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Structural seismic resilience society has been grown rapidly in the past three decades. 

Extensive probabilistic techniques have been developed to address uncertainties from ground 

motions and building systems to reduce structural damage, economic loss and social impact of 

buildings subjected to seismic hazards where seismic structural responses are essential and often 

are retrieved through Nonlinear Response History Analysis. This process is largely limited by 

accuracy of model and computational effort. An alternative data-driven framework is proposed to 

reconstruct structure responses through machine learning techniques from limited available 

sources which may potentially benefit for “real-time” interpolating monitoring data to enable rapid 

damage assessment and reducing computational effort for regional seismic hazard assessment. It 

also provides statistical insight to understand uncertainties of seismic building responses from both 

structural and earthquake engineering perspective. 
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1. Introduction 

1.1 Overview 

Earthquakes cause significant structural damage that can result in consequential economic 

loss due to operational downtime and monetary cost related to inspections and repair. In particular, 

in seismically active regions such as California, Japan, and New Zealand are facing critical 

challenges related to lower magnitude, more frequent earthquakes resulting in extensive efforts to 

complete post-earthquake inspection on large inventories of buildings. In addition, there is an 

increasing probability of high magnitude earthquake occurrences on active faults (e.g., San 

Andrews Fault, Puente Hills, etc.) that are likely to create significant challenges for the impacted 

areas related to post-earthquake inspections, repair and retrofit, and recovery as observed in Los 

Angeles, Taiwan and Mexico City [1–3]. 

Besides the time, effort, and expense of inspection, which is typically accomplished 

visually, building damage identification can also be achieved by Structural Health Monitoring 

(SHM). In specific, SHM involves remote sensing devices installed in the building to retrieve 

structural response histories (e.g., accelerations, displacements, strains) subjected to the seismic 

hazard (ground shaking), to determine Engineering Demand Parameters (EDP) such as peak floor 

acceleration and peak story drift ratio and use these data to identify and assess the importance of 

the damage. However, due to cost constraints related to installation and maintenance, SHM 

systems typically involve a relatively limited number of sensors in a limited number of buildings; 

to date, the vast majority of installations involve using accelerometers. Therefore, a major 

challenge associated with SHM systems involves data interpretation in buildings with sensors, as 

well as the lack of sensors in some buildings. An attractive option to address some of these issues 

involves reconstructing building seismic responses to gain additional value from SHM 
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installations, in both instrumented and non-instrumented buildings.  

In addition to damage identification needs for seismic building responses subject to 

earthquake shaking, modern seismic risk assessment frameworks such as Performance-Based 

Earthquake Engineering (PBEE) developed by the Pacific Earthquake Engineering Research 

(PEER) Center [4–6] typically require conducting Nonlinear Response History Analysis (NRHA) 

to acquire EDPs from a suite of ground motions [7,8]. It is time consuming and computationally 

challenging to conduct such evaluations for complex structural systems, and an even more 

challenging to scale this effort up to a cluster of buildings or an inventory of buildings for a city 

or regional risk assessment [9,10]. Alternative approaches currently available within the 

earthquake engineering field to address these issues are to either estimate EDPs using site Intensity 

Measures (IM) such as Spectrum Acceleration (SA) instead of running NRHA simulations or to 

reduce model complexity. The former approach has been used since 1999 [11] as part of HAZUS 

estimation procedure [12] and applied in estimating earthquake losses [13–15]. The latter approach 

has been applied for regional seismic risk assessment studies (e.g., [16]).  

An alternative approach is presented here to interpolate EDPs for a cluster of buildings at 

various scales using limited data sets from instrumented buildings. The framework presented aims 

to gain additional insight from instrumented buildings and also mitigate the computational effort 

of scenario-based risk assessment. To accomplish these goals, modern machine learning models 

are applied to predict seismic building responses at specified locations.  The framework includes 

issues related to collecting and filtering data obtained from both simulation results and sensor 

recordings, scenario design, and model performance evaluation. Depending on the data available, 

a variety of scenarios are developed.  
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1.2 Research Significance 

The objective of the research reported is to develop a data-driven framework that predicts 

building seismic responses for a given building located at a given site using available recordings 

from co-regionally located buildings subjected to the same event, and recordings from actual 

buildings subjected to prior events. The goals of the research are to enable rapid 1) damage 

identification for individual buildings that are either instrumented or un-instrumented during a 

seismic hazard; 2) regional risk estimation for a given seismic event, and 3) risk assessment for a 

range of domains, including for individual buildings, limited (local) and large (city or regional) 

clusters of buildings, as well as various building types using models with various complexities. 

The data presented, mythologies applied, and evaluation approaches considered are used to 

demonstrate that the machine learning framework proposed provides valuable tools to address 

SHM and risk assessment challenges facing the earthquake engineering community.  

An illustration connecting the framework with a seismic event is provided in Figure 1.1. 

Earthquakes are caused by fault moving as a consequence of tectonic plates moving. The shaking 

generates seismic waves and travels through rock layers underneath the ground and soil layers. 

The shaking wave also travels upwards and is altered by soil layers and reaches the ground surface 

as is referred to as a ground motion response history, ( )groundy t , typically measured by 

accelerometers located on the ground surface. The shaking is further altered by the building system 

and produces seismic building response histories, ( )roofy t  as measured at the roof level and 

int ( )ermediatey t  as measured at intermediate levels. A number of buildings are instrumented with 

accelerometers at ground level and along the building height to record these building responses at 

seismic active regions provided by organizations such as United States Geological Survey and 

California Geological Survey. By retrieving these response data and converting them to EDPs, 
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building physical damage and its consequential monetary loss can be estimated. The core of this 

dissertation is to construct a framework that simulates the above-mentioned sophisticated scenario 

through data-driven means. 

 

Figure 1.1 Proposed data-driven building seismic response prediction framework 

1.3 Outline of the Thesis 

Seven chapters are used to present the proposed framework for building seismic response 

prediction. The red boxes with numbering on Figure 1.1 are covered in the referenced chapter to 

achieve the goal.  

Chapter 1 provides the background and motivation for the research, as well as an outline 

of the dissertation (red box 1). A review of key literature most closely related to the proposed 

framework is presented in Chapter 2. Chapter 2 (red box 2) includes details to assess the viability 

of applying machine learning to solve earthquake engineering challenges by examining the nature 

of the existing problems, addressing important characteristics of machine learning algorithms, and 
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demonstrating applications using archived data. Chapter 3 (red box 3) presents an interbuilding 

interpolation scheme using Kriging to predict peak seismic response demands for a portfolio of 

reinforced concrete moment frame buildings subjected to a seismic event. Three historical scenario 

earthquakes (1994 Northridge, 1999 Chi-Chi and 2000 Tottori) are used to evaluate model 

performance. Chapter 4 (red box 4) expands the interpolation scheme by reconstructing EDP 

profiles of four representative tall buildings along building heights by utilizing two kernel-based 

machine learning methods, kernel ridge regression, and kernel support vector regression, 

respectively. A rigorous model evaluation technique, non-replacement bootstrap, is used to 

demonstrate the different approaches. Chapter 5 (red box 5) expands the previous two seismic 

demand reconstruction methodologies from scenario-based (subjected to a single event) to a 

generalized prediction model that incorporates event characteristics of structural and site 

dissimilarity with a mixed-effect statistical model. This approach is validated using data collected 

for California buildings between 1984 and 2018. Chapter 6 (red box 6) includes a discussion of 

several alternatives for event terms considered in the generalized prediction model including 

Bayesian and Frequentist approaches. Chapter 7 provides a summary and the primary conclusions. 
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2. A Critical Examination of the Viability of using ML to Address Structural 

Engineering 

2.1 Introduction 

The term Machine Learning (ML) is no foreigner to the structural engineering research 

community as pioneer applications, such as applying neural network [17,18] and regression 

analysis [19,20],  can be tracked to early 1990s. Since ML methods at that time were often only 

treated as a method to maps nonlinear patterns, as discussed in [21], ML applications merely serves 

as an alternative to physics-based models. For instance, Ghaboussi, et. al. [17] developed a neural 

network mapping for experimental biaxial stress-strain relationship of concrete; however, the 

physics-based models of concrete were well-developed and it was much easier to interpret the data 

using physics-based models versus the ML model [17]. As early as 1997, Reich [22] provided a 

comprehensive review associated with the application of ML to solve civil engineering problems, 

from data collection, model creation, results evaluation using advanced ML techniques such as 

cross-validation and bootstrap. Due to computational speed and memory space issues, early ML 

models were restricted to solving classes of problems with limited data such that the prediction 

performance were merely comparable with physics-based models. Furthermore, ML models are 

typically considered to be black-box solutions that often lack the framework to gain physical 

insight.  

Starting from late 2000s, driven by the decade long boost of development of Structural 

Health Monitoring (SHM) and rapid growth of computational power and data storage, the 

structural engineering community has gradually engaged in “big data” problems. The challenge to 

interpret large data sets collected through recordings from field monitoring and to extract 

information from data retrieved through numerous or complex computer simulations has brought 
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ML back to the front stage. Recent success stories for ML in many other fields and the growing 

number of ML application publications in structural engineering that have been initiated in recent 

years, has drawn more attention and interest to critically examine opportunities to use ML to solve 

structural engineering problems. Two major items have spurred this development. First, the 

amount and diversity of data have increased significantly. With the improvement in computational 

methods and structural modeling tools, many large complex structures can be analyzed by finite 

element method for multiple hazard levels or types. This significant increase in the problem scale 

and complexity can be challenging for physics-based models. On the other hand, ML 

methodologies have vastly improved with the state of art methods such as Convolutional Neural 

Network (CNN) [23,24], and feature fusion techniques [25–27] and these methods have been 

applied to solve structural engineering problems. With the increased data size and complexity, 

data-driven methods may be advantageous relative to traditional physical-based models in terms 

of capability and efficiency. For instance, the ability to assess structural performance for a regional 

and city scale models [27,28], as opposed to focusing on individual structural components and 

systems as has been common until recently,  for multi-level hazard assessment for a range of 

intensities, is a case where ML is very attractive [8].   

The modern ML applications in structural engineering field can be categorized into the 

following four general areas: 

1. to predict structural nonlinear responses and damage; 

2. to interpret experimental data and formulate empirical relations between structural 

properties and responses; 

3. to retrieve information about structural characteristics through visual media; 

4. to recognize patterns from SHM. 
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The objective of this chapter is to present ML methods and assess their ability to address 

current strucutral engineering challenges by examining the nature of existing problems, 

characteristics of ML methods, and current research directions.  Specifically, challenges associated 

with collecting data, preparing sophisticated model simulations, and enhancing computation tools 

are reviewed. An introduction of ML is presented with brief descriptions of their mathematical 

formulations and capabilities. Following which, domain specific motivations to use ML methods 

in the structural engineering field are demonstrated with discussions on their corresponding 

challenges across the above mentioned four main perspectives, each supplemented with examples 

from recent research publications. Finally, future directions and opportunities to apply ML 

methods, including data source, model interpretability, and extrapolating ability are presented. 

2.2 Brief Introduction of Machine Learning 

2.2.1 General Formulation of ML Setting  

Systematic approaches to create data-driven models appropriate to solve engineering 

problems have already been developed, i.e., surrogate modeling [29]. In the ML context, surrogate 

models can be treated as a subset of ML models that have a complex objective function to minimize 

(i.e., non-convex function). Instead of directly solving the function, an alternative mechanism is 

used to find a solution. For instance, the logit function converts the non-convex 0/1 loss of a 

classification objective function into a logistic loss such that it can be solved through logistic 

regression. To avoid confusion, this chapter will focus on the classic formulation of ML using a 

universal language instead of discussing more broadly defined data-driven methods.  

ML problems are typically categorized into two major tasks, supervised and unsupervised 

learning. The former is formulated using the ground truth, or the labeled data, i.e., actual damage 

classes of a pool of buildings, while the latter is not. Therefore, their applications are dependent 
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on the objective. Supervised learning can be further expanded into two sub-categories, (a) 

regression, where labeled data are continuous variables, and (b) classification, where labeled data 

are discrete class tags. Therefore, the goal of supervised learning is to generate a function that 

approximates the labeled data based on input observations. An unsupervised task, on the other 

hand, is to extract the inherent structure information from the given input observations, i.e., to 

search for clusters within the data.  

For supervised learning, the dataset contains a collection of feature variables, a matrix X  

with dimension n p , where n  is the total number of observations (data points) and p  is the 

number of features (independent variables); and a labeled response variable y  , a vector of size 

1n  representing labels of each observation. Similarly, a dataset for unsupervised learning 

includes a feature matrix X  but not the response variable y . The objective of supervised learning 

is to solve  the generalized optimization problem by minimizing an empirical risk defined in 

Equation (2-1) [27]. 

  
1

1
arg min ( , ( ; )) ( )

n

i i

i

y f x
n

   
=

+   (2-1) 

Where iy  is the response variable for observation i  . ( ; )if x   is the approximated response 

from the ML model based on the feature ix  and   represents the set of model parameters.   is a 

loss measure between the true value iy  and the predicted value ( ; )if x  . ( )   is a 

regularization term that adjusts model complexity by restricting the parameter set   through (.) . 

The objective is to find the best set of model parameters, ̂ , that minimizes the empirical risk over 

training data with the regularization penalty considered. Equation (2-1) is a convenient generalized 

form and can be adopted by many supervised learning methods including ordinary least squares, 

ridge regression, LASSO regression, logistic regression, and kernel regression. Depending on 
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which ML method is adopted, the minimization problem can be solved with either a closed form 

solution, through gradient based methods, or convex approximation.  

The objective function for unsupervised learning is shown in Equation (2-2), where   is 

the set of model parameters that characterizes a learning structure for the given dataset. The loss 

function   quantifies the costs to assign a data point ix  to a particular cluster. ML methods that 

can be generalized by Equation (2-2) include K-means and K Nearest Neighbors [30].  

  
1

1
arg min ( ; )
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  (2-2) 

In statistical learning theory, the objective function expressed in Equations (2-1) and (2-2), 

is defined as an empirical risk over the training dataset, donated as ( )nI f  for a given model f . 

The theoretical objective of ML problem is to minimize the expectation in Equation (2-3), which 

is an integration over entire data space. Limited by the amount of data sampled from the space, the 

ideal case is often approximated by minimizing the empirical risk of training data instead.  

  arg min ( ) ( , ( )) ( , )
X Y

I f y f x p x y dxdy





=   (2-3) 

2.2.2 Feature Engineering 

Prior to training the model, applied ML methods always involve the process of selecting 

and extracting features which are found to influence model performance, improve training 

efficiency, and increase flexibility; all are necessary to tackle ML problems. A successful ML 

application usually deploys a standard algorithm; however, it also typically includes the ability to 

adjust features to achieve best possible prediction performance.  

Feature selection can be categorized into three methods: filter, wrapper, and embedded. 

The filter method ranks original features according to an importance measure score such as scores 

from a Chi-square test or correlation coefficients between individual feature and response variable 
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and selects a subset of original features. The wrapper method involves recursively including or 

excluding features from current pool and selecting the best performing pool. Embedded methods 

are those ML algorithms which incorporate automatic feature selection, e.g., LASSO and ridge 

regression. Both filter and wrapper methods are good at avoiding overfitting issues by reducing 

model complexity and improving training efficiency by reducing duplicated features. Feature 

extraction consists of two major tasks that increase the effectiveness of ML models: 1) conducting 

dimension reduction over data through methods such as Principle Component Analysis (PCA), 

which performs linear mapping from the original data space to a lower dimensional space such 

that data variance over each orthogonal component is maximized; 2) transforming data into a 

higher dimensional space such that the patterns become sparse and separable, e.g., kernel-based 

ML algorithms [31]. 

Besides the general feature engineering techniques mentioned in the prior paragraph, 

specific feature designs have been proven to be very successful for domain-specific problems. For 

instance, the use of HAAR-like features achieved human-level accuracy with far less 

computational effort [32] for face recognition; SIFT [33] features are very effective for object 

detection within images, and the HOG [34] features are particularly good at human detection. 

However, these domain-specific feature engineering techniques require considerable trial and error 

testing and are designed to only work for very specific problems and data structures. Neural 

network approaches and the associated deep learning approaches are extremely popular in that 

they automate feature engineering to achieve state-of-the-art level performance in many pattern 

recognition and data mining domains. This approach has emerged due to the increase in 

computation power in recent years. 
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2.2.3 Model Training and Performance Metrics 

There are many well-established procedures for ML model training that attempt to achieve 

stable and effective prediction performance for new data (extrapolation) given a training dataset. 

One common strategy is k-fold cross validation (also discussed in [22]) that randomly splits a 

dataset into k different subsets and trains the model k times using the kth subset as testing data and 

the remaining k-1 subsets as training data. Among all k models, the best performing model over 

the testing dataset is selected. This procedure largely reduces overfitting on the training dataset. 

Another popular technique to avoid overfitting is Bootstrap, which randomly samples a subset of 

the data with replacement and trains the model M times. The final model is selected as an average 

over the predicted results (regression) or based on majority vote (classification) [35] from the M 

models. Both Bootstrap and k-fold cross validation effectively reduces model variances are 

unbiased and are the primary training techniques used in developing data-driven models presented 

in later chapters. These training procedures are evaluated by using various performance metrics 

for model selection. For example, performance metrics of binary classification models include 

accuracy, precision and recall [36] whereas performance metrics for multi-class classification 

models typically include using a confusion matrix and top-k class accuracy as shown in ImageNet 

[37] literature. Regression models are usually evaluated by Root Mean Squared Error, Median 

Absolute Error, and Median Absolute Relative Deviation as presented by Burton, Sun et. al. 

[27,28,38]. 

2.3 Motivation of Using Machine Learning in Structural Engineering Field 

For a long time, the structural engineering community has been developing models for real-

world structures by conducting physics-based simulations and constructing prototypes to 

investigate uncertainties using laboratory tests. The traditional research path involves interpreting 
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results from the models and/or tests and combining observations (empirical and/or analytical) to 

develop guidelines, standards, or codes of practice for structural design, construction and retrofit. 

The approaches involved range from statistical curve fitting to physics-based analytics using 

computer simulations. Classic examples include the steel moment connection and steel shea wall 

system development by Qian and Astaneh-Asl [39,40] and a structural wall and coupling beam 

development by Wallace [41]. This common research path usually includes considerable 

engineering judgement and commonly requires some level of consensus to become standard 

practice.  Limitations of this approach are apparent, such as the lack sufficient model complexity 

to accurately represent the dataset which leads to empirical approximations and, sometimes, 

cumbersome rules and step functions where small changes in design variables lead to undesirable 

outcomes. In addition, these approaches often include relatively crude factors (e.g., load and 

capacity-reduction) to account for uncertainties in the confidence intervals based on incomplete 

information.   

Due to the rapid improvement in computational resources (speed, memory, storage, 

visualization), current mechanics-based analyses, such as finite element analysis using OpenSees 

[42] and Perform3D [43], are capable of simulating complicated structure systems from relatively 

simple nonlinear behavior subjected to loadings from multiple hazard types (earthquakes, 

hurricanes) at various load intensities [44,45]; these analyses tend to generate a lot of structural 

response simulation data. A study by Burton et. al. [46], where  building seismic performance was 

assessed for a set of archetypical structural models representing existing wood frame buildings in 

Los Angeles using four different retrofitting schemes with thousands of Nonlinear Response 

History Analyses (NL-RHA). In addition, evaluation of structural safety has expanded from 

collapse prevention of single buildings to more diverse and comprehensive studies that involve 
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assessment of a spectrum of damage states for a range of structure system types, which then 

enables multi-variable risk assessment studies using tools such as HAZUS [11,12,47]. Guan et. al. 

