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Breaking the curse of dimensionality in regression

Yinchu Zhu and Jelena Bradic
University of Oregon and University of California, San Diego

Abstract

Models with many signals, high-dimensional models, often impose structures on the
signal strengths. The common assumption is that only a few signals are strong and most
of the signals are zero or close (collectively) to zero. However, such a requirement might
not be valid in many real-life applications. In this article, we are interested in conducting
large-scale inference in models that might have signals of mixed strengths. The key chal-
lenge is that the signals that are not under testing might be collectively non-negligible
(although individually small) and cannot be accurately learned. This article develops
a new class of tests that arise from a moment matching formulation. A virtue of these
moment-matching statistics is their ability to borrow strength across features, adapt to the
sparsity size and exert adjustment for testing growing number of hypothesis. GRoup-level
Inference of Parameter, GRIP, test harvests effective sparsity structures with hypothe-
sis formulation for an efficient multiple testing procedure. Simulated data showcase that
GRIPs error control is far better than the alternative methods. We develop a minimax
theory, demonstrating optimality of GRIP for a broad range of models, including those
where the model is a mixture of a sparse and high-dimensional dense signals.

1 Introduction

The emergence of high-dimensional data, such as the gene expression values in microarray
and the single nucleotide polymorphism data, brings challenges to many traditional statistical
methods and theory. One important aspect of the high-dimensional data under the regression
setting is that the number of covariates greatly exceeds the sample size. For example, in
microarray data, the number of genes (p) is in the order of thousands whereas the sample size
(n) is much less, usually less than 50. This is the so called "large-p, small-n" paradigm, which
translates to a regime of asymptotics where p→∞ much faster than n. Inference in regression
setting for large p, small n settings, have been recently developed. Sparsity assumption on the
model signals has had a significant role in achieving optimal inference – Cai and Guo (2015);
Javanmard and Montanari (2015); Cai and Guo (2016) found minimax results quantifying the
direct effect of the size of the sparsity.

In this article, we develop a test statistic that is able to quantify the simultaneous effect of
a growing number of signals in a general high-dimensional linear model framework, allowing
for a broad-ranging parameter structure. To be specific, let δ∗ = (β∗,γ∗) ∈ Rp denote the
model parameter containing p signals. Given a sample of size n, the objective is to conduct
inference on d out of p signals, i.e., testing hypotheses on a d-dimensional component β∗.

H0 : β∗ = β0 versus H1 : β∗ 6= β0 (1)
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where d, p and p − d can be much larger than n. Multivariate testing (1) is a very relevant
problem in practice and yet, it has only been studied on a case-by-case basis; all of the
existing methods are asymptotically exact only under the strict sparsity assumptions requiring
‖δ∗‖0 �

√
n.

However, exactly (or even approximately) sparse models are hardly appropriate for many
modern scientific studies, see Hall et al. (2014); Ward (2009); Jin and Ke (2014); Pritchard
(2001). One such example would include testing of brain-connectivity patterns as there is
new evidence highlighting the lack of sparsity in functional networks. Gaussian graphical
models have been found to be good at recovering the main brain networks from fMRI data.
Nevertheless, recent work in neuroscience has shown that the structural wiring of the brain
doesn’t correspond to a sparse network (Markov et al., 2013), thus questioning the underlying
assumption of sparsity often used to estimate brain network connectivity. In such setting, we
are interested in determining which edges (e.g. autistic) are present and we want to provide
confidence-intervals on our results.

The importance of allowing deviations from strictly sparse signals is two-fold. First, the
null hypothesis can directly rule out the sparse assumption of the model signals. In practice,
the hypothesized value β0 can be with non-zero entries, possibly larger than n implying that
the model is not strictly sparse under the null hypothesis. To fix ideas, consider the problem
of testing the specification of parameterizing β∗ = g(b∗), where g(·) is a known parametric
function and b∗ is a scalar, say β∗ = (b∗, ..., b∗)>. A natural approach is to construct a
confidence set for b∗ by inverting a test for β∗ = g(b) for each b and see whether the confidence
set is empty. Hence, it reduces to the problem of (1) with β0 = g(b0) for a given b0 ∈ R.
However, β0 is not sparse whenever b0 6= 0, and the null model, even with sparse γ∗ is not
even approximately sparse; in fact it belongs to a class of hybrid models where the signal is a
composition of sparse and dense structures (see Chernozhukov et al. (2015) for example).

Second, the nuisance parameter, γ∗, might not be sparse. This is motivated by the latest
need in biology to identify significant and large sets of genes (the sets of genes representing
biological pathways in the cell, or sets of genes whose DNA sequences are close together on the
cell’s chromosomes), which are associated with certain clinical outcome, rather than identifying
only a restrictive set of individual genes (e.g. Subramanian et al. (2005); Trapnell et al. (2013);
Sumazin et al. (2016)). As the dimension of a gene-set ranges from a few to thousands, and
the gene sets can overlap as they share common genes, there are both high dimensionality
and multiplicity in gene-set testing. Testing such hypotheses is a necessity in determining
the effects of covariates on certain disease related outcome. Hence, our work represents a
step towards fully discriminating the relation between covariates and changes in the response
variable in models where potentially all p covariates are associated with the outcome of the
disease.

1.1 Related Work

In recent years, the number of papers considering high-dimensional inference has grown rapidly.
In a large number of existing work the sparsity level of the regression model, s = ‖δ∗‖0, is a
constant or grows slowly with n. To name a few Van de Geer et al. (2014), Zhang and Zhang
(2014), Javanmard and Montanari (2014a) (JM), Ning and Liu (2014) (NL), Belloni et al.
(2014) allow the sparsity to grow at the rate o(

√
n/ log p) and design tests for testing univariate

parameters in high-dimensional sparse models. For problems of univariate testing in linear
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models Janson et al. (2015); Zhu and Bradic (2016a,b) or two-sample setting Zhu and Bradic
(2016c) make progress in removing sparsity assumption. However, a more challenging setting
of group and/or multivariate testing in such generality has not been successfully developed.
Zhang and Cheng (2016) (ZC) and Dezeure et al. (2016) define the simultaneous tests by
designing appropriate bootstrap procedures. However, they assume sparsity to be of the
order of o(

√
n/(log p)3) and o(

√
n/(log p)3/2), respectively. Different from them we allow s

to grow faster than the sample size, thus introducing a useful and more broad alternative to
the existing work. Our work is closely related to Chernozhukov et al. (2015); Belloni et al.
(2014, 2015a,b) who utilize Neyman’s orthogonal score method to design efficient moment
equations. However, the underlying assumption therein is that s = o(

√
n/(log p)3/2). We

decompose feature correlation, embed the hypothesis of interest into the moment condition
and provide a test that does not rely on consistent parameter estimation. With this we are
able to construct a double-robust test that is robust to both model sparsity and the presence of
high-correlation among the features, albeit only one robust departure is allowed at any given
time. This paper also fits into the literature of methods rigorously controlling false discovery
rate in high-dimensional setting (e.g. Storey et al. (2004); Barber and Candès (2015); G’Sell
et al. (2016)), and those papers testing many moment inequalities (e.g. Chernozhukov et al.
(2013b); Fan et al. (2015); Bugni et al. (2016); Romano et al. (2014), among others). We
establish a new minimax optimality result of independent interest and show that in certain
hybrid high-dimensional models (Chernozhukov et al., 2015) our test is optimal for the control
of the false discovery rate while allowing the number of tests and the model parameters to
be much larger than the sample size. Due to the latency of the moment estimators and their
growing number, the mathematical details required to obtain these results are involved and
new to the literature.

1.2 Organization

The remainder of the paper is organized as follows. In Section 2, we introduce the model setup,
the assumptions and the definitions of the moment equations of interest. We then proceed and
describe an estimation and bootstrap scheme used for testing. In Section 4, we present the
theoretical guarantees of the proposed scheme. We show asymptotically exact Type I error
control and showcase minimax optimality of our test. Second 3 contains extensions from a
linear model setting to the very broad nonparametric setting with possibly dependent errors.
We demonstrate the finite sample performance of our test by Monte Carlo simulations in
Section 5, where we also compare existing state of the art inferential methods. In Section 6,
we propose a general bootstrap methodology, which is of independent interest. All proofs are
deferred to the Supplement.

2 Large Scale Learning

Although the proposed model applied more broadly, we begin with a Gaussian setting where
in the high-dimensional linear model, where the pairs of observations {(yi, wi)}ni=1, yi ∈ R,
wi ∈ Rp follow the model of the form

yi = w>i δ
∗ + εi, i = 1, . . . , n, (2)
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the model errors are such that ε1, . . . , εn are independent and identically distributed (i.i.d.)
Gaussian random variables with mean zero and variance 0 < σ2

ε <∞. In the above δ∗ ∈ Rp is a
high-dimensional parameter of interest and p� n. We consider a random design case, similar
to that of Janson et al. (2015), where Σ

−1/2
W wi are independent standard Gaussian random

variables with ΣW = E[w>i wi] satisfying Cmin ≤ σmin(ΣW ) ≤ σmax(ΣW ) ≤ Cmax. Moreover,
εi are uncorrelated of wi. Further extensions, with additional technical details, can be easily
established; both design and error distributions can be allowed to have exponential-type tails.

A natural measure of the simultaneous effects of a number of covariates onto the response
can be measured by a hypothesis (1) where β0 = (β0,(1), · · · , β0,(d))

> ∈ Rd is potentially high-
dimensional in the sense that log d = O(na) for some a > 0. Here d may be equal to p, but
is not required; with d → ∞ we denote large-scale inference as multiple testing problem of
interest. Namely, we may be interested in only an effect of a specific set of genes that does not
include all of the genes collected for observation. Thus, the unknown parameter of interests δ
can be decomposed as δ = (γ,β) with γ ∈ Rp−d being a nuisance parameter and β ∈ Rd the
parameter of interest. Similarly, following this decomposition, we decompose the covariates
wi = (xi, zi) ∈ Rp where x1, . . . , xn ∈ Rp−d and z1, . . . , zn ∈ Rd.

Remark 1. We note that related papers (e.g. Bühlmann and van de Geer (2015); Zhang and
Zhang (2014); Belloni et al. (2014); Van de Geer et al. (2014)) define the same problem of
interest but assume that the nuisance parameter is strictly sparse, i.e. ‖δ∗‖0 � n, ‖β∗‖0 � n,
‖γ∗‖0 � n. These assumptions bear nice theoretical property: parameters of interest are well
defined and estimable (see for example the minimax rates of estimation Cai and Guo (2016);
Cai et al. (2016); Yuan and Zhou (2016)). Yet we argue that models defined in this way are
less useful in real scientific applications of main interest in the modern scientific studies, where
sparsity cannot be verified.

2.1 Challenges

We showcase in this section the limitations of the existing methods. We consider a simple
example Y = Wδ∗ + ε, where δ∗ = (β∗,γ∗) ∈ Rp, where β∗ ∈ Rd and γ∗ ∈ Rp−d. We set
d = p/2, β∗ = 0 and γ∗ = (n−1/2, ..., n−1/2, 0, ..., 0) with s = ‖γ∗‖0. For simplicity, all the
entries of W and ε to be independent and identically distributed (i.i.d.) with standard normal
distribution N(0, 1). The goal is to test H0 : β∗ = 0. Notice that this is a true hypothesis.

We consider the test proposed in Zhang and Cheng (2016) based on the de-sparsified
Lasso. It is not hard to show that if log p = o(n), then with probability approaching one,
we have δ̂ = 0 and Θ̂ = diag(σ−2

W,1, ..., σ
−2
W,p), where δ̂ is the Lasso estimator for δ∗, Θ̂ is the

nodewise Lasso estimator for (EW>W/n)−1 and σ2
W,j = W>

(j)W(j)/n. Let W(j) denoting
the j-th column of the design matrix, i.e. W(j) = (w1,j , · · · , wn,j)>. Hence, with probability
approaching one, the test statistic based on de-sparsified Lasso estimator for β∗ is

‖β̃‖∞ = ‖n−1Θ̂ZZ>Y‖∞,

where Z ∈ Rn×d is the first d columns of W and Θ̂Z = diag(σ−2
W,1, ..., σ

−2
W,d). Since the variance

of ε is known to be In, the bootstrap critical value is, with probability approaching one, equal
to the 1− α quantile (conditional on the data) of

‖n−1Θ̂ZZ>ξ‖∞,
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where ξ ∈ Rn is drawn from N(0, In) independent of the data.
The above analysis allows us to simulate the large sample behavior of the test. The

simulations are implemented with n = 300 and p = 700. Based on 10000 simulations, we plot
the probability of rejection when the null hypothesis holds true. We consider significance level
of 1%, 5% and 10%. The results are presented in Figure 1.

Figure 1: Rejection probability of the true hypothesis as a function of sparsity. We plot three
significance levels, 1% (red), 5% (green) and 10% (blue). Dashed lines represent the nominal
level considered. The x-axis represents sparsity of the parameter δ∗ and the y-axis represents
rejection probability.
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Notice that the probability of rejecting a true hypothesis can be larger than 0.9 if s is large.
This is due to the mixed signal strength. If the signal strength is sparse, i.e., s � √n/ log p,
then the theory of ZC suggests that the size will be correct. However, when s = n, we
have many weak signals that are collectively non-negligible, i.e., ‖δ∗‖∞ = o(

√
n−1 log p) and

‖δ∗‖2 = 1. In this case, the existing methods do not suffice.

2.2 Global null

We begin by discussing a special case of testing the global null defined as

H0 : δ∗ = δ0 versus H1 : ‖ΣW (δ∗ − δ0)‖∞ > τ̄
√
n−1 log(p ∨ n), (3)

for some τ̄ > 0. In this setting δ0 can be a vector of all zeros, in which case the problem is to
test joint significance of all the parameters in the model. We traditionally use the F-test to
test such null, however, it is well known that the F -test has low power and breaks down when
the number of covariates in the model is close to the number of samples or exceeds the number
of samples. In this section we explore testing of a null hypothesis against a high dimensional
alternative. However, we would also like to allow a specification of δ0 that allows it to be
a p dimensional vector of all ones or a vector of mixed values many of which are non-zero -
problem typically much harder to solve.

For this end, we propose to consider a test statistic that measures maximum re-weighted
correlation between the residuals under the null and the design matrix. Namely, we consider
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the test statistic ‖Tn‖∞, where Tn = (Tn,1, · · · , Tn,p)> and

Tn,j = n−1/2
n∑

i=1

Ti,j := n−1/2
n∑

i=1

wi,j(yi − w>i δ0)

‖Y −Wδ0‖2‖W(j)‖2/n
.

For the simple case of δ0 = 0, typically employed in gene-wise studies for example, the test
statistic takes the form

T0 = max
1≤j≤p

√
n[W>

(j)Y]

‖Y‖2‖W(j)‖2
.

If the columns of the design matrix W are normalized to have l2 norm equal to 1, then the
test takes the simpler form

T0 = max
1≤j≤p

√
n[W>

(j)Y]

‖Y‖2
.

We are interested in studying minimax optimality of the tests above where the alternative
hypothesis are not restricted to only sparse vectors, but only the vectors whose maximal non-
zero elements are strong enough - in particular, the vector can have p non-zero elements. We
refer to this as a dense alternative.

The case of sparse alternatives have been considered in Goeman et al. (2006) where the
authors show optimality over an average of high-dimensional alternatives of an empirical Bayes
test of the form Y>WW>Y/‖Y‖22. They also show that for the case of alternatives of the
form ‖δ‖2 ≥ c their test is equivalent to the low-dimensional F-test. Lastly, Zhong and Chen
(2011) discuss the same class of spherical alternatives and develop a test that is therein optimal
even for p ≥ n. However, class of dense alternatives poses significant theoretical challenges
due to its exploding size.

Under the null hypothesis the test statistics is centered, i.e. E[Tn,j ] = 0. It is usually not
easy to compute the distribution of the maximal test statistic – the correlation between the
elements together with the growing number of maxima make the computation challenging.
In many cases however, we can find a reasonably good approximation to the distribution of
‖Tn‖∞ by considering a general multiplier bootstrap framework through a bootstrapped test
statistics max1≤j≤p |T̃n,j |. For that purpose, let ξi be i.i.d. standard normal random variables
that are independent of the observations {(xi, zi, yi)}ni=1 and define

T̃n,j = n−1/2
n∑

i=1

ξi
(
Ti,j − Tn,j/

√
n
)
. (4)

Additionally, we note that the method does not crucially depend on the normality of ξi’s. More
elaborate distributions would suffice; for example Rademacher or Mammen distributions (see
for example Mammen (1993)) would allow for additional robustness to the outliers in the
model error. Let α be the predetermined nominal size of the test. Then, conditional on the
original observations, compute

Q(1− α, ‖T̃n‖∞) = inf
{
x ∈ R

∣∣∣ P(‖T̃n‖∞ > x | X,Z,Y) ≤ 1− α
}
,

with T̃n = (T̃n,1, · · · , T̃n,d)> ∈ Rd and Y = (y1, · · · , yn)> ∈ Rn. Then, we reject H0 in (1) if
and only if

‖Tn‖∞ > Q(1− α, ‖T̃n‖∞). (5)
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Theorem 1. Consider the Gaussian model in which entries in Σ
−1/2
W wi and σ−1

ε εi are standard
Gaussian random variables such that σε and all the eigenvalues of ΣW = E[w>i wi] lie in the
interval [Cmin, Cmax] for some constants Cmin, Cmax > 0. Then the test (5) is an asymptotically
exact test with n, p → ∞ and log p = o(n1/8). If ‖δ∗ − δ0‖2 = O(1) in (3), then this test is
also minimax optimal for testing the problem (3).

Remark 2. Observe that in the Theorem 1 no sparsity assumptions are directly assumed, either
in the model itself or the precision matrix of the design, and yet an ultra-high dimensional case
with p� n is allowed. Moreover, test is minimax optimal both against high-dimensional sparse
alternatives where only a small number of beta are non-zero as well as more challenging setting
of high-dimensional dense alternatives where all elements can be non-zero. In particular, the
test is minimax optimal whenever p is extremely large and the non-zero coefficients (possibly
p of them) of δ are non-negligible. Achieving both theoretical guarantees seems unique in the
existing literature on high-dimensional testing.

2.3 From parametric null to many moments hypothesis

The presence of nuisance parameters in the model (2) complicates some of the issues that were
described above. When nuisance parameters are present, the null hypothesis is not simple any
more but composite and the problem of interest becomes more demanding to solve. We propose
to explore Neyman orthogonalization and avoid penalization and estimation of the parameters
under testing altogether. We transform the multivariate parametric hypothesis of interest into
a sequence of growing number of moment equations, albeit univariate moment conditions.
We also explicitly account for the dependence among features in the spirit of Neyman score
orthogonalization. In particular, we consider the following d simultaneous moment conditions

H0 : E
[
ψ(yi − z>i β0 − x>i γ∗)φj(zi, xi)

]
= 0, ∀j ∈ {1, · · · ,md}, (6)

where φj and ψ : R→ R are sequences of properly defined functions. The alternative hypoth-
esis are defined as

H1 : E
[
ψ(yi − z>i β0 − x>i γ∗)φj(zi, xi)

]
6= 0, for some j ∈ {1, · · · ,md}.

