 

Grant, R., Barr, A., Black, T., Margolis, H., McCaughey, J., Trofymow, J., 2010. Net ecosystem 733 

productivity of temperate and boreal forests after clearcutting–a Fluxnet-Canada 734 

measurement and modelling synthesis. Tellus B. https://doi.org/10.3402/tellusb.v62i5.16588 735 

Grant, R.F., 2014. Nitrogen mineralization drives the response of forest productivity to soil 736 

warming: Modelling in ecosys vs. measurements from the Harvard soil heating experiment. 737 

Ecol. Modell. 288, 38–46. https://doi.org/10.1016/j.ecolmodel.2014.05.015 738 

Grant, R.F., 2013. Modelling changes in nitrogen cycling to sustain increases in forest productivity 739 

under elevated atmospheric CO2 and contrasting site conditions. Biogeosciences. 740 

https://doi.org/10.5194/bg-10-7703-2013 741 

Grant, R.F., 2004. Modeling topographic effects on net ecosystem productivity of boreal black 742 

http://paperpile.com/b/kyGOIN/UbFx
http://paperpile.com/b/kyGOIN/UbFx
http://paperpile.com/b/kyGOIN/UbFx
http://dx.doi.org/10.1016/j.ecolmodel.2014.09.004
http://paperpile.com/b/kyGOIN/bw60
http://paperpile.com/b/kyGOIN/bw60
http://paperpile.com/b/kyGOIN/bw60
http://dx.doi.org/10.2136/sssaj1997.03615995006100040023x
http://paperpile.com/b/kyGOIN/8ZXF
http://paperpile.com/b/kyGOIN/8ZXF
http://paperpile.com/b/kyGOIN/8ZXF
http://paperpile.com/b/kyGOIN/8ZXF
http://dx.doi.org/10.2134/agronj2006.0308
http://paperpile.com/b/kyGOIN/LVQN
http://paperpile.com/b/kyGOIN/LVQN
http://paperpile.com/b/kyGOIN/LVQN
http://dx.doi.org/10.3402/tellusb.v62i5.16588
http://paperpile.com/b/kyGOIN/Ykw9
http://paperpile.com/b/kyGOIN/Ykw9
http://paperpile.com/b/kyGOIN/Ykw9
http://dx.doi.org/10.1016/j.ecolmodel.2014.05.015
http://paperpile.com/b/kyGOIN/eNvf
http://paperpile.com/b/kyGOIN/eNvf
http://paperpile.com/b/kyGOIN/eNvf
http://paperpile.com/b/kyGOIN/eNvf
http://paperpile.com/b/kyGOIN/eNvf
http://dx.doi.org/10.5194/bg-10-7703-2013
http://paperpile.com/b/kyGOIN/Es5x


43 

spruce forests. Tree Physiol. 24, 1–18. https://doi.org/10.1093/treephys/24.1.1 743 

Grant, R.F., 2001. A Review of the Canadian Ecosystem Model — ecosys. Modeling Carbon and 744 

Nitrogen Dynamics for Soil Management. https://doi.org/10.1201/9781420032635.ch6 745 

Grant, R.F., 1998. Simulation in ecosys of root growth response to contrasting soil water and 746 

nitrogen. Ecol. Modell. 107, 237–264. https://doi.org/10.1016/S0304-3800(97)00221-4 747 

Grant, R.F., 1995. Salinity, water use and yield of maize: Testing of the mathematical model 748 

ecosys. Plant and Soil. https://doi.org/10.1007/bf00011333 749 

Grant, R.F., 1989a. Test of a simple biochemical model for photosynthesis of maize and soybean 750 

leaves. Agric. For. Meteorol. 48, 59–74. https://doi.org/10.1016/0168-1923(89)90007-5 751 

Grant, R.F., 1989b. Simulation of Carbon Assimilation and Partitioning in Maize. Agronomy 752 

Journal. https://doi.org/10.2134/agronj1989.00021962008100040004x 753 

Grant, R.F., 1989c. Simulation of Maize Phenology. Agronomy Journal. 754 

https://doi.org/10.2134/agronj1989.00021962008100030011x 755 

Grant, R.F., Baldocchi, D.D., Ma, S., 2012. Ecological controls on net ecosystem productivity of 756 

a seasonally dry annual grassland under current and future climates: Modelling with ecosys. 757 

Agric. For. Meteorol. 152, 189–200. https://doi.org/10.1016/j.agrformet.2011.09.012 758 

Grant, R.F., Flanagan, L.B., 2007. Modeling stomatal and nonstomatal effects of water deficits on 759 

CO2 fixation in a semiarid grassland. J. Geophys. Res. Biogeosciences 112. 760 

https://doi.org/10.1029/2006JG000302 761 

Grant, R.F., Goulden, M.L., Wofsy, S.C., Berry, J.A., 2001. Carbon and energy exchange by a 762 

black spruce-moss ecosystem under changing climate: Testing the mathematical model 763 

ecosys with data from the BOREAS experiment. J. Geophys. Res. Atmos. 106, 33605–33621. 764 

https://doi.org/10.1029/2001JD900064 765 

http://paperpile.com/b/kyGOIN/Es5x
http://dx.doi.org/10.1093/treephys/24.1.1
http://paperpile.com/b/kyGOIN/QerC
http://paperpile.com/b/kyGOIN/QerC
http://dx.doi.org/10.1201/9781420032635.ch6
http://paperpile.com/b/kyGOIN/Q1L9
http://paperpile.com/b/kyGOIN/Q1L9
http://dx.doi.org/10.1007/bf00011333
http://paperpile.com/b/kyGOIN/MJAu
http://paperpile.com/b/kyGOIN/MJAu
http://dx.doi.org/10.1016/0168-1923(89)90007-5
http://paperpile.com/b/kyGOIN/rF2g
http://paperpile.com/b/kyGOIN/rF2g
http://dx.doi.org/10.2134/agronj1989.00021962008100040004x
http://paperpile.com/b/kyGOIN/kRic
http://paperpile.com/b/kyGOIN/kRic
http://dx.doi.org/10.2134/agronj1989.00021962008100030011x
https://doi.org/10.1029/2006JG000302