[48] performed intensive Incremental Dynamic Analysis (IDA) to assess the seismic performance 

of an innovative self-centering steel moment frame and to assess economic risk using the FEMA 

P-58 procedure [49]. In addition to evaluating individual structures, the risk assessment could also 

be applied across the regional geo-spatial dimension by analyzing structural responses at the 

portfolio scale level. Regional loss assessment is demonstrated by DeBock et. al. in [14] and Sun 

et. al. [28], where a set of concrete moment frame buildings are subjected to an actual earthquake 

scenario at a number of sites distributed over an urban region. It is shown that the current structural 

research in hazard mitigation is moving towards to more sophisticated hazard scenarios that 

generate extreme volumes of data, which are not suitable for some of the traditional approaches 

that are less capable or less efficient at extracting information from the multiple dimensional data 

space. 

 With the continuing growth of experimental data accumulated in the structural engineering 

field and the use of more advanced technologies to capture additional data and data types from 

experiments (i.e., digital image technique to capture stress distribution on concrete slender wall 

[50]), traditional data interpolation techniques are insufficient to explore and identify data patterns 

for a broad range of structural parameters among a large set of experiment events. A recent 

database developed by Abdullah and Wallace [51] collects detailed, organized, and parameterized 

information from more than 1000 reinforced concrete wall tests available in the literature, which 

is the largest of its kind. Traditional statistical tools are not ideal to examine data trends in such a 

large dataset. On the other hand, modern ML techniques have advantages, such as reduced 

influence of outliers, expanded dimensional parameter spaces (higher model complexity), and 
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improved predictions.   

Another emerging trend is the development and expansion of SHM over the last several 

decades  to the point where rapid assessment based on measured data can provide valuable decision 

variables. The concept of SHM is to remotely monitor the status (e.g., level of damage) within a 

structure using advanced sensing technologies based on data collected during an event. The 

process involves data cleaning, feature selection, and statistical model development for damage 

detection, all of which can be achieved using modern ML algorithms. As early as 2006, Farrar and 

Worden discussed some of the challenges facing by SHM, such as over-prediction of damage, 

which is an application of statistical pattern recognition. They noted  that key challenges include 

structural damage is often localized whereas monitoring is often accomplished using global 

measurements, where it is difficult to identify what has influenced the minor changes in the system 

responses (lack of uniqueness, in space and time), especially given the relatively sparse data 

measurements that were common at the time.  With more computation power and with state-of-

the-art ML models, these challenges are being overcome. For example, the use of kernels to extract 

key features from both space and time domain and develop a discriminant model for damage 

detection by Santos et. al. [26], incorporation of state-of-the-art deep learning CNN models to 

make use of image data [52], the application of random forest, an advanced decision tree algorithm, 

for assessing post-earthquake structural safety of buildings [8].  

The National Hazards Engineering Research Infrastructure (NHERI) is a platform that 

provides a network of research laboratories located at universities around the country that conducts 

experiments and collects experimental data in various forms related to hazards such as images of 

observed physical damage (photos, video) and measured data from a wide-range of sensor types 

from tests conducted in that involve water systems, energy and communication systems, 
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residential , commercial, and industrial buildings, other infrastructure (dams, bridges, roads, 

tunnels). This broad range of applications provides a tremendous opportunity for the structural 

engineering community to search for data-driven approaches to help address some most 

challenging problems in our field.   

The preceding discussion provided a general overview of use of modern ML algorithms, 

and the opportunities to expand the use of structural response history data obtained from sensors, 

images to identify structural and non-structural damage, and of ML models. Four critical aspects 

associated with these challenges are discussed in the following sections.  

2.4 Examples of Machine Learning Applications in structural engineering 

A board range of relatively recent ML publications in structural engineering field are 

summarized based on their application into the four major categories: 1) predicting nonlinear 

structural responses and damage; 2) experimental data interpretation and empirical fitting; 3) 

information extraction from visual media; and 4) pattern recognition for structural health 

monitoring. 

2.4.1 Predicting Structural Nonlinear Responses and Damage 

The ability to use ML to predict using either regression or supervised learning provides a 

data-driven alternative to determine structural responses or classify damage states for structures 

under various scenarios. Structural demand data usually comes from a large set of NL-RHA, 

although it is becoming more common that such data might be retrieved from instrumented 

buildings. Depending on the objective, these NL-RHA were conducted using models ranging from 

1) a single type of structure whose structural characteristics may vary; 2) a single or pool of 

structure models subjected to a defined hazard at different intensity levels; and 3) a cluster of 

structure models in a regional assessment scenario.  
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To detect structural damage, Zhang et. al. [8] applied random forest for damage detection 

for a 4-story reinforced concrete building case study using the response demand output from NL-

RHA, whereas Bagriacik et. al. [53] applied logistic regression, boosting regression trees and 

random forest to identify individual structural pipe damage status. To predict structural seismic 

responses using regression algorithms for a single structure, example applications include [54], 

where Support Vector Regression (SVR) was used to predict seismic engineering demand 

parameters using NL-RHA data from a single degree of freedom system, a four-story building and 

a bridge pile, whereas Soleimani et. al. [55] applied LASSO regression to determine uncertain 

parameter significance seismic demand prediction for an irregular bridge. To estimate demand 

parameters that are critically related to structural damage, Burton et. al. proposed a framework for 

aftershock collapse vulnerability using mainshock intensity, structural responses, and physical 

damage indicators [38], whereas Mangalathu, et. al. estimated seismic vulnerability and fragility 

curves for skewed bridges [56]. 

For a regional setting, Sun et. al. [28] reconstructed peak structural response engineering 

demand parameters by utilizing structural and spatial dissimilarities within in a seismic event using 

kriging models, and further extended the framework using kernel-based ML regression algorithms, 

kernel ridge regression, and kernel SVR to reconstruct a profile of responses for engineering 

demand parameters [27]. Burton et. al. [10] presents a conceptual framework for modeling post-

earthquake housing recovery with building-level damage limit states which could be scaled up to 

an event scenario at the region level.  

2.4.2 Experimental Data Interpretation and Empirical Fitting  

One advantage of adopting modern ML algorithms is that it is possible to extract data 

patterns from complex structural system behavior and identify structure damage without human 
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inspection, which is the most common approach used. Ghiasi et. al. [25] conducted an experiment 

on a four-story prototype structure and mimicked damage scenarios by removing braces at each 

floor. A SVM classifier with a combined parameter kernel function was applied to predict 

structural damage scenarios using acceleration sensor response history signals at each floor as 

input features.  

Besides the complex tasks of damage detection mentioned above, which is not viable 

through traditional empirical data fitting in a laboratory testing, ML also shows superior prediction 

performance on traditional tasks. For example, Vu and Hoang [57] proposed a kernel-based SVM 

model to map factors that influenced the punching shear capacity of fiber-reinforced polymer (FRP) 

from a dataset of laboratory tests performed on FRP-reinforced concrete slabs and demonstrated 

that the approach outperformed traditional formula-based methods based on RMSE. Naeej et. al. 

[58] applied a simple ML algorithm, decision tree, to predict lateral confinement coefficients in 

reinforced concrete columns to show that the approach outperformed traditional empirical formula. 

These two examples, one that deploys relatively complex SVM algorithm, and one that uses a 

simple decision tree, both demonstrate that ML algorithms can provide more accurate information 

than traditional empirical formulas to fit patterns for large datasets.  

2.4.3 Information Extraction from Visual Media 

Traditionally, structural damage detection at the structural component level through visual 

media has been accomplished by converting image data into strain distribution data using Digital 

Image Correlation (DIC), a mechanism based on a technique that captures local deformations using 

cross-correlation between randomly painted dots on a concrete surface, such as [59], [60] and [61]. 

The limitation is clear: 1) DIC requires a randomly painted dot field over the surface of interest, 

which is, for the most part, only practicable in laboratory setup; 2) a consistent length of image 
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sequence is necessary for calculating cross-correlations between painted dots; and 3) the converted 

damage indication data, the local strain distributions, only accounts for a subset of the information 

available from an image.  

Vision-based techniques can extract additional information from image data. For example, 

Yeum and Dyke [62] deployed HOG and HAAR feature-based object detection schemes with a 

sliding window search to identify cracks near bolts from structure images. The HOG [34] and 

HAAR feature  [32] classifiers are mainly texture feature extractors and are generally not as 

successful at image feature extraction as the CNN technique, which is extremely efficient in 

extracting both marco- and micro-scale features from images. It is superior in terms of unrestrained 

image input, accessibility and fast inference speed compared to traditional image processing 

techniques. Due to the flexibility of CNN for supervised learning problems, it has been deployed 

quite extensively to solve vision-based automatic damage detection problems. Cha et. al. [24,63] 

applied a region-based deep learning scheme to detect different damage types and concrete cracks 

in images of structures. Kong and Li [64] applied CNN to detect crack opening in steel bridge 

components under repetitive loadings from video clips. Other applications for damage detection 

using images include [65–68]. 

2.4.4 Pattern Recognition for Structural Health Monitoring  

Pattern recognition is an essential part of SHM in order to evaluate the tremendous amount 

data collected from various sources and to monitor structural condition to enable assessment in a 

timely manner. One major challenge noted in the literature is the ability to identify critical features 

that are associated with structure damage. Traditional ways include wavelet transformation and 

Fast Fourier Transform (FFT) which are limited because these methods are highly sensitivity to 

outliers. Data-driven approaches using ML are found to be more robust in dealing with complex 
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structure systems and various sources of input signals [69]. According to Worden and Manson 

[70], there are four levels of application for the data-driven approaches in SHM to: 1) detect if 

damage exists in the structure; 2) extract the probable location of the damage; 3) estimate the extent 

of the damage, and 4) infer information regarding the safety of structure. ML classification 

algorithms are suitable for level 1 e.g., [25,26,71], which adopt supervised ML algorithms for 

damage detection. While [72] applied an unsupervised, nonlinear  principle component learning 

algorithm analysis together with auto-associative neural network to select   features to predict 

stiffness changes from a synthetic bridge model (level 3). Another example of feature extraction 

using ML is by Rafiei and Adeli [73] where restricted Boltzmann machine was applied for damage 

related feature extraction followed with a classification neural network to detect damage in a 38-

story reinforced concrete building.  

ML algorithms may provide superior performance for these damage-related feature 

extraction examples compared to traditional physics-based methods given its capability in pattern 

recognition [73,74].  

2.5 Discussion in Applying Machine Learning to Structural Engineering 

Previous discussions cover a wide range of ML applications at four major fronts of 

strucutral engineering community:  

1. To predict structural responses and damage for stochastic excitation, such as seismic and 

wind loading, or stochastic structural characteristics;  

2. To interpret experimental data where the test setting and scenarios are complex such that 

physics-based models either perform poorly or are limited to a particular configuration or problem 

type (versatility); 

3. To serve as feature extraction for structural visual media data such as images and videos; 
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4. To recognize patterns from SHM data to inform structural system status. 

In this section, we intend to critically discuss three domain challenges that we are facd in 

utilizing ML in structural engineering, data source, model interpretability and extrapolation fidelity.  

2.5.1 Data Source 

One big contributor of the success of ML is the access to more data. Although the amount 

of data required to achieve ideal performance for ML models depends on the problem scenario and 

goal, it is essential to have sufficient data that the sampled group could represent the true 

distribution. Traditional data from structural engineering is often limited in its quantity and 

diversity, e.g., NL-RHA structural responses from a particular building model, cyclic behavior of 

a specific structural component. In these cases, it is not ideal to employ ML to capture the entire 

physical phenomenon behind finite element simulation or laboratory testing. On the other hand, 

there are ML applications that utilize more diverse structural response data across spatial domain 

such as [27], which, however; does not cover a diverse range of structural dissimilarities. The 

challenge is to collect a subset of data from the true data distribution that is representative in 

diversity and quantity such that ML algorithms are able to discover the underlying patterns of 

structural system within the domain objective. The shortage of data can be compensated for by 

incorporating domain knowledge within the ML model such that additional domain knowledge is 

introduced to reduce the complexity of the model space and consequently reduce necessary amount 

of data to fit the ML model. In addition, some statistical procedures may also aid through data 

augmentation, e.g., Monte Carlo simulation, to generate synthetic data. Future efforts are likely to 

examine both options, i.e., collecting more diverse real and synthetic data and incorporating 

domain knowledge for model design.  

 Another critical concern is data fidelity, which is a common issue for data-driven models. 
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However, the impact of outlier data might be more critical to certain ML algorithms, suc as logistic 

regression, due to their low robustness to noise. There are anomaly detection procedures for ML, 

such as using clustering techniques (DBSCAN [75], K-means [76]) and Z-score [77]; however, it 

also is necessary to include structural engineering domain-specific outlier detection procedures in 

ML applications. Ideally, the data-driven anomaly detection should be merged into physics-based 

outlier detection. In other words, the universal data filtering procedure of ML models should be 

modified with structural engineering domain knowledge, which has not been demonstrated in most 

recent research works. 

2.5.2 Model Interpretability 

One of the most significant challenges associated with a ML model is interpreting the 

physics meaning of the model parameters.  A commonly held view is that a ML model is a black 

box, i.e., there are no physical bounds that can be derived from a data-driven model. One option 

to address this issue is to deploy ML evaluation procedures (e.g., k-fold cross validation) over 

traditional statistical learning models to enable some degree of interpretability [28]. In addition, 

some recent efforts have demonstrated the potential of introducing domain knowledge into ML 

algorithms by incorporating a physics-based loss function, e.g., to embed hard conditions with a 

langrage multiplier into the loss function [78,79]. This approach provides a means to explain some 

of the ML model by adding a physics-based law into the objective function (Equation (2-1) and 

(2-2)). In [80], a spectrum of approaches are discussed that leverage the wealth of domain 

knowledge to improve performance data-driven models by adding domain knowledge, such as 

including theory guided model design or learning and regularization. However, combining ML 

and physics-based models remains a challenging problem that will be explored with future research.  
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2.5.3 Model Extrapolation Ability 

The ability to extrapolate the results of a ML model is another challenge and is also referred 

to as overfitting. Standard ML procedures involve data-based extrapolation by using 

training/testing split, k-fold cross validation, bagging and bootstrap, as well as other means. In 

addition, random forest provides a robust method to avoid overfitting given its stochastic 

procedure in generating trees in both feature and data space. For structural engineering, it is 

important to identity and apply domain knowledge to help avoid overfitting issues. The 

combination of a data-driven procedure and domain knowledge, similar to dealing with data 

sparsity, may provide a powerful combination. Although extrapolation has been extensively 

studied in the ML field, it could be more critical in applications of the strucutral engineering field 

given the high sensitivity of some strucutral responses. For example, to simulate a regular 40-story 

tall building, thousands of parameters are needed for configuration such as strucutral component 

geometry dimensions, material properties, external loadings, and construction conditions such that 

complex ML is almost unavoidable. Consequently, complex ML models require large amounts of 

data, better noise filtering processes, and careful model tuning to reduce the effects of overfitting.   

2.6 Summary 

In this chapter, application of ML within civil engineering since the early 1990s, when the 

approach was introduced, are reviewed. ML applications in structural engineering field were 

initially motivated as an alternative to physics-based modeling to map nonlinear experimental data,  

later deployed for damage detection as a data-driven pattern recognition tool in SHM, and recently 

expanded to multiple fronts due to the large volume of data now available in structural engineering 

problems and the rapid growth of computational power, which consistently affect the viability to 

apply ML to solve strucutral engineering challenges.  
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As the strucutral engineering community has considered various approaches to developing 

ML models, ML models were discussed earlier this chapter using a universal setting related to 

model formulation, feature engineering, model training, and performance-driven tuning. This brief 

discussion summarizes current knowledge related to ML and identifies the complimentary steps 

required to develop a ML model. In addition, the various ML algorithms are grouped under the 

empirical risk objective from learning theory to regularize them into optimization formulations. 

This discussion is provided to help establish a consistent scenario setting or utilization of ML.  

Subsequently, the motivations behind the interest in applying ML to strucutral engineering 

research and example applications from the literature were organized into four major categories: 

1) strucutral response regression and damage classification; 2) experimental data fitting; 3) 

information extraction from visual data, and 4) pattern recognition in monitoring data. The 

literature provides various examples on the application of ML and demonstrates its potential; 

however, these examples share a common impression that the adoption of ML in structural 

engineering is still at early stage and the lacks approaches for comprehensive performance 

evaluation and universal model development procedure. Therefore, with regard to the above 

mentioned four categories, a detailed discussion is included on potential future directions for ML 

in three critical areas, namely: data source, model interpretability, and extrapolation ability. Data 

source is the primary concern when developing and applying data-driven models. The degree of 

to which the data represent the true distribution is directly related to resulting model capabilities, 

which can be improved by increasing the diversity and fidelity of the training data. Another critical 

concern is associated with the ability to interpret of ML models, which is, in-part, a challenge 

within our community due to lack of knowledge of ongoing developments within the data-driven 

field. Some recent research has indicated that progress is being made in this area and that ML 
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offers opportunities to develop models with domain-localization in structural engineering. The last 

topic is related to the ability to extrapolate the results of a ML model and problems associated with 

overfitting. Various of ML techniques are proven to be very effective against overfitting; however, 

it remains as a challenge to adopt these techniques for strucutral engineering problems. It should 

be noted that these three challenges are not independent. For example, the overfitting issue could 

be addressed by increasing data diversity and is therefore connected to data source. Making use of 

domain knowledge could potentially help with the ability to interpret model results and also reduce 

the amount of data needed.  

To summarize, there are a vast number of opportunities within strucutral engineering 

research to address current challenges with data-driven ML models. However, challenges to 

develop such models exist such as data source, model interpretability and extrapolation. Creating 

ML models specific for strucutral engineering may be one future direction.  
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3. Inter-Building Interpolation of Peak Seismic Response using Spatially 

Correlated Demand Parameters 

3.1 Introduction  

During the period following a major earthquake, building owners, users and local and state 

officials are tasked with deciding whether damaged buildings can be re-occupied and reused. This 

decision can be informed by different types of post-event condition assessments. Seismic 

instrumentation and monitoring are one tool that is used to provide rapid damage detection and 

inform system-level evaluations. Accelerometers are placed in carefully chosen locations in plan 

and along the height of the building. Translational floor accelerations recorded during earthquakes 

are then used to compute velocity, displacement and story drift demands [81]. Using these recorded 

and computed response demands, a rapid diagnosis can be performed using one of several 

alternative damage measurement techniques. Response measurements from instrumented 

buildings can also be used to conduct real-time assessment of earthquake-induced damage, 

economic losses and social impacts [82].  

Numerous studies have developed tools and techniques for interpolating structural 

response demands measured through seismic instrumentation, along the height of a building, i.e. 

intra-building response interpolation [83,84]. However, no research is available that has explored 

the possibility of inferring structural demands in non-instrumented buildings using response 

measurements from instrumented buildings, i.e. inter-building interpolation. With the decreasing 

costs of remote sensing technologies [85,86], seismic instrumentation of new buildings is 

becoming increasingly popular [87,88]. The city of Los Angeles, which has the only mandatory 

seismic instrumentation program in a US city, requires accelerometers be installed at the base, 

mid-level, and roof to obtain a permit for all buildings over ten stories as well as for buildings over 
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6 stories with an aggregate floor area exceeding 60,000 ft2 [89]. There also is a more extensive 

instrumentation program required for buildings that utilized alternative design approaches. The 

city also has an extensive program for monitoring the equipment currently installed in 

approximately 400 buildings. For buildings at where seismic instrumentation is not mandated (e.g. 

buildings located outside the City of Los Angeles or buildings within Los Angeles not meeting the 

criteria), some owners choose to voluntarily install sensors [87,90,91]. As such, while still small, 

the fraction of buildings with instrumentation within large U.S. west coast city-centers such as Los 

Angeles, San Francisco and San Diego, continues to increase. This research seeks to leverage the 

expansion of seismic instrumentation by developing a spatial cross-correlation-based model for 

inter-building interpolation of peak seismic response demands. 