The power of the test depends heavily on the choice of the weights φj(zi, xi) and the function
ψ. In particular, the test can be powerful against all possible alternatives if we consider a
growing number of moment conditions; hence, md = m(d) → ∞. Also, the more weighting
functions we use the more likely will one of the moment conditions be violated underH1. Thus,
the weights φj(zi, xi) are carefully constructed random variables that are able to separate the
null and the alternative hypothesis well enough. We also advocate for a choice that leads to the
uncorrelated functions of the design vectors xi. One particular choice considers a projection
of xi onto zi,(j) defined as

θ∗(j) = Σ−1
X E[X>Z(j)] (7)

where ΣX = E[X>X] ∈ R(p−d)×(p−d) is a variance covariance matrix of xi’s, X = (x1, ..., xn)> ∈
Rn×(p−d) and Z(j) = (z1,(j), ..., zn,(j)) ∈ Rn. The residual of that projection, u(j) = (u1,(j), ..., un,(j)) ∈
Rn is defined as ui,(j) = φj(zi, xi) with

φj(zi, xi) := zi,(j) − x>i θ∗(j).
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In the above display u1, . . . ,un are i.i.d. random vectors with ui = (ui,(1), · · · , ui,(d))
> ∈ Rd,

and each Gaussian component ui,(j) has mean zero and variance 0 < σ2
u,(j) = Eu2

i,(j) <∞ and
md = d. Different constructions of φj(zi, xi) are possible; see details in Section 3.

We will show that this choice of ui leads to a great reduction in the number of assump-
tions needed for asymptotically valid inference. In particular, the introduction of θ∗(j) allows
us to replace the model assumptions (such is strict sparsity in parameters) with the design
assumptions (such is sparsity in the feature correlations); observe that the former cannot be
checked whereas the later can be checked with an i.i.d. observations of the design. This is
particular useful for practical scientific applications.

We proceed to provide an estimate of the moment defined in (6) – note that γ∗ and θ∗(j) are
unobservable and need to be estimated; however β∗ does not need to. Whenever the nuisance
parameters are of finite dimensions, a ridge regularized estimator can be employed; theory
in this article can be extended easily for these cases. However, when they are of extremely
high dimensions the problem becomes extremely difficult. Simple off-the-shelf method, like
Lasso regularization or simple Dantzig selector cannot be effectively used for the purposes of
inference; finite sample bias propagation and lack of asymptotic distribution prevent their use.
Recent one-step estimates that rely on penalization of the moment condition itself and a bias
correction mitigate the observed challenges, but remain highly computationally expensive. We
develop novel theoretical arguments that allow a derivation of a limiting distribution of the
test statistics without explicitly correcting for the bias. For that end, we use estimators that
can provide effective control in the theoretical analysis (jumps of the martingales for example)
and simultaneously control the size of the moments (6).

Although the moment conditions have recently been used for inference in high dimensions;
see Chernozhukov et al. (2015); Belloni et al. (2017, 2014, 2015a,b), these methods rely on con-
sistent estimation of the unknown parameters. However, when sparsity is in question, accurate
estimation of the unknown high-dimensional model parameter is typically not guaranteed. As
a major contribution of this paper, we construct tests using estimators that may or may not be
consistent and show theoretically that valid inference can be achieved regardless of the quality
of the estimator for the model parameter.

The proposed GRoup-level Inference of Parameters, GRIP for short, is summarized as
follows.

Step 1 Estimate the unknown parameters γ and θ(j) for j = 1, · · · , d. Estimation of the un-
known parameter γ is done by imposing the null hypothesis directly into the optimization
problem. We consider γ̂ as follows

γ̂ ∈ arg min
γ∈Rp−d

‖γ‖1
s.t. ‖n−1X>ψ(Y − Zβ0 −Xγ)‖∞ ≤ ηγ

n−1(Y − Zβ0)>ψ(Y − Zβ0 −Xγ) ≥ η̄γ
‖ψ(Y − Zβ0 −Xγ)‖∞ ≤ µγ ,

(8)

where ηγ , η̄γ and µγ , are positive tuning parameters. In the display above Z = (Z(1), ...,Z(d)) ∈
Rn×d. This estimator directly depends on the null through Zβ0 and gives flexibility when
estimating dense models; namely, the third constraint restricts the growth of the esti-
mated residuals in the same spirit as classical robust estimators whereas the second
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constraint allows estimation of the variance of the model error, preventing fast conver-
gence to zero for example. The choice of the function ψ can be made based on prior
assessment of the distribution of the model error – namely, models with heavier tails
require more penalization in the last constraint than those with sub-gaussian error for
example. Thus, it suffices to fine one such function for which the true model error sat-
isfies all three constraints simultaneously. We discuss a simple case of identity function
in depth; however, we illustrate other choices in Section 3.

Estimators of θ(j) are computed in the similar manner. Namely, we consider

θ̂(j) ∈ arg min
θ(j)∈Rp−d

‖θ(j)‖1

s.t. ‖n−1X>(Z(j) −Xθ(j))‖∞ ≤ ηθ,j
n−1Z>(j)(Z(j) −Xθ(j)) ≥ η̄θ,j
‖Z(j) −Xθ(j)‖∞ ≤ µθ,j

(9)

for suitable choices of positive tuning parameters ηθ,j , η̄θ,j , µθ,j . Observe that the above
constraints are all linear in the unknown parameter and allow fast implementation.

Step 2 Calculate the test statistic ‖Tn‖∞ = max1≤j≤p |Tn,j |, where Tn = (Tn,1, · · · , Tn,d)> ∈
Rd, and

Tn,j = n−1/2
n∑

i=1

Ti,j , for (10)

Ti,j = σ̂−1
u,j σ̂

−1
ε (zi,(j) − x>i θ̂(j))

>ψ(yi − z>i β0 − x>i γ̂), and (11)

σ̂2
ε = n−1‖ψ(Y − Zβ0 −Xγ̂)‖22, and

σ̂2
u,j = n−1‖Z(j) −Xθ̂(j)‖22, j = 1, . . . , d.

Here, the function is evaluated on a vector coordinate wise.

The critical value for the test above is computed analogously as in Section 2.2. Namely,
with

T̃n,j = n−1/2
n∑

i=1

ξi
(
Ti,j − Tn,j/

√
n
)

and the significance level α, conditional on the original observations, we compute Q(1 −
α, ‖T̃n‖∞) = inf

{
x ∈ R

∣∣∣ P(‖T̃n‖∞ > x | X,Z,Y) ≤ 1− α
}
, with T̃n = (T̃n,1, · · · , T̃n,d)> ∈

Rd and Y = (y1, · · · , yn)> ∈ Rn. Then, we reject H0 in (1) if and only if

‖Tn‖∞ > Q(1− α, ‖T̃n‖∞).

We consider a regularization form that allows for both easy implementation and good
theoretical properties. Estimators (9) are inspired by the recent work of Zhu and Bradic
(2016a) for example. There the authors observe that η̄γ and η̄θ,j should be of the order of
‖G‖22 and ‖Z(j)‖22, respectively. In models where sparsity grows too fast, a naive overestimate
of the variance of the model error may be warranted and is needed due to difficult tuning of
the regularization parameters.
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Note that the test statistic ‖Tn‖∞ considers the maximum over the estimated inner prod-
ucts and therefore allowing for the exploding number of simultaneous tests. Developing asymp-
totic distribution of such maxima is extremely difficult with correlation between the test statis-
tics Tn,j creating arduous technicalities. Moreover, observe that the estimators θ̂(j) and γ̂ are
regularized estimators and no de-biasing or refitting steps are needed, thus in turn, removing
some of the computational costs of the existing methods. The multiplier bootstrap procedure
is proposed in Steps 3-5 and allows for a very complicated dependence structure while approxi-
mating the null distribution successfully. Existing work on high-dimensional bootstrap largely
focuses on the bootstrap of the linearized part of the test statistic with each components
estimated consistently, whereas we allow larger errors in estimation of one of the underlying
unknowns (hence one of them being not consistently estimated).

We also note that the implementation of the estimators above is simple and computation-
ally efficient, as they can be framed into simple linear programming setting. We leave the
discussion of practical choices of the tuning parameters for the Section 5.

3 Advancements beyond linear models

3.1 Weakly dependent data

In this section we illuminate the proposed methodology on a range of regression models dif-
ferent from the linear model considered in previous sections. We discuss dependence in the
model errors first. Weak dependence is a common feature in many datasets. We consider the
model

yt = z>t β
∗ + x>t γ

∗ + εt for 1 ≤ t ≤ n, (12)

where εt independent of xt and zt such that Eεt = 0 and Eε2
t = σ2. Here, we assume that the

data {(yt, xt, zt)}nt=1 is β-mixing with exponential decay; see Bradley (2007) for the definition
of β-mixing conditions. Many popular time series models including ARMA and GARCH
satisfy this condition; see (Mokkadem, 1988; Carrasco and Chen, 2002).

We show that in order to test β∗ = β0 in this setup, it suffices to modify the bootstrap
procedure to a allow for dependence in the model error; we define a block multiplier bootstrap
for this purpose. We note that the robustness of the method is amplified here in that we do
not need to change the way we estimate parameters in the model, although the model errors
are highly dependent. This allows for fast and practically relevant alternative to many of the
datasets that exhibit correlations and/or dependence.

The procedure is inspired by the Bernstein’s blocking argument. The idea is to divide the
sample into big and small blocks in an alternating order, i.e., a big block followed by a small
block followed by a big block, etc. The strategy is to allow both big and small blocks to grow
with n such that the small blocks separate the big blocks and thus the big blocks can be viewed
as approximately independent blocks. On the other hand, the small blocks only constitute a
vanishing portion of the data and thus have almost no impact on the large-sample behavior
of the statistics. This is a common proof technique in time series analysis but here we use it
to explicitly construct the bootstrap procedure.

To describe the procedure, let qn, rn → ∞ satisfy qn/rn → ∞ and n/qn → ∞. Let m be
the integer part of n/(qn + rn). We define the multipliers {ξt}nt=1 as follows:

(1) Draw {ξ1+(qn+rn)k}m−1
k=0 from i.i.d. N(0, 1);

10



(2) For 1 + (qn + rn)k ≤ t ≤ 1 + (qn + rn)k + qn, set ξt = ξ1+(qn+rn)k;

(3) Set all the other ξt’s to zero.

In the above procedure, big blocks and small blocks contain qn and rn observations, respec-
tively. The small blocks have ξt = 0 whereas the big blocks have weights drawn from N(0, 1).
Notice that all the observations in a same big block have the same weight. Notice that the
requirement for the choice of block size is very weak. For bootstrapping low-dimensional
problems, the issue of optimal choice of block size has been studied; see Lahiri (2013). For
high-dimensional problems, deriving the optimal choice of block size based on MSE or other
criteria is much harder and unknown at the moment; thus, it is left for future research. We
show that our procedure is still valid for weakly dependent data (see Corollary 1) as long as
we modify the bootstrap procedure properly. The block multiplier bootstrap is very easy to
implement in practice.

3.2 Nonlinear Models

In this section we consider a family of nonlinear regression models

yi = f(x>i γ
∗ + z>i β

∗) + εi, i = 1, · · · , n

where yi are the response, xi ∈ Rp and zi ∈ Rd are the covariates and the error εi is independent
of the covariates. When f is an identity function, the above model reduces to the linear model
of Section 2. Moreover, a special case of this model is a semi-parametric high-dimensional
model where yi = g(x>i γ

∗) + z>i β
∗+ εi for some function g. As long as the function f is twice

differentiable, GRIP test extends easily to this setting.
GRIP test can be now defined as Tn = maxj |Tn,j | with

Tn,j =
n−1/2(Z(j) −Xθ̂(j))

>(Y − f(Xγ̂ + Zβ0))

σ̂u,j σ̂ε

and estimates of the residual variances

σ̂2
ε = n−1‖Y − f(Xγ̂ + Zβ0)‖22, and σ̂2

u,j = n−1ν(Xγ̂ + Zβ0)‖Z(j) −Xθ(j)‖22.

Here,
ν(x) = {f ′(x)}2 − (Y− f(x))f ′′(x).

Estimates of the parameters of interest are now defined as

γ̂ ∈ arg min
γ∈Rp−d

‖γ‖1

s.t.

∥∥∥∥n−1f ′(Xγ + Zβ0)X>
(
Y − f(Xγ + Zβ0)

)∥∥∥∥
∞
≤ ηγ

n−1Y>
(
Y − f(Xγ + Zβ0)

)
≥ η̄γ

‖Y − f(Xγ + Zβ0)‖∞ ≤ µγ

, (13)
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for the estimate of the unknown parameter γ∗, whereas the estimate of the auxiliary variable
θ∗(j) is now calibrated as follows

θ̂(j) ∈ arg min
θ(j)∈Rp−d

‖θ(j)‖1

s.t. ‖n−1ν(Xγ̂ + Zβ0)X>(Z(j) −Xθ(j))‖∞ ≤ ηθ,j
n−1ν(Xγ̂ + Zβ0)Z>(j)(Z(j) −Xθ(j)) ≥ η̄θ,j

‖Z(j) −Xθ(j)‖∞ ≤ µθ,j

. (14)

Depending on the structure of the function f , the above optimization procedures may or may
not be easily implementable. However, gradient descent algorithms can be applied through
linearization of the gradient f ′ and function ν. Additionally, unlike linear models, non-linear
models require an iterative scheme much in the spirit of reweighed least squares methods.

3.3 Generalized Additive Models

Lastly, we discuss an extremely wide class of models; a generalized additive model where

g(µ(X)) = α+

p∑

j=1

fj(Xj), E[fj(Xj)] = 0

for µ(X) = E[Y|X] and the density of Y belongs to the exponential family, much like the
generalized linear models. In the notation of generalized linear models g(·) = b′(·). For
simplicity we will assume that the responses are centered in such a way that α = 0. It is worth
pointing out that these class of models are extremely widespread and yet no regularization
estimate exists. Here, we provide not only an estimator, but rather a testing statistics useful
for a broad range of multivariate hypothesis tests.

Suppose that the test of interest is

H0 : f1 = f01

for a pre-specified function f01. More than one function can easily be tested by replacing
1 with j and considering the maximum statistics. Such tests would be of great use in non-
gaussian graphical models and in particular graphical models with both discrete and continuous
observations. The test statistic of interest then becomes

Tn,1 =
n−1/2

(
f01(X1)−∑p

k=2 ĥk(Xk)
)> (

Y − b′(f01(X1) +
∑p

k=2 f̂k(Xk))
)

σ̂u,1σ̂ε

with

σ̂2
ε = n−1‖Y − b′(f01(Xi1) +

p∑

k=2

f̂k(Xik)))‖22

and

σ̂2
u,1 = n−1b′′

(
f01(X1) +

p∑

k=2

f̂k(Xk))

)
‖f01(X1)−

p∑

k=2

ĥk(Xk)‖22.
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Here f(X1) = (f(X11), f(X21), . . . , f(Xn1))> ∈ Rn. With slight abuse in notation, let bj
denote a vector of mj basis functions. Then, we represent the estimator

f̂j(Xj) = bj(Xj)
>γ̂j

Let Bj ∈ Rn×mj be the matrix of evaluations of this function at the n values {Xij}ni=1 and
assume without loss of generality that Bj has orthonormal columns. Let f01(X1) denote the
vector of size n containing evaluations f01(Xi1) as its coordinates.

Regarding the estimation of γ∗ we adapt the estimator of Section 2 and propose the
following estimator

(γ̂2, · · · γ̂p) ∈ arg min
γj∈Rp−d

∑p
j=2 ‖γj‖1

s.t. max2≤j≤p

∥∥∥∥n−1B>j
(
Y − b′(∑p

j=2 Bjγj + f01(X1))
)∥∥∥∥
∞
≤ ηγ

n−1Y>
(
Y − b′(∑p

j=2 Bjγj + f01(X1))
))
≥ η̄γ

‖Y − b′(∑p
j=2 Bjγj + f01(X1))

)
‖∞ ≤ µγ

∑p
j=2

√
γ>j Djγj ≤ δj

. (15)

Here, we also denote the diagonal penalty matrix by Dj = diag(d1j , d2j , ..., dnj). Assuming
that the bj are ordered in increasing order of complexity, Dj has the property that 0 = d1j ≤
d2j ≤ d3j ≤ · · · dnj . Here d1 and d2 correspond to the constant and linear basis functions,
respectively. The non-zero dj are associated with uj that are non-linear functions of x, with
higher indexes corresponding to uj with greater numbers of zero-crossings.

Observe that whenever the b′ function is an identity the above optimization procedure can
be broken down into p individual optimization procedures much in line of those of Section 2;
the only challenge is the last constraint that introduces a quadratic and not linear restrictions
making the problems now convex optimizations instead of linear. With slight abuse in notation,
let bj denote a vector ofmj basis functions possibly different from those used previously. Then,
we represent the estimator

ĥj(Xj) = bj(Xj)
>θ̂j

with

(θ̂2, · · · θ̂p) ∈ arg min
γj∈Rp−d

∑p
j=2 ‖θj‖1

s.t. max2≤j≤p

∥∥∥∥n−1B>j
(
f01(X1)−∑p

j=2 Bjθj

)∥∥∥∥
∞
≤ ηγ

n−1f01(X1)>
(
f01(X1)−∑p

j=2 Bjθj

)
≥ η̄γ

‖f01(X1)−∑p
j=2 Bjθj‖∞ ≤ µγ∑p

j=2

√
θ>j Djθj ≤ δj .

. (16)

4 Asymptotic properties

4.1 Size properties

For the model specified by (2) we impose the following regularity conditions. In the rest of
the document we denote with K1,Cmin, Cmax, κ ∈ (0,∞) constants independent of n, d and p.
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Condition 1. There exists a positive constant K1 such that σu,j ≥ K1 for j ∈ {1, · · · , d}.
Moreover, ‖γ∗‖2 = O(1), log d = o(n1/8) and log d = O(log(p− d)). In addition, at least one
of the following conditions holds:
(i) max1≤j≤d ‖θ∗(j)‖0 = o

([
[n log(d ∨ n) log d]1/4 / log(p− d)

]
∧
[
[n/ log(p− d)]1/3/ log(dn)

])

or
(ii) ‖γ∗‖0 = o

([
[n log(d ∨ n)]1/4 / log(p− d)

]
∧
[
n log(p− d)/ log3(dn)

])
.