44 

Grant, R.F., Kimball, B.A., Conley, M.M., White, J.W., Wall, G.W., Ottman, M.J., 2011. 766 

Controlled Warming Effects on Wheat Growth and Yield: Field Measurements and 767 

Modeling. Agronomy Journal. https://doi.org/10.2134/agronj2011.0158 768 

Grant, R.F., Neftel, A., Calanca, P., 2016. Ecological controls on N2O emission in surface litter 769 

and near-surface soil of a managed grassland: modelling and measurements. Biogeosciences 770 

13, 3549–3571. https://doi.org/10.5194/bg-13-3549-2016 771 

Grant, R.F., Pattey, E., 2008. Temperature sensitivity of N 2 O emissions from fertilized 772 

agricultural soils: Mathematical modeling in ecosys. Global Biogeochem. Cycles 22, n/a-n/a. 773 

https://doi.org/10.1029/2008GB003273 774 

Grant, R.F., Pattey, E., 2003. Modelling variability in N2O emissions from fertilized agricultural 775 

fields. Soil Biol. Biochem. 35, 225–243. https://doi.org/10.1016/S0038-0717(02)00256-0 776 

Grant, R.F., Pattey, E., Goddard, T.W., Kryzanowski, L.M., Puurveen, H., 2006. Modeling the 777 

Effects of Fertilizer Application Rate on Nitrous Oxide Emissions. Soil Sci. Soc. Am. J. 70, 778 

235–248. https://doi.org/10.2136/sssaj2005.0104 779 

Grant, R.F., Peters, D.B., Larson, E.M., Huck, M.G., 1989. Simulation of canopy photosynthesis 780 

in maize and soybean. Agric. For. Meteorol. 48, 75–92. https://doi.org/10.1016/0168-781 

1923(89)90008-7 782 

Grant, R.F., Rochette, P., 1994. Soil Microbial Respiration at Different Water Potentials and 783 

Temperatures: Theory and Mathematical Modeling. Soil Science Society of America Journal. 784 

https://doi.org/10.2136/sssaj1994.03615995005800060015x 785 

Grant, R.F., Rochette, P., Desjardins, R.L., 1993. Energy Exchange and Water Use Efficiency of 786 

Field Crops: Validation of a Simulation Model. Agronomy Journal. 787 

https://doi.org/10.2134/agronj1993.00021962008500040025x 788 

http://paperpile.com/b/kyGOIN/GivQ
http://paperpile.com/b/kyGOIN/GivQ
http://paperpile.com/b/kyGOIN/GivQ
http://dx.doi.org/10.2134/agronj2011.0158
http://paperpile.com/b/kyGOIN/sKI5
http://paperpile.com/b/kyGOIN/sKI5
http://dx.doi.org/10.1016/0168-1923(89)90008-7
http://dx.doi.org/10.1016/0168-1923(89)90008-7
http://paperpile.com/b/kyGOIN/hsh1
http://paperpile.com/b/kyGOIN/hsh1
http://paperpile.com/b/kyGOIN/hsh1
http://dx.doi.org/10.2136/sssaj1994.03615995005800060015x
http://paperpile.com/b/kyGOIN/Vdhb
http://paperpile.com/b/kyGOIN/Vdhb
http://paperpile.com/b/kyGOIN/Vdhb
http://dx.doi.org/10.2134/agronj1993.00021962008500040025x


45 

Grant, R.F., Goulden, M.L., Wofsy, S.C., Berry, J.A., 2001. Carbon and energy exchange by a 789 

black spruce-moss ecosystem under changing climate: Testing the mathematical model 790 

ecosys with data from the BOREAS experiment. J. Geophys. Res. Atmos. 106, 33605–33621. 791 

https://doi.org/10.1029/2001JD900064 792 

Grant, R., Juma, N.G., Robertson, J.A., Izaurralde, R.C., McGill, W.B., 2001b. Long-Term 793 

Changes in Soil Carbon under Different Fertilizer, Manure, and Rotation: Testing the 794 

Mathematical Model ecosys with Data from the Breton Plots. Soil Sci. Soc. Am. J., NATO 795 

ASI Series Vol. I 38 65, 205–214. https://doi.org/10.2136/sssaj2001.651205x 796 

Grant, R., Juma, N., Robertson, J., Izaurralde, R., McGill, W., 2001c. Long-Term Changes in Soil 797 

Carbon under Different Fertilizer, Manure, and Rotation. Soil Science Society of America 798 

Journal. https://doi.org/10.2136/sssaj2001.1872a 799 

Grant, R., Mekonnen, Z., Riley, W., 2019. Modeling Climate Change Impacts on an Arctic 800 

Polygonal Tundra: 1. Rates of Permafrost Thaw Depend on Changes in Vegetation and 801 

Drainage. J. Geophys. Res. Biogeosci. 124, 1308–1322. 802 

https://doi.org/10.1029/2018JG004644 803 

Grant, R.F., Wall, G.W., Kimball, B.A., Frumau, K.F.A., Pinter, P.J., Hunsaker, D.J., Lamorte, 804 