The previous studies that are relevant to the work presented in this paper include those 

focused on characterizing the spatial correlation of ground motion intensity measures (IMs) and 

engineering demand parameters (EDPs). Spatial correlation of ground motion intensities is needed 

to predict their joint distribution at the sites of a portfolio of buildings or infrastructure systems. 

Wang and Takada [92] developed a macro-spatial correlation model of IM residuals using 

empirical data from historical Japanese and Taiwanese earthquakes. Regression analyses were 

used to formulate a one-parameter exponential decay function that relates site separation distance 

to the auto-covariance of peak ground velocity. Goda and Hong [93] used records from California 

and the Chi-Chi, Taiwan earthquake to study the spatial correlation of peak ground accelerations 

and pseudo-spectral acceleration responses. Both inter- and intra-event variability were considered 

and empirical equations were developed to predict correlations considering site separation distance 

and period of vibration of single-degree-of-freedom systems. In two follow-up studies, Goda and 

Atkinson [94,95] developed similar models using strong motion data from the K-NET, KiK-net 
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and SK-net databases. 

Baker and Jayaram [96] used geostatistical tools to develop spatial correlation models of 

spectral acceleration residuals obtained from Next Generation Attenuation ground motion 

prediction models. The correlation structure of spectral acceleration residuals is represented using 

semi-variograms, which is a measure of the dissimilarity between two spatially random variables. 

Predictive equations were developed to compute correlation of spectral acceleration residuals 

based on site separation distance and the period of interest. This work was extended by Loth and 

Baker [97] to develop spatial cross-correlation models of spectral acceleration residuals 

corresponding to different periods.  

The research work that is most relevant to the current study was conducted by DeBock et 

al. [14,98], who investigated the spatial correlation in building seismic response demands. EDP 

datasets for six reinforced concrete moment frame buildings were generated from Nonlinear 

Response History Analyses (NRHA) using ground motions from two historical (1994 Northridge 

and 1999 Chi-Chi Taiwan) and two hypothetical (Puente Hills Fault and ShakeOut rupture) 

scenario earthquakes. The spatial correlation (same building at different sites) and cross-

correlation (different building at different sites) structure of local (component deformations) and 

global (drift demands and floor accelerations) EDPs were examined. Correlation patterns were 

related to the characteristics of the building and the scenario event that generated the ground 

motion data. The relationship between correlation of EDPs and spectral accelerations was also 

investigated. Based on the findings with regards to this relationship, an approach to account for 

correlation of structural response in building portfolio loss assessment was presented.  

This paper introduces a methodology for using spatial and structural correlation to 

interpolate seismic response demands across buildings. As shown in Figure 3.1, NRHAs are used 
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to obtain response demands for a building portfolio subjected ground motions recorded from a 

historical earthquake. Correlation patterns are established for the recorded peak EDPs based on 

spatial and structural dissimilarity. Semi-variograms are used to model the spatial and structural 

similarity dependence of the peak EDP-correlations. The Kriging method is then used to construct 

the inter-building seismic response interpolation model. Various aspects of the model performance 

are evaluated by randomly and repeatedly dividing the site locations for a single scenario into 

training and testing datasets through non-replacement Bootstrap sampling. The training data 

represents the locations of known response demands and is used to construct the interpolation 

model, which is then evaluated against the response demands in the testing data. The inter-building 

interpolation model can be used to rapidly assess scenario earthquake impacts for an urban setting 

where only a subset of the buildings is instrumented. 

 

Figure 3.1 Conceptual illustration of methodology used to develop inter-building 

interpolation model of peak structural responses 

Scenario Earthquake: 
Peak EDPs from NRHA

Correlation Patterns for 
Peak EDPs

Semi-Variogram-Based 
Correlation Model

Peak EDP Interpolation 
(Kriging) Model
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3.2 Measuring Structural Response Correlation for A Portfolio of Buildings Subjected A 

Scenario Earthquake 

3.2.1 Scenario Earthquakes and Ground Motions 

To demonstrate the framework, scenario based EDPs are generated from NRHA. Three 

historical events are used as the scenario earthquakes (Table 3.1), with the Mw 6.7 1994 Northridge 

earthquake used as the primary event to demonstrate the model approach. The Mw 7.6 1999 Chi-

Chi and the Mw 6.6 2000 Tottori earthquakes are used to evaluate the effect event characteristics 

on the model performance. These three events were chosen because of the availability of large 

numbers of recorded ground motions and their use in previous studies on spatial correlation of 

ground motion intensity measures and structural response demands [14,93,96–98]. Orthogonal 

pairs of recorded ground motion histories were obtained from the PEER NGA-West2 database [99] 

at each site for the three events. 

Maps of the region and the locations of the ground motion recording stations (red crosses) 

and the epicenters (black dot) for the three events are shown in Figure 3.2. It is worth noting that 

the spatial coverage of the recording stations is different for the three events, which may affect the 

resolution of each earthquake scenario and model performance. This issue is revisited later in the 

paper when the spatial correlation patterns and performance of the interpolation models across 

events are evaluated.  

The relevant details of the three scenario earthquakes is summarized in Table 3.1 including 

the event magnitude, number of ground motion pairs, rupture distance and VS30 range. Of the three 

events, Northridge recorded the highest level of shaking with a maximum geometric mean peak 

ground acceleration (PGA) of 2.01g compared to 1.15g and 1.13g for the Chi-Chi and Tottori 

earthquakes, respectively. For all three events, the upper bound of the 90% confidence interval for 
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each earthquake scenario is less than half of the maximum PGA. This indicates that the PGA levels 

are highest near the epicenter and PGA decays rapidly in all directions. This is further illustrated 

in Figure 3.3, which shows exponential functional form trend lines that capture the relationship 

between the PGA and the rupture distance of the recording stations. The rate of decay in the PGA 

with rupture distance is highest for the Northridge earthquake. Chi-Chi, which is the event with 

the largest magnitude, has the slowest rate of decay in PGA as the rupture distance increases. As 

described in Section 3.2.2, a similar spatial pattern is observed in the building responses. These 

observations are also relevant to the performance of the Kriging model, which is introduced in 

Section 3.4. 

Table 3.1 Summary of historical earthquakes used to develop interpolation model 

Earthquake  Mw 
No. of ground 

motion pairs  
VS30 range (m/s) 

Rupture distance 

range (km) 

Geometric mean 

PGA range (g) 

Northridge 6.7 152 161 to 2016 5.2 to 147.6 0.047 to 2.01 

Chi-Chi 7.6 400 124 to 1526 0.3 to 172.2 0.008 to 1.15 

Tottori 6.6 414 111 to 2100 1.0 to 333.2 0.001 to 1.13 

 
(a) 

 
(b) 

 
(c) 

Figure 3.2 Locations of ground motion recording stations (red crosses) and epicenter (black 

dot) for the (a) 1994, Northridge; (b) 1999, Chi-Chi; (3) 2000, Tottori earthquake 
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Figure 3.3 Exponential trend line showing the relationship between the geometric mean 

PGA and rupture distance 

3.2.2 Structural Models, Response Simulations and Engineering Demand Parameters 

Five modern, code-conforming RC moment-resisting frame buildings are used for this 

study. The buildings and structural models, which are adopted from those developed by Haselton 

[100], include 2-, 4-, 8-, 12- and 20-story RC moment frames designed based on the provisions of 

ASCE 7-05 [101] and ACI 318-02 [102] for a site in Los Angeles. The buildings were chosen to 

incorporate a broad period-range, such that the effect of structural dissimilarity is considered in 

the response interpolation model. Two-dimensional numerical models of the buildings developed 

by Haselton et al. [103] in OpenSees [42] are utilized for the NRHA. Each model consists of three 

bays of moment-resisting RC frames. The destabilizing effect of loads on the gravity frames are 

included by using a P-∆ column. The beams and columns are modeled as elastic elements with 

nonlinear flexural hinges with a trilinear backbone curve and hysteretic rules developed by Ibarra 

et al. [104]. More details on the design and structural modeling can be found in Haselton et al. 

[103,105]. Table 3.2 summarizes the building ID, number of stories and first mode period of each 

structure. 
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Table 3.2 Design information for concrete moment frame buildings 

Building 

IDa  
Building IDb  

No. of 

stories  
1st mode period (sec) 

2064 CMF-2 2 0.66 

1003 CMF-4 4 1.12 

1011  CMF-8 8 1.71 

1013 CMF-12 12 2.01 

1020 CMF-20 20 2.63 

     aFrom Haselton [100,103,105] 

     bFor use in this paper 

NRHAs are conducted for the five building cases using the unscaled ground motions from 

each of the three scenario earthquakes. At any given site, each structural model is analyzed using 

a pair of ground motions; one for each of the two horizontal orthogonal directions. Since the layout 

and design of the moment frames are symmetric and identical along the two principal axes of the 

building, this approach captures the directional effects of the ground motion on the structural 

response correlations. The EDPs of interest include the peak story drift ratio (PSDR) and floor 

accelerations (PFA) along the building height, both of which have been shown to be strongly 

correlated with structural damage and direct economic losses [106]. Figure 3.4 shows exponential 

trend lines of PSDR (Figure 3.4a) and PFA (Figure 3.4b) versus rupture distance for the CMF-2 

building, which provide insight into the spatial patterning the response demands. Overall, PSDR 

decays at a faster rate with rupture distance when compared to PFA and PGA, with the Northridge 

event producing the highest rate of decay. PFA decays at a rate that is even slower than PGA with 

Chi-Chi again having a slower rate of decay than both Northridge and Tottori. 

Table 3.3 summarizes EDP statistics for all five buildings subjected to the Northridge 

ground motions. The mean PFA is approximately 0.30 for all five structures. The mean PSDR 
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generally decreases with building height, ranging from 1.06% in CMF-2 to 0.37% in CMF-20. The 

relatively small differences (less than 20%) in the coefficient of variation (CV) across the five 

structures suggests similar spatial patterning of PSDRs. In contrast, the spatial variation of PFAs 

is much more significant. The lowest CV, 0.40, is observed in CMF-2 and increases to 0.82 in 

CMF-20. As described further in Section 3.4, the spatial and structural patterning of peak response 

demands is one of the factors that affects the overall performance of the interpolation model. 

Table 3.3 EDP statistics of all five buildings for original intensity scenario, Northridge 

earthquake 

Building ID  
PSDRa (%) PFAb (g) 

Mean COVc Mean COVc 

CMF-2 1.06 1.7 0.32 0.40 

CMF-4 0.88 1.6 0.31 0.67 

CMF-8 0.68 1.7 0.27 0.70 

CMF-12 0.51 1.5 0.29 0.81 

CMF-20 0.37 1.4 0.31 0.82 

a Peak Story Drift Ratio 
b Peak Floor Acceleration 
c Coefficient of Variation 
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(a) 

 
 (b) 

Figure 3.4 Exponential trend lines showing the relationship between the (a) PSDR and (b) 

PFA for CMF-2 

3.3 Spatial Correlation of Peak EDPs from Structural Response Simulations 

The proposed interpolation model relies on measurements of the spatial correlation of 

PSDRs and PFAs obtained from NRHA, which is performed on structures located at different sites, 

using ground motions from a single earthquake scenario. Also of interest is how ground motion 

directionality and site and structural dissimilarity affect this correlation. For each earthquake 

scenario, site pairs and their corresponding inter-site distances are established. The site pairs are 

then placed in bins corresponding to their inter-site distances. Each bin is defined by an upper, 

lower and median inter-site distance, the latter of which is taken as the median between the upper 

and lower bounds. An inter-site distance range (upper minus lower inter-site distance) of 2.5 km 

is used for first two bins and 5 km is used for the remaining bins to obtain better resolution for 

closer site pairs. The site pairs within a given bin are used to define two vectors X and Y, which 

represent natural log value of the maximum EDP recorded at each site. The correlation between 

maximum EDPs conditioned on the median inter-site distance, D, is computed using the following 

equation [98]. 
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Where X  and Y  are the mean values and X  and Y  are the standard deviations of the 

vectors X  and Y  respectively. Several types of correlations are examined using the EDP dataset. 

Self-correlation is based on site pairs that have the same structure and cross-correlation is based 

on site pairs with different structures [98]. The difference between the self- and cross-correlation 

is a measure of the effect of structural dissimilarity on the correlation pattern. The effect of ground 

motion directionality is considered by comparing the correlation pattern of the maximum response 

demands corresponding to the two orthogonal directions to the pattern obtained by considering 

each individual direction separately.  

The scatter plots in Figure 3.5 show how the median inter-site distance affects the 

correlation between the natural log of the PSDR for different site pairs. The plots are obtained 

from the NRHA results for CMF-2 subjected to the ground motions from the Northridge 

earthquake. Ground motions that cause structural collapse, which is defined by the occurrence of 

dynamic instability [11] are excluded from the results. Figure 3.5a through 5d correspond to 

median inter-site distances of 1.25 km, 3.75 km, 7.5 km and 12.5 km respectively. The plots show 

that the scatter around the line representing perfect correlation increases with the median inter-site 

distance.  
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(a) 

 
(b) 

 
(c) 

 
 (d) 

Figure 3.5 Scatter plot showing the natural log of PSDRs for various site pairs with median 

inter-site distances of (a) 1.25 km, (b) 3.75 km, (c) 7.5 km and (d) 12.5 km for the CMF-2 

structure subjected to the Northridge ground motions 

A more concise illustration of the relationship between the median inter-site distance and 

the maximum EDP correlations is presented in Figure 3.6. The effect of inter-site distance on 

PSDR correlations ( )PSDR  is shown in Figure 3.6a, which is also corresponds to the CMF-2 

structure subjected to the Northridge ground motions. Included are the self-correlation 

relationships obtained from considering the maximum response for the two orthogonal directions 

as well as each individual direction. It can be observed that the inter-site distance has a strong 
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influence on the correlation coefficient, which ranges from almost 1.0 to 0.2 for median inter-site 

distances of 1.25 km and 22.5 km respectively. Moreover, this influence is unaffected by the 

directionality of the ground motions. Figure 3.6b shows that D̂  also has a stronger effect on the 

site pair correlation coefficients for PFAs ( )PFA  compared to that of PSDR. Figure 3.7 shows how 

the median inter-site distance affects the self-correlation between the natural log of PSDR and PFA 

considering all possible site pairs. For each of the five buildings, a plot is obtained from the NRHA 

results after subjecting the structure to ground motions from the Northridge earthquake. Ground 

motions that cause structural collapse, which is defined by the occurrence of dynamic instability 

[11] are excluded from the results. The effect of inter-site distance on PSDR and PFA correlations 

is shown in Figure 3.7a and b, respectively. The correlations are computed by taking the maximum 

response corresponding to the two orthogonal ground motions for a given site. However, it should 

be noted that the correlation pattern was very similar when the peak response for each direction 

was considered separately as observed in Figure 3.6, highlighting the fact that ground motion 

directionality did not have a significant effect on the correlation patterns. 

 
(a) 

 
 (b) 
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Figure 3.6 Correlation coefficients for maximum (a) PSDRs and (b) PFAs versus the 

median inter-site distance for the CMF-2 structure subjected to the Northridge ground 

motions 

 
(a) 

 
 (b) 

Figure 3.7 Self-correlation coefficients for (a) PSDR and (b) PFA versus the median inter-

site distance of all structures subjected to the Northridge ground motions 

Figure 3.8a and b compare the PSDR and PFA self-correlation for the CMF-2 and -20 

structures respectively. The PSDR self-correlation is generally higher than PFA for lower inter-

site distances (0km to 20km); however, the trend is reversed for site-pairs with larger inter-site 

distances (20km to 50 km). Similar trends were observed for the Chi-Chi and Tottori scenario 

events with slight differences in the inter-site distance at which the trend reverses. Low inter-site 

distances are dominated by site pairs near the epicenter, where low frequency ground motions, 

which have a greater effect of PSDR compared to PFA, are prevalent. This explains the higher 

level of correlations observed for PSDR at low inter-site distance pairs. Higher inter-site distances 

generally correspond to site pairs with one location near the epicenter and the other much further 

away. The lower PSDR correlations can be explained by the faster rate of decay observed in Figure 

3.4 compared to PFA.  
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(a) 

 
 (b) 

Figure 3.8 PSDR and PFA self-correlation coefficients versus the median inter-site distance 

for the (a) CMF-2 and (b) CMF-20 structures subjected to the Northridge ground motions 

The correlation patterns shown in Figure 3.6, Figure 3.7 and Figure 3.8 were generated 

using site-pairs with the same structure at the two locations. However, a more realistic 

representation of the effect of inter-site distance on EDP correlations is obtained by using different 

structures at each site for a given pair (cross-correlations). Plots of the PSDR correlation 

coefficients versus the median inter-site distance for site-pairs with the CMF-2 and CMF-20 

structures at each location are shown in Figure 3.9. The comparison between the self- and cross-

correlations serves as a measure of the effect of structural dissimilarity. The plots in Figure 3.9 are 

obtained from NRHA in which both structures are subjected to all the Northridge ground motions. 

For each site pair, two sets of spatial cross-correlations can be computed. For instance, if denotes 

the peak EDP recorded in structure 1B  located at site a , 
1BY  in structure 1B  located at site b  and 

vice versa, one set of correlation coefficients is obtained from pairing the maximum EDP for 
1BX  

and 2BY , ( )
21 , BB YX , and another from pairing 2BX  and 

1BY , ( )
12 , BB YX . This allows the evaluation 

of whether switching the location of structures in a site pair affects the spatial cross-correlation. 

Figure 3.9a and b show that the effect of switching the building locations on the spatial cross-
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correlations is negligible for PSDR and slight for PFA. However, Figure 3.9c and d (site-pairs with 

CMF-2 and CMF-20) show that, as structural dissimilarity increases, the effect of switching on 

spatial cross-correlations, especially for PSDR, becomes much more significant.  

 
(a) 

 
(b) 

 
(c) 

 
 (d) 

Figure 3.9 (a) PSDR and (b) PFA cross-correlation patterns for site-pairs with the CMF-2 

and CMF-4 structures and (c) PSDR (d) PFA for site-pairs with the CMF-2 and CMF-20 

structures all subjected to the Northridge ground motions 

Figure 3.10 shows plots of PSDR  (Figure 3.10a) and
PFA  (Figure 3.10b) versus D̂  

between CMF-2 and all other structures for the Northridge earthquake. Here, the difference in 

height or fundamental period of two structures is seen to have a significant effect on PSDR cross-
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correlation trends. Figure 3.10a shows that the CMF-2 self-correlation and the cross correlation 

between CMF-2 and CMF-4 are almost identical. However, for a median inter-site distance of 

1.25km, the CMF-2 self-correlation is about 42% higher than the cross correlation between CMF-

2 and CMF-20. Figure 3.10b shows that, again, the effect of structural dissimilarity on PFA cross-

correlations is less pronounced than PSDR but still noticeable. The smaller effect of structural 

dissimilarity on spatial correlations for PFA compared to PSDR is consistent with Table 3.3, which 

shows that the mean PFA is generally the same across all structures while the mean PSDR varies 

by as much as a factor of more than two. Figure 3.11 compares the correlation patterns of PSDR 

(Figure 3.11a) and PFA (Figure 3.11b) across the three seismic events. The figures show that, at 

inter-site distances on the order of 10 km or less, the correlation patterns for both PSDR and PFA 

are very similar for the three events. However, as the inter-site distance increases beyond 10 km, 

the correlation patterns (PSDR and PFA) for Chi-Chi and Tottori bifurcate from that of Northridge, 

with the latter having a much faster rate of decrease in the correlation level. Again, these 

observations are consistent with the results shown in Figure 3.4, which shows that the rate of decay 

in both PSDR and PFA with rupture distance is highest for the Northridge earthquake.  