Condition 1 is very mild and more general than most conditions commonly imposed by
the existing work on high-dimensional inference. Observe that we only require sparsity of
either θ∗ or γ∗ and not both of them, whereas simultaneous methods of Zhang and Cheng
(2016); Dezeure et al. (2016) require both of them to be sparse. However, as we remove one
of the sparse components, our requirement on the other is slightly stronger than the existing
o(
√
n/[log p

√
log d]). This can be thought of as a price to pay for allowing procedure to be

more robust to the sparsity or existence thereof in the other component. It is worth pointing
that the sparsity of θ∗ is an assumption on the design matrix of the model (2) and therefore
can be checked at least approximately, whereas sparsity of γ∗ is a model requirement for which
current literature does not provide any tests on.

Remark 3. The requirement of log(d)/ log(p−d) = O(1) implies that p−d grows at least poly-
nomially fast, compared to the number of simultaneous components being tested, d. However,
this is not restrictive as it still allows for d� n and d/p→ 1.

For simplicity of presentation, in the following we present the theory for the special case of
identity function as ψ. However, results extend easily for many convex and even non-convex
functions.

Theorem 2. Let Condition 1 hold. Consider a choice of tuning parameters such that ηγ , ηθ,j �√
n−1 log(p− d), µγ , µθ,j �

√
log(dn), η̄γ ∈ (c0, σ

2
ε − c0) and η̄θ,j ∈ (c0, σ

2
u,j − c0) for a fixed

constant c0 > 0. Then, under H0 in (1), the optimization problems in (9) are jointly (for all
j) feasible with probability approaching one and

lim sup
n→∞

sup
α∈(0,1)

∣∣∣P
(
‖Tn‖∞ > Q(1− α, ‖T̃n‖∞)

)
− α

∣∣∣ = 0,

where Tn and T̃n are defined in (10) and (4).

Under the common regularity condition of sparse θ∗(j)’s, no assumption on ‖γ∗‖0 is needed.
Hence, Theorem 2 guarantees the validity and exactness of the test proposed in this paper
even if ‖γ∗‖0 � p and d, p� n. To the best of our knowledge, this is one of the first theoret-
ical results on high-dimensional simultaneous inference under such generality. For inference
problems with large d, allowing for non-sparse models can in fact be a necessity.

Remark 4. In addition, the result above guarantees asymptotic exactness of the proposed
GRIP test in a class of high-correlation sparse models where the feature correlation and there-
fore sparsity of the precision matrix is unrestricted; Javanmard and Montanari (2014a) have
a robust test in this setting when the testing set is univariate. Lastly, models of hybrid nature
in which the signal is the sum of sparse and dense components are also a special case of the
result above. Such models are extremely difficult to handle as demonstrated in Chernozhukov
et al. (2015) and are yet practically often important (see Qu and Shi (2016) for more details).
GRIP test provides one of the first valid inferential methods where such hybrid structures are
allowed.
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4.2 Minimax testing

In this subsection, we show that our test is asymptotically minimax optimal in the case of
high-dimensional models.

Since the power of (asymptotically) minimax optimal tests is guaranteed over a class
of data-generating processes (dgp’s) that do not satisfy the null hypothesis, we first for-
mally introduce this class of dgp’s. Let Θ∗ = (θ∗(1), · · · ,θ∗(d)) ∈ R(p−d)×d. We define λ =

(β,γ,Θ,ΣX ,Σu, σ
2
ε) and view the dgp’s as being indexed by λ. The following regularity

conditions are imposed on the dgp’s under consideration in order to simplify the proof. Sim-
plifications of these conditions are possible at the cost of greater complications in the proofs.
Let π = β − β0 be the difference between the true and the hypothesized values.

Condition 2. Parameter λ = (β,γ,Θ,ΣX ,Σu, σ
2
ε) satisfies Condition 1 together with both

(i) and (ii). In addition, d→∞ and vector π is such that ‖ΣXΘπ‖∞ = O(
√
n−1 log(p− d))

and ‖π‖2 = O(1).

Notice that these regularity conditions are very weak and match largely the existing lit-
erature. For the case of sparse models, we allow both ‖β0‖0 and ‖γ‖0 to be o(

√
n/ log p),

where with ‖π‖∞ = O(
√
n−1 log d) and ‖π‖2 = O(1) deviations from the null, the above

condition is easily satisfied with ‖π‖2 = o(‖π‖∞n1/4 log−1/2 p). Moreover, observe that, un-
der Condition 1, we have ‖ΣXΘπ‖∞ = O(

√
n−1 log(p− d)), whenever ‖π‖0 = O(1) and

‖π‖∞ = O(
√
n−1 log d). Conditions much like these are present in the existing work on

simultaneous testing (Zhang and Cheng, 2016; Dezeure et al., 2016).

Remark 5. However, observe that Condition 2 allows models much broader than the exactly
sparse models. Suppose that the variance of (zi, xi) has a Toeplitz dependence structure im-
plying that Θ is a row-sparse matrix. It follows that the rows of ΣXΘ have bounded `1-norm.
Hence, the Condition 2 is satisfied whenever ‖π‖∞ = O(

√
(log(p− d))/n) regardless of the

sparse or dense structure of the vector π. In particular, this allows vectors β and β0 to be ex-
tremely dense and high-dimensional simultaneously. We note that to the best of our knowledge
existing literature provides no tests or the corresponding minimax optimality theory for such
broad umbrella of models.

In fact, with d = p, γ∗ = 0 and the above condition encompasses fully dense models where
one is interested in testing all parameters of the model simultaneously. Recent work of Janson
et al. (2015) considers similar models but univariate hypothesis testing of l2 norm of β and
allows only identity matrix for ΣX . The area of multivariate inference with dense structures
is largely unexplored and demands new methodologies and theories.

In the following we define the set of dgp’s that satisfy the null hypothesis

B0 = {λ = (β0,γ,Θ,ΣX ,Σu, σ
2
ε) | λ satisfies Condition 2},

and correspondingly, the set of dgp’s that satisfy the alternative hypothesis:

B1(τ) =
{
λ = (β,γ,Θ,ΣX ,Σu, σ

2
ε) |

‖Σu(β∗ − β0)‖∞ > τ
√
n−1 log(d ∨ n) and λ satisfies Condition 2

}
.
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We define the true value of the dgp parameter λ∗ = (β∗,γ∗,Θ∗,ΣX ,Σu, σ
2
ε). The goal is to

test
H0 : λ∗ ∈ B0 versus H1 : λ∗ ∈ B1(τ).

In this section we show our test has power approaching one against alternatives in B1(τ̄).
Denote with Pλ and Eλ the probability and expectation under λ, respectively.

Theorem 3. Under conditions illustrated above, there exists a constant τ̄ > 0 such that

lim inf
n→∞

inf
λ∈B1(τ̄)

Pλ
(
‖Tn‖∞ > Q(1− α, ‖T̃n‖∞)

)
= 1 ∀α ∈ (0, 1).

This result says that, under weak conditions, our procedure for testing λ∗ ∈ B0 against
λ∗ ∈ B1(τ̄) is asymptotically minimax optimal in that the asymptotic power on B1(τ̄) is
guaranteed to be one.

Next, we derive an upper bound on the power of any valid procedure for this testing
problem. We show that there exist two constants τ̄ , τ > 0 such that any test that controls size
has no power against alternatives in B1(τ).

Theorem 4. Let the sample (X,Z,Y) be jointly Gaussian. Then there exists a constant τ > 0
such that for any test φn : (Rp+1)n → [0, 1] satisfying lim supn→∞ supλ∈B0

Eλφn(X,Z,Y) ≤ α,
we have

lim inf
n→∞

inf
λ∈B1(τ)

Eλφn(X,Z,Y) ≤ α.

Theorem 4 rules out the existence of an asymptotically valid test that has power uniformly
(in λ) against B1(τ). In other words, no test is guaranteed to detect alternatives satisfying
‖Σu(β∗ − β0)‖∞ ≤ τ

√
n−1 log(d ∨ n).

Remark 6. Note that Theorem 3 guarantees that our procedure have power approaching one
against alternatives ‖Σu(β∗−β0)‖∞ > τ̄

√
n−1 log(d ∨ n). Comparing the bound with Theorem

4, we see that the test we developed is asymptotically minimax optimal when d = d(n) → ∞,
p = p(n)→∞ as n→∞, under mild regularity conditions.

The results in this section fill an important gap in the inferential theory of high-dimensional
parameters. Existing results, such as Javanmard and Montanari (2014b), only address the test-
ing problem of single entries of high-dimensional parameter and conclude that only deviations
of the order at least O(n−1/2) are detectable. This result should not be expected to hold
if the number of entries under testing, d, tends to infinity. We formally establish that, in
this case, the null hypothesis is not testable against alternatives with deviations smaller than
O(
√
n−1 log d). Together with Theorem 3 we see that GRIP test is minimax optimal for a

wide class of regression models.
Further detailed comments provide comparisons with existing state of the art results.

1. Among the sparse models this result matches existing work; GRIP test achieves the
same optimality rate as the work of Zhang and Cheng (2016) (see Theorem 2.4 therein).
However, in this class of models GRIP offers a broader set of alternatives as β0 can
be dense or sparse vector. In this setting, the alternative hypothesis is allowed to be
different from the null in all elements, whereas existing work assumes that the alternative
can only be different in a few, sparse, number of elements.
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2. For models where sparsity is not exact, and a more reasonable hybrid model of signal
composed of two vectors, sparse and dense, GRIP test achieves the same optimality rate
while allowing p � n and d � n. In this setting Theorem 4 represents a new result of
independent interest that is perhaps unexpected; the dense but not too strong parameter
does not affect detection threshold.

A subset of models, of this kind were only recently studied in Chernozhukov et al.
(2015) where estimation is considered under a stricter set of dimensionality assumptions,
i.e., dense parameter length was considered growing at a slower rate than n. However,
inference problems have not yet been studied for these class of high-dimensional models.
Note that the method proposed here have an additional simplicity – it does not need to
change between the ridge and the lasso type of estimation procedure. i.e. it adapts to
the unknown structure using new estimators proposed in Section 2.

3. Additionally, our setup above encompasses a class of models where the signal is de-
composed of three parts: strong signal, not-strong signal (below detection limit) and a
number of zero components. Such models are practically extremely important. Estima-
tion in such models was recently proposed in Qu and Shi (2016).

4. Lastly, our work breaks new ground in the area of strict false discovery rate control, as
it showcases a possibility of testing simultaneous effect of all parameters, i.e., testing the
global null, against both sparse and dense alternatives (where at least one coordinate is
O(
√
n−1 log d) away from the true parameter vector β∗) in models that are completely

dense and high-dimensional at the same time (take β0 to be p -dimensional and γ∗ = 0).

Such models are extremely important in practice. For example, consider the setting of
genome-wide association study (GWAS), which typically refers to examination of associ-
ations between up to millions of genetic variants in the genome and certain traits of inter-
est. According to GWAS catalog (Hindorff et al. (2009); http://www.genome.gov/gwastudies),
as of October, 2013, more than 11,000 single-nucleotide polymorphisms (SNPs) have been
reported to be associated with at least one trait/disease at the genome-wide significance
level, many of which have been validated/replicated in further studies. However, these
significantly associated SNPs only account for a small portion of the genetic factors un-
derlying complex human traits/diseases (Manolio et al., 2009). One possible explanation
for the missing heritability is that many SNPs jointly affect the phenotype, while the
effect of each SNP is too weak to be detected at the genomewide significance level. Our
test can make significant progress in this direction were one would be able to test joint
effects of a large (and exploding) number of SNPs without requiring each one to be
significant.

Moreover, previous theory easily lends a result as follows.

Theorem 5. Let the assumptions of Theorem 2 hold. Suppose that the data is β-mixing with
exponential decay. Let ξ in (4) be replaced by the above block multipliers. Assume that rn � nc
for some c > 0, rn/qn = O(n−1/8/ log2 p) and qn = O(n3/4/ log5/2(pn)). The test of Section 2
with new ξ is asymptotically unbiased.
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Table 1: Size properties of the four competing methods in Model 1

Sparsity Toeplitz Design n = 200, p = 500

of the model P(rejectH(J)
0 | H(J)

0 )

ZC JM NL GRIP

s = 2 0.02 0.04 0.03 0.02
s = 12 0.24 0.32 0.09 0.05
s = 17 0.22 0.24 0.16 0.04
s = 20 0.22 0.18 0.19 0.03
s = 22 0.29 0.24 0.18 0.05
s = 40 0.34 0.19 0.41 0.01
s = 60 0.45 0.21 0.50 0.02
s = 80 0.60 0.29 0.66 0.04
s = 100 0.59 0.30 0.68 0.04
s = 200 0.58 0.23 0.49 0.03
Average size over 100 repetitions, where we see
that irrespective of the size of the sparsity, ex-
isting methods fail to control Type I error.

5 Numerical Work

We begin by observing that the optimization problems (9) can be rephrased as linear programs.
We follow Candes and Tao (2007) and choose the tuning parameters ηθ and ηγ as the empirical
maximum of |Xξ|i over several realizations of ξ ∼ N (0, In); alternatively, one can choose
these tuning parameters as in Section 4 of Chernozhukov et al. (2013a). Similarly, µθ and
µγ are chosen as the empirical maximum of |ξ|i. We choose η̄γ = (1 − λ)G>G/n, where
λγ ∈ (γ∗>Σγ∗/E[v2

i ], 1). Conceptually, λγ is an upper bound for the regression R2 and is
more intuitive to choose as a tuning parameter. In the simulations below λγ = 0.95. We
choose η̄θ,j in a similar way. We measure the performance of the proposed method through
Type I and Type II error control. All the tests have a nominal size of 5%. All the results are
based on 100 randomly generated samples.

5.1 Linear Gaussian Model

In order to compare performance we consider a simple linear model

yi = x>i β
∗ + εi

with the sample size n = 200. The εi’s are generated as independent, standard Gaussian
components. We fix the feature size to be p = 500. We compare the proposed method,
GRIP, with three competing procedures: for ZC all the Lasso operations are replaced by the
scaled Lasso with the universal tuning parameter; JM is implemented using two regularizations
parameters. As suggested by JM, one equal to 4σ̂

√
log p/n with σ̂ provided by the scaled Lasso

and the other taken at a fixed value of 2
√

log p/n; the NL method is implemented by using
the scaled Lasso with the universal tuning parameter whenever a Dantzig selector or Lasso is
required.

We consider two models:
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Table 2: Power properties of the four competing methods in Model 1

Deviations Toeplitz Design n = 200, p = 500
from the null Type II error

ZC JM NL GRIP

h = 0.8 0.53 0.97 0.13 0.12
h = 1.6 0.70 0.95 0.31 0.30
h = 2.4 0.91 0.99 0.72 0.66
h = 3.2 0.94 1.00 0.94 0.97
h = 4.0 0.98 1.00 1.00 1.00

Average power over 100 repetitions.

- Model 1: xi ∼ N (0,Σ) with a Toeplitz covariance matrix Σ: Σij = (0.4)|i−j|. We
generate β∗ = 5a/‖a‖2, where a = (a1, · · · , ap)> ∈ Rp is generated as follows. aj is
generated from the uniform distribution on (0, 1) if j ≤ 3s/2 and j/3 is not an integer;
otherwise, aj = 0. Here, s = ‖β∗‖0.

- Model 2: The setup is the same as in Model 1 except Σ, which now satisfies that Σii = 1
and Σij = 0.2s for i 6= j.

For j ∈ J = {4, 5, 7, 8, 10, 11},
we test H(J)

0 : β∗j = β0,j ∀j ∈ J . We set β0,j = β∗j + n−1/2h. The simulations with h = 0
correspond to size properties and those with h 6= 0 demonstrate the power properties.

The results are presented in Tables 1 and 2 (type I and power) for Model 1 and in Tables
3 and 4 (type I and power) for Model 2. First, we note that our procedure correctly keeps
the empirical Type I error close to the nominal 5% level and reaches maximum power when
the model parameters are far from the null hypothesis. Second, as essentially guaranteed by
the established theory, the proposed method clearly outperforms other methods in terms of
the size control – especially when the sparsity of the model increases. This is apparent in
both examples, with the most prolific comparison can be seen in Table 3; there our method
for simultaneous tests keeps nominal value, whereas the VBRD and JM tests with a nominal
level of 5% rejects a true null hypothesis with probability close to 100 and NL being close to
a random guess.

5.2 Linear Model with Heavy-tailed Designs

In the next example, we consider a settings that departs from normality assumptions. We
consider the same simple linear model as above. Parameter choices are made by the same
choices as in the Models 1-2 above: n = 200, p = 500.

- Model 3: The model is the same as in Model 2 except that entries of Σ−1/2xi are
generated from a student t distribution with 6 degrees of freedom, instead of a Gaussian
distribution.

The results are presented in Tables 5 and 6 and clearly show that our approach works
well under designs with heavy-tailed distributions. We can clearly observe that the proposed
simultaneous test is the only one that successfully keeps Type I error near the nominal value,
while achieving good power; other state-of-the-art are all close to random guesses.
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Table 3: Size properties of the four competing methods in Model 2

Sparsity Equicorrelation Design n = 200, p = 500

of the model P(rejectH(J)
0 | H(J)

0 )

ZC JM NL GRIP

s = 1 0.08 0.09 0.07 0.04
s = 2 0.15 0.28 0.14 0.06
s = 12 0.37 0.76 0.65 0.02
s = 17 0.41 0.80 0.84 0.02
s = 20 0.54 0.81 0.87 0.03
s = 22 0.56 0.84 0.86 0.04
s = 40 0.76 0.90 0.85 0.06
s = 60 0.85 0.92 0.83 0.03
s = 80 0.94 0.96 0.74 0.03
s = 100 0.96 0.93 0.63 0.01
s = 200 0.99 0.96 0.46 0.01
Average size over 100 repetitions, where we see that ir-
respective of the size of the sparsity, existing methods
greatly fail to control Type I error – observed errors are
very close to 50% making the tests useless in practice.

Table 4: Power properties of the four competing methods in Model 2

Deviations Equicorrelation Design n = 200, p = 500
from the null Type II error

ZC JM NL GRIP

h = 1.0 0.59 0.64 0.94 0.03
h = 2.5 0.93 0.96 1.00 0.20
h = 4.0 1.00 1.00 1.00 0.70
h = 5.5 1.00 1.00 1.00 0.95
h = 6.5 1.00 1.00 1.00 0.98

Average power over 100 repetitions.
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Table 5: Size properties of the four competing methods in Model 3

Sparsity Student t design n = 200, p = 500

of the model P(rejectH(J)
0 | H(J)

0 )

ZC JM NL GRIP

s = 1 0.04 0.04 0.04 0.03
s = 12 0.18 0.48 0.11 0.03
s = 17 0.20 0.42 0.13 0.02
s = 20 0.13 0.34 0.13 0.02
s = 22 0.20 0.40 0.16 0.02
s = 40 0.30 0.30 0.39 0.01
s = 60 0.44 0.36 0.47 0.04
s = 80 0.62 0.36 0.60 0.03
s = 100 0.62 0.31 0.56 0.01
s = 200 0.52 0.25 0.50 0.03
Average size over 100 repetitions, where we see
that irrespective of the size of the sparsity, exist-
ing methods greatly fail to control Type I error –
observed errors are very close to 50% making the
tests useless in practice.