R.L., 1999. Crop water relations under different CO2 and irrigation: testing of ecosys with 805 

the free air CO2 enrichment (FACE) experiment. Agric. For. Meteorol. 95, 27–51. 806 

https://doi.org/10.1016/S0168-1923(99)00017-9 807 

Grant, R., Zhang, Y., Yuan, F., Wang, S., Hanson, P., Gaumont-Guay, D., Chen, J., Black, T., 808 

Barr, A., Baldocchi, D., Arain, A., 2006. Intercomparison of techniques to model water stress 809 

effects on CO2 and energy exchange in temperate and boreal deciduous forests. Ecological 810 

Modelling. https://doi.org/10.1016/j.ecolmodel.2006.02.035 811 

http://paperpile.com/b/kyGOIN/rxfA
http://paperpile.com/b/kyGOIN/rxfA
http://paperpile.com/b/kyGOIN/rxfA
http://paperpile.com/b/kyGOIN/rxfA
http://paperpile.com/b/kyGOIN/rxfA
http://paperpile.com/b/kyGOIN/rxfA
http://dx.doi.org/10.2136/sssaj2001.651205x
http://paperpile.com/b/kyGOIN/tBCX
http://paperpile.com/b/kyGOIN/tBCX
http://paperpile.com/b/kyGOIN/tBCX
http://paperpile.com/b/kyGOIN/tBCX
http://paperpile.com/b/kyGOIN/tBCX
http://dx.doi.org/10.2136/sssaj2001.1872a
http://paperpile.com/b/kyGOIN/ZbsA
http://paperpile.com/b/kyGOIN/ZbsA
http://paperpile.com/b/kyGOIN/ZbsA
http://paperpile.com/b/kyGOIN/ZbsA
http://dx.doi.org/10.1029/2018JG004644
http://paperpile.com/b/kyGOIN/0xIH
http://paperpile.com/b/kyGOIN/0xIH
http://paperpile.com/b/kyGOIN/0xIH
http://paperpile.com/b/kyGOIN/0xIH
http://dx.doi.org/10.1016/j.ecolmodel.2006.02.035


46 

Griffis, T.J., Sargent, S.D., Baker, J.M., Lee, X., Tanner, B.D., Greene, J., Swiatek, E., Billmark, 812 

K., 2008. Direct measurement of biosphere-atmosphere isotopic CO2exchange using the 813 

eddy covariance technique. Journal of Geophysical Research. 814 

https://doi.org/10.1029/2007jd009297 815 

Gurung, R.B., Ogle, S.M., Breidt, F.J., Williams, S.A., Parton, W.J., 2020. Bayesian calibration 816 

of the DayCent ecosystem model to simulate soil organic carbon dynamics and reduce model 817 

uncertainty. Geoderma 376, 114529. https://doi.org/10.1016/j.geoderma.2020.114529 818 

Hernandez-Ramirez, G., Hatfield, J.L., Parkin, T.B., Sauer, T.J., Prueger, J.H., 2011. Carbon 819 

dioxide fluxes in corn–soybean rotation in the midwestern U.S.: Inter- and intra-annual 820 

variations, and biophysical controls. Agricultural and Forest Meteorology. 821 

https://doi.org/10.1016/j.agrformet.2011.07.017 822 

Huang, Y., Yu, Y., Zhang, W., Sun, W., Liu, S., Jiang, J., Wu, J., Yu, W., Wang, Y., Yang, Z., 823 

2009. Agro-C: A biogeophysical model for simulating the carbon budget of agroecosystems. 824 

Agric. For. Meteorol. 149, 106–129. https://doi.org/10.1016/j.agrformet.2008.07.013 825 

Hutchinson, J.J., Campbell, C.A., Desjardins, R.L., 2007. Some perspectives on carbon 826 

sequestration in agriculture. Agric. For. Meteorol. 142, 288–302. 827 

https://doi.org/10.1016/j.agrformet.2006.03.030 828 

Jandl, R., Rodeghiero, M., Martinez, C., Cotrufo, M.F., Bampa, F., van Wesemael, B., Harrison, 829 

R.B., Guerrini, I.A., Richter, D.D., Jr, Rustad, L., Lorenz, K., Chabbi, A., Miglietta, F., 2014. 830 

Current status, uncertainty and future needs in soil organic carbon monitoring. Sci. Total 831 

Environ. 468-469, 376–383. https://doi.org/10.1016/j.scitotenv.2013.08.026 832 

Jarecki, M.K., Lal, R., 2003. Crop Management for Soil Carbon Sequestration. Critical Reviews 833 

in Plant Sciences. https://doi.org/10.1080/713608318 834 

http://paperpile.com/b/kyGOIN/220X
http://paperpile.com/b/kyGOIN/220X
http://paperpile.com/b/kyGOIN/220X
http://paperpile.com/b/kyGOIN/220X
http://dx.doi.org/10.1029/2007jd009297
http://paperpile.com/b/kyGOIN/hAB5
http://paperpile.com/b/kyGOIN/hAB5
http://paperpile.com/b/kyGOIN/hAB5
http://paperpile.com/b/kyGOIN/hAB5
http://dx.doi.org/10.1016/j.agrformet.2011.07.017
http://paperpile.com/b/kyGOIN/2EPd
http://paperpile.com/b/kyGOIN/2EPd
http://paperpile.com/b/kyGOIN/2EPd
http://dx.doi.org/10.1016/j.agrformet.2008.07.013
http://paperpile.com/b/kyGOIN/tHB2
http://paperpile.com/b/kyGOIN/tHB2
http://paperpile.com/b/kyGOIN/tHB2
http://paperpile.com/b/kyGOIN/tHB2
http://dx.doi.org/10.1016/j.scitotenv.2013.08.026
http://paperpile.com/b/kyGOIN/theK
http://paperpile.com/b/kyGOIN/theK
http://dx.doi.org/10.1080/713608318