Prior studies have attributed the differences between spatial correlation patterns across 

different scenario earthquakes to the event magnitudes. For example, DeBock et al. [14] suggested 

that the higher levels of correlation observed for Chi-Chi when compared to Northridge are due to 

the larger magnitude. However, the correlation comparison between Chi-Chi (Mw 7.6) and Tottori 

(Mw 6.6) does not necessarily support this conclusion. An alternative explanation is suggested in 

this study. The Northridge earthquake ground motion data were obtained from 152 recording 

stations spread over an area of approximately 18,500 km2. In contrast, 400 recording stations 

spread over an area of approximately 36,200 km2 are included in the Chi-Chi dataset and the 
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Tottori dataset was obtained from 414 recording stations located over an area of approximately 

112,000 km2. This suggests that the similar EDP correlation patterns for Chi-Chi and Tottori are 

more likely due to the similarities in the spatial coverage and density of the ground motion 

recordings rather than the event magnitudes. 

Note that Vs30 was evaluated as a potential second measure of site-dissimilarity to be 

incorporated in the interpolation model. However, Vs30 was found to have a very small correlation 

with the response demands at different sites even when controlling for the effect of rupture distance. 

Moreover, no clear trend was found between the response demand correlations, which were used 

as the basis of the interpolation models, and the differences in Vs30 across site pairs. 

 
(a) 

 
 (b) 

Figure 3.10 Correlation coefficients for (a) PSDRs and (b) PFAs versus the median inter-

site distance for CMF-2 paired with all other structures for the Northridge earthquake 
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(a) 

 
 (b) 

Figure 3.11 Comparing CMF-2 self-correlation pattern for (a) PSDRs and (b) PFAs across 

the three events 

3.4 Modeling Spatial Correlation of EDPs Using Semi-variograms 

Semi-variograms are used to visually represent the relationship between the semi-variance 

of random measurements and the distance between them [107]. Originally developed as a 

geostatistical tool, semi-variograms have been used to in prior studies to model the correlation 

between spatially distributed ground motion intensities [96,97]. The current research work extends 

the application of semi-variograms to model the correlation of peak seismic response demands in 

spatially distributed buildings. For a random measurement, Z , which is described as a function of 

its location, s , the semi-variogram for a pair of locations separated by distance h , ( )h , is 

mathematically represented as half the square of its expected value at locations s , (E[Z(s)]) , and 

h + s , h)]) + (E[Z(s or the difference between the non-spatial variance for the same pair of 

locations, (0)C , and ( )C h  respectively [108].  

  
21

( ) [ ( ) ( )] (0) ( )
2

h E Z s h Z s C C h = + − = −  (3-2) 

Note that Equation (3-2) is based on the second-order stationarity assumption, which 



  

45 

 

implies that E[Z(s)]  is constant over the spatial domain. In prior studies, when semi-variograms 

were used to model the spatial correlation of ground motion intensities, the residual intensity 

(difference between actual and predicted intensity) represented the random measurement of 

interest. This residual is assumed to take on a standard normal distribution, which meant that the 

expected value was always zero and therefore satisfied the second-order stationary assumption. In 

the current study, the random measurement of interest is the absolute value of the peak structural 

response demand, whose expected value is location-dependent because both the shaking intensity 

and structure of interest varies from one location to the next. However, as Goovaerts [108] stated, 

“stationarity is not a characteristic of the phenomenon under study, but is a decision made by the 

user, not a hypothesis that can be proven or refuted from data”. In other words, the random 

measurement of interest does not have to follow the second-order stationary assumption. By 

defining  += Z(s) ,   or (E[Z(s)]) , can be assumed as a constant over domain s  and the 

spatial variation considered in the residual term  . This approach is used in the application of 

Ordinary Kriging in the current study, where the assumption of a constant mean peak response 

demand is used as a mathematical abstraction for the purpose of developing the Kriging model. 

Moreover, an alternative interpolation method, Universal Kriging, which does not rely on the 

second order stationary assumption, is also used. In Universal Kriging, the mean value of the 

random measurement is computed from ordinary linear or nonlinear regression using the location 

of each site as the predictors.  

The relationship between ( )h  and the correlation coefficient between Z(s)  and h) + Z(s , 

( )h , is described using the following equation [97]. 

  
( )

( ) 1
(0)

h
h

C


 = −  (3-3) 
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In Equation (3-3), the semi-variogram contains information about the spatial correlation of the 

random measurement as well as the non-spatial variance, which, in the current study, is used to 

represent structural dissimilarity. The robust estimator proposed by Cressie and Hawkins [109] 

and shown in Equation (3-4), is used to construct the semi-variogram in lieu of the classical 

estimator, to minimize the occurrence of outliers that result from non-normality of the random 

measurement, which can affect the smoothness of the semi-variogram.  
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Where aX and bY  represent residual values at sites a  and b  respectively with separation 

distance h . ( )N h  is the number of pairs within each site-separation bin. By using a fourth order 

semi-variogram, 
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 , the effect of outliers can be reduced. The denominator 

0.494
0.457

( )N h
+  is used to ensure that the estimator is unbiased [109].  

Figure 3.12 shows semi-variograms obtained from the classical (a) and Cressie and 

Hawkins estimator (b), using a dataset of PSDRs that was generated from the CMF-2 structure 

placed at site-pairs with different inter-site distances.  Figure 3.12a and b both show that the semi-

variance increases with inter-site distance, which is consistent with the inverse of the correlation 

trend that is typical of semi-variograms. As the inter-site distance increases, the dissimilarity in 

the EDP measurements, which is reflected in the semi-variogram value, also increases. Comparing 

Figure 3.12a and b, it can also be observed that the Cressie and Hawkins estimator performs better 

than classic estimator. For inter-site distances greater than 60km, the former produces a much 
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smoother (less outliers) semi-variogram. The Cressie and Hawkins estimator is therefore used in 

the remainder of this study. 

 
(a) 

 
(b) 

Figure 3.12 Self semi-variogram for CMF-2 constructed using (a) classical and (b) Cressie 

and Hawkins estimator for the Northridge ground motions 

To facilitate the formulation of the Kriging prediction model, the semi-variogram must be 

described by a continuous positive semi-definite function. The positive semi-definiteness of the 

covariance function ensures that the variance of any linear combination of the random 

measurements is non-negative. Admissible models that have been used in previous studies include 

the Gaussian, exponential, and spherical functions [96,110], which are described in Equations (3-

5), (3-6) and (3-7), respectively. 

(i) Gaussian variogram model: 

  

2

2
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h
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R
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(ii) Exponential variogram model: 
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(iii) Spherical variogram model: 
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Where the nugget, n , is the value of the empirical semi-variogram corresponding to zero 

inter-site distance, (0) , which is used to represent structural dissimilarity. The sill, s , is the 

maximum value of the semi-variogram and the range, R , represents the inter-site distance at which 

the difference between the semi-variogram and the sill becomes negligible. In this study, the sill 

is obtained from a Gaussian Kernel function [97], which is described in Equation (3-8). 
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Where 0.2,.....,02.0,01.0=ky , are the sampling points of the Kernel and   is the Kernel 

bandwidth. The sill of semi-variogram is determined by maximizing Equation (3-9). As   is a 

constant, its value is taken as 0.3 for better visualization of the Kernel function on Figure 3.13. 

Once an optimal sill is found, a weighted sum of squares loss function is used to find the optimal 

range, R  [110]. The weights are defined by 
1

ih
 at each ih  such that smaller ( )ih  have higher 

weights. The weighted sum of squares loss objective function is taken as:  

  ( )
21

ˆmin ( ) ( ) ( )
kk i R i

i i

WSS R h h
h

 = −  (3-9) 

Where the optimal range, R , is found by minimizing Equation (3-9) over a range of kR . 

An example fitted ( )ih  is shown in Figure 3.13. The exponential fitted variogram described by 

Equation (3-6) is found to be most stable and produces the best Kriging prediction performance. 

As the inter-site distance increases, the dissimilarity in the EDP measurements, which is reflected 

in the semi-variogram value, also increases. 
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Figure 3.13 Empirical and analytical self-semi-variogram for CMF-2 subjected to the 

Northridge ground motions 

The semi-variograms in the current study are assumed to be geometrically isotropic, which 

means that the semi-variogram values are direction-independent. Using building CMF-2 as an 

example, the relationship between the site-pair direction and the semi-variogram value is also 

shown using a rose plot in Figure 3.15 generated by Figure 3.14 using nine evenly distributed 

directional semi-variograms. The blue circles are mean values of semi-variograms over each 

direction and the black crosses are mean plus and minus one standard deviation. Perfect geometric 

isotropy would result in a circular rose plot. Despite the rose plot shown in Figure 3.14 does not 

form a perfect circle, it shows that the dataset of self-correlation for building CMF-2 results in a 

near-perfect circle at the mean level. Similar results were obtained for other cases with inter-site 

distances less than 50 km in Northridge scenario. This observation is consistent with the fact that, 

for the Northridge earthquake ground motions the EDP correlations are close to or less than zero 

at inter-site distances greater than 50 km, which, as a result, is used as the cut-off distance in the 

correlation model.  When interpolating the response demand for a given building, the responses in 

buildings located at inter-site distances greater than the cutoff distance are not considered.  
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Figure 3.14 Self semi-variogram of PSDR for building CMF-2 with nine evenly distributed 

directions for the Northridge ground motions 

 

Figure 3.15 Rose plot of self-semi-variogram for building CMF-2 using nine evenly 

distributed directions for the Northridge ground motions 
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Cross semi-variogram matrices are developed to incorporate structural dissimilarity by 

pairing EDPs recorded from different buildings and sites for a single scenario earthquake. Figure 

3.16 shows the PSDR cross semi-variogram matrix for the CMF buildings subjected to the 

Northridge ground motions. The elements of the cross semi-variogram, ( )hBB 2,1 , can be used to 

compute the EDP correlation for buildings 1B  and 2B , which are separated by distance h . The 

diagonal elements of the cross variogram matrix capture the site-dissimilarity for the same building 

at multiple locations. Non-diagonal elements capture both site and structural dissimilarity. To 

quantitatively visualize the effect of structural dissimilarity, the nugget versus the building 1st 

mode period for each cross-variogram of Figure 3.16 is plotted in Figure 3.17. It can be observed 

that nuggets between low- and mid-rise buildings (CMF-2 to CMF-12) generally have a linear 

trend. This suggests that the structural dissimilarity represented by the nugget is linearly related to 

the first-mode period for low- and mid-rise concrete moment frame buildings. However, the nugget 

effect for CMF-20 varies nonlinearly with the first-mode period, suggesting that taller buildings 

have a different pattern of structural dissimilarity. Similar relationships between the 1st mode 

period of the structure and the optimal sill and range were observed (not shown due to space 

constraints), which are also needed for the semi-variogram model. While not a direct measure of 

structural dissimilarity, they represent the effect of structural dissimilarity on spatial correlations. 

Empirical models can be generated for each of the three semi-variogram fitting parameters (nugget, 

sill, and range) as a function of a structure’s first-mode period. By doing so, the cross semi-

variogram matrix can be generated without the EDP dataset, thereby reducing the computational 

expense of NRHA.  
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Figure 3.16 Cross semi-variogram obtained from Northridge ground motions 
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Figure 3.17 Nugget effect of cross semi-variogram obtained from the Northridge ground 

motions 

3.5 Kriging Model for Interpolating Peak Structural Responses 

Kriging, which has been widely used in environmental science and geo-statistics, is a 

spatial interpolation algorithm that performs prediction at locations where a spatial variable is 

unknown by using a pre-calibrated semi-variogram function. A random variable ( )Z s , which is 

defined over a spatial domain nsss ,.....,, 21 , can be described as ( ) ( ) ( )nsZsZsZ ,.....,, 21 . The current 

study is concerned with formulating a Kriging model to predict peak structural response demands 

(the random variable of interest) at location 0s , which is denoted by )(ˆ
0sZ , using the weighted sum 

of the known response demands [111]. 

  )()(ˆ
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i sZwsZ 
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=  (3-10) 

Equation (3-10) is subjected to the constraint 1
1

=
=

n

i

iw , where iw  is the weight applied to 

the known response demand at location is , ( )isZ . An optimization problem is then defined to 
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determine the weight at each location by minimizing the mean square error of the prediction 

obtained by Equation (3-10), 2

e .  
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Equation (3-12) can be obtained by substituting the semi-variogram in Equation (3-2) into 

the minimization objective function shown in Equation (3-11), the proof of which is described in 

detail by Cressie [111]. 
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To incorporate the constraint 1
1

=
=

n

i

iw , the Lagrange multiplier, , is introduced to the 

minimization objective function. 
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By taking the derivative of 2

e  in Equation (3-13) with respect to   and each iw , the 

optimal weight vector W for this minimization problem can be solved using the Ordinary Kriging 

system shown in Equation (3-14): 
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 (3-14) 

Where )( isZVar is an nn  matrix of the variances between the observed peak response 
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demands and )(),( 0sZsZ i
Cov  is an 1n  vector of covariances between observed and unknown peak 

response demands. )( isZVar  and )(),( 0sZsZ i
Cov  can be obtained from the semi-variogram models 

described in previous section. T1 is a n1 vector of ones, which is associated with the constant 

mean (second-order stationary) assumption used in the semi-variogram. Estimates of the weighting 

vector, Ŵ , and the Lagrange multiplier,  , are obtained from Equation (3-14). Since the location 

of each of the unknown peak response demands is different at each location, 0s , the weights are 

different each site. Therefore, the Ordinary Kriging system needs to be solved for each ( )0
ˆ sZ  

using Equation (10). The prediction variance can also be determined by Equation (3-15). 
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This variance provides a convenient way to evaluate the confidence interval of the 

prediction model. It should also be noted that the Kriging estimator shown in Equation (3-10) is 

unbiased. Using these two properties, the predicted peak respond demand can be described by a 

mean value as well as a range, which is specified by upper and lower bounds.  

A modified Kriging algorithm, Universal Kriging, is also applied, which estimates the 

mean value of the random measurement at a particular location, using a regression trend with 

respect to the coordinates over the spatial domain. The second-order stationary assumption is 

therefore waived by computing the mean peak response demands at each site from Ordinary Least 

Squares (OLS) regression using the site coordinates as predictors using Equation (3-16): 
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Universal Kriging can be interpreted as a two-step process. In Equation (3-16), the s' are 

coefficients obtained from OLS (step 1). Both linear and 2nd order terms of the coordinates (
long

is , 
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longitude; lat

is , latitude) are incorporated into the regression equation. The remaining terms after 

regression are   and  , which are determined using Ordinary Kriging (step 2). By combining the 

two steps, regression and Ordinary Kriging, the Universal Kriging system is obtained as shown in 

Equation (3-17). 
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   (3-17) 

The performance of the Ordinary and Universal Kriging models are evaluated and 

compared in the next section. 

Model Performance Evaluation 

In this section, the overall performance of the peak structural response interpolation model 

is evaluated. The effect of key assumptions and model characteristics (e.g., level of dissimilarity 

of buildings, size of training versus test dataset, building distribution, earthquake scenario, and 

response parameter) on the model performance is also assessed. For a given scenario earthquake, 

the model performance is evaluated using non-replacement bootstrap, which randomly separates 

the entire dataset into a training and a testing subset. The model is generated using the training 

dataset and applied to predict the peak structural responses at the locations of the testing subset. 

The error measure between true and predicted response demand is described by the median 
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absolute relative deviation (MARD) shown in Equation (3-18). 
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Where iy is the nature log of the true response demand, iŷ is the natural log of the predicted 

response demand, tni ,,2,1 =  and tn is number of testing data points [38]. By computing the 

MARD for multiple cases of randomly generated testing and training data subsets, a probabilistic 

distribution of the prediction error is obtained. 

The performance of the self-interpolation model serves as a measure of the ability of both 

Kriging models to interpolate peak structural response demands across similar buildings located 

at different sites. In other words, the same structure type is used at each testing and training site. 

An illustration of the self-interpolation results obtained by applying Ordinary Kriging to peak story 

drift demands for the CMF-2 structure is shown in Figure 3.18. PSDRs and PFAs from the 

Northridge scenario are used to construct a cross semi-variogram matrix and the diagonal terms 

are used for the self-interpolation. The training and testing data subsets are comprised and 80% 

and 20% of the full dataset, respectively.  

Figure 3.18 shows a scatter plot, which is used to compare the observed and predicted 

PSDRs, with the points that lie on the diagonal line representing a perfect prediction. The 

correlation coefficient between the true and predicted peak PSDRs is computed to be 89.0= , 

which suggests that the interpolation model performs well for the CMF-2 self-interpolation case. 

The size of each point indicates the mean prediction distance, which is the average distance 

between the location of an unknown response demand and the locations of known response 

demands used to generate the prediction. The correlation coefficient between the prediction 

accuracy and mean prediction distance in most cases is between 0.1 to 0.3, suggesting that the 
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mean prediction distance does not have a strong effect on model performance.  

 

Figure 3.18 PSDR self-prediction result for the CMF-2 structure subjected to the 

Northridge ground motions 

As noted earlier, a more robust way to evaluate model performance is through non-

replacement Bootstrap, which repeats the prediction process using randomly generated training 

and testing data subsets to produce a probabilistically distributed prediction error. Figure 3.19 

shows the PSDR (Figure 3.19a) and PFA (Figure 3.19b) self-interpolation results for all five 

structures obtained from both Ordinary Kriging and Universal Kriging. The performance 

assessment results are presented in terms of box plots, which show the distribution of MARD 

values obtained from the Bootstrap procedure using the 80%-20% split for the training and testing 

data. The upper and lower bound of each box represent 25% and 75% percentile of MARD, 

respectively, for 100 repeated Bootstrap procedures. The center line is the median MARD value. 

The individual points are used to represent outliers within the set of MARD values and upper and 

lower lines represent the error range (excluding outliers). The error distribution from Bootstrap is 

particularly useful for evaluating the model performance as the median MARD is a measure of 

accuracy and the range of the box shows stability of the model. Figure 3.19a shows that, for PSDR, 



  

59 

 

there are only minor differences between the accuracy and stability of the self-prediction model 

across different structures. However, while the median MARD for PSDR and PFA are not very 

different, the model performance for the latter appears to worsen as the structure height increases. 

The accuracy and stability of the Universal Kriging model is on par with that of Ordinary Kriging 

for the PSDR, and slightly less accurate for the PFA prediction. Subsequent results are presented 

for Ordinary Kriging only.  