Table 6: Power properties of the four competing methods in Model 3

Deviations Student t design n = 200, p = 500
from the null Type II error

ZC JM NL GRIP

h = 1.0 0.72 0.86 0.72 0.07
h = 2.5 1.00 1.00 0.77 0.38
h = 4.0 1.00 1.00 0.92 0.81
h = 5.5 1.00 1.00 0.91 0.93
h = 6.5 1.00 1.00 0.96 0.99

Average power over 100 repetitions.

6 Approximate Multiplier Bootstrap in High-Dimensions

Studying the theoretical properties of GRIP is not a straight-forward problem because the test
statistic is the based on bootstrapping the sum of high-dimensional vectors Ti = (Ti,1, ..., Ti,d)

>,
which are not independent (across i). Existing methods in high-dimensional bootstrap relies
on the idea that the summands are independent and can be accurately estimated, see Cher-
nozhukov et al. (2014, 2013a); Zhang and Cheng (2016). However, due to the inherent difficulty
in estimating non-sparse high-dimensional parameters γ∗, {Ti}ni=1 might not be consistently
estimating any independent sequence and thus theoretical properties of GRIP cannot be es-
tablished by simply applying existing result.

To address this problem, we propose a new framework of approximate multiplier bootstrap.
This is a result of independent interest because it deals with a large class of problems, which
includes the current problem (GRIP) as a special case. The key idea is to exploit conditional

21



independence structures in the problem for deriving the theoretical properties.
We now start by illustrating the general setup of this new approach using the setup of

Section 2. Observe that, the test statistics Tn,j as defined in (10) can be written as Tn,j =
n−1/2

∑n
i=1wi,jqi,j + ∆n,j , for two triangular arrays of random variables wi,j = (vi − xiγ̂)σ̂−1

ε

and qi,j = ui,(j)/σu,j and a sequence ∆n,j = n−1/2
∑n

i=1wi,j(q̂i,j − qi,j) with q̂i,j = ûi,(j)/σ̂u,j

and ûi,(j) = zi,j − xiθ̂(j). The decomposition (17) above, arises in many statistical problems,
where the statistic of interest Ω̂n = (Ω̂n,1, · · · , Ω̂n,d)

> ∈ Rd can be represented as

Ω̂n,j = n−1/2
n∑

i=1

wi,jqi,j + ∆n,j , (17)

with the random variables qi,j and ∆n,j being not observed and only a sequence of approxima-
tions {q̂i,j} are available. Moreover, typically, the bias term ∆n,j doesn’t have to be dependent
on q̂i,j . We would like to develop a multiplier bootstrap scheme that relies on pairs of obser-
vations

{(wi,j , q̂i,j)}ni=1

and provides a good approximation for the distribution of max1≤j≤d |Ω̂n,j |. We call such
method the approximate multiplier bootstrap. Difficulties arise, as the approximating sequence
{q̂i,j} is typically not independent of the sequence wi,j and the presence of ∆n,j complicates
the analysis.

The problem is very standard for a fixed d. However, in many high-dimensional or non-
parametric problems, d can be much larger than n and, as a result, many of the classical
tools, such as central limit theorem, are often inadequate. Moreover, the properties of γ̂ are
not tractable whenever γ∗ is non-sparse, thus leading to possible large values of wi,j of (17).
However, the framework allows us to exploit the independence structure implied by the null
hypothesis and hence avoid the formidable task of establishing properties of estimators of
non-sparse high-dimensional parameters.

We now state some regularity conditions and then present a formal result on the validity
of the multiplier bootstrap approximation. We also introduce the definition of sub-Gaussian
and sub-exponential norms. For a random variable X, its sub-Gaussian norm is ‖X‖ψ2 =
supp≥1 p

−1/2(E|X|p)1/p and its sub-exponential norm is ‖X‖ψ1 = supp≥1 p
−1(E|X|p)1/p.

Condition 3. The sequence {qi}ni=1 is a sequence of independent random vectors with qi =
(qi,1, · · · , qi,d)> ∈ Rd such that Eqi = 0, Eq2

i,j = 1 and max1≤i≤n,1≤j≤d ‖qi,j‖ψ2 < L for some
constant L > 0. Moreover, the sequence {wi,j}(i,j)∈{1,··· ,n}×{1,··· ,d} is independent of {qi}ni=1

such that almost surely, n−1
∑n

i=1w
2
i,j = 1 ∀j ∈ {1, · · · , d}.

An important feature in Condition 3 is that wi1,j1 is allowed to have arbitrary dependence
on wi2,j2 for (i1, j1) 6= (i2, j2). This flexibility turns out to be very useful for testing non-sparse
high-dimensional models. Moreover, qi,j1 and qi,j2 can also be arbitrarily correlated for j1 6= j2.

We show that a multiplier bootstrap scheme based on q̂i,j can be used to approximate the
distribution of max1≤j≤d |Ω̂n,j |, if both ∆n and

r2
n = max

1≤j≤d
n−1

n∑

i=1

w2
i,j(q̂i,j − qi,j)2.

converge to zero fast enough. The formal result is summarized in the following theorem.

22



Theorem 6. Suppose Condition 3 holds. Let {ξi}ni=1 be a sequence of independent stan-
dard normal random variables that is also independent of wi,j, qi,j and q̂i,j. Define BBBn =
(Bn,1, · · · ,Bn,d)> ∈ Rd with Bn,j = n−1/2

∑n
i=1 ξi(wi,j q̂i,j−mn,j) and mn,j = n−1

∑n
i=1wi,j q̂i,j

Assume (
M̄2
n log7(d ∨ n)

∨
M̄4
n log2(d ∨ n)

)
= oP (n),

with M̄n = max1≤i≤n,1≤j≤d |wi,j |. Moreover, assume that a sequence δn > 0 satisfies δn log d =

o(1), rn = OP (δn) and ‖∆n‖∞ = oP (δ
1/2
n ). Then,

lim sup
n→∞

sup
η∈(0,1)

∣∣∣P
(∥∥Ω̂n

∥∥
∞> Q(1− η, ‖BBBn‖∞)

)
− η
∣∣∣ = 0,

where Q(α, ‖BBBn‖∞) = inf
{
x ∈ R

∣∣∣ P (‖BBBn‖∞ > x | {(wi,j , qi,j , q̂i,j)}1≤i≤n,1≤j≤d) ≤ α
}
and Ω̂n

is defined in (17).

The theory above although developed for Gaussian multipliers applies more widely; with
some changes in the proof multipliers like those of Mammen (1993) can be allowed. However,
studying their effect (in finite sample or otherwise) is beyond the scope of the current article.

Discussion

We propose a new GRIP testing rule to tackle simultaneous hypothesis testing problems in
high-dimensional settings while allowing exploding number of tests, dimensions and sparsity of
the linear model. GRIP first augments the original hypothesis testing problem by leveraging
correlations among the features and then achieves valid control over Type I error rate through
an approximate multiplier bootstrap procedure. GRIP combines the adaptive and optimal
feature correlation estimator with the essentially ill control estimator of what is essentially
a misspecified model. Since features are split into useful and not-useful (for the purposes of
testing), GRIP enjoys a flexible and optimal asymptotic results without requiring an initial
model to be sparse. An array of simulation examples, supported developed theoretical findings.

To verify our methods’ ability to generalize, we evaluate its performance different classifiers
on the following two examples that have highly non-linear models. We consider two models
for which penalized estimators do not exist – hence, illustrating the broad applicability of the
proposed methodology. In particular, we consider Models 4 and 5 below. In each case a choice
of vi = yi was sufficient to guarantee all conditions.

- Model 4: (Nonlinear Single Index Model) The design matrix and β∗ are generated as in
the Model 1. However the model is now generated as

yi = (x>i β
∗) exp{sin(x>i β

∗)}+ εi with εi ∼ N (0, 1).

- Model 5: (Heckman Selection model) Consider the model

y∗i = x>i β
∗ + εi

where β∗ ∈ Rp and y∗i is observed only if w>i ψ
∗ + ξi > 0 for ψ∗ ∈ R2p, that is,

yi = y∗i 1I{w>i ψ∗ + ξi > 0},
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Table 7: Properties of the GRIP in Nonlinear Single Index Model

Sparsity Toeplitz Design n = 200, p = 500
of the model

Type I Power

s = 10 0.07 0.47(h = 4.5) 0.71(h = 5.5) 0.90(h = 6.5) 0.95(h = 7.5)
s = 20 0.05 0.50(h = 4.5) 0.67(h = 5.5) 0.85(h = 6.5) 0.98(h = 7.5)
s = 25 0.06 0.38(h = 4.5) 0.70(h = 5.5) 0.94(h = 6.5) 0.97(h = 7.5)
Average size over 100 repetitions, where we see that for a model where there is not an
efficient estimation scheme, GRIP performs valid inference.

where εi ∼ N (0, 1), wi = (x>i , ζ
>
i )>, ζi ∼ N (0, Ip), ψ∗ = (β∗>,π∗>)> and ξi ∼ χ2(1)−

1. Moreover, the design for xi and β∗ is generated as in the Example 1. Additionally,
the signal π∗ ∈ Rp is drawn from N (0, Ip) and then normalized to have ‖π∗‖2 = 7.

Table 8: Properties of the GRIP in Heckman Selection model

Sparsity Toeplitz Design n = 200, p = 500
of the model

Type I Power

s = 10 0.07 0.47(h = 4.5) 0.71(h = 5.5) 0.91(h = 6.5) 0.92(h = 7.5)
s = 20 0.05 0.50(h = 4.5) 0.67(h = 5.5) 0.89(h = 6.5) 0.99(h = 7.5)
s = 25 0.06 0.38(h = 4.5) 0.70(h = 5.5) 0.95(h = 6.5) 0.98(h = 7.5)
Average size over 100 repetitions, where we see that for a model where there is not an
efficient estimation scheme, GRIP performs valid inference.

Results of these two experiments are summarized in Tables 7 and 8, respectively. For
these nonlinear models, our method has good size properties and its power reaches power 1 for
alternatives that are far from the null hypothesis. In contrast, other methods do not apply;
there even an estimation in high-dimension is not well defined.
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In Section A, we prove the theoretical results in Section 4 by casting the problem into
the framework of approximate bootstrap summarized in Section 6. In Section B, we provide
the proof for the approximate bootstrap in high-dimensions as well as the auxiliary technical
lemmas.

A Proofs of the main results

Proof of Theorem 2. In this proof, we invoke Theorem 6. We phrase the problem under the
notation of Theorem 6 and verify the assumptions of Theorem 6. The exact statements depend
on whether Condition 1(i) or Condition 1(ii) is imposed. Hence, we discuss both scenarios
separately.

Let G = Y−Zβ0 and define (g1, ..., gn)> = G. Let s∗,γ = ‖γ∗‖0 and s∗,θ = max1≤j≤d ‖θ∗(j)‖0.
By Theorem 6 in Rudelson and Zhou (2013) and the rate condition regarding s∗,γ and s∗,θ,
there exists a constant κ > 0, such that P(Dn(s∗,θ, κ)) → 1 under Condition 1(i) and
P(Dn(s∗,γ , κ))→ 1 under Condition 1(ii), where for s ≥ 1,

Dn(s, κ) =

{
min

J0⊆{1,··· ,p},|J0|≤s
min

δ 6=0,‖δJc
0
‖1≤‖δJ0

‖1

‖Xδ‖2√
n‖δJ0‖2

> κ

}
. (18)

Define the event M =
{
θ∗(j) and γ∗ are feasible for (9) ∀j ∈ {1, · · · , d}

}
. By Lemma 6,

P (M)→ 1. Hence,
{
P(M⋂Dn(s∗,θ, κ))→ 1 under Condition 1(i)

P(M⋂Dn(s∗,γ , κ))→ 1 under Condition 1(ii),
(19)

In either Condition 1(i) or Condition 1(ii), we will show that Tn,j and T̃n,j (defined in (10)
and (4)) can be written as

{
Tn,j = n−1/2

∑n
i=1wi,jqi,j + ∆n,j

T̃n,j = n−1/2
∑n

i=1 ξi(wi,j q̂i,j −mn,j) with mn,j = n−1
∑n

i=1wi,j q̂i,j ,
(20)

where the definitions of wi,j ’s, qi,j ’s, q̂i,j ’s and ∆n,j ’s depend on whether Condition 1 (i) or (ii)
is imposed. Under this framework, Theorem 6 implies that it suffices to check the following
conditions:

(a) wi,j ’s are independent of qi,j ’s and n−1
∑n

i=1w
2
i,j = 1 ∀j ∈ {1, · · · , d}.

(b) {qi}ni=1 qi = (qi,1, · · · , qi,j)> be a sequence of independent random vectors in Rd with
Eqi = 0, Eq2

i,j = 1 and qi,j sub-Gaussian with uniformly bounded sub-Gaussian norm.

(c)
(
M̄2
n log7(d ∨ n)

∨
M̄4
n log2(d ∨ n)

)
= oP (n), where M̄n = max1≤j≤d,1≤i≤n |wi,j |.

(d) there exists a sequence δn > 0 such that δn log d = o(1), max1≤j≤d n−1
∑n

i=1w
2
i,j(q̂i,j −

qi,j)
2 = OP (δ2

n) and ‖∆n‖∞ = oP (δ
1/2
n ).
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In the rest of the proof, we verify the framework in (20) with formal definitions of wi,j ’s, qi,j ’s,
q̂i,j ’s and ∆n,j ’s and then check conditions (a)-(d). This is done for both Condition 1(i) and
(ii).

Case 1: Condition 1(i) is imposed.

In this case, we define wi,j = (gi − x>i γ̂)/σ̂ε, qi,j = ui,(j)/σu,j , q̂i,j = ûi,(j)/σ̂u,j and

∆n,j = n−1/2(G−Xγ̂)>X(θ∗(j) − θ̂(j))/(σ̂εσ̂u),

where
ûi,(j) = zi,(j) − x>i θ̂(j) = ui,(j) + x>i (θ∗(j) − θ̂(j)).

Notice that, with these definitions, (20) is satisfied and we only need to verify conditions
(a)-(d) listed above.

Notice that wi,j does not depend on j and, by the definition of σ̂ε, n−1
∑n

i=1w
2
i,j = 1.

Also notice that both xi and εi are uncorrelated with ui = (ui,(1), ...ui,(d))
>. Hence, under

the null hypothesis of β∗ = β0, gi = x>i γ
∗ + εi is uncorrelated with ui. Since γ̂ and σ̂ε are

computed using only G and X, (a) follows. Notice that (b) holds by the properties of ui,(j)’s.
We proceed to verify (c) and (d).

By Lemma 5, on the eventM⋂Dn(s∗,θ, κ),

σ̂ε =
√
n−1(G−Xγ̂)>(G−Xγ̂) ≥ η̄γ/

√
n−1G>G.

Since under the null hypothesis of β∗ = β0,

gi = x>i γ
∗ + εi,

we have that Eg2
i = (γ∗)>Σγ∗+σ2

ε = O(1) (due to ‖γ∗‖2 = O(1)). The law of large numbers
implies that n−1G>G = Eg2

i + oP (1) = OP (1) and hence,

σ̂−1
ε ≤

√
n−1G>G/η̄γ = OP (1). (21)

Notice that, onM, max1≤i≤n |gi − x>i γ̂| ≤ µγ = O(
√

log(dn)) and thus

M̄n = max
1≤i≤n

|(gi − x>i γ̂)/σ̂ε| = OP (
√

log(dn)). (22)

This, along with the rate conditions in statement of theorem, implies (c).
From Lemma 4 applied to θ̂(j), on the eventM⋂Dn(s∗,θ, κ), we have for each 1 ≤ j ≤ d,

‖θ̂(j) − θ∗(j)‖1 ≤ 8ηθ,js∗,θκ
−2 and n−1/2‖X(θ̂(j) − θ∗(j))‖2 ≤ 4ηθ,j

√
s∗,θκ

−1. (23)

Thus, onM⋂Dn(s∗,θ, κ), for each 1 ≤ j ≤ d,
∣∣∣n−1/2(G−Xγ̂)>X(θ∗(j) − θ̂(j))

∣∣∣ ≤ n1/2‖n−1X>(G−Xγ̂)‖∞‖θ̂(j)−θ∗(j)‖1 ≤ 8n1/2ηθ,jηγs∗,θκ
−2

(24)
and
∣∣∣n−1/2‖Z(j) −Xθ̂(j)‖2 − n−1/2‖Z(j) −Xθ∗(j)‖2

∣∣∣ ≤ n−1/2‖X(θ̂(j) − θ∗(j))‖2 ≤ 4ηθ,j
√
s∗,θκ

−1.

(25)
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Recall u(j) = (u1,(j), · · · , un,(j))> ∈ Rn. Since u(j) = Z(j) −Xθ∗(j) has entries with uniformly
bounded sub-Gaussian norms, it follows, by Bernstein’s inequality and the union bound, that

max
1≤j≤d

∣∣∣n−1‖Z(j) −Xθ∗(j)‖22 − σ2
u,j

∣∣∣ = OP (
√
n−1 log d). (26)

From (25) and (26), we have

max
1≤j≤d

|σ̂u,j − σu,j | = max
1≤j≤d

∣∣∣n−1/2‖Z(j) −Xθ̂(j)‖2 − σu,j
∣∣∣ (27)

= OP (
√
n−1 log d ∨ ( max

1≤j≤d
ηθ,j
√
s∗,θ)) = oP (1). (28)

This, combined with (24) and (21), implies that

‖∆n‖∞ = max
1≤j≤d

∣∣∣∣∣
n−1/2(G−Xγ̂)>X(θ∗(j) − θ̂(j))

σ̂εσ̂u,j

∣∣∣∣∣ ≤ OP (n1/2ηγ max
1≤j≤d

ηθ,js∗,θ) (29)

Moreover,

max
1≤j≤d

n−1
n∑

i=1

w2
i,j(q̂i,j − qi,j)2

(i)

≤ M̄2
n max

1≤j≤d
n−1

n∑

i=1

(
ûi,(j)

σ̂u,j
−
ui,(j)

σu,j

)2

(ii)

≤ M̄2
n max

1≤j≤d
2n−1

n∑

i=1

(
ûi,(j)

σ̂u,j
−
ûi,(j)

σu,j

)2

+ M̄2
n max

1≤j≤d
2n−1

n∑

i=1

(
ûi,(j)

σu,j
− ui,j
σu,j

)2

(iii)
= M̄2

n max
1≤j≤d

2(σ̂u,j − σu,j)2σ−2
u,j + M̄2

n max
1≤j≤d

2n−1‖X(θ̂(j) − θ∗(j))‖22σ−2
u,j

(iv)
= OP ((n−1 log d) ∨ ( max

1≤j≤d
η2
θ,js∗,θ)) log(dn), (30)

where (i) holds from the Holder’s inequality, (ii) follows from the inequality (a+b)2 ≤ 2a2+2b2,
(iii) from σ̂2

u,j = n−1
∑n

i=1 û
2
i,(j) and

n−1
n∑

i=1

(ûi,(j) − ui,(j))2 = n−1‖X(θ̂(j) − θ∗(j))‖22

and (iv) follows from (23), (28) and (22).
Based on (29), (30) and the rate conditions in the statement of the theorem, one can easily

verify that (d) holds with

δn =
√
n−1 log(d ∨ n)[(log d) ∨ (s∗,θ log(p− d))].