47 

 835 

Jiang, C., Guan, K., Wu, G., Peng, B., Wang, S., 2021. A daily, 250 m and real-time gross primary 836 

productivity product (2000–present) covering the contiguous United States. Earth Syst. Sci. 837 

Data 13, 281–298. https://doi.org/10.5194/essd-13-281-2021 838 

Jin, Z., Zhuang, Q., Wang, J., Archontoulis, S. V., Zobel, Z., Kotamarthi, V.R., 2017. The 839 

combined and separate impacts of climate extremes on the current and future US rainfed 840 

maize and soybean production under elevated CO2. Glob. Chang. Biol. 23, 2687–2704. 841 

https://doi.org/10.1111/gcb.13617 842 

Kimble, J.M., Follett, R.F., Vernon Cole, C., 1998. The Potential of U.S. Cropland to Sequester 843 

Carbon and Mitigate the Greenhouse Effect. CRC Press. 844 

Kimm, H., Guan, K., Gentine, P., Wu, J., Bernacchi, C.J., Sulman, B.N., Griffis, T.J., Lin, C., 845 

2020. Redefining droughts for the U.S. Corn Belt: The dominant role of atmospheric vapor 846 

pressure deficit over soil moisture in regulating stomatal behavior of Maize and Soybean. 847 

Agric. For. Meteorol. 287, 107930. https://doi.org/10.1016/j.agrformet.2020.107930 848 

Kuppel, S., Peylin, P., Chevallier, F., Bacour, C., Maignan, F., Richardson, A.D., 2012. 849 

Constraining a global ecosystem model with multi-site eddy-covariance data. 850 

https://doi.org/10.5194/bg-9-3757-2012 851 

Lal, R., 2011. Sequestering carbon in soils of agro-ecosystems. Food Policy. 852 

https://doi.org/10.1016/j.foodpol.2010.12.001 853 

Lal, R., Follett, R.F., Stewart, B.A., Kimble, J.M., 2007. Soil carbon sequestration to mitigate 854 

climate change and advance food security. Soil Sci. 172. 855 

Lal, R., 2004. Soil carbon sequestration impacts on global climate change and food security. 856 

Science 304, 1623–1627. https://doi.org/10.1126/science.1097396 857 

http://paperpile.com/b/kyGOIN/gdTl
http://paperpile.com/b/kyGOIN/gdTl
http://paperpile.com/b/kyGOIN/9dcm
http://paperpile.com/b/kyGOIN/9dcm
http://paperpile.com/b/kyGOIN/9dcm
http://paperpile.com/b/kyGOIN/9dcm
http://dx.doi.org/10.1016/j.agrformet.2020.107930
http://paperpile.com/b/kyGOIN/t2FV
http://paperpile.com/b/kyGOIN/t2FV
http://paperpile.com/b/kyGOIN/t2FV
http://dx.doi.org/10.5194/bg-9-3757-2012
http://paperpile.com/b/kyGOIN/4HhJ
http://paperpile.com/b/kyGOIN/4HhJ
http://dx.doi.org/10.1016/j.foodpol.2010.12.001
http://paperpile.com/b/kyGOIN/s8Pf
http://paperpile.com/b/kyGOIN/s8Pf
http://dx.doi.org/10.1126/science.1097396


48 

Lal, R., 2002. Soil carbon dynamics in cropland and rangeland. Environ. Pollut. 116, 353–362. 858 

https://doi.org/10.1016/s0269-7491(01)00211-1 859 

Lal, R., 2001. World cropland soils as a source or sink for atmospheric carbon. Advances in 860 

Agronomy. https://doi.org/10.1016/s0065-2113(01)71014-0 861 

Li, C., Frolking, S., Crocker, G.J., Grace, P.R., Klír, J., Körchens, M., Poulton, P.R., 1997. 862 

Simulating trends in soil organic carbon in long-term experiments using the DNDC model. 863 

Geoderma 81, 45–60. https://doi.org/10.1016/S0016-7061(97)00080-3 864 

Liu, X., Chen, F., Barlage, M., Zhou, G., Niyogi, D., 2016. Noah-MP-Crop: Introducing dynamic 865 

crop growth in the Noah-MP land surface model. J. Geophys. Res. 121, 13,953-13,972. 866 

https://doi.org/10.1002/2016JD025597 867 

Liu, Y., Yu, Z., Chen, J., Zhang, F., Doluschitz, R., Axmacher, J.C., 2006. Changes of soil organic 868 

carbon in an intensively cultivated agricultural region: a denitrification-decomposition 869 

(DNDC) modelling approach. Sci. Total Environ. 372, 203–214. 870 

https://doi.org/10.1016/j.scitotenv.2006.09.022 871 

Li, Y., Guan, K., Schnitkey, G.D., DeLucia, E., Peng, B., 2019. Excessive rainfall leads to maize 872 

yield loss of a comparable magnitude to extreme drought in the United States. Glob. Chang. 873 

Biol. 25, 2325–2337. https://doi.org/10.1111/gcb.14628 874 

Lobell, D.B., Roberts, M.J., Schlenker, W., Braun, N., Little, B.B., Rejesus, R.M., Hammer, G.L., 875 