 
(a) 

 
 (b) 

Figure 3.19 Bootstrap evaluation of (a) PSDR and (b) PFA self-prediction model for all 

structures  

To evaluate the ability of the Kriging models to interpolate peak response demands 

between structurally dissimilar buildings (cross-interpolation), the location and number of each 

building type must be pre-determined. The accuracy and stability of the cross-interpolation models 

are evaluated using a randomly generated building location and distribution (therefore equal 

percentage of each building type in full dataset). The off-diagonal terms of the cross semi-

variograms (Figure 3.16) are used to interpolate peak response demands in structurally dissimilar 

buildings. Figure 3.20 summarizes the Northridge scenario PSDR cross-interpolation performance. 

The cross-interpolation performance between the CMF-20 and the other four structures is shown 
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in Figure 3.20a. It shows that both the accuracy and stability of the cross-interpolation decreases 

with the difference in building period. Figure 3.20b shows the median MARD values for the cross-

interpolation between all five structures. For cross-interpolation from the CMF-20 to the CMF-2 

and -4 structures (and vice versa), the median MARD value is approximately twice that of the 

cross-interpolations among the other structures.  

 
(a) 

 
 (b) 

Figure 3.20 PSDR cross-prediction model performance (a) between CMF-20 and all other 

structures and (b) for all structure combinations (only median MARD) 

The previously described model performance evaluation cases are based on 80% training 

data and 20% testing data. However, for practical applications of the proposed interpolation model, 

the number of known building responses is constrained by the fraction of instrumented buildings 

within a portfolio and availability of sensors within each building. As such, it is necessary to 

understand the effect of the training-testing data split on the model performance. Figure 3.21 shows 

the effect of the percentage of the responses used as training data (analogous to the fraction of 

instrumented buildings in a portfolio) on the median MARD value for self- (CMF-2) and cross-

interpolation (CMF-12 and CMF-20 structures). For the self-interpolation, the percentage of 

training data does not appear to have a significant impact on the model performance. However, for 
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the cross-interpolation cases, the median MARD decreases as the percentage of training data 

increases. The increase in the median MARD value at 80% training data is mainly due to 

overfitting. This result suggests that the need for an adequate proportion of instrumented buildings 

is more important for predictions across structurally dissimilar buildings. 

 

Figure 3.21 Median MARD versus training dataset size 

Previous studies suggest that the spatial correlation of the spectral acceleration 

corresponding to a building’s first mode period (SAT1) is a good predictor of the correlation in 

structural response [17, 19]. Moreover, SAT1 is generally more likely to be retrievable after an 

earthquake (compared to measure structural responses) since it is generated from ground motion 

recordings which are generally more ubiquitous. These two pieces of information lead to the 

question of whether the peak response interpolation models can be constructed using semi-

variograms of SAT1 instead of measured responses. To investigate this question, a cross semi-

variogram of SAT1 was constructed and used to formulate the PSDR interpolation model. The 

performance of the IM-based (solid line) and SDR-based (dash line) semi-variogram models is 

compared in Figure 3.22, which shows the median MARD values for 100 Bootstrap interpolations 

versus the structure’s first-mode period. For the self-correlation cases, the performance of the 

PSDR- and IM-based semi-variogram interpolation models is almost identical. However, more 



  

62 

 

often than not, the PSDR-based model has a lower median MARD than the IM-based model.  

 

Figure 3.22 Comparing performance of cross-interpolation model between all structures 

for IM- and PSDR-based semi-variograms 

Figure 3.23 evaluates the effect of the response demand level on interpolation model 

performance, while comparing the overall performance across the three events. The response 

demand level is increased by uniformly scaling the ground motions for each event by factors of 

0.5, 1.5, 2, 2.5 and 3. The PSDR and PFA self-interpolation performance for CMF-2 is compared 

in Figure 3.23a and b respectively. Both figures clearly show that the median peak EDPs generated 

by the Tottori event are much lower than those obtained from Northridge and Chi-Chi. However, 

it should be noted that the demands at sites near the epicenter are similar for all three events. The 

much lower median response demands produced by the Tottori event is a result of the much larger 

distribution of the geo-location of the sites where ground motions were recorded (as discussed in 

3.2.1). Recall that the interpolation model relies of EDP correlations that decay with inter-site 

distance. The much larger spatial coverage for the Tottori sites compared to Northridge and Chi-

Chi means that most of the site pairs have greater inter-site distances and low or inadmissible (due 

to cutoff distance) PSDR and PFA correlations, which adversely affects the model performance. 

The fact that the model constructed using Chi-Chi data generally outperforms the one developed 
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using Northridge data is consistent with the relative correlation trends shown in Figure 3.11.  

Figure 3.23a also shows that, initially, an increase in the PSDR level increases the model 

accuracy (as evidenced by the lower median MARD). However, for all three events, the 

performance of the PSDR and PFA models peak at a particular EDP level, beyond which the 

performance worsens (as evidenced by an increase in the median MARD). 

 
(a) 

 
 (b) 

Figure 3.23 Effect of response demand level on model performance for(a) PSDR and (b) 

PFA self-prediction for CMF-2 

Recall that the geographical areas covered by the Northridge, Chi-Chi and Tottori ground 

motion dataset are 18,500 km2, 36,200 km2 and 112000 km2, respectively. All of the model 

performance evaluation results presented up to this point are based on using the full dataset 

(response demands for all sites) for all three events. To investigate how the spatial distribution of 

the building locations relative to epicenter affects the model prediction accuracy, the building 

pools were grouped based on whether they fall within concentric circles of varying radii, R. For 

the self-interpolation case corresponding to CMF-2 buildings, one hundred Bootstrap procedures 

with an 80-20 training-testing data split were conducted and the median MARD for each case is 

reported as shown in Figure 3.24. For the Northridge event, whose baseline dataset has the smallest 
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spatial coverage relative to the other events, there is very little variation in the self-interpolation 

accuracy as the range of buildings being included (the value of R) increases. However, an 

observable trend is noted for Chi-Chi and Tottori with the latter having the strongest trend. For 

both these events, the model performance initially increases to a peak accuracy level after which 

it worsens. At R = 80 km, the Tottori model performs on par with that of Northridge and Chi-Chi. 

However, there is a sharp increase in the median MARD of the Tottori model beyond R = 80 km, 

which is consistent with the much worse performance (compared to Northridge and Chi-Chi) 

observed when the full dataset (roughly R = 190 km) is used (Figure 3.23).  

 

Figure 3.24 Effect of number and spatial clustering of buildings on the performance of the 

interpolation model for the Northridge earthquake scenario 

3.6 Summary 

This study extends the application of geostatistical tools to develop models to interpolate 

peak seismic response demands across structurally similar and dissimilar buildings. Site-specific 

ground motion recordings were obtained for the Northridge, Tottori and Chi-Chi earthquake 

scenarios and nonlinear response history analyses (NRHA) were conducted to obtain peak story 

drift ratios (PSDRs) and peak floor accelerations (PFAs) for five modern code-conforming 

reinforced concrete moment frame structures ranging in height from 2- to 20 stories. The NRHA 
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results were used to characterize the spatial self- (same building at different sites) and cross-

correlation (different building at different sites) of response demands for the three earthquake 

scenarios. Spatial self- and cross-correlation of response demands were modeled using semi-

variograms, which provide a measure of spatial and structural dissimilarity. The semi-variograms 

were used to develop Kriging models to construct inter-building interpolation models of peak 

response demands.  

Self- and cross-interpolation models were developed using both Ordinary and Universal 

Kriging. The former relies on an assumption of 2nd order stationarity of spatially distributed 

response demands. This assumption is adopted even though both PSDRs and PFAs are expected 

to vary with the level of ground shaking. We argue that the 2nd order stationary assumption is used 

as a mathematical abstraction and the spatial variation of response demands was considered in the 

residual term. Alternatively, Universal Kriging, which was also applied in this study, does not rely 

on the 2nd order stationarity assumption. Instead, the mean value of the random measurement is 

obtained from regression using the site coordinates as predictors. 

Various aspects of the interpolation model performance were investigated including (a) the 

effect of structural dissimilarity, (b) the proportion of known response demands used to train the 

model (relative to the entire building stock), (c) the use of intensity-measure based semi-

variograms to develop the Kriging model, (d) the effect of the geographic area covered by the 

building stock, and (e) the magnitude of the response demands. The performance of the self-

interpolation model was generally consistent across the five structure types. For the cross-

interpolation models, the performance worsened as the difference in the fundamental period of the 

structure increased. For the specific structure types considered in this study, the cross-interpolation 

models for the 2-, 4-, 8- and 12-story structures were generally on par with the performance of the 
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self-interpolation models. The same can be said for 8-, 12- and 20-story structures. The 

interpolation between the 2- and 20-story and 4- and 20-story structures was much worse than the 

self-interpolation models. The proportion of known building responses (relative to the total 

building stock) did not have a significant effect on the accuracy of the self-interpolation model. 

However, the performance of the cross-interpolation model deteriorated as the fraction of known 

response demands decreased. Self-interpolation models constructed using IM-based semi-

variograms were shown to perform on-par with semi-variograms constructed using correlated 

response demands. However, for cross-interpolations, the EDP-based semi-variogram model 

generally performs better. 

Several challenges are likely to arise in the real-world implementation of inter-building 

structural response interpolation models. Ideally, the prediction models should be developed using 

structural responses recorded from instrumented buildings with different types of structural 

systems (e.g. shear walls, steel moment frames and braced frames). Given the general lack of 

availability of recorded earthquake building response, the demands used in this study were 

generated using NRHA. Moreover, the models presented in this work were developed using a 

single scenario and used to interpolate responses for that same scenario. This type of model can 

only be applied in cases where, right after the occurrence of a particular event, an interpolation 

model is trained using the available response data from instrumented buildings and used to infer 

responses in un-instrumented buildings, all within the same event. In other words, the models 

developed in this study can only be applied to the same event that generated the training data. 

Three different scenario earthquakes were used to evaluate the effect of event characteristics on 

model performance. To develop a generalized prediction model, training data will need to be 

obtained from multiple earthquakes to enable direct prediction without using data from a given 
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event to train for that event. Moreover, to remove the effect of event specific characteristics, the 

interpolation will need to be performed on EDP residuals (as opposed to absolute value of the 

EDP). For the dataset used in this study, Vs30 was not found to have a strong correlation with the 

response demands. In cases where Vs30 has a measurable impact on response demands, a second 

site dissimilarity measure could be incorporated in addition to inter-site distance. In this case, 

three-dimensional semi-variograms and fitted surface functions with inter-site distance and Vs30 

on the horizontal axes would be developed. The other parts of the proposed methodology would 

remain the same. Alternatively, Vs30 can be incorporated by creating a pseudo site dissimilarity 

measure that is a function of multiple site parameters (inter-site distance, Vs30, rupture distance 

etc.). 
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4. Reconstructing Seismic Response Demands across Multiple Tall Buildings 

using Kernel-based Machine Learning Methods 

4.1 Introduction  

Buildings located in regions with high seismic hazard are often instrumented with sensors 

(e.g., accelerometers) to enable rapid assessment of damage, safety, and functionality following 

an earthquake. However, for reasons such as cost and inaccessibility, these sensors are usually 

placed in a limited number of locations within the structure such that, when earthquake shaking 

occurs, response demands are measured at isolated locations. For example, the City of Los Angeles 

requires seismic instrumentation of new buildings with more than ten stories or more than six 

stories and an aggregate floor area greater than 5574m2. A minimum of three accelerometers must 

be installed at the base, mid-level and roof. With this type of sensor arrangement, acceleration 

histories can be recorded at three floor levels. Velocity and displacement histories at the same floor 

levels can also be computed using the recorded accelerations. To facilitate damage detection, it is 

desirable to reconstruct (or interpolate) the seismic demands in the unmeasured locations using the 

measured responses. The accuracy of these reconstructed responses is determined by the accuracy, 

number, and location of the sensors used to generate the measured responses. 

Several approaches to structural response reconstruction can be found in the research 

literature. Naeim et. al. [82] incorporated cubic spline interpolation in the development of an 

automated building seismic response analysis and visualization system. Spline interpolation has 

also been used as the basis for determining the optimal placement of sensors within a building (e.g., 

[112]). Several structural response reconstruction methods incorporate the concept of 

transmissibility, which, for a single-degree-of-freedom system, is the ratio between the modulus 

of the response and imposed motion amplitudes. For a multi-degree-of-freedom system, the 
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transmissibility matrix can be used to form a relationship between measured and unknown 

responses [113]. Empirical mode decomposition (EMD) coupled with finite element modeling, 

also has been used to reconstruct structural dynamic responses in unmeasured locations [114]. The 

EMD method decomposes measured responses into mode shapes and functions, which are then 

used to compute the modal responses at the unmeasured locations. Wan et al. [115] extended the 

EMD method to consider structures with closely spaced modes. 

The above-mentioned structural response reconstruction methods enable interpolation of 

seismic demands measured in specific locations of a structure to other locations within the same 

structure.  However, to support rapid post-earthquake evaluation of building portfolios, seismic 

response reconstruction both within and across multiple buildings is desirable. To this end, Sun et 

al. [28] developed a methodology for interpolating peak seismic response demands across 

buildings. The “interbuilding” interpolation model utilized spatial and structural correlation of 

response demands in co-regionally located buildings subjected to the same seismic event. Semi-

variograms were used to model the correlations and the Kriging algorithm was used to interpolate 

response demands across multiple buildings. A key limitation of this methodology is that the 

interpolation is limited to a single location (peak demand) within each building. 

In this paper, Kernel based machine learning methods are used to reconstruct response 

demands across multiple tall buildings (20 to 42 stories) (Figure 4.1). In contrast to the earlier 

approach by Sun et al. in [28], the current method can reconstruct full-profile response demands 

using measurements at limited locations in a subset of buildings by employing Kernel Ridge and 

Support Vector Regression along with the Ordinary Least Squares method. The latter method is 

used as a point of comparison to assess the accuracy of the two kernel-based methods. Kernel 

regression algorithms have been proven to be effective in recognizing highly nonlinear data 
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patterns [31]. The current study deals with structural responses for a cluster of tall buildings where 

nonlinear spatial patterning is expected both within and across multiple buildings. It is noted that 

previous studies have adopted the use of machine learning methods for predicting (not 

reconstructing) structural responses. Examples include using Lasso regression for predicting 

seismic bridge responses [56], Bayesian updating of deterioration parameters across bridges after 

spatial interpolation of limited instrumentation data [116] and applying artificial neural networks 

for estimating seismic vulnerability of skewed bridges [117]. The prediction models presented here 

are constructed and evaluated using the results of nonlinear response history analyses (NRHAs), 

which are performed using topographically explicit ground motions from the Northridge 

earthquake. The proposed multi-building seismic response reconstruction methodology has the 

potential to enhance the usefulness of remote seismic sensing by enabling rapid assessment of 

portfolio-scale damage to inform emergency response and recovery-related decision-making.  

 

Figure 4.1 Multibuilding seismic response reconstruction framework 
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4.2 Scenario Earthquake and Ground Motions 

The proposed framework is demonstrated using ground motions from the Mw 6.7 1994 

Northridge earthquake. Figure 4.2a shows a map of the considered region, the 152 ground motion 

recording stations (red crosses) and the location of the epicenter (34.2057 N, 118.5539 W). 

Orthogonal pairs of ground motions corresponding to each recording station were obtained from 

the PEER NGA-West2 database [99]. Key ground motion properties are summarized in Table 4.1. 

There is significant variation in the soil properties in the region, as VS30 (shear-wave velocity 

averaged over the top 30m of soil) ranges from 161 m/s to 2016 m/s with a median and coefficient 

of variation of 347 m/s and 0.56, respectively. The distance from the recording stations to the 

epicenter ranged from 5.2 km to 147.6 km. More than 90% of the geometric mean peak ground 

accelerations (PGAs) are less than 0.56g; however, PGA values as high as 2g were recorded at 

locations near the epicenter. 

Response spectra at 5% damping for the 152 pairs of ground motions are shown in Figure 

4.2b, including the median, 16th and 84th percentiles. The maximum 84th percentile spectral value 

is 1.36g, which is observed at 0.19s and drops off to 0.52g at 1s and 0.17g at 2s. The first mode 

period of the tall buildings considered in this study ranges from approximately 2.5s to 5s, which 

corresponds to 84th percentile spectral values of 0.20g and 0.03g, respectively. However, due to 

higher mode effects, the building responses are expected to also be affected by periods as low as 

1.37s (3rd mode period of one of the building cases).  Periods higher than 5s are also expected to 

influence the inelastic response.  
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(a) 

 
 (b) 

Figure 4.2 (a) Station map (red dots are stations; black star is epicenter) and (b) Response 

spectrum acceleration at 5% damping of all records for the Northridge earthquake 

Table 4.1 Summary of 1994 Northridge earthquake 

Statistics VS30 (m/s) Rupture Distance 

(km) 

Geometric Mean 

PGA (g) 

Upper Bound 2016 147.6 2.005 

Lower Bound 161 5.2 0.047 

Median 347 37.5 0.158 

4.3 Description of Buildings and Structural Modeling 

4.3.1 Building Descriptions 

Four modern code conforming buildings ranging from 20 to 42 stories are used for the 

current study (summarized in Table 4.2). For three of the buildings, reinforced concrete (RC) shear 

walls are used for the lateral force resisting system (LFRS) and the fourth building has a dual 

system with RC shear walls and special moment frames. A key feature of the proposed model is 

the ability to reconstruct full profile seismic response demands across co-regionally-located 

buildings with varying degrees of structural dissimilarity. All four buildings used in the current 
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study have RC shear walls, which is the most common LFRS used in tall buildings constructed 

since roughly 2000 located in high seismic regions of the United States. However, structural 

dissimilarities are incorporated through variations in building height and other LRFS elements, 

such as outriggers and special moment frames. For example, TB-1 (20-story) and TB-4 (42-story) 

both have RC core walls as their LFRSs but differ in height while TB-2 (30-story) is the only 

building with an outrigger system. TB-3 and TB-4 have the same height and plan layout; however, 

in addition to RC core walls, the LFRS of the latter building includes RC special moment frames. 

Additionally, two different design procedures were used for TB-3 and TB-4. The former is code-

based [118] and latter was developed using performance-based design procedures [119]. There are 

three basement levels in TB-3 and TB-4 but none in TB-1 and TB-2. The LFRS layout in TB-2 is 

symmetric in plan resulting in the same fundamental 1st and 2nd mode period. The other three 

buildings have asymmetric LFRS plan configurations. These variations in design procedures, type 

and configuration of LFRS elements and building layout are explicitly incorporated in the 

structural models. 

Table 4.2 Summary of building characteristics 

Building ID 
No. of Stories 

(Basement Levels) 
Primary LFRS Secondary LFRS 

TB-1 20 (0) 

RC Shear Wall 

- 

TB-2 30 (0) Outrigger 

TB-3 42 (3) - 

TB-4 42 (3) RC Moment Frame 

TB-1 is designed using seismicity parameters that are based on a hypothetical location in 

West Los Angeles with SS = 1.24g (5 percent damped spectral response acceleration parameter at 

short periods) and S1 = 0.48g (5 percent damped spectral response acceleration parameter at a 
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period of 1s [101]), assuming site class D. Four different reinforcement ratios are used for the 

vertical steel reinforcement, varying from 3% in the confined concrete zone of stories one through 

five to 0.6% in stories 15 through 20. The length of the special boundary element zone is also 

varied along the height of the building while the thickness of the core wall is 61.0 cm throughout.  

TB-2 is a 30-story coupled RC core wall building with an inelastic slab outrigger system. 