This completes the proof for Case 1.

Case 2: Condition 1(ii) is imposed.
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In this case, we define wi,j = (zi,(j) − x>i θ̂(j))/σ̂u,j , qi,j = εi/σε, q̂i,j = ε̂i/σ̂ε and

∆n,j = n−1/2(γ − γ̂)>X>(Z(j) −Xθ̂(j))/(σ̂εσ̂u),

where ε̂i = vi − x>i γ̂. Notice that, with these definitions, (20) is satisfied and we only need to
verify conditions (a)-(d) listed after (20).

Notice that, from the definition of σ̂u,j , n−1
∑n

i=1w
2
i,j = 1 ∀j. Since ε is uncorrelated with

({Z(j)}dj=1,X) and {(θ̂(j), σ̂u,j)}dj=1 is computed using only ({Z(j)}dj=1,X), (a) follows.
Notice that qi,j and q̂i,j do not depend on j and (b) holds by the assumptions on εi. It

remains to verify (c) and (d).
Since zi,(j) is centered Gaussian with uniformly bounded variance, the sub-exponential

norm of z2
i,(j) is uniformly bounded. From Proposition 5.16 of Vershynin (2010) and the union

bound,
max

1≤j≤d
|n−1Z>(j)Z(j) − Ez2

i,(j)| = OP (
√
n−1 log d) = oP (1)

and thus max1≤j≤d n−1Z>(j)Z(j) = OP (1). Therefore, on the eventM,

max
1≤j≤d

σ̂−1
u,j = max

1≤j≤d

(
n−1/2‖Z(j) −Xθ̂(j)‖2

)−1

(i)

≤ max
1≤j≤d

(
n−1/2‖Z(j)‖2/η̄θ,j

)
(31)

≤
√

max
1≤j≤d

n−1Z>(j)Z(j)/( min
1≤j≤

η̄θ,j) = OP (1), (32)

where (i) follows by Lemma 5 (applied to θ̂(j) for each j). Notice that, onM,

max
1≤i≤n,1≤j≤d

|zi,(j) − x>i θ̂(j)| ≤ max
1≤j≤d

µθ,j = O(
√

log(dn))

and thus, by (32),

M̄n = max
1≤i≤n,1≤j≤d

|(zi,(j) − x>i θ̂(j))/σ̂u,j | = OP (
√

log(dn)). (33)

This, along with the rate conditions in statement of theorem, implies (c).
From Lemma 4 applied to γ∗, on the eventM⋂Dn(s∗,γ , κ), we have

‖γ̂ − γ∗‖1 ≤ 8ηs∗,γκ−2 and n−1/2‖X(γ̂ − γ∗)‖2 ≤ 4ηγ
√
s∗,γκ−1. (34)

Thus, onM⋂Dn(s∗,γ , κ),
∣∣∣n−1/2(γ∗ − γ̂)>X>(Z(j) −Xθ̂(j))

∣∣∣ ≤ n1/2‖n−1X>(Z(j)−Xθ̂(j))‖∞‖γ̂−γ∗‖1 ≤ 8n1/2ηθ,jηγs∗,γκ
−2

(35)
and

∣∣∣n−1/2‖G−Xγ̂‖2 − n−1/2‖G−Xγ∗‖2
∣∣∣ ≤ n−1/2‖X(γ̂ − γ∗)‖2 ≤ 4ηγ

√
s∗,γκ−1. (36)
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Since, under the null hypothesis of β∗ = β0, ε = G−Xγ∗, we apply (Lyapunov’s) CLT and
obtain

∣∣n−1‖G−Xγ∗‖22 − σ2
ε

∣∣ = OP (n−1/2). Hence, by (36),

|σ̂ε − σε| = OP (n−1/2 ∨ ηγ√s∗,γ) = oP (1). (37)

This, combined with (32) and (35), implies that

‖∆n‖∞ = max
1≤j≤d

∣∣∣∣∣
n−1/2(γ∗ − γ̂)>X>(Z(j) −Xθ̂(j))

σ̂εσ̂u,j

∣∣∣∣∣ ≤ OP (n1/2ηγs∗,γ max
1≤j≤d

ηθ,j) (38)

Moreover,

max
1≤j≤d

n−1
n∑

i=1

w2
i,j(q̂i,j − qi,j)2

(i)

≤ M̄2
nn
−1

n∑

i=1

(
ε̂i
σ̂ε
− εi
σε

)2

(ii)

≤ M̄2
n2n−1

n∑

i=1

(
ε̂i
σ̂ε
− ε̂i
σε

)2

+ M̄2
n2n−1

n∑

i=1

(
ε̂i
σε
− εi
σε

)2

(iii)
= M̄2

n2(σ̂ε − σε)2σ−2
ε + M̄2

n2n−1‖X(γ̂ − γ∗)‖22σ−2
ε

(iv)
= OP (n−1 log(dn)[(s∗,γ log(p− d)) ∨ 1]), (39)

where (i) holds by Holder’s inequality, (ii) follows by the inequality (a+ b)2 ≤ 2a2 + 2b2, (iii)
follows by σ̂2

ε = n−1
∑n

i=1 ε̂
2
i and

n−1
n∑

i=1

(ε̂i − εi)2 = n−1‖X(γ̂ − γ∗)‖22

and (iv) follows by (37), (34) and (33).
Based on (38), (39) and the rate conditions in the statement of the theorem, one can easily

verify that (d) holds with

δn =
√
n−1 log(dn)[(s∗,γ log(p− d)) ∨ 1].

This completes the proof for Case 2.

Proof of Theorem 3. For the majority of the proof, we lower bound the test statistic under the
alternative. An upper bound of the critical value is provided by Lemma 10, which is proved
later. With these two bounds, we prove the theorem.

Let j∗ ∈ {1, · · · , d} satisfy |Eπ>u>i ui,(j∗)| = max1≤j≤d |Eπ>u>i ui,(j)| = ‖Σuπ‖∞. Notice
that

n−1/2(G−Xγ̂)>(Z(j∗) −Xθ̂(j∗)) =

n−1/2(G−Xγ∗)>(Z(j∗) −Xθ∗(j∗))︸ ︷︷ ︸
J1

+ n−1/2(G−Xγ∗)>X(θ∗(j∗) − θ̂(j∗))︸ ︷︷ ︸
J2

+ n−1/2(γ∗ − γ̂)>X>(Z(j∗) −Xθ̂(j∗))︸ ︷︷ ︸
J3

.

(40)
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Moreover, under the alternative hypothesis of β∗ = β0 + π, we have

(gi − x>i γ∗)(zi,(j∗) − x>i θ∗(j∗)) = (εi + x>i Θ∗π + u>i π)︸ ︷︷ ︸
J1,i

ui,(j∗).

Since ΣW has eigenvalues bounded away from zero and infinity, ΣX , Σu and Θ also have
singular values bounded away from zero and infinity. By ‖π‖2 = O(1) and the bounded sub-
Gaussian norms of xi and ui, x>i Θ∗π and u>i π have sub-Gaussian norms bounded by some
constant K1 > 0. By the bounded sub-Gaussian norm of εi, we have that the sub-Gaussian
norm of J1,i is bounded by some constant K2 > 0. Using the sub-Gaussian properties of ui,(j∗)

and Lemma 8, we have that the sub-exponential norm of ln,i := J1,iui,(j∗) is bounded by some
constant K3 > 0. It follows by Proposition 5.16 of Vershynin (2010) that there exist constants
C1, C2 > 0 such that ∀x > 0

P

(∣∣∣∣∣n
−1/2

n∑

i=1

(ln,i − Eln,i)

∣∣∣∣∣ > x

)
≤ 2 exp(−min{C1x

2,
√
nC2x}). (41)

Since J1 = n−1/2
∑n

i=1 ln,i and

|Eln,i| = |E(εi + x>i Θ∗π + u>i π)ui,(j∗)| = ‖Σuπ‖∞,

it follows that ∀x > 0,

P
(
|J1| > x

√
log d

)
≥ P

(∣∣∣n1/2Eln,i
∣∣∣−
∣∣∣∣∣n
−1/2

n∑

i=1

(ln,i − Eln,i)

∣∣∣∣∣ > x
√

log d

)

≥ 1I
{
‖Σuπ‖∞ > (x+ 1)

√
n−1 log d

}
− P

(∣∣∣∣∣n
−1/2

n∑

i=1

(ln,i − Eln,i)

∣∣∣∣∣ >
√
n−1 log d

)

(i)

≥ 1I
{
‖Σuπ‖∞ > (x+ 1)

√
n−1 log d

}
− 2 exp(−min{C1n

−1 log d,
√
nC2

√
n−1 log d})

≥ 1I
{
‖Σuπ‖∞ > (x+ 1)

√
n−1 log d

}
− o(1),

where (i) follows by (41). Then, we have that ∀t1, t2 > 0,

P
(
‖Tn‖∞ > t1

√
log d

)
≥ P

(
|Tn,j∗ | > t1

√
log d

)

= P
(
σ̂−1
ε σ̂−1

u,j∗ |J1 + J2 + J3| > t1
√

log d
)

≥ P
(
σ−1
ε σ−1

u,j∗ |J1 + J2 + J3| > t1t2
√

log d
)
− P

(
σ−1
ε σ−1

u,j∗ σ̂εσ̂u,j∗ > t2

)

≥ P
(
|J1| > 5σεσu,j∗t1t2

√
log d

)
− P

(
|J2| > σεσu,j∗t1t2

√
log d

)

−P
(
|J3| > σεσu,j∗t1t2

√
log d

)
− P

(
σ−1
ε σ−1

u,j∗ σ̂εσ̂u,j∗ > t2

)

≥ 1I
{
‖Σuπ‖∞ > (5σεσu,j∗t1t2 + 1)

√
n−1 log d

}
− o(1)

−P
(
|J2| > σεσu,j∗t1t2

√
log d

)
− P

(
|J3| > σεσu,j∗t1t2

√
log d

)
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−P
(
σ−1
ε σ−1

u,j∗ σ̂εσ̂u,j∗ > t2

)
. (42)

Define the eventM =
{
θ∗(j) and γ∗ are feasible for (9) ∀j ∈ {1, · · · , d}

}
. By Lemma 6, P(M)→

1. By the same argument as in the beginning of the proof of Theorem 2, there exists a constant
κ > 0 such that P(Dn(s∗, κ)) → 1, where s∗,γ , s∗,θ and Dn(s, κ) are defined in the proof of
Theorem 2 and s∗ = s∗,θ ∨ s∗,γ . By Lemma 4 (applied to γ∗ and θ∗(j)), onM

⋂Dn(s∗, κ), we
have

‖θ̂(j) − θ∗(j)‖1 ≤ 8ηθ,js∗,θκ
−2 and n−1/2‖X(θ̂(j) − θ∗(j))‖2 ≤ 4ηθ,j

√
s∗,θκ

−1 (43)

‖γ̂(j) − γ∗(j)‖1 ≤ 8ηγs∗,γκ−2 and n−1/2‖X(γ̂(j) − γ∗(j))‖2 ≤ 4ηγ
√
s∗,γκ−1 (44)

Hence, on the eventM⋂Dn(s∗, κ), we have
{
|J2| ≤ n−1/2‖X>(G−Xγ∗)‖∞‖θ̂(j∗) − θ∗(j∗)‖1 ≤ 8ηγ max1≤j≤d ηθ,js∗,θκ−2 = oP (1)

|J3| ≤ n−1/2‖γ̂ − γ∗‖1‖X>(Z(j∗) −Xθ̂(j∗))‖∞ ≤ 8 max1≤j≤d ηθ,jηγs∗,γκ−2 = oP (1)

(45)
Notice that σ̄2

ε := EJ2
1,i ∈ (K4,K5) for some constants K4,K5 > 0. One can use (43) and (44)

and replicate the arguments for (28) and (37) in the proof of Theorem 2, obtaining

max
1≤j≤d

|σ̂u,j − σu,j | = oP (1) and σ̂ε = σ̄ε + oP (1). (46)

By Lemma 10, there exists a constant C∗ > 0 , such that

P
(
Q(1− α, ‖T̃n‖∞) > 3

√
2C∗ log d

)
→ 0. (47)

Let K6 > 1 be a constant such that σ−1
ε σ−1

u,j∗ σ̄εσu,j∗ ≤ K6. Now we choose constants t1 =

4
√

2C∗ and t2 = 2K6. By (42), (45) and (46) we obtain

P
(
‖Tn‖∞ > 4

√
2C∗ log d

)
≥ 1I

{
‖Σuπ‖∞ > (40

√
2C∗K6σεσu,j∗ + 1)

√
n−1 log d

}
− o(1).

This, combined with (47), implies that

P
(
‖Tn‖∞ > Q(1− α, ‖T̃n‖∞)

)
≥ 1I

{
‖Σuπ‖∞ > (40

√
2C∗K6σεσu,j∗ + 1)

√
n−1 log d

}
−o(1).

LetK7 > 0 be a constant with σε∨σu,j∗ < K7. Then we can simply take τ̄ = 40K6K
2
7

√
2C∗+1.

This completes the proof of the theorem.

Proof of Theorem 4. The basic idea of our proof is the following. We construct several alter-
native hypotheses in B1(τ) for some τ > 0 and show that the average power of any given test
against these alternatives is at most equal to the nominal size. Hence, no test can have power
uniformly against the alternatives in B1(τ).

In this proof, we write φn instead of φn(X,Z,Y) for notational simplicity. Let τ > 0 be a
constant such that K2/2 > τ , where K > 0 is an lower bound for σε and min1≤j≤d σu,j . Let
β(j) = β0 + cjej , where ej is the jth column of the d× d identity matrix and

cj = 2−1/2σ−1
u,jσε

√
n−1 log d.
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Consider γ = 0, Θ = 0 and Σu = diag{σ2
u,1, · · · , σ2

u,d}. Define

λ0 := (β0,γ,Θ,Σ,Σu, σ
2
ε) ∈ B0 and λ(j) := (β(j),γ,Θ,Σ,Σu, σ

2
ε) ∈ B1(τ) ∀j ∈ {1, · · · , d}.

Let Ej and Pj denote the expectation and probability measure under λ(j), respectively. Sim-
ilarly, let E0 and P0 denote the expectation and probability measure under λ0, respectively.
Since lim supn→∞ E0φn ≤ α, we have

lim inf
n→∞

inf
λ∈B1(τ)

Eλφn − α

≤ lim inf
n→∞


d−1

d∑

j=1

Ejφn − E0φn


 ≤ lim sup

n→∞

∣∣∣∣∣∣
d−1

d∑

j=1

(Ejφn − E0φn)

∣∣∣∣∣∣
. (48)

From the normality assumption, we have (x>i ,u
>
i , εi)

> ∼ N (0,Ω∗) with Ω∗ = block diag{Σ,Σu, σ
2
ε}.

Let {hi}ni=1 denote the observed variables, where hi = (x>i , z
>
i , yi)

> ∈ Rp. Then, under P0,
hi ∼ N (0,Ω0) with p.d.f

(2π)−k/2(det Ω0)−1/2 exp(−h>i Ω−1
0 hi/2),

where

Ω0 =




Σ 0 0
0 Σu Σuβ0

0 β>0 Σu β>0 Σuβ0 + σ2
ε


 .

Moreover, under Pj , hi ∼ N (0,Ωj) with p.d.f

(2π)−k/2(det Ωj)
−1/2 exp(−h>i Ω−1

j hi/2),

where

Ωj =




Σ 0 0
0 Σu Σuβ(j)

0 β>(j)Σu β>(j)Σuβ(j) + σ2
ε


 .

Hence, after straight-forward computations, we have that

Ejφn = E0
dPj
dP0

φn = E0φn exp(Sj),

where

Sj := σ−2
ε

n∑

i=1

[
cjεiui,(j) −

1

2
c2
ju

2
i,(j)

]
.

Since |φn| ≤ 1 a.s., we have, by Lyapunov’s inequality, that

∣∣∣∣∣∣
d−1

d∑

j=1

(Ejφn − E0φn)

∣∣∣∣∣∣
≤ E0

∣∣∣∣∣∣
d−1

d∑

j=1

exp(Sj)− 1

∣∣∣∣∣∣
≤

√√√√√E0


d−1

d∑

j=1

exp(Sj)− 1




2

. (49)
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Recall u(j) = (u1,(j), · · · , un,(j))> ∈ Rn and notice that, conditional on u = (u(1), · · · ,u(d)) ∈
Rn×d,

Sj ∼ N
(
−1

2
σ−2
ε c2

j

n∑

i=1

u2
i,(j), σ

−2
ε c2

j

n∑

i=1

u2
i,(j)

)
∀j ∈ {1, · · · , d}

Sj1 + Sj2 ∼ N
(
−1

2
σ−2
ε

n∑

i=1

(c2
j1u

2
i,(j1) + c2

j2u
2
i,(j2)), σ

−2
ε

n∑

i=1

(cj1ui,(j1) + cj2ui,(j2))
2

)
for j1 6= j2

Recall the moment generating functions of Gaussian distributions: for X ∼ N (µ, σ2) and
t ∈ R, E exp(tX) = exp(tµ+ t2σ2/2). Hence,





E0 (exp(Sj) | u) = 1 ∀j ∈ {1, · · · , d}
E0 (exp(2Sj) | u) = exp(σ−2

ε c2
j

∑n
i=1 u

2
i,(j)) ∀j ∈ {1, · · · , d}

E0 (exp(Sj1 + Sj2) | u) = exp(σ−2
ε cj1cj2

∑n
i=1 ui,(j1)ui,(j2)) for j1 6= j2

(50)

It follows that

E0




d−1

d∑

j=1

(exp(Sj)− 1)




2

| u




= E0


d−2

d∑

j1=1

d∑

j2=1

(exp(Sj1)− 1) (exp(Sj2)− 1) | u




= E0


d−2

d∑

j1,j2=1 j1 6=j2
(exp(Sj1 + Sj2) + 1− exp(Sj1)− exp(Sj2)) | u




+ E0


d−2

d∑

j=1

(exp(2Sj)− 2 exp(Sj) + 1) | u




= d−2
d∑

j1,j2=1 j1 6=j2

(
exp(σ−2

ε cj1cj2

n∑

i=1

ui,(j1)ui,(j2))− 1

)
+ d−2

n∑

j=1

(
exp(σ−2

ε c2
j

n∑

i=1

u2
i,(j))− 1

)
,

(51)

where the last line follows by (50).
Notice that for j1 6= j2, u(j1) and u(j2) are independent since Σu is diagonal. Hence,

conditional on u(j1),

σ−2
ε cj1cj2

n∑

i=1

ui,(j1)ui,(j2)

is a zero-mean Gaussian random variable with variance σ−4
ε c2

j1
c2
j2
σ2
u,,j2

∑n
i=1 u

2
i,(j1). It follows

that, for j1 6= j2,

E0 exp(σ−2
ε cj1cj2

n∑

i=1

ui,(j1)ui,(j2)) (52)
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= E0

[
E0

(
exp(σ−2

ε cj1cj2

n∑

i=1

ui,j1ui,j2) | u(j1)

)]

= E0 exp

(
1

2
σ−4
ε c2

j1c
2
j2σ

2
u,j2

n∑

i=1

u2
i,(j1)

)

(i)
= E0 exp

(
(
1

8
n−2 log2 d)(

n∑

i=1

u2
i,(j1)σ

−2
u,j1

)

)
(53)

(ii)
= (1− 1

4
n−2 log2 d)−n/2, (54)

where (i) follows by the definition of cj ’s and (ii) follows by the fact that
∑n

i=1 u
2
i,(j1)σ

−2
u,j1
∼

χ2(n) and the moment generating function of chi-squared distributions. Recall that for X ∼
χ2(k) and t < 1/2, E exp(tX) = (1− 2t)−k/2. Similarly, we have

E exp

(
σ−2
ε c2

j

n∑

i=1

u2
i,(j)

)
= (1− n−1 log d)−n/2. (55)

Now (51), (54) and (55) along with the law of iterated expectations imply that

E0


d−1

d∑

j=1

(exp(Sj)− 1)




2

= E0



E0




d−1

d∑

j=1

(exp(Sj)− 1)




2

| u







= d−1(d− 1)

[
(1− 1

4
n−2 log2 d)−n/2 − 1

]

︸ ︷︷ ︸
A1

+ d−1(1− n−1 log d)−n/2︸ ︷︷ ︸
A2

+ d−1 (56)

To see that A1 = o(1), notice that n−1 log2 d→ 0,

log

[
(1− 1

4
n−2 log2 d)n

2/ log2 d

]
→ −1

4

and hence log
[
(1− 1

4n
−2 log2 d)−n/2

]
= −1

2(n−1 log2 d) log
[
(1− 1

4n
−2 log2 d)n

2/ log2 d
]
→ 0.