2014. Greater sensitivity to drought accompanies maize yield increase in the U.S. Midwest. 876 

Science 344, 516–519. https://doi.org/10.1126/science.1251423 877 

Mäkelä, A., Pulkkinen, M., Kolari, P., Lagergren, F., Berbigier, P., Lindroth, A., Loustau, D., 878 

Nikinmaa, E., Vesala, T., Hari, P., 2007. Developing an empirical model of stand GPP with 879 

the LUE approach: analysis of eddy covariance data at five contrasting conifer sites in Europe. 880 

http://paperpile.com/b/kyGOIN/0Vpy
http://paperpile.com/b/kyGOIN/0Vpy
http://dx.doi.org/10.1016/s0269-7491(01)00211-1
http://paperpile.com/b/kyGOIN/rUH2
http://paperpile.com/b/kyGOIN/rUH2
http://dx.doi.org/10.1016/s0065-2113(01)71014-0
http://paperpile.com/b/kyGOIN/puBb
http://paperpile.com/b/kyGOIN/puBb
http://paperpile.com/b/kyGOIN/puBb
http://dx.doi.org/10.1016/S0016-7061(97)00080-3
http://paperpile.com/b/kyGOIN/MQvX
http://paperpile.com/b/kyGOIN/MQvX
http://paperpile.com/b/kyGOIN/MQvX
http://paperpile.com/b/kyGOIN/MQvX
http://dx.doi.org/10.1016/j.scitotenv.2006.09.022
http://paperpile.com/b/kyGOIN/GpmX
http://paperpile.com/b/kyGOIN/GpmX
http://paperpile.com/b/kyGOIN/GpmX
http://dx.doi.org/10.1111/gcb.14628
http://paperpile.com/b/kyGOIN/P628
http://paperpile.com/b/kyGOIN/P628
http://paperpile.com/b/kyGOIN/P628
http://dx.doi.org/10.1126/science.1251423
http://paperpile.com/b/kyGOIN/F1Vk
http://paperpile.com/b/kyGOIN/F1Vk
http://paperpile.com/b/kyGOIN/F1Vk


49 

Glob. Chang. Biol. 0, 071124112207003–??? https://doi.org/10.1111/j.1365-881 

2486.2007.01463.x 882 

Meena, R.S., Kumar, S., Yadav, G.S., 2020. Soil Carbon Sequestration in Crop Production, in: 883 

Meena, R.S. (Ed.), Nutrient Dynamics for Sustainable Crop Production. Springer Singapore, 884 

Singapore, pp. 1–39. https://doi.org/10.1007/978-981-13-8660-2_1 885 

Mehra, P., Baker, J., Sojka, R.E., Bolan, N., Desbiolles, J., Kirkham, M.B., Ross, C., Gupta, R., 886 

2018. A Review of Tillage Practices and Their Potential to Impact the Soil Carbon Dynamics, 887 

in: Advances in Agronomy. Elsevier Inc., pp. 185–230. 888 

https://doi.org/10.1016/bs.agron.2018.03.002 889 

Mekonnen, Z.A., Grant, R.F., Schwalm, C., 2017. Carbon sources and sinks of North America as 890 

affected by major drought events during the past 30 years. Agric. For. Meteorol. 244–245, 891 

42–56. https://doi.org/10.1016/j.agrformet.2017.05.006 892 

Meyers, T., 2004. An assessment of storage terms in the surface energy balance of maize and 893 

soybean. Agricultural and Forest Meteorology. 894 

Mezbahuddin, M., Grant, R.F., Flanagan, L.B., 2017. Coupled eco-hydrology and 895 

biogeochemistry algorithms enable the simulation of water table depth effects on boreal 896 

peatland net CO2 exchange. Biogeosciences 14, 5507–5531. https://doi.org/10.5194/bg-14-897 

5507-2017 898 

Mezbahuddin, S., Spiess, D., Hildebrand, D., Kryzanowski, L., Itenfisu, D., Goddard, T., Iqbal, J., 899 

Grant, R., 2020. Assessing Effects of Agronomic Nitrogen Management on Crop Nitrogen 900 

Use and Nitrogen Losses in the Western Canadian Prairies. Frontiers in Sustainable Food 901 

Systems. https://doi.org/10.3389/fsufs.2020.512292 902 

Osborne, B., Saunders, M., Walmsley, D., Jones, M., Smith, P., 2010. Key questions and 903 

http://paperpile.com/b/kyGOIN/F1Vk
http://dx.doi.org/10.1111/j.1365-2486.2007.01463.x
http://dx.doi.org/10.1111/j.1365-2486.2007.01463.x
http://paperpile.com/b/kyGOIN/4hxT
http://paperpile.com/b/kyGOIN/4hxT
http://paperpile.com/b/kyGOIN/4hxT
http://paperpile.com/b/kyGOIN/4hxT
http://dx.doi.org/10.3389/fsufs.2020.512292
http://paperpile.com/b/kyGOIN/yiSM


50 

uncertainties associated with the assessment of the cropland greenhouse gas balance. Agric. 904 

Ecosyst. Environ. 139, 293–301. https://doi.org/10.1016/j.agee.2010.05.009 905 

Peng, B., Guan, K., Chen, M., Lawrence, D.M., Pokhrel, Y., Suyker, A., Arkebauer, T., Lu, Y., 906 

2018. Improving maize growth processes in the community land model: Implementation and 907 

evaluation. Agric. For. Meteorol. 250-251, 64–89. 908 

https://doi.org/10.1016/j.agrformet.2017.11.012 909 

Peng, B., Guan, K., Tang, J., Ainsworth, E.A., Asseng, S., Bernacchi, C.J., Cooper, M., Delucia, 910 