It was designed by Kim [120] in accordance with the 2012 Intentional Building Code [121], 2013 

California Building Code [122] and the Los Angeles Tall Buildings, Structural Design Council 

(LATBSDC) guidelines [119]. The seismicity is based on a location in downtown Los Angeles 

with site class C, SS = 2.15g and S1 = 0.72g. The typical plan configuration of the floor plate can 

be found in [120]. The core wall is 86.4 cm thick in the first fifteen stories and 61.0 cm thick in 

the stories above. The vertical reinforcement ratio is 2% within the special boundary element, 

which varies in length from 76.2 cm to 198.1 cm. The major difference between the structural 

system of TB-1 and TB-2 is the inclusion of an inelastic slab outrigger system in the latter. The 

effective slab stiffness is determined using the procedure developed by Kang and Wallace [123]. 

Other relevant information can be found in Section 4.5 of [120].   

The 42-story dual system (TB-4) and coupled core wall only buildings (TB-3) are from the 

Tall Building Initiative Project [124] and are designed for a site located in the Los Angeles area. 

The basement levels and a 3-story podium of both buildings are included in the structural model. 

The thickness of the TB-3 core wall is 24 inches (61.0 cm) in stories 1 through 25 and 53.3 cm in 

the stories above. For TB-4, the core wall thickness is 61.0 cm in stories 1 through 20 and 45.7 cm 

in the stories above. Further details about the buildings can be found in [124] and [125] where TB-

3 and TB-4 are identified as Building 1A and Building 2B, respectively.  
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4.3.2 Structural Modeling 

Nonlinear structural models are developed for all four buildings using Perform3D [43]. 

Core walls, coupling beams, moment frames and outriggers (where they occur) are included in the 

structural models (Figure 4.3). With the exception of the slab outrigger, the gravity framing is 

excluded from all four models. A leaning column is placed at the geometric center of the floor 

diaphragm to account for P-delta effects. Expected material strengths, which are used in all models, 

are obtained by amplifying the nominal strengths in accordance with Table 4.2 of the LATBSDC 

guidelines [119]. The elastic modulus is taken to be 𝐸𝑐 = 40,000√𝑓𝑐
′ + 106 𝑝𝑠𝑖 for high strength 

concrete and the effective shear modulus is assumed to be 0.2𝐸𝑐. Steel and concrete fiber elements 

are used to model axial-flexural behavior of concrete core walls. The coupling beams are modeled 

using a shear hinge element calibrated according to the method proposed by [126,127]. A rigid 

diaphragm is incorporated in all buildings. Monotonic and cyclic degradation parameters of 

outrigger beams are calibrated based on the results of experiments by [128]. The TB-1, TB-3 and 

TB-4 models have 2.5% Rayleigh damping corresponding to 20% and 100% of the 1st mode period. 

For the TB-2 model, 3% Rayleigh damping at 33% and 150% of the first mode period is used. The 

period of the first three modes of each building are summarized in Table 4.3. TB-1 and TB-2 have 

similar 1st mode periods at around 2.5s. The 1st and 2nd mode period of TB-2 are the same reflecting 

the symmetric wall layout. Despite the similarity in the height and floor layout of TB-3 and TB-4, 

the latter has a moment frame system in addition to the shear wall, which results in a higher initial 

stiffness and a smaller 1st mode period (4.28s) compared to TB-3 (5.12s). However, the 2nd and 3rd 

periods of TB-3 and TB-4 are comparable. For all 4 building models, the 1st and 2nd modes are 

translational and the 3rd mode is torsional. 

The abovementioned modeling assumptions are commonly adopted in nonlinear structural 
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response simulation of tall buildings. It is also worth noting that, while the modeling approach 

would affect the simulated responses, the proposed data-driven method is model-agnostic.  

Table 4.3 Summary of building periods 

Building ID Mode 1 Period (s) Mode 2 Period (s) Mode 3 Period (s) 

TB-1 2.54 1.76 1.37 

TB-2 2.48 2.48 2.18 

TB-3 5.12 3.97 2.40 

TB-4 4.28 3.89 2.27 

 
 

 

(a) 

 
 

(b) 

 
 

 

(c) 

 
 

(d) 

Figure 4.3 Overview of Perform3D model (a) TB-1 (b) TB-2 (c) TB-3 (d) TB-4 

4.4 Nonlinear Strucutral Response Simulation 

All four structures are analyzed using 152 pairs of unscaled Northridge earthquake ground 

motions. The peak story drift ratio (PSDR) and peak floor acceleration (PFA) profiles in each 

direction are the response parameters of interest because they are known to be correlated with 

structural and non-structural damage [119]. By considering the maximum value of peak response 

demands across the two orthogonal directions, the effect of asymmetry in the LFRS is considered. 
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The full profile of PSDR and PFA for the four buildings are shown in Figure 4.4 through Figure 

4.7 and coefficients of variation (COV) of the response demands are provided in Table 4.4. For 

buildings TB-1 (Figure 4.4) and TB-2 (Figure 4.5), the median PSDR ranges from 0.2% to 0.3%, 

while individual PSDR profiles exceed 2.5% for extreme cases. Figure 4.4 shows that there is a 

variation in the response profile (along the height) with the demand level. For example, the PSDR 

profile is relatively uniform at demand levels near the median. Whereas, much higher drift 

demands are observed in the upper stories at the 84th percentile demand levels. At these higher 

demand levels, yielding in the 1st story core wall steel reinforcement occurs. This leads to a 

cantilevered deformed shape with PSDRs increasing almost linearly along the building height and 

drops off slightly at the uppermost story because of smaller rotations in the core walls.  

As described earlier, the core wall thickness in buildings TB-2 and TB-3 changes at stories 

16 and 26, respectively, which is reflected in their PSDR profile (Figure 4.5a and Figure 4.6a), 

especially at higher demand levels. However, as observed in Figure 4.5b and Figure 4.6b, the PFA 

profile is not influenced by changes in the wall thickness. Figure 4.4a through Figure 4.7a show 

that the inter-site dispersion of PSDR is generally higher in the upper stories. For example, the 

average PSDR COV for the four buildings (Table 4.4) is 1.14, 1.24 and 1.29 in the quarter-height, 

mid-height and the uppermost story, respectively. The reverse trend is observed for PFA, where 

the average COV for the four buildings ranges from 0.85 at quarter-height to 0.68 at the uppermost 

story. Comparing Figure 4.6a and Figure 4.7a, the highest PSDR demand between the 15th and 35th 

stories in TB-3 is about 25% to 35% higher than that of TB-4. This is not surprising given the 

stronger and stiffer dual LFRS in TB-4 relative to the core-wall only LFRS in TB-3.  
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(a) 

 
 (b) 

Figure 4.4 (a) PSDR and (b) PFA distribution for TB-1 subjected to 152 ground motions 

from the Northridge earthquake 

 
(a) 

 
 (b) 

Figure 4.5 (a) PSDR and (b) PFA distribution for TB-2 subjected to 152 ground motions 

from the Northridge earthquake 
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(a) 

 
 (b) 

  Figure 4.6 (a) PSDR and (b) PFA distribution for TB-3 subjected to 152 ground motions 

from the Northridge earthquake 

 
(a) 

 
 (b) 

Figure 4.7 (a) PSDR and (b) PFA distribution for TB-4 subjected to 152 ground motions of 

Northridge earthquake 

Table 4.4 Summary of coefficients of variation (COV) along the building height 

Building 

ID 

Quarter-height Mid-height Roof 

PFA PSDR PFA PSDR PFA PSDR 

TB-1 0.98 1.12 0.80 1.23 0.76 1.12 
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TB-2 0.95 1.10 0.88 1.25 0.77 1.42 

TB-3 0.74 1.14 0.78 1.27 0.64 1.47 

TB-4 0.74 1.21 0.70 1.35 0.54 1.13 

Figure 4.8a shows the PSDR distribution along the height of TB-1 versus the rupture 

distance (height of floors is indicated by size of scatter). As expected, the demands are generally 

higher at lower rupture distances. In fact, Figure 4.8b shows that the relationship between the 

within-building mean PSDR and rupture distance is well represented by an exponential trend line. 

It can be observed in Figure 4.9a that the mean PSDRs are comparable at higher rupture distances. 

However, at sites nearer the epicenter, the demands in TB-1 and TB-3 are generally higher, 

suggesting that the effect of structural dissimilarity varies over the spatial domain. The PFA 

trendline shown in Figure 4.9b suggests that TB-4 has the lowest PFA demands over the spatial 

domain (the same is true for PSDR). In summary, the within- and across-building spatial variation 

of seismic demands are highly nonlinear due to the combined effect of the building configuration 

and structural properties and the ground motion characteristics. Therefore, nonlinear statistical 

methods are needed to understand the spatial and structural patterns in the response dataset and 

formulate the multi-building response reconstruction models.  

 
(a) 

 
(b) 
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Figure 4.8 Plot showing (a) PSDR distribution (along height) and (b) mean PSDR (along 

height) versus the rupture distance for TB-1 

 
(a) 

 
 (b) 

Figure 4.9 Trendlines for (a) mean PSDR and (b) mean PFA over height with respect to 

rupture distance 

4.5 Description of Machine Learning Models 

4.5.1 Statistical Model Design 

The primary objective of this study is to develop a machine learning methodology for 

performing scenario-based reconstruction of full profile seismic response demands for a cluster of 

buildings (a group of co-regionally located buildings affected by a single seismic event), a subset 

of which are instrumented in limited locations. The complete (training and testing) dataset of 

dependent variables includes the peak response demand measurements (PSDR or PFA) in the 

structures under consideration located at the sites of the recorded ground motions. The number of 

data points corresponding to a single building/site is equal to (for two horizontal translational 

directions) the number of stories (for PSDR) or floor levels (for PFA).  

The predictors or features used to construct the learning models are carefully selected to 

represent the factors that are known to affect the spatial distribution of response demands within 
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and across buildings. The seismic response demand within a building largely depends on the 

structural characteristics and location of the demand measurements within that building, as well as 

the properties of the ground motion at the site of interest. There are many structural and ground 

motion characteristics that can potentially be used as features for the machine learning model. For 

the current study, the features are chosen primarily because they are readily available and to avoid 

high levels of correlation among those that are selected. The effectiveness of the selected features 

is demonstrated later in this paper through a rigorous evaluation of the model performance. The 

relative importance of the various features is also assessed as part of the overall model appraisal.   

The building height ( buildingh ), periods of the first three modes ( 321 ,, TTT ) and the wall 

thickness ( wallt ) at the location of the response demand are the features used to account for 

structural dissimilarity. The modal periods are used to capture variations in the dynamic 

characteristics of the building and the core wall thickness is directly related to the stiffness and 

response profile of the structure. As observed in the previous section, the response demands within 

a single building can vary widely along the height, particularly at higher demand levels. Therefore, 

the location of the response measurement of interest within a building is captured by using the 

ratio between the floor height of that measurement and the building height ( floorr ) as a feature. wallt , 

buildingh  and floorr  are also correlated with the actual and measured response profile (along the height 

of the building).  The ground motion and site characteristics (i.e., soil conditions) are represented 

by the location of the site of interest or the latitude ( lat itude ) and longitude ( longitude ), respectively. 

Note that the relative spatial location of the buildings as well as the asymmetric properties of 

ground motions are implicitly considered in the geographical-location-based features. Other site-

specific characteristics such as 30SV , are known to be highly correlated with geographical 
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coordinates and therefore not included as features. To summarize, a complete observation of data 

consists of eight predictors,  
wall321buildingfloorlongitudelatitude ,,,,,,, tTTThrX =  and the response 

variable of interest, 
EDP=Y . A typical statistical regression model can be formulated as a 

minimization problem that is based on the empirical loss function shown in Equation (4-1). 
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Where (.,.)  is a loss function or error measure between the true response demand iy and 

the predicted response demand )( ixf  for observation i . f  is a general function term denoting the 

statistical model formulated by each training observation ix  (the predictor vector of observation 

i  with dimension p1 ) which is defined by its model parameters  . p  is the total number of 

feature variables in each observation ( 8=p ). n  is the total number of observations in the training 

data. A penalty, ( ) , is added to the empirical loss function to avoid overfitting. The 

regularization parameter,  , is used to control the size of that penalty. The goal of model training 

is to yield a minimum cost defined by Equation (4-1) over f  (different statistical models) and its 

corresponding parameters  . Details of each applied model are described in the following section. 

4.5.2 Ordinary Least Squares 

Ordinary Least Squares (OLS) is commonly used in engineering and the physical and social 

sciences. It is a linear regression method that predicts dependent variables using a series of features. 

It is included in the current study to provide a point of comparison for the performance of the 

proposed kernel-based machine learning methods. The model is expressed in matrix form as shown 

in Equation (4-2) with the predictor X  being a matrix of dimension n p . Y is an 1n  vector of 

dependent variables  (structural response demands) and  is an 1n  vector of residuals, which 
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represent the difference between the observed and predicted values of Y . 

  Y X = +   (4-2) 

  is a 1p  vector of the predictor coefficients that is computed using the closed form 

solution in Equation (4-3) (OLS estimator), which is derived by minimizing the residual sum of 

squares (RSS): ( ) ( )min
T

RSS Y X Y X = − − , which is a matrix form of the objective function 

described in Equation (4-1). There is no penalty term in the OLS model.  

  ( ) YXXX TT 1

OLS
ˆ −

=  (4-3) 

Once the OLS estimator, OLS̂ , is obtained using training data, it can be used to predict 

building responses at testing data locations by Equation (4-4).  

  i

T

i xxf OLS
ˆ)( =  (4-4) 

4.5.3 Kernel Ridge Regression 

Kernel Ridge Regression (KRR) is an extension of the ridge regression method which 

incorporates regularization in the OLS model [129,130]. KRR further extends ridge regression by 

incorporating a nonlinear dissimilarity measure between the observed data and is therefore more 

suitable for predicting inelastic building response demands [38]. The formulation of KRR in 

accordance with Equation (4-1) can be expressed in Equation (4-5).  

  ( )
=

+−
n

i

ii fxfy
1

22
)(min   (4-5) 

In Equation (4-5), a least sum square is used as the loss function. A regularization constant, 

 , is applied to control the model complexity and avoid overfitting. At this point, the concept of 

a Kernel needs to be introduced to define the prediction model f  in Equation (4-6):  

  ( )
=

=
n

i

iii xxKxf
1

,)(   (4-6) 
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where i  is a weight parameter associated with observation i  that is to be determined.

( )ixxK ,  is defined as a Kernel between the observations x  and ix  from the training and testing 

data, respectively, which can also be interpreted as a similarity function between x and ix . In other 

words, the Kernel function measures the difference between the two input observations depending 

on the definition of dissimilarity. Numerous alternative Kernel functions have been developed and 

used in prior studies and the prediction model performance is typically used to select an appropriate 

function. Equation (4-7) is a Gaussian Kernel in which  is a model parameter referred to as the 

bandwidth. ix  and jx are the predictor vectors corresponding to the two observations i  and j .  
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ji xx

ji exxk
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=
 (4-7) 

A higher value of   results in almost linear behavior and vice versa. Also, a Gaussian 

Kernel generated by lower   is more sensitive to outliers and boundary data. As shown in Figure 

4.10, the Kernel function attempts to capture the similarity between two observations ( 1x =* and 

x ) based on the difference between them. In the KRR model, the dissimilarity between different 

observations is captured by the chosen Kernel and model parameter being tuned for the best 

prediction performance. In this paper, Gaussian Kernel (Figure 4.10) is selected because of its 

positive definite characteristics and better predictive performance.   
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Figure 4.10 Visualization of Gaussian kernel  

By implementing Equation (4-6) into Equation (4-5), the latter becomes Equation (4-8), 

which can be converted to the matrix form in Equation (4-9).  
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Y  is a vector of all response variables (same as in OLS). K  is a matrix of the Kernels 

between each possible training data pair defined in Equation (4-10).  is an 1n  weighting vector 

and the  
2

1
is applied for mathematical convenience. 
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Equation (4-9) can be solved analytically by taking the first derivative with respect to  , 

which yields Equation (4-11). 
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Where nI is an identity matrix of dimension nn . For a given test dataset of predictors, 

testx , the dependent variables (structural response demands) can be predicted using Equation (4-

12). 

  
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n
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testiitest xxKxf
1

),()(ˆ   (4-12) 

Another more intuitive interpretation of KRR is that the original data space x  is transferred 

into a higher-dimension feature space by )(xx →  where the Kernel is an inner product of the 

feature representation of x ( )()(),( xxxxK T= ). This nonlinear transformation produces a 

higher or infinite dimension feature space (𝑑𝑖𝑚( 𝑥) ≪ 𝑑𝑖𝑚( 𝜙(𝑥))) which increases the sparsity 

and complexity of the data structure and therefore increases the resolution of the prediction model 

(better accuracy). Often, the transfer process )(xx →  is very difficult or even impossible. 

However, KRR does not explicitly require calculation of )(x . Instead, it incorporates the Kernel, 

or the inner product of the feature space, which is usually much easier to obtain. Thus, KRR is 

computationally effective in transferring data into nonlinear feature space and has a generally 

better prediction accuracy for nonlinear data containing complex high dimensional patterns. 

4.5.4 Kernel Support Vector Regression 

Another supervised machine learning method that utilizes the Kernel concept is Kernel 

Support Vector Regression (KSVR). It is a modified version of the regular Support Vector 

Regression (SVR) algorithm, which was first developed by Vapnik V. [131] and is widely used in 

the field of Artificial Intelligence. The derivation of SVR starts with a linear formulation 

bXxf += )( where   and b are both 1p  model parameters. Unlike OLS, which treats b as 

error or residual term and formulates the cost function to minimize bbT
 (RSS), SVR minimizes 
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the norm value  T

2

1
 with a constraint that the absolute prediction residual of each data point in 

the training set is within the bound of  as shown in Equation (4-13) to ensure the maximum 

distance between decision boundaries. The fundamental difference between KRR and SVR is that 

the former minimizes prediction error and regularizes model complexity by adding a penalty term 

to the empirical loss function, while, for the latter, model complexity is regularized and error-

minimization is achieved by placing constraints on the loss function. 

   T

2

1
min  (4-13) 
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The above minimization is a convex optimization problem which may not yield a solution 

that satisfies the constraints. Thus, two slack variables, n  and 
*

n , are introduced to soften the 

constraints. Equation (4-13) becomes Equation (4-14), which is also called the primal form of SVR 

[131]. 
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The formulation of Equation (4-1) is expressed in Equation (4-14) with additional 
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constraints where C  is a capacity constant, which is the parameter that gives flexibility to model 

fitting. In other words, it adjusts how well the model fits the training data. Unlike KRR, a closed 

form solution for the primal form of SVR shown in Equation (4-14) is not possible. However, a 

computationally tractable formulation, or dual form of SVR, exists and is used to solve the problem. 

The dual form with kernel implementation can be obtained by applying a Lagrange multiplier to 

each of the constraints and replacing the inner product of data by kernels for a given training 

dataset in Equation (4-14), the detail of which can be found in [31].  

4.5.5 Model Parameter Tuning 

The two nonlinear learning models (KRR and KSVR) require a mathematical search 

algorithm to find an optimal model parameter set   (e.g.,   used to regularize model complexity 

and parameter   used to adjust the Gaussian Kernel in KRR). As noted earlier, OLS̂ and 
KRR̂  

can be determined explicitly through a closed-form solution. However, other parameters such as 

the regularization constant   (KRR) and   (KSVR) are determined by applying numerical 

optimizers, including ordinary and stochastic gradient decent and gradient boosting techniques 

[132,133]. Depending on the size of the training data ( n  and p ), different optimizers have their 

advantages and disadvantages. A synthesis of the alternative optimization algorithms including 

their advantages and disadvantages is provided in [134]. To avoid inconsistency in comparing 

models, a grid search method combined with K-fold cross validation is applied in the training 

process to obtain the optimal  .  