Since d→∞, we have

logA2 = log
[
d−1(1− n−1 log d)−n/2

]
= − log d+ (

1

2
log d)

{
log
[(

1− n−1 log d
)−(n−1 log d)−1]}

= − log d+ (
1

2
log d)(1 + o(1))

→ −∞.

Now, (56), A1 = o(1) and logA2 → −∞ imply that E0

(
d−1

∑d
j=1(exp(Sj)− 1)

)2
= o(1),

which, by (48) and (49), implies the desired result.

B Proofs of the remaining results

B.1 Proofs for the High-Dimensional approximate bootstrap

We split the analysis into two major parts, with the first establishing a general result on
approximate bootstrap and the second showing that many of the conditions established in the
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first part hold true.
Preliminary Results
The following result is the key argument for establishing the theoretical properties of the

approximate multiplier bootstrap procedure. The setup is slightly more general than described
in Section 6.

Theorem 7. Consider Ŝn = SΨ
n +∆n and SΨ

n = n−1/2
∑n

i=1 Ψi with Ψi = (Ψi,1, · · · ,Ψi,mΨ)> ∈
RmΨ. Define S̃Ψ

n = n−1/2
∑n

i=1(Ψi − Ψ̄n)ξi and Ψ̄n = n−1
∑n

i=1 Ψi; also define S̃Ψ̂
n and ¯̂

Ψn

similarly with Ψi replaced by Ψ̂i. Let Fn and Gn be σ-algebras such that the sequence {ξi}ni=1 is
independent of Gn and Gn contains the σ-algebra generated by Fn and {(Ψi, Ψ̂i)}ni=1. Suppose
that the following hold:

(i) E
[
supx∈R

∣∣∣P
(
‖SΨ

n ‖∞ > x | Fn
)
− P

(
‖S̃Ψ

n ‖∞ > x | Gn
)∣∣∣
]
→ 0,

(ii) E
[
supx∈R

∣∣∣P
(
‖S̃Ψ

n ‖∞ > x | Gn
)
− P

(
‖S̃Ψ̂

n ‖∞ > x | Gn
)∣∣∣
]
→ 0,

(iii) P
(
min1≤j≤mΨ n

−1
∑n

i=1(Ψi,j − Ψ̄n,j)
2 > b

)
→ 1, for a constant b > 0,

(iv) ‖∆n‖∞ = oP (εn) for a sequence of constants εn → 0 , such that εn
√

logmΨ → 0.
Then

lim sup
n→∞

sup
η∈(0,1)

∣∣∣P
(
‖Ŝn‖∞ > Q(1− η, ‖S̃Ψ̂

n ‖∞)
)
− η
∣∣∣ = 0,

where Q(α, ‖S̃Ψ̂
n ‖∞) = inf{x ∈ R | P(‖S̃Ψ̂

n ‖∞ > x | Gn) ≤ α}.

Proof of Theorem 7. The main idea of the proof is based on the observation that ‖∆n‖∞ goes
to zero faster than εn while the probability of of the bootstrapped quantity lying in an interval
of length 2εn goes to zero. Formally, let εn be a sequence of constants satisfying (iv) in the
statement of the theorem. We begin by introducing necessary notation. Let

an,1 := supx∈R
∣∣∣P
(
‖SΨ

n ‖∞ > x | Fn
)
− P

(
‖S̃Ψ

n ‖∞ > x | Gn
)∣∣∣

and an,2 = supx∈R
∣∣∣P
(
‖S̃Ψ

n ‖∞ > x | Gn
)
− P

(
‖S̃Ψ̂

n ‖∞ > x | Gn
)∣∣∣.

Observe that by the assumption (i) and (ii) we have Ean,1 → 0 and Ean,2 → 0. We follow
by employing the triangular inequality guarantees,

∣∣∣P
(
‖SΨ

n ‖∞ ∈ (x− εn, x+ εn] | Fn
)
− P

(
‖S̃Ψ

n ‖∞ ∈ (x− εn, x+ εn] | Gn
)∣∣∣

≤
∣∣∣P
(
‖SΨ

n ‖∞ > x− εn | Fn
)
− P

(
‖S̃Ψ

n ‖∞ > x− εn | Gn
)∣∣∣

+
∣∣∣P
(
‖SΨ

n ‖∞ > x+ εn | Fn
)
− P

(
‖S̃Ψ

n ‖∞ > x+ εn | Gn
)∣∣∣ ≤ 2an,1. (57)

It follows that
∣∣∣P
(
‖SΨ̂

n ‖∞ > x | Fn
)
− P

(
‖S̃Ψ

n ‖∞ > x | Gn
)∣∣∣

(i)

≤
∣∣∣P
(
‖SΨ̂

n ‖∞ > x | Fn
)
− P

(
‖SΨ

n ‖∞ > x | Fn
)∣∣∣+ an,1

(ii)

≤ P (‖∆n‖∞ > εn | Fn) + P
(
‖SΨ

n ‖∞ ∈ (x− εn, x+ εn] | Fn
)

+ an,1
(iii)

≤ P (‖∆n‖∞ > εn | Fn) + P
(
‖S̃Ψ

n ‖∞ ∈ (x− εn, x+ εn] | Gn
)

+ 3an,1, (58)

35



where (i) follows by the triangular inequality and the definition of an,1, (ii) follows by a simple
observation that for two random vectors X and Y and ∀t, ε > 0,

|P (‖X‖∞ > t)− P (‖Y ‖∞ > t)| ≤ P (‖X − Y ‖∞ > ε) + P (‖Y ‖∞ ∈ (t− ε, t+ ε]) . (59)

and (iii) follows by (57).
Define the event

En :=

{
min

1≤j≤mΨ

n−1
n∑

i=1

(Ψi,j − Ψ̄n,j)
2 ≥ b

}
.

Observe that by Nazarov’s anti-concentration inequality (Lemma A.1 in Chernozhukov
et al. (2014)), for a p-dimensional random vector Y with mean zero and such that min1≤j≤mΨ E(Y 2

j ) ≥
b for some constant b > 0, there exists a constant Cb > 0 depending only on b , such that
∀ε > 0.

sup
x∈R

P (‖Y ‖∞ ∈ (x− ε, x+ ε]) ≤ Cbε
√

log p. (60)

Together the fact that conditional on Gn, n−1/2
∑n

i=1(Ψi − Ψ̄n)ξi is a zero-mean Gaussian
vector in RmΨ whose jth component has variance equal to n−1

∑n
i=1(Ψi,j − Ψ̄n,j)

2, we have

sup
x∈R

P
(
‖S̃Ψ

n ‖∞ ∈ (x− εn, x+ εn] | Gn
)
≤ εnCb

√
logmΨ + 1I{Ecn}, (61)

Then (58), (61) and the definition of an,2 imply that

sup
x∈R

∣∣∣P
(
‖SΨ̂

n ‖∞ > x | Fn
)
− P

(
‖S̃Ψ̂

n ‖∞ > x | Gn
)∣∣∣

≤ sup
x∈R

∣∣∣P
(
‖SΨ̂

n ‖∞ > x | Fn
)
− P

(
‖S̃Ψ

n ‖∞ > x | Gn
)∣∣∣+ an,2

≤ P (‖∆n‖∞ > εn | Fn) + sup
x∈R

P
(
‖S̃Ψ

n ‖∞ ∈ (x− εn, x+ εn] | Gn
)

+ 3an,1 + an,2

≤ P (‖∆n‖∞ > εn | Fn) + εnCb
√

logmΨ + 1I{Ecn}+ 3an,1 + an,2. (62)

It follows that ∀δ > 0

E

[
sup

η∈(0,1)

∣∣∣P
(
‖SΨ̂

n ‖∞ > Q(1− η, ‖S̃Ψ̂
n ‖∞) | Fn

)
− η
∣∣∣
]

(i)

≤ E
[
δ + P

(
sup
x∈R

∣∣∣P
(
‖SΨ̂

n ‖∞ > x | Fn
)
− P

(
‖S̃Ψ̂

n ‖∞ > x | Gn
)∣∣∣ > δ

∣∣∣∣Fn
)]

(ii)
= δ + P

(
sup
x∈R

∣∣∣P
(
‖SΨ̂

n ‖∞ > x | Fn
)
− P

(
‖SΨ̂

n ‖∞ > x | Gn
)∣∣∣ > δ

)

(iii)

≤ δ + P
(
P (‖∆n‖∞ > εn | Fn) + εnCb

√
logmΨ + 3an,1 + an,2 > δ

)
+ P(Ecn)

(iv)

≤ δ + P (P (‖∆n‖∞ > εn | Fn) > δ/5) + P (an,1 > δ/15) + P (an,2 > δ/5)

+ 1I
{
εnCb

√
logmΨ > δ/5

}
+ P (Ecn)

(v)

≤ δ +
5

δ
P (‖∆n‖∞ > εn) +

15

δ
E[an,1] +

5

δ
E[an,2] + 1I

{
Cbεn

√
logmΨ > δ/5

}
+ P (Ecn)
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(vi)

≤ δ + o(1),

where (i) follows from Lemma 7, (ii) from the law of iterated expectation, (iii) from
(62), (iv) from the subadditivity of the probability measures, (v) follows by the Chebyshev’s
inequality and the law of iterated expectation and (vi) by Assumptions (i)-(iv) of the Theorem
where εn

√
logmΨ → 0 and Ean,1 = Ean,2 → 0.

Since δ is arbitrary, we have

lim sup
n→∞

E

[
sup

η∈(0,1)

∣∣∣P
(
‖SΨ̂

n ‖∞ > Q(1− η, ‖S̃Ψ̂
n ‖∞) | Fn

)
− η
∣∣∣
]

= 0. (63)

The desired result follows by noticing that

sup
η∈(0,1)

∣∣∣P
(
‖SΨ̂

n ‖∞ > Q(1− η, ‖S̃Ψ̂
n ‖∞)

)
− η
∣∣∣

≤ E

[
sup

η∈(0,1)

∣∣∣P
(
‖SΨ̂

n ‖∞ > Q(1− η, ‖S̃Ψ̂
n ‖∞) | Fn

)
− η
∣∣∣
]
.

The next result shows sufficient conditions for the Condition (ii) of Theorem 7.

Lemma 1. Let Ψi, Ψ̂i, S̃Ψ
n , S̃Ψ̂

n and Gn be defined as in Theorem 7. Suppose that σ2
n,∗ :=

max1≤j≤mΨ n
−1
∑n

i=1(Ψ̂i,j −Ψi,j)
2 = OP (δ2

n) for a sequence of constants δn > 0 that satisfies
δn logmΨ → 0. Assume that there exist a constant b > 0, such that

P

(
min

1≤j≤mΨ

n−1
n∑

i=1

(Ψi,j − Ψ̄n,j)
2 > b

)
→ 1.

Then

E
[
sup
x∈R

∣∣∣P
(
‖S̃Ψ

n ‖∞ > x | Gn
)
− P

(
‖S̃Ψ̂

n ‖∞ > x | Gn
)∣∣∣
]
→ 0.

Proof of Lemma 1. Define the event Jn = {min1≤j≤mΨ n
−1
∑n

i=1(Ψi,j − Ψ̄n,j)
2 > b}. By

Equation (59),

sup
x∈R

∣∣∣P
(
‖S̃Ψ

n ‖∞ > x | Gn
)
− P

(
‖S̃Ψ̂

n ‖∞ > x | Gn
)∣∣∣

≤ P
(
‖S̃Ψ̂

n − S̃Ψ
n ‖∞ >

√
δn | Gn

)
+ sup
x∈R

P
(
‖S̃Ψ

n ‖∞ ∈ (x−
√
δn, x+

√
δn] | Gn

)
. (64)

Notice that conditional on Gn, S̃Ψ
n is a Gaussian vector in RmΨ , whose jth entry has zero

mean and variance n−1
∑n

i=1(Ψi,j − Ψ̄n,j)
2. By the inequality in Equation (60), there exists a

constant Cb > 0 depending only on b , such that

sup
x∈R

P
(
‖S̃Ψ

n ‖∞ ∈ (x−
√
δn, x+

√
δn] | Gn

)
≤ Cb

√
δn logmΨ + 1I{J cn} a.s. (65)
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Notice that the jth component of S̃Ψ̂
n − S̃Ψ

n is

n−1/2
n∑

i=1

(Ψ̂i,j −Ψi,j + Ψ̄n,j − ¯̂
Ψn,j)ξi,

which, conditional on Gn, is a zero-mean Gaussian random variable with variance

n−1
n∑

i=1

(Ψ̂i,j−Ψi,j+Ψ̄n,j− ¯̂
Ψn,j)

2 = n−1
n∑

i=1

(Ψ̂i,j−Ψi,j)
2−(Ψ̄n,j− ¯̂

Ψn,j)
2 ≤ n−1

n∑

i=1

(Ψ̂i,j−Ψi,j)
2.

Observe that for Z ∼ N (0, σ2) and x > 0, P(|Z| > x) ≤ K1 exp(−K2σ
−2x2) for some

universal constants K1,K2 > 0. This elementary fact, together with the union bound and the
definition, implies that

P
(
‖S̃Ψ̂

n − S̃Ψ
n ‖∞ >

√
δn | Gn

)
≤ K1 exp

(
(σ2
n,∗δ

−2
n )(δn logmΨ)−K2

σ2
n,∗δ

−1
n

)
= oP (1), (66)

where the last step follows by K2 > 0, σ2
n,∗δ

−2
n = OP (1), δn logmΨ = o(1) and σ2

n,∗δ
−1
n =

OP (δn) = oP (1) > 0. Hence,

sup
x∈R

∣∣∣P
(
‖S̃Ψ

n ‖∞ > x | Gn
)
− P

(
‖S̃Ψ̂

n ‖∞ > x | Gn
)∣∣∣ ≤ oP (1) + Cb

√
δn logmΨ + 1I{J cn} = oP (1),

where the inequality follows by (64), (65) and (66), and the last step follows by P (J cn) → 0
and δn logmΨ = o(1) . Since probabilities take values in [0, 1], the left-hand side of the above
equation is bounded and thus uniformly integrable. By Theorem 5.4 on p.220 of Gut (2013),

E
[
sup
x∈R

∣∣∣P
(
‖S̃Ψ

n ‖∞ > x | Gn
)
− P

(
‖S̃Ψ̂

n ‖∞ > x | Gn
)∣∣∣
]
→ 0.

Proof of the Theorem 6
The following result is useful for verifying condition (i) of Theorem 7.

Lemma 2. Let {wi,j}(i,j)∈{1,··· ,n}×{1,··· ,d} and {qi,j}(i,j)∈{1,··· ,n}×{1,··· ,d} be arrays of random
variables in the setup of Theorem 6. Let Fn and Gn be σ-algebras , such that Fn = σ({wi,j})
and Gn ⊇ σ(Fn

⋃{qi,j}). Moreover, define Ψi = (Ψi,1, · · · ,Ψi,d)
> ∈ Rd with Ψi,j = wi,jqi,j. If

n−1M̄2
n log7(dn) = oP (1) with M̄n = max1≤i≤n,1≤j≤d |wi,j |, then

E
[
sup
x∈R

∣∣∣P
(
‖SΨ

n ‖∞ > x | Fn
)
− P

(
‖S̃Ψ

n ‖∞ > x | Gn
)∣∣∣
]
→ 0,

where SΨ
n and S̃Ψ

n are defined in Theorem 7.