E.H., Elliott, J.W., Ewert, F., Grant, R.F., Gustafson, D.I., Hammer, G.L., Jin, Z., Jones, J.W., 911 

Kimm, H., Lawrence, D.M., Li, Y., Lombardozzi, D.L., Marshall-Colon, A., Messina, C.D., 912 

Ort, D.R., Schnable, J.C., Vallejos, C.E., Wu, A., Yin, X., Zhou, W., 2020. Towards a 913 

multiscale crop modelling framework for climate change adaptation assessment. Nat Plants 914 

6, 338–348. https://doi.org/10.1038/s41477-020-0625-3 915 

Poeplau, C., Don, A., 2015. Carbon sequestration in agricultural soils via cultivation of cover crops 916 

– A meta-analysis. Agric. Ecosyst. Environ. 200, 33–41. 917 

https://doi.org/10.1016/j.agee.2014.10.024 918 

Salmon, Y., Lintunen, A., Dayet, A., Chan, T., Dewar, R., Vesala, T., Hölttä, T., 2020. Leaf carbon 919 

and water status control stomatal and nonstomatal limitations of photosynthesis in trees. New 920 

Phytol. 226, 690–703. https://doi.org/10.1111/nph.16436 921 

Seifert, C.A., Azzari, G., Lobell, D.B., 2019. Corrigendum: Satellite detection of cover crops and 922 

their effects on crop yield in the Midwestern United States (2018 Environ. Res. Let. 13 923 

064033). Environ. Res. Lett. 14, 039501. https://doi.org/10.1088/1748-9326/aaf933 924 

Schrumpf, M., Schulze, E.D., Kaiser, K., Schumacher, J., 2011. How accurately can soil organic 925 

carbon stocks and stock changes be quantified by soil inventories? https://doi.org/10.5194/bg-926 

http://paperpile.com/b/kyGOIN/yiSM
http://paperpile.com/b/kyGOIN/yiSM
http://dx.doi.org/10.1016/j.agee.2010.05.009
http://paperpile.com/b/kyGOIN/YOhP
http://paperpile.com/b/kyGOIN/YOhP
http://paperpile.com/b/kyGOIN/YOhP
http://paperpile.com/b/kyGOIN/YOhP
http://dx.doi.org/10.1016/j.agrformet.2017.11.012
http://paperpile.com/b/kyGOIN/cvKf
http://paperpile.com/b/kyGOIN/cvKf
http://paperpile.com/b/kyGOIN/cvKf
http://paperpile.com/b/kyGOIN/cvKf
http://paperpile.com/b/kyGOIN/cvKf
http://paperpile.com/b/kyGOIN/cvKf
http://dx.doi.org/10.1038/s41477-020-0625-3
https://doi.org/10.1111/nph.16436
http://dx.doi.org/10.5194/bg-8-1193-2011


51 

8-1193-2011 927 

Shekoofa, A., Safikhan, S., Snider, J.L., Raper, T.B., Bourland, F.M., 2021. Variation in stomatal 928 

conductance responses of cotton cultivars to high vapour pressure deficit under controlled 929 

and rainfed environments. J. Agron. Crop Sci. 207, 332–343. 930 

https://doi.org/10.1111/jac.12440 931 

Shirato, Y., 2005. Testing the Suitability of the DNDC Model for Simulating Long-Term Soil 932 

Organic Carbon Dynamics in Japanese Paddy Soils. Soil Sci. Plant Nutr. 51, 183–192. 933 

https://doi.org/10.1111/j.1747-0765.2005.tb00022.x 934 

Stehfest, E., Heistermann, M., Priess, J.A., Ojima, D.S., Alcamo, J., 2007. Simulation of global 935 

crop production with the ecosystem model DayCent. Ecol. Modell. 209, 203–219. 936 

https://doi.org/10.1016/j.ecolmodel.2007.06.028 937 

Suyker, A.E., Verma, S.B., 2012. Gross primary production and ecosystem respiration of irrigated 938 

and rainfed maize–soybean cropping systems over 8 years. Agricultural and Forest 939 

Meteorology. https://doi.org/10.1016/j.agrformet.2012.05.021 940 

Suyker, A.E., Verma, S.B., Burba, G.G., Arkebauer, T.J., 2005. Gross primary production and 941 

ecosystem respiration of irrigated maize and irrigated soybean during a growing season. 942 

Agricultural and Forest Meteorology. https://doi.org/10.1016/j.agrformet.2005.05.007 943 

Tarantola, A., 2013. Inverse Problem Theory: Methods for Data Fitting and Model Parameter 944 

Estimation. Elsevier. 945 

USDA, 2021. USDA National Agricultural Statistics Service National 2020 Cultivated Layer. 946 

Available at https://www.nass.usda.gov/Research_and_Science/Cropland/Release/index.php 947 

(accessed May 2021). USDA-NASS, Washington, DC. 948 

USDA, 2020. Crop Production 2019 Summary. 949 

http://dx.doi.org/10.5194/bg-8-1193-2011
http://paperpile.com/b/kyGOIN/lTCW
http://paperpile.com/b/kyGOIN/lTCW
http://paperpile.com/b/kyGOIN/lTCW
http://dx.doi.org/10.1111/j.1747-0765.2005.tb00022.x
http://paperpile.com/b/kyGOIN/KU48
http://paperpile.com/b/kyGOIN/KU48
http://paperpile.com/b/kyGOIN/KU48
http://dx.doi.org/10.1016/j.ecolmodel.2007.06.028
http://paperpile.com/b/kyGOIN/B91u
http://paperpile.com/b/kyGOIN/B91u
http://paperpile.com/b/kyGOIN/B91u
http://dx.doi.org/10.1016/j.agrformet.2012.05.021
http://paperpile.com/b/kyGOIN/fmdS
http://paperpile.com/b/kyGOIN/fmdS
http://paperpile.com/b/kyGOIN/fmdS
http://dx.doi.org/10.1016/j.agrformet.2005.05.007
http://paperpile.com/b/kyGOIN/Qc4M
http://paperpile.com/b/kyGOIN/Qc4M
http://paperpile.com/b/kyGOIN/cFOB