A predetermined vector of possible values is used to generate an array of parameters, with 

each element representing a unique set of  . For example, 5 possible values for   and 5 possible 

values for   would give an array of size 55 . The entire array is then searched to find the optimal 

parameter set, which produces the least training error in a K-fold cross validation, which involves 
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randomly separating the training dataset into k even subsets. Statistical models are trained using 

subsets 1 through all except the 
thk  subset, which is used for testing. Model parameters are 

selected from the case producing the least mean squared errors on the 
thk  subset. 

4.6 Application and Performance Evaluation of Machine Learning Models 

4.6.1 Evaluating Relative Importance of Features (Predictors)  

The F-test is applied to determine relative significance of the eight selected features, using 

the entire dataset of response demands from all four buildings. Two main steps are included in the 

F-test. First, the correlation between each feature j  and the response variable, ( )( )

( ) ( )var var

j j

j

j

X X Y Y

X Y


− −
=

, 

is calculated, which is then converted to an F-score using Equation (4-15). 
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Where N  is the total number of observations. Table 4.5 summarizes the F-scores derived 

from the correlation between each feature and the response variable (PFA and PSDR). For both 

PSDR and PFA, latitude has the highest F-test score and is therefore the most significant feature. 

Longitude has the 3rd highest F-score for PSDR and is among the lowest F-scores for PFA. The 

difference in the significance of the latitude and longitude feature is likely a result of the chosen 

scenario since, as shown in Figure 4.11, most of the recorded stations do not vary significantly 

along the longitude direction. As such, the overall conclusion is that the rupture distance is a 

primary consideration when reconstructing seismic responses across multiple buildings. 

Normalized floor height has much higher significance for PSDR compared to PFA. This is 

consistent with the more distinct response profile for the former compared to the latter, which was 

observed in Figure 4.4 through Figure 4.7. The number of stories is a stronger feature for PFA. 

These two findings are consistent with the previous observation that PFA has less within-building 
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variation but varies significantly across different sites. Generally, the modal periods are stronger 

features for PFA since the initial forces are more sensitive to the elastic stiffness. In contrast, the 

modal periods have less influence on PSDR, which is more related to nonlinear structural 

deformations. It should be noted that the F-score is a linear measure between the features and 

response variable and it may not reveal inherent nonlinear patterns within the data. 

Table 4.5 Summary of F-scores 

F-score Longitude Latitude Normalized 

Floor 

Height1 

No. of 

Stories 

1st 

Mode 

Period 

2nd 

Mode 

Period  

3rd 

Mode 

Period 

Wall 

Thickness 

PSDR 387 1726 1080 204 34 157 266 178 

PFA 88 2073 61 809 446 763 599 327 

1Normalized by height of building 

4.6.2 Model Evaluation 

Three different machine learning methods are applied to the dataset. Their performances 

are comparatively assessed for each scenario dataset using non-replacement Bootstrap (different 

from the one used for parameter tuning), which provides a statistical distribution of the prediction 

error as the measure of model accuracy and stability. For each scenario, a designated or randomly 

generated building type (from the four prototype buildings) is assigned to each site. All of the 

available seismic response data at each story/floor and at all 152 sites of the recorded Northridge 

earthquake ground motions, are used to formulate a data pool. Non-replacement Bootstrap is 

performed by randomly separating the complete dataset into N  training and testing subsets. For 

each randomized partition, the training data subset is used to construct the corresponding statistical 

model and predict the seismic response demands at the testing dataset locations. An error measure, 

the median absolute relative deviation (MARD), is calculated to represent the model accuracy and 
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stability in Equation (4-16). 
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Where iy  is true response demand, )( ixf  is the predicted response demand, tni ,,2,1 =  

and tn  is number of data points in the testing subset. A probabilistic distribution of the prediction 

error is obtained by computing the MARD for multiple cases of randomly generated testing and 

training data subsets [28,135]. 

4.6.3 Baseline Scenario Dataset 

A baseline scenario dataset is assembled using building responses at all 152 sites with the 

training dataset randomly generated from the stories/floors within the building located at each site. 

This dataset is generated based on the assumption that (a) all buildings within a target cluster are 

instrumented and (b) the location of the sensors within each building is randomized. In other words, 

the training data for this baseline scenario is randomly selected from all stories and buildings at 

the 152 locations. Other scenario datasets (e.g., training data is at 1st floor, mid-height and roof of 

each building at each site, a fraction of buildings are instrumented) are evaluated in Section 4.6.4 

and 4.6.5. 

Two variations of the baseline scenario are considered, which differ based on the building 

distribution across the considered sites. The self-prediction case assumes the same building is 

located at each site. This case is unrealistic in its representation of real building clusters. However, 

it provides a basis for disaggregating the effect of spatial and structural dissimilarity on model 

performance. The second case, cross-prediction, randomly assigns one of the four tall buildings to 

each site (shown in Figure 4.11). The training and testing data subsets are taken to be 30% and 70% 

of the full dataset, respectively. Later in this section, the effect of the size of the training data subset 
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(relative to the full dataset) on model performance is evaluated. The 30% data subset is used to 

train each statistical model with a 4-fold cross validation. The low ratio between training and 

testing data is used to approximate real world scenarios where only a small portion of tall buildings 

are instrumented at limited locations. 

 

Figure 4.11 Example of randomly distributed building locations 

Figure 4.12 shows the full profile PSDR prediction results for individual buildings, TB-1 

located at 34.281 N, 118.478 W (Figure 4.12a) and TB-4 (Figure 4.12b) located at 34.296 N, 

118.375 W, which correspond to the baseline scenario, cross-prediction case. Shown in each figure 

are the location of the measured (known) responses, which are included in the training dataset and 

the true and predicted full profile responses corresponding to the three algorithms. It can be 

observed that the Kernel based models (KRR and KSVR) are much better at capturing the PSDR 

profile (within-building pattern and demand levels) compared to OLS. The nonlinear response 

pattern between the 5th and upper-most stories of TB-1 is accurately captured with the correct 

curvature direction and demand level. Figure 4.12 shows that the true PSDR profile of the 42-story 

building has a triple curvature pattern with changes at the 2nd, 12th and 35th story, highlighting the 

more complex behavior in the taller building. Although the demand levels are not as accurate as 
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in the TB-1 building, the KRR and KSVR models are able to capture the overall profile. In both 

buildings, the OLS model does not perform well as it is not able to capture the nonlinear response 

profiles in tall buildings.  

Figure 4.13a and b show PFA prediction results for buildings TB-1 located at 33.790 N, 

118.012 W and TB-2 located at 34.070 N, 118.150 W, respectively, from the baseline scenario, 

cross-prediction case. For TB-1 (Figure 4.13a), the measured responses are dispersed throughout 

the height of the building and KRR and KSVR accurately capture the highly nonlinear PFA profile. 

In contrast, for TB-2 (Figure 4.13b), there are no response measurements below the 15th story so 

the overall performance of the kernel-based models is not as accurate as for TB-1. A similar 

situation is observed in Figure 4.12b where, above the 32nd story, the PSDR prediction error 

exceeds 60% because there are no response measurements in this region. This observation 

highlights the importance of having adequately dispersed sensors in the instrumented building. 

Recall that for the baseline scenario, the known responses are randomly located along the height 

of each building. Later in this section, alternative scenarios are explored, where the locations of 

response measurements are predetermined to improve the overall model performance. 

 
(a) 

 
 (b) 
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Figure 4.12 PSDR prediction results for (a) TB-1 located at 33.790 N, 118.012 W and (b) 

TB-4 located at 34.070 N, 118.150 W for the baseline scenario, cross-prediction case 

 
(a) 

 
 (b) 

Figure 4.13 PFA prediction results for (a) TB-1 located at 33.790 N, 118.012 W and (b) TB-

4 located at 34.070 N, 118.150 W for the baseline scenario, cross-prediction case  

To better understand the overall prediction performance of each model, the non-

replacement Bootstrap procedure is repeated 10 times for the baseline scenario with uniformly 

distributed and randomly generated buildings at each location (demonstrated in Figure 4.11). 4-

fold cross validation is applied to generate a model for each method using the training data. The 

trained model is then used to predict the two engineering demand parameters of interest [6] in the 

testing dataset, and the MARD is computed. The self- and cross-prediction results are summarized 

in Figure 4.14, showing that the KSVR and KRR methods have much better overall prediction 

accuracy compared to OLS. In Figure 4.14a, the self-prediction MARD for TB-4 is the lowest 

among the four buildings, 21% using KRR and KSVR. The self-prediction MARD for TB-1 is 33% 

for KRR, which is the highest of the four buildings. The self-prediction for TB-2 is the most 

unstable case of the four buildings as it has the highest difference between the minimum (21%) 

and maximum (24%) MARD for KRR. Overall, KSVR has the best performance for the PSDR 
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self-prediction. The cross-prediction model outperforms the self-prediction model in some cases, 

indicating that the training data for the former model contains a more diverse set of responses. 

The PSDR cross-prediction result shown in Figure 4.14a is generated by randomly 

assigning buildings at each site and generating training data at random locations. Again, KRR and 

KSVR rank the highest in terms of accuracy at 26.7% and 25.3% MARD, respectively. However, 

KRR has a much higher MARD dispersion, which ranges from 19.7% at the 25th percentile to 28.9% 

at the 75th percentile. It can therefore be inferred that KSVR is the best model for both self- and 

cross prediction. Similar results are observed for the PFA prediction, which are shown in Figure 

4.14b, where the overall MARD is similar to the PSDR model. However, it should be noted that 

MARD is an average measure of model performance. For interpolation over the height of an 

individual building, the model performance might vary depending on the ground motion intensity 

and building type.  

(a) 
 

 (b) 

Figure 4.14 MARD distribution for (a) PSDR and (b) PFA prediction for the baseline 

scenario  

Figure 4.15a shows a plot of the KSVR-predicted versus true PSDR for the baseline 

scenario, cross-prediction case, corresponding to a single non-replacement bootstrap procedure. 
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Correlation coefficients between the true and predicted PSDR are approximately 0.90 for all four 

building types, which indicates good overall performance. The similarity in the correlation across 

building types indicates that the model performance is not biased based on building type. However, 

it is observed that the model does not perform as well at PSDRs greater than 1%. For example, 

where the data points are separated into two bins, PSDRs <= 1% and PSDRs > 1%, the correlation 

coefficients are 0.90 and 0.41, respectively. This variation in model performance at different 

demand levels is due to the smaller number of training data points at higher demand levels, which 

corresponds to buildings closer to the epicenter. An alternative sampling technique, weighted 

KSVR (KSVRW), is applied to address this issue by weighting each training response data in 

proportion to its demand level. Figure 4.15b shows that, although there is an improvement in the 

prediction accuracy for PSDRs greater than 1%, the overall prediction performance drops as 

indicated by the 6% reduction in the correlation coefficient for each building. Figure 4.16 shows 

the same plot for PFA, where KSVRW significantly improves the prediction accuracy for data at 

higher demands (greater than 1g). However, unlike PSDR, the overall prediction performance of 

each building increases with the correlation coefficient increasing from approximately 0.8 to 0.9 

for all buildings.  

 
(a) 

 
 (b) 
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Figure 4.15 PSDR cross prediction result for baseline scenario using (a) KSVR and (b) 

KSVRW 

 
(a) 

 
 (b) 

Figure 4.16 PFA cross prediction result for baseline scenario using (a) KSVR and (b) 

KSVRW  

Figure 4.17a shows a plot of the true PSDR versus the mean squared prediction error for 

each model, which clearly shows that KSVRW has less error than the original KSVR and KRR 

models for PSDRs over 1.5%. Comparing KSVRW and KSVR, sample weighting is beneficial to 

reducing prediction error at higher EDP demands. However, as noted earlier, this also increases 

the overall prediction error. Ultimately, sample weighting seeks to shift the distribution of training 

data such that it is a better representation of the true data distribution. For example, the increase in 

the prediction error across all methods at 3% PSDR is due to the smaller amount of training data 

used in the model at that level. This observation highlights the need to establish an approximate 

distribution of training data (locations of instruments within and across buildings). In contrast to 

the Kernel-Based models, OLS shows an exponential increase in the mean squared error with 

PSDR, which supports the earlier argument that linear models are not suitable for reconstructing 

seismic response demands. 
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(a) 

 
 (b) 

Figure 4.17 (a) Ranked PSDR prediction result for the baseline scenario and (b) effect of 

the training data percentage on model performance of the baseline scenario 

Figure 4.17b shows the effect of the size of the training dataset (relative to the total) on the 

overall model performance. The results shown in this plot are generated by conducting non-

replacement Bootstrap with the training data subset ranging from 10% to 80% of the full dataset, 

using the same randomly generated building distribution. It shows that the overall prediction 

accuracy generally improves as the size of the training data subset increases. However, for the two 

Kernel based methods (KSVR and KRR), the model performance stabilizes when the training data 

subset is approximately 30% of the full dataset. For example, the MARD corresponding to 80% 

training data (17% MARD) is only 15% lower than the case where the training data subset is 30% 

(20% MARD) of the full dataset for the KSVR case. 

4.6.4 Effect of Within-Building Sensor Location on Model Performance 

As noted earlier, the effect of measurement locations within an instrumented building on 

the prediction model performance is particularly relevant to real world applications. To provide 

insight into this issue, the non-replacement Bootstrap procedure is applied and used to predict 

PSDRs for randomized building locations and two instrumentation cases: 1) three EDP 
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measurements randomly placed along the building height and 2) three located at the first floor, 

mid-height and roof. 4-fold cross validation is again used to determine model coefficients and the 

performance of each model is assessed. Plots of the median MARD versus the percentage of 

instrumented buildings are shown in Figure 4.18a (case 1) and b (case 2). It is interesting that, for 

the randomly distributed sensor case, KRR produces a very high median MARD (comparable to 

OLS), ranging from 70% to 80%, which decreases only slightly as the percentage of instrumented 

building increases. For the same model, a much higher prediction accuracy (35% and 30% median 

MARD at 40% and 65% of buildings being instrumented, respectively) is obtained for the 

designated sensor location (Figure 4.18b). For the randomly located sensor case, the median 

MARD for the KSVR method is about 30% to 50% lower than that of KRR. Like KRR, the KSVR 

prediction error decreases only slightly as the percentage of instrumented buildings increases. On 

the other hand, increasing the number of instrumented buildings largely reduces the prediction 

error for the designated sensor location case. These observations highlight the importance of sensor 

placement in multi-building seismic response demand reconstruction. However, it is important to 

note that the observed superior performance of the designated sensor location case is based on a 

summary statistic (MARD), i.e., it measures the overall performance considering all buildings. 

There may be stories within individual buildings where the randomized sensor location case 

performs better. 
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(a) 

 
 (b) 

Figure 4.18 PSDR prediction result for (a) randomized and (b) designated sensor locations  

4.6.5 Effect of Response Demand Level of Model Performance 

As observed in Figure 4.4 through Figure 4.7, the median PSDR for the baseline dataset is 

relatively low (less than 0.5%), which indicates that most buildings of the 152 respond within the 

elastic range. To demonstrate their prediction capability for inelastic demands, the kernel-based 

models are applied to a subset of the baseline dataset that includes 40 buildings located within 

23km from the epicenter. The PSDR profile along the height of the TB-1 building is shown in 

Figure 4.19a. Compared to Figure 4.4, the median PSDR increases to approximately 1% in the 

upper stories. Prior studies have shown that nonlinear coupling beam rotation and shear wall 

deformation start to occur at approximately 0.7% PSDR [41,127,127]. This, coupled with the 

demand levels observed in Figure 4.19a, indicate that most of the buildings in the near-epicenter 

data subset are subjected to inelastic response demands. Based on the median MARD values from 

the cross-prediction, the performance of the kernel-based models for the “near-epicenter” data 

subset is found to be on par with or better than the complete dataset. For example, the median 

MARD for PSDR is found to be 10% (Figure 4.20b) when the KSVR model is used to perform 

cross-prediction on the near-epicenter dataset, which is 60% lower compared to the baseline 



  

102 

 

dataset. Similar improvements are observed for PFA cross-predictions. Overall, the higher 

demands in the near-epicenter dataset results in lower variance in the within- and across-building 

spatial pattern and reduced uncertainty in the prediction model. It is important to note the 

distinction between the variance in the demand level (which is higher for the near-epicenter dataset) 

and the spatial pattern, where the latter refers to variations in the response profile (e.g. along the 

height of the building). Figure 4.20 shows the effect of the size of the training dataset on the 

performance of the kernel-based models, when applied to the near-epicenter dataset. By comparing 

Figure 4.20 and Figure 4.17b, it is observed that the performance is on par with predictions for the 

baseline dataset when the fraction of instrumented floors is less than 30% and better than the 

baseline dataset predictions when the fraction of instrumented floors exceeds 30% of the full 

dataset. 

 
(a) 

 
 (b) 

Figure 4.19 (a) PSDR distribution for TB-1 subjected to 40 near epicenter ground motions 

from the Northridge earthquake and (b) MARD distribution for PSDR cross-prediction 

based on high demand data subset 
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Figure 4.20 Effect of training data percentage on model performance for the high demand 

data subset scenario 

4.7 Summary 

A building portfolio seismic response reconstruction methodology is introduced, which 

uses available demands measured at limited locations within a subset of buildings.  The proposed 

framework is demonstrated using peak floor acceleration (PFA) and peak story drift ratios (PSDR) 

generated from structural response simulations. Nonlinear structural models of four tall buildings 

are developed in Perform3D and subjected to a set of spatially explicit ground motions recorded 

during the 1994 Northridge earthquake. Distinct patterns in the seismic response demands were 

found within individual buildings at a single site and across multiple buildings located at different 

sites. Two Kernel-based machine learning methods, Kernel Ridge Regression (KRR) and Kernel 

Support Vector Regression (KSVR), were applied to capture the underlying patterns and 

reconstruct response demands at locations within buildings where measurements are unavailable. 

The ordinary least squares (OLS) method was also applied and used to benchmark the superiority 

of the kernel-based methods. 

The features used to develop the prediction model include the building height, first three 

modal periods of each building, the wall thickness and the location within the building defined by 
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the floor height normalized by the building height. The latitude and longitude of the site are also 

included as features related to the location and site properties. Results from an F-test revealed that 

these geo-spatial variables are the most important of the eight features for predicting both PFA and 

PSDR. The first three modal periods and building height were found to be highly correlated with 

PFA while the normalized floor height has a stronger correlation with PSDR. These findings are 

generally consistent with the much higher “within-building” dispersion and nonlinear response 

profiles of PSDRs compared to PFAs. 