Proof of Lemma 2. Let Bn = c0 max{1, M̄n}, where c0 > 0 is a constant to be chosen later.
Notice that

n−1
n∑

i=1

E(Ψ2
i,j | Fn) = n−1

n∑

i=1

w2
i,jEq2

i,j = n−1
n∑

i=1

w2
i,j = 1. (67)
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Next, we check if conditions of Proposition 2.1 and Corollary 4.2 of Chernozhukov et al. (2014)
hold. As {qi,j} is sub-Gaussian with bounded sub-Gaussian norm, there exists a constant CK >
0 depending only on K, such that ∀t ∈ R, E exp(tqi,j) ≤ exp(CKt

2), max1≤j≤d E|qi,j |3 < CK
and max1≤j≤d E|qi,j |4 < CK . Hence, by (67) and the definition of Bn, we have

n−1
n∑

i=1

E(|Ψi,j |3 | Fn)B−1
n ≤ CKM̄nn

−1
n∑

i=1

|wi,j |2B−1
n ≤ CK/c0, and (68)

n−1
n∑

i=1

E(|Ψi,j |4 | Fn)B−2
n ≤ CKM̄

2
nn
−1

n∑

i=1

|wi,j |2B−2
n ≤ CK/c2

0 (69)

Since ∀t ∈ R, E exp(tqi,j) ≤ exp(CKt
2), the definition of Bn implies that

E [exp (|Ψi,j |/Bn) | Fn] ≤ exp
(
CKw

2
i,jB

−2
n

)
≤ exp (CK/c0) . (70)

Now, we choose the constant c0 > 0, such that CK/c0 ≤ 1, CK/c2
0 ≤ 1 and exp(CK/c0) ≤

2.This, together with (67), (68), (69) and (70), allows us to apply Proposition 2.1 of Cher-
nozhukov et al. (2014) to the conditional probability measure P(· | Fn). Let {Φi}ni=1 be a
seqence of random elements in Rd such that conditional on Fn, {Φi}ni=1 is independent across
i and Φi | Fn is Gaussian with mean zero and variance E(ΨiΨ

>
i | Fn). It follows, by Proposi-

tion 2.1 of Chernozhukov et al. (2014), that

sup
x∈R

∣∣P
(
‖SΨ

n ‖∞ > x | Fn
)
− P

(
‖SΦ

n ‖∞ > x | Fn
)∣∣ ≤ C1Dn a.s. (71)

where C1 > 0 is a universal constant (by (67)), SΦ
n = n−1/2

∑n
i=1 Φi and Dn = (n−1B2

n log7(d∨
n))1/6. Moreover, from the Corollary 4.2 of Chernozhukov et al. (2014) applied to the proba-
bility measure P(· | Fn), we have that, for the sequence αn = min{e−1, n−1/2d−1/2},

P
[

sup
x∈R

∣∣∣P
(
‖S̃Ψ

n ‖∞ > x | Gn
)
− P

(
‖SΦ

n ‖∞ > x | Fn
)∣∣∣ > C2D

(αn)
n

∣∣∣∣Fn
]
≤ αn a.s, (72)

where C2 > 0 is universal constant (by (67)) and

D(αn)
n = (n−1B2

n log5(dn) log2(α−1
n ))1/6.

Then, from (71), (72) and the law of iterated expectation, we have that ∀τ > 0,

P
(

sup
x∈R

∣∣∣P
(
‖S̃Ψ

n ‖∞ > x | Gn
)
− P

(
‖SΨ

n ‖∞ > x | Fn
)∣∣∣ > τ

)

≤ αn + P
(
C1Dn + C2D

(αn)
n > τ

)
= o(1),

where the last step follows by αn = o(1), Dn = o(1) and D(αn)
n = oP (1) (by the rate conditions

in the assumption of the lemma). Since τ > 0 is arbitrary, we have

sup
x∈R

∣∣∣P
(
‖S̃Ψ

n ‖∞ > x | Gn
)
− P

(
‖SΨ

n ‖∞ > x | Fn
)∣∣∣ = oP (1). (73)
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Since probabilities take values in [0, 1], the left-hand side of (73) is bounded and thus uniformly
integrable. From the Theorem 5.4 on p.220 of Gut (2013),

E
[
sup
x∈R

∣∣∣P
(
‖S̃Ψ

n ‖∞ > x | Gn
)
− P

(
‖SΨ

n ‖∞ > x | Fn
)∣∣∣
]
→ 0.

The next lemma is helpful in verifying the assumptions of Lemma 1.

Lemma 3. Consider the setting in Theorem 6. If n−1/2M̄2
n log(d∨n) = OP (1), then, for any

constant a ∈ (0, 1), we have

P

(
min

1≤j≤d
n−1

n∑

i=1

(Ψi,j − Ψ̄n,j)
2 > a

)
→ 1,

where Ψi,j = wi,jqi,j and Ψ̄n,j = n−1
∑n

i=1 Ψi,j.

Proof of Lemma 3. Since qi,j ’s have sub-Gaussian norms bounded by some constant C1 > 0, it
follows, by Equation (5.16) and Lemma 5.14 of Vershynin (2010), that there exists a constant
C2 > 0 depending only on C1 such that ∀(i, j), q2

i,j−1 is sub-exponential with sub-exponential
norm bounded by C2. By Proposition 5.16 of Vershynin (2010) applied to the conditional
probability measure P(· | Fn) and the union bound, there exist constants C3, C4 > 0 depending
only on C2 such that for any t > 0, almost surely

P

(
max

1≤j≤d

∣∣∣∣∣
n∑

i=1

w2
i,j(q

2
i,j − 1)

∣∣∣∣∣ > n1/2t

∣∣∣∣∣Fn
)
≤ 2d exp

[
−min

{
C3

nt2∑n
i=1w

4
i,j

, C4
n1/2t

M̄2
n

}]
.

Since n−1
∑n

i=1w
2
i,j = 1, one can easily show that the right hand side above is upper bounded

by

2d exp

[
−min

{
C3

t2

M̄2
n

, C4
n1/2t

M̄2
n

}]
.

Therefore, we can choose a sequence t̃n = O(M̄2
n log(d ∨ n)) such that

P

(
max

1≤j≤d

∣∣∣∣∣
n∑

i=1

w2
i,j(q

2
i,j − 1)

∣∣∣∣∣ > n1/2t̃n

∣∣∣∣∣Fn
)

= oP (1).

Since conditional probabilities are bound and hence uniformly integrable, Theorem 5.4 on
p.220 of Gut (2013) implies

P

(
max

1≤j≤d

∣∣∣∣∣
n∑

i=1

w2
i,j(q

2
i,j − 1)

∣∣∣∣∣ > n1/2t̃n

)
→ 0.

Therefore,

max
1≤j≤d

|
n∑

i=1

Ψ2
i,j−w2

i,j | = max
1≤j≤d

|
n∑

i=1

w2
i,j(q

2
i,j−1)| = oP (n1/2t̃n) = oP (n1/2M̄2

n log(d∨n)). (74)
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By Proposition 5.10 of Vershynin (2010) applied to the conditional probability measure P(· |
Fn) and the union bound, there exists a constant C5 > 0 depending only on C1 such that for
any t > 0, almost surely

P

(
max

1≤j≤d

∣∣∣∣∣
n∑

i=1

wi,jqi,j

∣∣∣∣∣ > n1/2t

∣∣∣∣∣Fn
)
≤

d∑

j=1

exp

(
1− C5

nt2∑n
i=1w

2
i,j

)
= d exp

(
1− C5t

2
)
,

where the last step follows by n−1
∑n

i=1w
2
i,j = 1. Hence, we can choose t = O(

√
log(d ∨ n))

such that the right-hand side of the above equation is oP (1). By the same argument as for
(74), we have

max
1≤j≤d

n|Ψ̄n,j | = max
1≤j≤d

∣∣∣∣∣
n∑

i=1

wi,jqi,j

∣∣∣∣∣ = oP (
√
n log(d ∨ n)). (75)

It follows that

min
1≤j≤d

n−1
n∑

i=1

(Ψi,j − Ψ̄n,j)
2 ≥ min

1≤j≤d
n−1

n∑

i=1

Ψ2
i,j − max

1≤j≤d
Ψ̄2
n,j

≥ min
1≤j≤d

n−1
n∑

i=1

w2
i,j − max

1≤j≤d

[
n−1

n∑

i=1

(w2
i,j −Ψ2

i,j)

]
− max

1≤j≤d
Ψ̄2
n,j

= 1− oP (n−1/2M̄2
n log(d ∨ n))− oP (n−1 log(d ∨ n)),

where the last step follows by n−1
∑n

i=1w
2
i,j = 1, (74) and (75). By assumption, n−1/2M̄2

n log(d∨
n) = OP (1). Since

M̄2
n ≥ (dn)−1

d∑

j=1

n∑

i=1

w2
i,jj = 1

and n−1/2M̄2
n log(d ∨ n) = OP (1), we have n−1 log(d ∨ n) = o(1). The result follows.

Now we are ready to prove the main result of the Section 5.

Proof of Theorem 6. By Theorem 7, it suffices to show that (i)-(iv) therein hold. Notice that
claim (iv) holds with εn = δ

1/2
n . By Lemma 2, claim (i) holds. By Lemma 3, claim (iii) holds

with b = 1/2. This and Lemma 1 imply claim (ii).

B.2 Auxiliary materials

The following result is useful in deriving the properties of our estimators. Its proof is similar
to the proof of Theorem 7.1 of Bickel et al. (2009) and is thus omitted.

Lemma 4. Let Y ∈ Rn and X ∈ Rn×p. Let ξ̂ be any vector satisfying ‖n−1X>(Y −Xξ̂)‖∞ ≤
η. Suppose that there exists ξ∗ such that ‖n−1X>(Y − Xξ∗)‖∞ ≤ η and ‖ξ̂‖1 ≤ ‖ξ∗‖1. If
s∗ = ‖ξ∗‖0 and

min
J0⊆{1,··· ,p},|J0|≤s∗

min
δ 6=0,‖δJc

0
‖1≤‖δJ0

‖1

‖Xδ‖2√
n‖δJ0‖2

≥ κ, (76)

then ‖δ‖1 ≤ 8ηs∗κ−2 and δ>X>Xδ/n ≤ 16η2s∗κ−2, where δ = ξ̂ − ξ∗.
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Lemma 5. If n−1G>(G−Xγ̂) ≥ η̄, then n−1(G−Xγ̂)>(G−Xγ̂) ≥ η̄2/(n−1G>G). More-
over, if n−1Z>(j)(Z(j) −Xθ̂) ≥ η̄, then n−1(Z(j) −Xθ̂)>(Z(j) −Xθ̂) ≥ η̄2/(n−1Z>(j)Z(j)).

Proof of Lemma 5. We only prove the result for γ̂ because the result for θ̂ follows an analogous
argument. Let γ̂ satisfy n−1G>(G−Xγ̂) ≥ η̄. Then for any a ≥ 0, we have

n−1(G−Xγ̂)>(G−Xγ̂)

≥ n−1(G−Xγ̂)>(G−Xγ̂) + a
(
η̄ − n−1G>(G−Xγ̂)

)

≥ min
γ

{
n−1(G−Xγ)>(G−Xγ) + a

(
η̄ − n−1G>(G−Xγ)

)}

= aη̄ − 1

4
a2n−1G>G,

where the last line follows by the first-order condition of a quadratic optimization. The
desired result follows by minimizing the last right hand side with respect to a and by choosing
a = 2η̄/

(
n−1G>G

)
.

The following result shows that, with high probability, γ∗ and θ∗ lie in the feasible region
of (9), under the null hypothesis (π = 0) or local alternatives (π 6= 0).

Lemma 6. Suppose that Condition 1 holds and β∗ = β0 + π such that

‖ΣXΘπ‖∞ = O(
√
n−1 log(p− d))

and ‖π‖2 = O(1). Consider the optimization problems in (9). There exist constants C1, ..., C7 >
0 such that for 1 ≤ j ≤ d, ηγ , ηθ,j ≥ C1

√
n−1 log p, and for

n ≥ [C2 log(p− d)] ∨ C3,

η̄θ,j ≤ 0.8σ2
u,j, η̄γ ≤ 0.8σ2

ε and µγ , µθ,j > C4

√
log(dn), we have

P (γ∗ is feasible for (9)) ≥ 1− 2/(p− d)C5+1 − exp(1)

nd2
− 2 exp

(
−[C6nη̄

2
γ ] ∧ [C7nη̄γ ]

)

and

P




d⋂

j=1

{θ∗(j) is feasible for (9)}


 ≥ 1− 2/(p− d)− exp(1)

n
− 2d exp

(
−[C6nη̄

2
γ ] ∧ [C7nη̄γ ]

)
.

Proof of Lemma 6. First notice that,

G−Xγ∗ = Zπ + ε = XΘ∗π + uπ + ε. (77)

Since ‖π‖2 = O(1) and zi, εi and ui are centered Gaussian with bounded variance, it follows
that there exists a constant K0 > 0 such that gi − x>i γ∗ is centered Gaussian with variance
bounded by K0. By Lemma 8 and the sub-Gaussian properties of xi, there exists a constant
K1 > 0 such that each entry of xi(gi − x>i γ∗) has sub-exponential norm bounded by K1. By
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Proposition 5.16 of Vershynin (2010) and the union bound, there exist constants K2,K3 > 0
such that ∀x > 0,

P
(
‖n−1X>(G−Xγ∗)− E[xi(gi − x>i γ∗)]‖∞ > x

√
n−1 log(p− d)

)

≤ 2(p− d) exp
[
−[K2x

2 log(p− d)] ∧ [K3x
√
n log(p− d)]

]
. (78)

Since log(d)/ log(p − d) = O(1), there exists a constant M > 0 such that d ≤ (p − d)M . By
(77) and Condition 2, we have ‖E[xi(gi − x>i γ

∗)]‖∞ = ‖ΣXΘ∗π‖∞ ≤ K4

√
n−1 log(p− d)

for some large enough constant K4 >
√

(M + 2)/K2. This and the above display imply that
∀ηγ > 2K4

√
n−1 log(p− d) and ∀n ≥ (K2K4/K3)2 log(p− d),

P
(
‖n−1X>(G−Xγ∗)‖∞ > ηγ

)

≤ P
(
‖n−1X>(G−Xγ∗)− E[xi(gi − x>i γ∗)]‖∞ > ηγ −K4

√
n−1 log(p− d)

)

≤ P
(
‖n−1X>(G−Xγ∗)− E[xi(gi − x>i γ∗)]‖∞ > K4

√
n−1 log(p− d)

)

(i)

≤ 2(p− d) exp
[
−[K2K

2
4 log(p− d)] ∧ [K3K4

√
n log(p− d)]

]

(ii)

≤ 2/(p− d)M+1, (79)

where (i) follows by (78) and (ii) follows by K4 >
√

2/K2 and n ≥ (K2K4/K3)2 log(p− d).
Recall from previous analysis that vi − x>i γ∗ is centered Gaussian with variance bounded

by a constant K0. It follows, by the union bound, that there exists a constant K5 > 0 such
that ∀x > 0,

P(‖G−Xγ∗‖∞ > x
√

log dn) ≤ n exp(1−K5x
2 log(dn)). (80)

By (77), ‖γ∗‖2 = O(1) and ‖Θ∗π‖2 = O(1), it follows that both vi and vi − x>i γ∗ are
centered Gaussian with bounded variance. By Lemma 8 and obtain that there exists a constant
K6 > 0 such that vi(vi − x>i γ∗) has sub-exponential norm bounded by K6. By Proposition
5.16 of Vershynin (2010), there exist constants K7,K8 > 0 such that ∀x > 0,

P
(∣∣∣n−1G>(G−Xγ∗)− Evi(vi − x>i γ∗)

∣∣∣ > x
)
≤ 2 exp

(
−[K7nx

2] ∧ [K8nx]
)
. (81)

Again, by (77), we have E[vi(vi − x>i γ∗)] = σ2
ε + π>(Σu + Θ∗>ΣXΘ∗)π + γ∗>ΣXΘ∗π.

Notice that

|γ∗>ΣXΘ∗π| ≤ ‖γ∗‖1‖ΣXΘ∗π‖∞ (82)

≤ ‖γ∗‖2‖γ∗‖0‖ΣXΘ∗π‖∞ = o
([
n−1 log(d ∨ n)/ log2(p− d)

]1/4)
, (83)

where the last line follows by Conditions 1(ii) and 2. Hence,

E[vi(vi − x>i γ∗)] = σ2
ε + π>(Σu + Θ∗>ΣXΘ∗)π + o(1).

Then there exists a constant K9 > 0 such that for any n ≥ K9, E[vi(vi − x>i γ∗)] ≥ 0.99σ2
ε .

Therefore, ∀n ≥ K9 and ∀η̄γ < 0.8σ2
ε , we have that
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P
(
η̄γ > n−1G>(G−Xγ∗)

)

≤P
(
−0.1η̄γ > n−1G>(G−Xγ∗)− Evi(vi − x>i γ∗)

)
+ 1{1.1η̄γ > Evi(vi − x>i γ∗)}

(i)
=P

(
−0.1η̄γ > n−1G>(G−Xγ∗)− Evi(vi − x>i γ∗)

)

≤P
(∣∣∣n−1G>(G−Xγ∗)− Evi(vi − x>i γ∗)

∣∣∣ > 0.1η̄γ

)

(ii)

≤ 2 exp
(
−[K7nη̄

2
γ ] ∧ [K8nη̄γ ]

)
, (84)

where (i) holds by η̄γ < 0.8σ2
ε and E[gi(gi − x>i γ∗)] ≥ 0.99σ2

ε and (ii) follows by (81).
By (79), (80) and (84), it follows that for ηγ > 2K4

√
n−1 log p,

n ≥ [(K2K4/K3)2 log(p− d)] ∨K9,

η̄γ < 0.8σ2
ε and µγ >

√
(2/K5) log(dn), we have

P (γ∗ is feasible for (9)) ≥ 1− 2/(p− d)M+1 − exp(1)

nd2
− 2 exp

(
−[K7nη̄

2
γ ] ∧ [K8nη̄γ ]

)
.

This proves the result for γ∗. By the same reasoning, we can show that there exist positive
constants Q1,..., Q5 such that for 1 ≤ j ≤ d, ηθ,j > Q1

√
n−1 log p, n ≥ [Q2 log(p − d)] ∨ Q3,

η̄θ,j < 0.8σ2
u,j and µθ,j > Q3

√
log(dn), we have

P
(
θ∗(j) is feasible for (9)

)
≥ 1− 2/(p− d)M+1 − exp(1)

nd2
− 2 exp

(
−[Q4nη̄

2
γ ] ∧ [Q5nη̄γ ]

)
.

By the union bound, we have

P




d⋂

j=1

{θ∗(j) is feasible for (9)}


 ≥ 1−2d/(p−d)M+1− exp(1)

nd
−2d exp

(
−[Q4nη̄

2
γ ] ∧ [Q5nη̄γ ]

)
.

We finish the proof by noticing that d ≤ (p− d)M .

Lemma 7. Let X and Y be two random vectors with cumulative distribution functions FX
and FY , respectively. Then ∀ε > 0,

sup
α∈(0,1)

∣∣P
(
‖X‖∞ > F−1

Y (1− α)
)
− α

∣∣ ≤ ε+ P
(

sup
x∈R
|FX(x)− FY (x)| > ε

)
.