52 

https://www.nass.usda.gov/Publications/Todays_Reports/reports/cropan20.pdf 950 

USDA, 2019. Fertilizer Use and Price. https://www.ers.usda.gov/data-products/fertilizer-use-and-951 

price/ 952 

VandenBygaart, A.J., Angers, D.A., 2006. Towards accurate measurements of soil organic carbon 953 

stock change in agroecosystems. Can. J. Soil Sci. 86, 465–471. https://doi.org/10.4141/S05-954 

106 955 

van Wesemael, B., Paustian, K., Meersmans, J., Goidts, E., Barancikova, G., Easter, M., 2010. 956 

Agricultural management explains historic changes in regional soil carbon stocks. Proc. Natl. 957 

Acad. Sci. U. S. A. 107, 14926–14930. https://doi.org/10.1073/pnas.1002592107 958 

Verma, S.B., Dobermann, A., Cassman, K.G., Walters, D.T., Knops, J.M., Arkebauer, T.J., 959 

Suyker, A.E., Burba, G.G., Amos, B., Yang, H., Ginting, D., Hubbard, K.G., Gitelson, A.A., 960 

Walter-Shea, E.A., 2005. Annual carbon dioxide exchange in irrigated and rainfed maize-961 

based agroecosystems. Agric. For. Meteorol. 131, 77–96. 962 

https://doi.org/10.1016/j.agrformet.2005.05.003 963 

Van den Hoof, C., Hanert, E., Vidale, P.L., 2011. Simulating dynamic crop growth with an adapted 964 

land surface model – JULES-SUCROS: Model development and validation. Agric. For. 965 

Meteorol. 151, 137–153. https://doi.org/10.1016/j.agrformet.2010.09.011 966 

Vogel, F.A., 2018. Understanding USDA Crop Forecasts: March 1999 (Classic Reprint). 967 

Forgotten Books. 968 

Wang, S., Garcia, M., Ibrom, A., Bauer-Gottwein, P., 2020. Temporal interpolation of land surface 969 

fluxes derived from remote sensing – results with an unmanned aerial system. Hydrol. Earth 970 

Syst. Sci. 24, 3643–3661. https://doi.org/10.5194/hess-24-3643-2020 971 

Wattenbach, M., Sus, O., Vuichard, N., Lehuger, S., Gottschalk, P., Li, L., Leip, A., Williams, M., 972 

http://dx.doi.org/https:/www.nass.usda.gov/Publications/Todays_Reports/reports/cropan20.pdf
http://paperpile.com/b/kyGOIN/gxnJ
http://dx.doi.org/https:/www.ers.usda.gov/data-products/fertilizer-use-and-price/
http://dx.doi.org/https:/www.ers.usda.gov/data-products/fertilizer-use-and-price/
http://paperpile.com/b/kyGOIN/cJKL
http://paperpile.com/b/kyGOIN/cJKL
http://dx.doi.org/10.4141/S05-106
http://dx.doi.org/10.4141/S05-106
http://paperpile.com/b/kyGOIN/Z7qH
http://paperpile.com/b/kyGOIN/Z7qH
http://paperpile.com/b/kyGOIN/Z7qH
http://dx.doi.org/10.1073/pnas.1002592107
http://paperpile.com/b/kyGOIN/J0pp
http://paperpile.com/b/kyGOIN/J0pp
http://paperpile.com/b/kyGOIN/J0pp
http://paperpile.com/b/kyGOIN/J0pp
http://paperpile.com/b/kyGOIN/J0pp
http://dx.doi.org/10.1016/j.agrformet.2005.05.003
http://paperpile.com/b/kyGOIN/Pp2Y
http://paperpile.com/b/kyGOIN/Pp2Y
http://paperpile.com/b/kyGOIN/7uns


53 

Tomelleri, E., Kutsch, W.L., Buchmann, N., Eugster, W., Dietiker, D., Aubinet, M., Ceschia, 973 

E., Béziat, P., Grünwald, T., Hastings, A., Osborne, B., Ciais, P., Cellier, P., Smith, P., 2010. 974 

The carbon balance of European croplands: A cross-site comparison of simulation models. 975 

Agric. Ecosyst. Environ. 139, 419–453. https://doi.org/10.1016/j.agee.2010.08.004 976 

West, T.O., Bandaru, V., Brandt, C.C., Schuh, A.E., Ogle, S.M., 2011. Regional uptake and release 977 

of crop carbon in the United States. Biogeosciences. https://doi.org/10.5194/bg-8-2037-2011 978 

West, T.O., Brandt, C.C., Baskaran, L.M., Hellwinckel, C.M., Mueller, R., Bernacchi, C.J., 979 

Bandaru, V., Yang, B., Wilson, B.S., Marland, G., Nelson, R.G., De la Torre Ugarte, D.G., 980 