Proof of Lemma 7. Fix α ∈ (0, 1) and notice that the following inequalities hold for all α ∈
(0, 1). First, observe

P
(
‖X‖∞ > F−1

Y (1− α)
)

≤ P
(
‖X‖∞ > F−1

Y (1− α) and sup
x∈R
|FX(x)− FY (x)| ≤ ε

)
+ P

(
sup
x∈R
|FX(x)− FY (x)| > ε

)
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(i)

≤ P
(
‖X‖∞ > F−1

X (1− α− ε)
)

+ P
(

sup
x∈R
|FX(x)− FY (x)| > ε

)

= α+ ε+ P
(

sup
x∈R
|FX(x)− FY (x)| > ε

)
, (85)

where (i) follows from Lemma A.1(i) in Romano and Shaikh (2012) and the last line follows
by the definition of FX(·). Moreover,

P
(
‖X‖∞ > F−1

Y (1− α)
)

≥ P
(
‖X‖∞ > F−1

Y (1− α) and sup
x∈R
|FX(x)− FY (x)| ≤ ε

)

(i)

≥ P
(
‖X‖∞ > F−1

X (1− α+ ε) and sup
x∈R
|FX(x)− FY (x)| ≤ ε

)

(ii)

≥ P
(
‖X‖∞ > F−1

X (1− α+ ε)
)
− P

(
sup
x∈R
|FX(x)− FY (x)| > ε

)

= α− ε− P
(

sup
x∈R
|FX(x)− FY (x)| > ε

)
(86)

where (i) follows from Lemma A.1(ii) in Romano and Shaikh (2012), (ii) follows by the ele-
mentary result that holds for any two events A and B,

P(A
⋂
B) + P(Bc) ≥ P(A

⋂
B) + P(A

⋂
Bc) = P(A),

and the last line follows by the definition of FX(·). The desired result follows by (85) and
(86).

Lemma 8. Let Z1 and Z2 be random variables with bounded sub-Gaussian norms. Then Z1Z2

has bounded sub-exponential norm.

Proof of Lemma 8. Notice that, by the sub-Gaussian property, there exist constants K1,K2 >
0 such that ∀z > 0, P(|Z1| > z) ≤ K1 exp(−K2z

2) and P(|Z2| > z) ≤ K1 exp(−K2z
2). Hence,

∀x > 0,
P(|Z1Z2| > x) ≤ P(|Z1| >

√
x) + P(|Z2| >

√
x) ≤ 2K1 exp(−K2x).

Hence, Z1Z2 is sub-exponential.

The following result can be viewed as a uniformly delta method for the function f(x) =
√
x.

Lemma 9. Under the conditions of Theorem 3, there exists a constant C∗ > 0 such that

P( max
1≤j≤d

E(T̃ 2
n,j | X,Y,Z) > C∗)→ 0,

where T̃n,j is defined in (4).

Proof of Lemma 9. Recall from (4) that

Ĥi,j = σ̂−1
ε σ̂−1

u,j(gi − x>i γ̂)(zi,j − x>i θ̂(j))
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and H̄n,j = n−1
∑n

i=1 Ĥi,j . Then

E(T̃ 2
n,j | X,Y,Z) = n−1

n∑

i=1

(Ĥi,j − H̄n,j)
2 = n−1

n∑

i=1

Ĥ2
i,j − H̄2

n,j ≤ n−1
n∑

i=1

Ĥ2
i,j .

Let Hi,j = σ̄−1
ε σ−1

u,j(gi − x>i γ∗)ui,j with σ̄2
ε = E(gi − x>i γ∗)2. It suffices to show

(a) There exists a constant K∗ > 0 such that ∀C > K∗, P(max1≤j≤d n−1
∑n

i=1H
2
i,j > C)→

0.

(b) max1≤j≤d n−1
∑n

i=1 Ĥ
2
i,j ≤ oP (1) + 4 max1≤j≤d n−1

∑n
i=1H

2
i,j .

We first show claim (a). Since β∗ = β0 + π,

gi − x>i γ∗ = π>zi + εi = π>((Θ∗)>xi + ui) + εi.

Since ‖π‖2 and singular values of Θ∗ are bounded, the bounded sub-Gaussian norm of
(xi,ui, εi) implies that there exist constants K1,K2 > 0 such that K1 < σ̄2

ε < K2 and
gi − x>i γ∗ has a sub-Gaussian norm bounded by K2. By the bounded sub-Gaussian norm
of ui,j and Lemma 8, there exists a constant K3 > 0 such that ∀(i, j), Hi,j has a sub-
exponential norm bounded by K3. Hence, there exist constants K4,K5 > 0 such that
P(|ζi,j | > z) ≤ K4 exp(−K5

√
z) for any z > 0, where ζi,j = H2

i,j − EH2
i,j . It follows by

Theorem 1 of Merlevède et al. (2011) and the union bound that ∀c > 0

P

(
max

1≤j≤d
n−1

∣∣∣∣∣
n∑

i=1

ζi,j

∣∣∣∣∣ ≥ c
)
→ 0.

Hence, max1≤j≤d n−1
∑n

i=1(H2
i,j − EH2

i,j) = oP (1). By the bounded sub-exponential norm of
H2
i,j , max1≤j≤d EH2

i,j = O(1). Claim (a) follows.
It remains to verify claim (b). By essentially the same argument as for (30) and (39) in

the proof of Theorem 2, we obtain

max
1≤j≤d

n−1
n∑

i=1

(Ĥi,j − H̃i,j)
2 = oP (1) and max

1≤j≤d
n−1

n∑

i=1

(H̃i,j −Hi,j)
2 = oP (1),

where H̃i,j = σ̂−1
ε σ−1

u,j(gi − x>i γ̂)ui,j . Applying the elementary inequality (a+ b)2 ≤ 2a2 + 2b2,
we have

Ĥ2
i,j ≤ 2(Ĥi,j − H̃i,j)

2 + 2H̃2
i,j ≤ 2(Ĥi,j − H̃i,j)

2 + 4(H̃i,j −Hi,j)
2 + 4H2

i,j .

This, combined with the display above, proves claim (b).

Lemma 10. Under the conditions of Theorem 3, P
(
‖T̃n‖∞ > 3

√
2C∗ log d

)
→ 0, where

C∗ > 0 is the constant defined in Lemma 9.

Proof of Lemma 10. Notice that conditional on the data (X,Y,Z), T̃n is a zero-mean Gaus-
sian vector in Rd. By Lemma 9, together with Proposition A.2.1 of van der Vaart and Wellner
(1996), we have that ∀x > 0,

P
(
‖T̃n‖∞ > E

(
‖T̃n‖∞ | X,Y,Z

)
+ x | X,Y,Z

)
≤ 2 exp

(
− x2

2C∗

)
+ 1I{Acn} a.s, (87)
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where the event
An = {max

1≤j≤d
E(T̃ 2

n,j | X,Y,Z) ≤ C∗}

and C∗ > 0 is the constant defined in Lemma 9. Notice that for Gaussian variables Mj ∼
N (0, σ2

j ) for j = 1, · · · , d, an elementary inequality yields EmaxjMj/σj ≤
√

2 log d and thus
EmaxjMj ≤ maxj σj

√
2 log d. Therefore,

E
(

max
j
T̃n,j | X,Y,Z

)
≤

√
2 log d max

1≤j≤d
E(T̃ 2

n,j | X,Y,Z) a.s.

E
(

max
j

(−T̃n,j) | X,Y,Z

)
≤

√
2 log d max

1≤j≤d
E(T̃ 2

n,j | X,Y,Z) a.s.

and
E
(
‖T̃n‖∞ | X,Y,Z

)
≤ 2

√
2 log d max

1≤j≤d
E(T̃ 2

n,j | X,Y,Z) a.s. (88)

It follows that

P
(
‖T̃n‖∞ > 3

√
2C∗ log d | X,Y,Z

)
≤ P

(
‖T̃n‖∞ > E

(
‖T̃n‖∞ | X,Y,Z

)
+
√

2C∗ log d | X,Y,Z
)

+ 1I
{
E
(
‖T̃n‖∞ | X,Y,Z

)
> 2
√

2C∗ log d
}

(i)

≤ 2 exp (− log d) + 1I{Acn}
(ii)
= oP (1),

where (i) follows by (87), (88) and the definition of An and (ii) follows by d→∞ and P(An)→
1. Since conditional probabilities are bounded and thus uniformly integrable, Theorem 5.4 on
p.220 of Gut (2013) implies that P

(
‖T̃n‖∞ > 3

√
2C∗ log d

)
→ 0.

References

Barber, R. F. and Candès, E. J. (2015). Controlling the false discovery rate via knockoffs.
Ann. Statist., 43(5):2055–2085.

Belloni, A., Chernozhukov, V., Chetverikov, D., and Wei, Y. (2015a). Uniformly valid post-
regularization confidence regions for many functional parameters in z-estimation framework.
arXiv:1512.07619.

Belloni, A., Chernozhukov, V., FernĞndez-Val, I., and Hansen, C. (2017). Program evaluation
and causal inference with high-dimensional data. Econometrica, 85(1):233–298.

Belloni, A., Chernozhukov, V., and Hansen, C. (2014). Inference on treatment effects after
selection among high-dimensional controls. The Review of Economic Studies, 81(2):608–650.

Belloni, A., Chernozhukov, V., and Kato, K. (2015b). Uniform post-selection inference for least
absolute deviation regression and other z-estimation problems. Biometrika, 102(1):77–94.

47



Bickel, P. J., Ritov, Y., and Tsybakov, A. B. (2009). Simultaneous analysis of lasso and dantzig
selector. The Annals of Statistics, 37(4):1705–1732.

Bradley, R. C. (2007). Introduction to strong mixing conditions, volume 1. Kendrick Press
Heber City.

Bugni, F. A., Caner, M., Bredahl Kock, A., and Lahiri, S. (2016). Inference in partially
identified models with many moment inequalities using Lasso. ArXiv e-prints.

Bühlmann, P. and van de Geer, S. (2015). High-dimensional inference in misspecified linear
models. Electron. J. Statist., 9(1):1449–1473.

Cai, T. T. and Guo, Z. (2015). Confidence intervals for high-dimensional linear regression:
Minimax rates and adaptivity. arXiv preprint arXiv:1506.05539.

Cai, T. T. and Guo, Z. (2016). Accuracy Assessment for High-dimensional Linear Regression.
arXiv preprint arXiv:1603.03474.

Cai, T. T., Ren, Z., and Zhou, H. H. (2016). Estimating structured high-dimensional covariance
and precision matrices: Optimal rates and adaptive estimation. Electron. J. Statist., 10(1):1–
59.

Candes, E. and Tao, T. (2007). The dantzig selector: Statistical estimation when p is much
larger than n. Annals of Statistics, 35(6):2313–2351.

Carrasco, M. and Chen, X. (2002). Mixing and moment properties of various garch and
stochastic volatility models. Econometric Theory, 18(1):17–39.

Chernozhukov, V., Chetverikov, D., and Kato, K. (2013a). Gaussian approximations and
multiplier bootstrap for maxima of sums of high-dimensional random vectors. Ann. Statist.,
41(6):2786–2819.

Chernozhukov, V., Chetverikov, D., and Kato, K. (2013b). Testing many moment inequalities.
arXiv preprint arXiv:1312.7614.

Chernozhukov, V., Chetverikov, D., and Kato, K. (2014). Central limit theorems and bootstrap
in high dimensions. arXiv preprint arXiv:1412.3661.

Chernozhukov, V., Hansen, C., and Liao, Y. (2015). A lava attack on the recovery of sums of
dense and sparse signals. to appear in The Annals of Statistics.

Chernozhukov, V., Hansen, C., and Spindler, M. (2015). Valid post-selection and post-
regularization inference: An elementary, general approach.

Dezeure, R., Bühlmann, P., and Zhang, C.-H. (2016). High-dimensional simultaneous inference
with the bootstrap. ArXiv e-prints.

Fan, J., Liao, Y., and Yao, J. (2015). Power enhancement in high-dimensional cross-sectional
tests. Econometrica, 83(4):1497–1541.

48



Goeman, J. J., Van De Geer, S. A., and Van Houwelingen, H. C. (2006). Testing against a
high dimensional alternative. Journal of the Royal Statistical Society: Series B (Statistical
Methodology), 68(3):477–493.

G’Sell, M. G., Wager, S., Chouldechova, A., and Tibshirani, R. (2016). Sequential selection
procedures and false discovery rate control. Journal of the Royal Statistical Society: Series
B (Statistical Methodology), 78(2):423–444.

Gut, A. (2013). Probability A Graduate Course. Springer.

Hall, P., Jin, J., and Miller, H. (2014). Feature selection when there are many influential
features. Bernoulli, 20(3):1647–1671.

Hindorff, L. A., Sethupathy, P., Junkins, H. A., Ramos, E. M., Mehta, J. P., Collins, F. S.,
and Manolio, T. A. (2009). Potential etiologic and functional implications of genome-wide
association loci for human diseases and traits. Proceedings of the National Academy of
Sciences, 106(23):9362–9367.

Janson, L., Barber, R. F., and Candès, E. (2015). Eigenprism: Inference for high-dimensional
signal-to-noise ratios. arXiv preprint arXiv:1505.02097.

Javanmard, A. and Montanari, A. (2014a). Confidence intervals and hypothesis testing for
high-dimensional regression. The Journal of Machine Learning Research, 15(1):2869–2909.

Javanmard, A. and Montanari, A. (2014b). Hypothesis testing in high-dimensional regression
under the gaussian random design model: Asymptotic theory. Information Theory, IEEE
Transactions on, 60(10):6522–6554.

Javanmard, A. and Montanari, A. (2015). De-biasing the Lasso: Optimal Sample Size for
Gaussian Designs. ArXiv e-prints.

Jin, J. and Ke, Z. T. (2014). Rare and Weak effects in Large-Scale Inference: methods and
phase diagrams. ArXiv e-prints.

Lahiri, S. N. (2013). Resampling methods for dependent data. Springer Science & Business
Media.

Mammen, E. (1993). Bootstrap and wild bootstrap for high dimensional linear models. The
annals of statistics, pages 255–285.

Manolio, T. A., Collins, F. S., Cox, N. J., Goldstein, D. B., Hindorff, L. A., Hunter, D. J.,
McCarthy, M. I., Ramos, E. M., Cardon, L. R., Chakravarti, A., Cho, J. H., Guttmacher,
A. E., Kong, A., Kruglyak, L., Mardis, E., Rotimi, C. N., Slatkin, M., Valle, D., Whittemore,
A. S., Boehnke, M., Clark, A. G., Eichler, E. E., Gibson, G., Haines, J. L., Mackay, T. F.,
McCarroll, S. A., and Visscher, P. M. (2009). Finding the missing heritability of complex
diseases. Nature, 461(7265):747–753.

Markov, N. T., Ercsey-Ravasz, M., Van Essen, D. C., Knoblauch, K., Toroczkai, Z., and
Kennedy, H. (2013). Cortical high-density counterstream architectures. Science, 342(6158).

49



Merlevède, F., Peligrad, M., and Rio, E. (2011). A bernstein type inequality and moderate
deviations for weakly dependent sequences. Probability Theory and Related Fields, 151(3-
4):435–474.

Mokkadem, A. (1988). Mixing properties of arma processes. Stochastic processes and their
applications, 29(2):309–315.

Ning, Y. and Liu, H. (2014). A general theory of hypothesis tests and confidence regions for
sparse high dimensional models. arXiv preprint arXiv:1412.8765.

Pritchard, J. K. (2001). Are rare variants responsible for susceptibility to complex diseases?
The American Journal of Human Genetics, 69(1):124–137.

Qu, A. and Shi, P. (2016). Weak Signal identification and inference in penalized model
selection. to appear in The Annals of Statistics.

Romano, J. P. and Shaikh, A. M. (2012). On the uniform asymptotic validity of subsampling
and the bootstrap. The Annals of Statistics, 40(6):2798–2822.

Romano, J. P., Shaikh, A. M., and Wolf, M. (2014). A practical two-step method for testing
moment inequalities. Econometrica, 82(5):1979–2002.

Rudelson, M. and Zhou, S. (2013). Reconstruction from anisotropic random measurements.
Information Theory, IEEE Transactions on, 59(6):3434–3447.

Storey, J. D., Taylor, J. E., and Siegmund, D. (2004). Strong control, conservative point
estimation and simultaneous conservative consistency of false discovery rates: a unified
approach. Journal of the Royal Statistical Society: Series B (Statistical Methodology),
66(1):187–205.

Subramanian, A., Tamayo, P., Mootha, V. K., Mukherjee, S., Ebert, B. L., Gillette, M. A.,
Paulovich, A., Pomeroy, S. L., Golub, T. R., Lander, E. S., and Mesirov, J. P. (2005).
Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide
expression profiles. Proceedings of the National Academy of Sciences, 102(43):15545–15550.

Sumazin, P., Chen, Y., TreviŰo, L. R., Sarabia, S. F., Hampton, O. A., Patel, K., Mis-
tretta, T.-A., Zorman, B., Thompson, P., Heczey, A., Comerford, S., Wheeler, D. A.,
Chintagumpala, M., Meyers, R., Rakheja, D., Finegold, M. J., Tomlinson, G., Parsons,
D. W., and LŮpez-Terrada, D. (2016). Genomic analysis of hepatoblastoma identifies dis-
tinct molecular and prognostic subgroups. Hepatology, pages n/a–n/a.

Trapnell, C., Hendrickson, D. G., Sauvageau, M., Goff, L., Rinn, J. L., and Pachter, L.
(2013). Differential analysis of gene regulation at transcript resolution with rna-seq. Nature
Biotechnology, 31:46Ð53.

Van de Geer, S., Bühlmann, P., Ritov, Y., Dezeure, R., et al. (2014). On asymptotically
optimal confidence regions and tests for high-dimensional models. The Annals of Statistics,
42(3):1166–1202.

van der Vaart, A. and Wellner, J. (1996). Weak Convergence and Empirical Processes: With
Applications to Statistics. Springer Science & Business Media.

50



Vershynin, R. (2010). Introduction to the non-asymptotic analysis of random matrices. arXiv
preprint arXiv:1011.3027.

Ward, R. A. (2009). Compressed sensing with cross validation. Information Theory, IEEE
Transactions on, 55(12):5773–5782.

Yuan, M. and Zhou, D.-X. (2016). Minimax optimal rates of estimation in high dimensional
additive models. Ann. Statist., 44(6):2564–2593.

Zhang, C.-H. and Zhang, S. S. (2014). Confidence intervals for low dimensional parameters in
high dimensional linear models. Journal of the Royal Statistical Society: Series B (Statistical
Methodology), 76(1):217–242.

Zhang, X. and Cheng, G. (2016). Simultaneous Inference for High-dimensional Linear Models.
ArXiv e-prints.

Zhang, X. and Cheng, G. (2016). Simultaneous inference for high-dimensional linear models.
Journal of the American Statistical Association, (just-accepted).

Zhong, P.-S. and Chen, S. X. (2011). Tests for high-dimensional regression coefficients with
factorial designs. Journal of the American Statistical Association, 106(493):260–274.

Zhu, Y. and Bradic, J. (2016a). Hypothesis testing in non-sparse high-dimensional linear
models. ArXiv e-prints.

Zhu, Y. and Bradic, J. (2016b). Linear Hypothesis Testing in Dense High-Dimensional Linear
Models. to appear in the Journal of the American Statistical Association.

Zhu, Y. and Bradic, J. (2016c). Two-sample testing in non-sparse high-dimensional linear
models. ArXiv e-prints.

51