Post, W.M., 2010. Cropland carbon fluxes in the United States: increasing geospatial 981 

resolution of inventory-based carbon accounting. Ecol. Appl. 20, 1074–1086. 982 

https://doi.org/10.1890/08-2352.1 983 

West, T.O., Brandt, C.C., Wilson, B.S., Hellwinckel, C.M., Tyler, D.D., Marland, G., De La Torre 984 

Ugarte, D.G., Larson, J.A., Nelson, R.G., 2008. Estimating Regional Changes in Soil Carbon 985 

with High Spatial Resolution. Soil Sci. Soc. Am. J. 72, 285–294. 986 

https://doi.org/10.2136/sssaj2007.0113 987 

West, T.O., Brown, M.E., Duren, R.M., Ogle, S.M., Moss, R.H., 2013. Definition, capabilities and 988 

components of a terrestrial carbon monitoring system. Carbon Management. 989 

https://doi.org/10.4155/cmt.13.36 990 

West, T.O., Marland, G., 2002. A synthesis of carbon sequestration, carbon emissions, and net 991 

carbon flux in agriculture: comparing tillage practices in the United States. Agric. Ecosyst. 992 

Environ. 91, 217–232. https://doi.org/10.1016/S0167-8809(01)00233-X 993 

Xue, F., Tong, L., Liu, W., Cao, H., Song, L., Ji, S., Ding, R., 2021. Stomatal conductance of 994 

tomato leaves is regulated by both abscisic acid and leaf water potential under combined 995 

http://paperpile.com/b/kyGOIN/7uns
http://paperpile.com/b/kyGOIN/7uns
http://paperpile.com/b/kyGOIN/7uns
http://paperpile.com/b/kyGOIN/7uns
http://dx.doi.org/10.1016/j.agee.2010.08.004
http://paperpile.com/b/kyGOIN/ftPR
http://paperpile.com/b/kyGOIN/ftPR
http://dx.doi.org/10.5194/bg-8-2037-2011
http://paperpile.com/b/kyGOIN/Crv3
http://paperpile.com/b/kyGOIN/Crv3
http://paperpile.com/b/kyGOIN/Crv3
http://paperpile.com/b/kyGOIN/Crv3
http://paperpile.com/b/kyGOIN/Crv3
http://dx.doi.org/10.1890/08-2352.1
http://paperpile.com/b/kyGOIN/GaHf
http://paperpile.com/b/kyGOIN/GaHf
http://paperpile.com/b/kyGOIN/GaHf
http://paperpile.com/b/kyGOIN/GaHf
http://dx.doi.org/10.2136/sssaj2007.0113
http://paperpile.com/b/kyGOIN/8GfT
http://paperpile.com/b/kyGOIN/8GfT
http://paperpile.com/b/kyGOIN/8GfT
http://dx.doi.org/10.4155/cmt.13.36
http://paperpile.com/b/kyGOIN/wqK4
http://paperpile.com/b/kyGOIN/wqK4
http://paperpile.com/b/kyGOIN/wqK4
http://dx.doi.org/10.1016/S0167-8809(01)00233-X


54 

water and salt stress 1–9. https://doi.org/10.1111/ppl.13441 996 

Yokohata, T., Kinoshita, T., Sakurai, G., Pokhrel, Y., Ito, A., Okada, M., Satoh, Y., Kato, E., Nitta, 997 

T., Fujimori, S., Felfelani, F., Masaki, Y., Iizumi, T., Nishimori, M., Hanasaki, N., Takahashi, 998 

K., Yamagata, Y., Emori, S., 2020. MIROC-INTEG-LAND version 1: a global 999 

biogeochemical land surface model with human water management, crop growth, and land-1000 

use change. Geosci. Model Dev. 13, 4713–4747. https://doi.org/10.5194/gmd-13-4713-2020 1001 

Zhang, X., Izaurralde, R.C., Manowitz, D.H., Sahajpal, R., West, T.O., Thomson, A.M., Xu, M., 1002 

Zhao, K., LeDuc, S.D., Williams, J.R., 2015. Regional scale cropland carbon budgets: 1003 

Evaluating a geospatial agricultural modeling system using inventory data. Environmental 1004 

Modelling & Software 63, 199–216. https://doi.org/10.1016/j.envsoft.2014.10.005 1005 

Zhang, Y., Gurung, R., Marx, E., Williams, S., Ogle, S.M., Paustian, K., 2020. DayCent Model 1006 

Predictions of NPP and Grain Yields for Agricultural Lands in the Contiguous U.S. J. 1007 

Geophys. Res. Biogeosci. https://doi.org/10.1029/2020JG005750 1008 

Zhou, W., Guan, K., Peng, B., Shi, J., Jiang, C., Wardlow, B., Pan, M., Kimball, J.S., Franz, T.E., 1009 

Gentine, P., He, M., Zhang, J., 2020. Connections between the hydrological cycle and crop 1010 

yield in the rainfed U.S. Corn Belt. J. Hydrol. 590, 125398. 1011 

https://doi.org/10.1016/j.jhydrol.2020.125398 1012 

http://dx.doi.org/10.1016/j.envsoft.2014.10.005
http://paperpile.com/b/kyGOIN/tv3Z
http://paperpile.com/b/kyGOIN/tv3Z
http://paperpile.com/b/kyGOIN/tv3Z
http://dx.doi.org/10.1029/2020JG005750
http://paperpile.com/b/kyGOIN/HUzX
http://paperpile.com/b/kyGOIN/HUzX
http://paperpile.com/b/kyGOIN/HUzX
http://paperpile.com/b/kyGOIN/HUzX
http://dx.doi.org/10.1016/j.jhydrol.2020.125398