The performance of the multibuilding seismic response reconstruction models was 

evaluated using several scenarios. For the baseline scenario, buildings are uniquely (self-prediction) 

and randomly (cross-prediction) placed at each site. The three statistical models, OLS, KRR and 

KSVR are implemented using 30% of the entire dataset as training data, to predict the remaining 

70% testing data. The effect of the size of the training data was also evaluated by comparing the 

error measure across training dataset percentages ranging from 10% to 80% of the full dataset. A 

second scenario is used to compare the model performance for the cases where the measurement 

location within each building is predetermined and randomly placed. The effect of the fraction of 

instrumented buildings on model performance was also evaluated. Non-replacement Bootstrap 

was used to randomly separate the training and testing data and 4-fold cross validation was used 

for optimal parameter selection. The result shows that both Kernel-based methods are better in 

terms of the stability and accuracy of reconstructed responses for self- and cross- predictions under 

randomly distributed measurement locations within buildings. There was no bias in the accuracy 

of the predictions across the different building types and the size of the training data improved the 

model performance. Also, the performance of the Kernel-based models was better when the 

location of the measured responses was predetermined (as opposed to being randomized). For a 
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scenario where 40% of the buildings had measured responses at the first floor, mid-height and roof, 

the predicted demands from the Kernel-based methods were, on average, within 30% of the 

measured demands. A subset of the original dataset that only includes buildings within 23km of 

the epicenter is used to evaluate the effect of higher levels of inelastic demands on the prediction 

capability of the kernel-based models. The result shows equal or better performance compared to 

the full dataset.  

This study used seismic demands from structural response simulations to demonstrate and 

evaluate the proposed multi-building seismic response reconstruction methodology. While using 

building response measurements from a real earthquake would have been ideal, the unavailability 

of full-profile recorded responses for a cluster of buildings makes this approach unfeasible. It is 

also worth noting that both simulated and measured responses are expected to differ from the real 

responses. The discrepancies between the simulated and real responses arise because of limitations 

in the state-of-the-art in nonlinear structural modeling. Errors can also be introduced in measured 

responses due to imperfections in the installation, recording and data-retrieval process. These 

limitations can be addressed by introducing an error or residual term. In other words, the 

reconstructed response can be regarded as a central tendency value and the error term would 

represent the dispersion. 
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5. A Generalized Cross-building Engineering Demand Parameter 

Reconstruction Model 

5.1 Introduction 

Seismic hazard is a primary threat to urbanized regions on US western coast and Circum-

Pacific seismic belt such as Japan, New Zealand and Mexico. Given that an earthquake is 

inevitable, it is beneficial to develop rapid damage assessment for reducing consequential building 

damages and monetary losses. There are two major ways to assess building damage after a seismic 

event, either  by human inspection, which is very time consuming and human labor intensive, or 

by retrieving building damage states that are related to critical engineering demand parameters 

(EDP) through Strucutral Health Monitoring (SHM) remote sensing systems; however, only a 

limited number of buildings are instrumented with such remote sensing and data acquisition 

systems. A typical situation is that a very small number of buildings that are lifeline related (e.g., 

fire station, hospitals) and tall (e.g., buildings with more than 10-stories or more than 6-stories and 

an aggregate floor area greater than 5574m2 are required to install SHM system in the City of Los 

Angeles) are instrumented to allow retrieving EDPs immediately following after a seismic event. 

Therefore, one major challenge of SHM is to develop a data-driven rapid prediction model based 

on these available recordings from the instrumented buildings to infer EDPs in the majority of 

buildings, which are un-instrumented. 

Sun, et, al. [28] first developed a data-driven interpolation model for maximum response 

including peak floor acceleration (PFA) and peak story drift ratio (PSDR) along the building height 

using a kriging algorithm across different buildings and different sites subjected to a single 

earthquake event. Nonlinear structural responses extracted from five different concrete moment 

frame models [100,103] under three different earthquake scenarios were used to demonstrate the 
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method. As a result of within event interpolation, the proposed framework is limited to cases where, 

right after the occurrence of an event, an interpolation model is trained using the available response 

data from instrumented buildings and used to infer responses in un-instrumented buildings, all for 

the same event. In other words, event characteristics are not considered.  

On the other hand, modern seismic risk assessment of buildings often involves probabilistic 

estimation of seismic building responses to assess building damage states through a data-driven 

fragility curve [106]. The data to calibrate fragility curves are retrieved by running Nonlinear 

Response History Analysis (NRHA) for the target building subjected to a suite of ground motions. 

There are two major challenges with this procedure. First, the probabilistic seismic risk is 

determined only through the selection process of the applied ground motion suites. Uncertainties 

that incorporate earthquake sources such as fault type and intensity distance attenuation are only 

implicitly considered in this selection process without an explicit model on their mechanisms, e.g., 

intensity decay from source. In addition, common means of ground motion selection is to pick 

recorded ground motion pairs matching a designated target spectrum by meeting certain criteria, 

e.g., mean and variance [136]. As a result, uncertainties are only incorporated from the chosen 

target spectrum, which is either a conditional mean spectrum [137] or uniform hazard spectrum at 

a particular hazard level. This limits the seismic risk assessment to be only based on certain hazard 

level, such as Maximum Considered Earthquake (MCE). Incorporating additional hazard levels 

would require conducting even more NRHA, which is computationally demanding and makes a 

regional risk assessment for a cluster of buildings challenging, if not impractical. A data-driven 

prediction model for seismic building responses that takes into consideration on sources of 

uncertainty, including event and building characteristics as well as intensity attenuation using 

recorded data across all relevant historical earthquakes would help overcome the above two 
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challenges. 

The seismology community has conducted research to establish event characteristics for 

peak horizontal ground accelerations (PGA) and velocities (PGV) since 1980s using recordings 

obtained from ground motion stations. Early representative work is a strong motion attenuation 

regression model developed by Joyner and Boore [138,139] that considers both earthquake 

magnitude and site rupture distance for each event and site using data collected in 182 recordings 

from 23 earthquakes. The approach is based on a 2-stage regression technique that enabled 

decoupling site and event features. This statistical procedure was commonly used in subsequent 

studies because it allowed separation of distance or site dependence and magnitude dependence. 

Brillinger and Preisler [140,141] extended the model to a nonlinear formulation by introducing 

random effect to each event resulting in explicit separation of between and within earthquake 

variation using the same dataset. They also introduced the expectation-maximization algorithm 

(EM-algorithm) for parameter searching typically known as 1-stage regression. Joyner and Boore 

[142,143] further explored the 1-stage and 2-stage methods and showed that both are unbiased 

through Monte Carlo simulation. The latter approach is more computationally efficient and 

addresses a bias issue examined by McLaughlin [144], using the same dataset in [138–141], and 

later expanded to estimate response spectrum accelerations (PSA) for various damping levels, 

which is now referred to as ground motion prediction equations (GMPE). A calibration procedure 

to account for the component of variability associated with the site was also incorporated. Boore 

and Joyner [145] provided a series of calibrated equations to estimate response spectra for damping 

levels at 2, 5, 10 and 20 percent and then the site term was modified [146] such that the site-effect 

was changed from a constant to a continuous function based on time-averaged 30 m shear wave 

velocity ( 30SV ). Over the years, the GMPE model has been extensively refined through the addition 
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of new datasets and developed for different regions as presented in the summary work [147], which 

also pointed out the primary limitations, such as: 1) lack of response spectral data from events 

below magnitude six; 2) unclear effect of site conditions on short-period motion (less than 0.3 s); 

3) distance limitations in dataset. As more datasets become available from PEER NGA project 

[148] to capture more complex effects from ground motions, Boore and Atkinson [149] presented 

an improved model with an additional “anelastic” coefficient to account for data trend beyond 80 

km as well as a magnitude-dependent “geometrical spreading” term without adding more 

predictive variables (e.g., such as basin depth). Besides [149], various empirical models in the 

GMPE category were proposed, e.g., Campbell and Bozorgia [150] and Chiou and Youngs [151].  

Using [149] as a demonstration, the GMPE model is often represented as in Equation (5-1). 

  eFFFY SDM +++=ln  (5-1) 

Where 
MF , 

DF  and SF  are magnitude scaling, distance function, and site amplification 

determined by event magnitude, site rupture distance, 30SV and other factors such as fault type. A 

simplified expression that decouples the total residual e  into two components is given by Equation 

(5-2) [96]. 

  jijijij YY  ++= )ln()ln(  (5-2) 

Where ijY donates the interested intensity measure, e.g., spectral acceleration at period 
1T  

at site i  from event j ; ijY is the predicted median value of ijY ; ij is the intraevent residual and j  

is the interevent residual. Jayaram and Baker [96] examined the correlation that existed in GMPE 

residuals and developed a model for spatial correlation by generating semivariograms for 

normalized intraevent residual and further constructed experimental semivariograms using 

empirical data from seven historical earthquakes. Other residual correlation studies, e.g., Goda and 
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Atkinson [94] and Loth and Baker [97], explored the effect of including different events on 

generating semivariograms and developed a generalized spatial semivariogram model over  the 

spectrum. These semivariogram models enable prediction of residuals using kriging system as 

demonstrated in [28]. It should be noted that this notation is different from what is used in this 

chapter given that the slightly different approaches to decouple event and site related trends from 

the remaining residual from GMPE.  

One significant limitation of GMPE is that it estimates IMs such as PGA, PSA at median 

levels expressed as a continuous functional form to account for correlations from event 

characteristics and site conditions without inclusion of corelated patterns of structural 

characteristics of buildings. Although there are approximate methods to estimate EDPs using 

ground motion intensity measures (IM), such as response spectrum analysis or other empirical 

models [152], a direct data-driven approach to reconstruct EDPs using actual recordings does not 

exist, primarily due to the lack of recorded building seismic responses with sufficient structure 

information. This limitation was overcome in this study by processing all available recorded 

structure response data from CSMIP [153], to enable the inclusion of correlations from structural 

dissimilarities and the development of a generalized cross-building EDP reconstruction model. 

The overall approach uses the same model framework described above for GMPE, since it is 

naturally suitable to account for the significant variation of data quantities retrieved from different 

events. Correlations in remaining residuals were evaluated after decoupling the within-event 

residual (also known as inter-event residual) and the site residual and the kriging method was 

applied for geo-spatially distributed data interpolation. Recorded response data from buildings 

were used in this study to establish an empirical relationship between spatial correlated parameters 

and building responses as opposed to previous work in [28] which is a scenario-based prediction 
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methodology. A Monte Carlo simulation was proposed to compensate for insufficient data in some 

considered events. An additional study using simulation data also is included to demonstrate model 

applicability. The proposed generalized model, not only enables rapid damage assessment using 

measured of structural responses, it also is an alternative approach for current probabilistic seismic 

hazard analysis (PSHA) [154] to estimate probability of different damage states of a building, 

instead of based on median SA at first mode building period (
1TSA ) from GMPE, but based on 

median EDPs to account for its location, considered hazards and strucutral characteristics.  

5.2 Description of Data 

5.2.1 Data Source 

The data were retrieved from the Center for Engineering Strong Motion Data (CESMD) 

where structural responses recorded under seismic events from multiple accelerometer channels 

were processed by baseline correction, instrument correction and multiple frequency filters to 

obtain corrected acceleration and displacement time histories of each channel [153]. The earliest 

event selected for this study is M6.2 Morgan Hill earthquake occurred on April 24, 1984 and the 

latest one is an earthquake that occurred in Berkeley in 2018. A total of 24 events with epicenters 

mostly located around San Francisco and Los Angeles area (Figure 5.1a) were used to demonstrate 

the approach. The histogram of earthquake magnitude shown in Figure 5.1b follows a normal-like 

distribution shape centered at 5.5 magnitude, which agrees with assumption in PSHA that 

individual predictors (magnitude in this case) should follow normal distribution [154]. Among 

which, three extreme events with magnitude larger than 7 and one event with magnitude less than 

4 are included. A complete summary of events selected is shown in Table 5.1. Number of available 

instrumented buildings for each event ranges from a few to as many as 56, after data filtering to 

remove unhealthy records, missing channels, etc. 
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(a) 

 
(b) 

Figure 5.1 (a) Location of epicenters and (b) histogram of magnitude of included 

earthquake events 

Table 5.1 Summary of included earthquake events 

Event Name Depth (km) Mw. * Date Latitude Longitude 

No. of 

Instrumented 

Buildings 

MorganHill 9 6.2 4/24/1984 37.32 -121.68 31 

MtLewis 6 5.8 3/31/1986 37.466 -121.691 43 

Whittier 9.5 6.1 10/1/1987 34.06 -118.07 8 

LomaPrieta 18 7 10/17/1989 37.04 -121.88 4 

SierraMadre 12 5.8 6/11/1991 34.26 -118 44 

Landers 1.1 7.3 6/28/1992 34.217 -116.433 24 

BigBear 1 6.5 6/28/1992 34.2 -116.83 2 

Northridge 19 6.4 1/17/1994 34.2057 -118.5539 16 

Bolinas 7 5 8/17/1999 37.91 -122.69 5 

Gilroy 7.6 4.9 5/13/2002 36.97 -121.6 4 

BigBearCity 12.7 5.4 2/22/2003 34.31 -116.85 8 
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SimiValley 5.1 3.7 10/29/2003 34.29 -118.75 16 

Parkfield 7.9 6 9/28/2004 35.81 -120.37 7 

Anza05 13.1 5.2 6/12/2005 33.53 -116.57 12 

AlumRockArea 9.2 5.4 10/30/2007 37.432 -121.776 11 

ChinoHills 13.6 5.4 7/29/2008 33.95 -117.77 48 

Calexico 10 7.2 4/4/2010 32.26 -115.29 22 

Borrego 14 5.4 7/7/2010 33.42 -116.49 1 

Berkeley11 8 4 10/20/2011 37.86 -122.25 1 

Anza13 13.1 4.7 3/11/2013 33.5 -116.46 3 

Encino 9.9 4.4 3/17/2014 34.13 -118.49 7 

SouthNapa 11.3 6 8/24/2014 38.2155 -122.3117 1 

Borrego16 12.3 5.2 6/10/2016 33.43 -116.44 22 

Berkeley18 12.3 4.4 1/4/2018 37.8552 -122.2568 31 

* Magnitude 

The recordings come from 188 instrumented buildings subjected to the 24 earthquakes. 

Building locations are shown in Figure 5.2a and are distributed near epicenters such that majority 

of instrumented buildings are subjected to more than one event. In other words, both cross-event 

and site-to-site variability exists in the dataset. A histogram for number of stories in the buildings, 

shown in Figure 5.2b, appears to follow log normal distribution and the data covers a large range 

of instrumented buildings, although there are more low-rise buildings as might be typical within 

an urban setting. Building height, as a predictor for the model developed in this study, is transferred 

to a logarithm feature such that it approximately follows normal distribution to avoid bias in the 

prediction model. 
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(a) 

 
(b) 

Figure 5.2 (a) Locations and (b) histogram of number of stories of instrumented buildings 

5.2.2 Transfer recordings to EDP 

The source data format is in terms of acceleration, )(ta , and displacement, )(td , response 

histories for each channel of each measurement location within instrumented buildings subjected 

to one event. These physical quantities are transferred into damage related EDPs, PFA and PSDR, 

respectively. Figure 5.3 demonstrates a typical data example of a 13-story building (CSMIP station 

No. 24322) subjected to 2014 Encino earthquake. On each orthogonal translational direction, )(ta  

from corresponding channels, 1, 4, 7 and 10 in this case, were used to interpolate between 

instrumented floors to obtain acceleration response histories of each floor to obtain )(tai  at ith  

floor. )(td  from each channel, which was integrated and base-corrected from )(ta , were also used 

to interpolate for un-instrumented floors. The ith  floor story drift ratio time histories, )(ti , were 

obtained by Equation (5-3). 
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 (5-3) 

Where )(td i  and )(1 td i−  correspond to displacement response histories at floor i and 1−i  
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while n  represents total number of floors. ih  and 1−ih  is the floor height between two adjacent 

floors. The maximum absolute value over time of )(tai and )(td i  are the EDPs of interest, namely, 

PFA and PSDR along two orthogonal horizontal directions of the building. The higher demand 

from the two directions is used to represent the seismic building demand envelop. 

Two assumptions are considered regarding building response mechanism for this 

transformation process: 1) a rigid diaphragm is assumed at each floor of all instrumented building, 

and 2) torsional responses from instrumented buildings are negligible. These two assumptions 

introduce certain limitations; however, they are applied given that common sensor layouts are 

insufficient to consider rotational or non-rigid floor behavior without case-by-case study. In 

addition, linear interpolation between floors for both acceleration and displacement over each time 

step is applied to generate full profile building responses. Another 13-story building at San Jose 

(CSMIP station No. 57357) with sensors installed at a lower level, 2nd, 7th, 12th and roof levels is 

used to demonstrate linear interpolation accuracy. Leave-one-out cross validation is used by 

linearly interpolating accelerometer response history records for the H1 direction of the building 

at 2nd, 7th, 12th floor using records of all other floors. Median Absolute Deviation (MAD) is 

reported for each floor subjected to four earthquakes and shown in Table 5.2. Highest error is at 

the 7th floor where MAD exceeds 0.01g for Morgan Hill earthquake. The average median MAD 

of each floor is 0.0019g, 0.0065g and 0.0043g, respectively, indicating that linear interpolation is 

less accurate at mid-height of building while the overall interpolation result is good. Nonetheless, 

it should be noted that most of the concerned floor accelerations are relatively small and the error 

sources might be from instrumentation, filtering as well as this interpolation process. 

Table 5.2 Average median MSE of PFA interpolation 
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Earthquake 2nd Floor (g) 7th Floor (g) 12th Floor (g) 

AlumRockArea 0.0002     0.0005     0.0003 

LomaPrieta 0.0027         0.0085         0.0056 

MorganHill 0.0027         0.0108         0.0068 

MtLewis 0.0022     0.0061         0.0043 

 

Figure 5.3 Example 13-story building sensor plan layout and accelerometer channel output 

subjected to the 2014 Encino earthquake 

The linear interpolated PFA and PSDR from 35 instrumented buildings subjected to 1994 

Northridge earthquake is shown in Figure 5.4a and Figure 5.4b, respectively. Among these 

buildings are two tall buildings with more than 50 stories with relatively low seismic demands 

compared to other instrumented buildings for this event: one is 32.1 km from epicenter and has 

maximum 0.4% story drift ratio and 0.3g floor acceleration demand at the roof. It is worth 

mentioning that the seismic response of any building is determined by ground motion 

characteristics, site effects, and building properties. Figure 5.5a further shows rupture distance and 

maximum PSDR along building height for all buildings subjected to this event. The highest drift 
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demand, 1.2%, comes from a 10-story building with rupture distance of 7.8 km. A strong negative 

correlation coefficient of -0.53 is observed between rupture distance and PSDR regardless of 

building characteristics. By grouping building seismic response data into low-rise (1-3 story), mid-

rise (4-8 story) and high-rise (>8 story), the correlation becomes -1.0, -0.58, and -0.49, respectively, 

indicating that decoupling structural dissimilarities from seismic response data would improve 

trend pattern between PSDR and rupture distance. A similar result is observed for PFA as 

visualized in Figure 5.4b and Figure 5.5b. Figure 5.6a to Figure 5.6d show how the trend between 

PFA over rupture distance changes as magnitude of earthquake increases from less than 5 to more 

than 7. The strongest exponential trend is observed for magnitude of 7 or bigger events and the 

pattern decreases as magnitude drops. For events with magnitude between 5 and 7, the trend 

appears to be linear with higher dispersions, whereas the dispersion keeps increasing as magnitude 

drops to 4. As a result, the magnitude scaling term, is expected to have a nonlinear formulation to 

reflect such behavior. 

 
(a) 

 
 (b) 

Figure 5.4 (a) peak story drift ratio and (b) peak floor acceleration profile from the 1994 

Northridge earthquake  
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(a) 

 
 (b) 

Figure 5.5 Maximum response along building height of (a) peak story drift ratio and (b) 

peak floor acceleration from the 1994 Northridge earthquake  

 
(a) 

 
(b) 
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(c) 

 
(d) 

Figure 5.6 Peak floor acceleration trend over rupture distance of events with magnitude (a) 

less than 5 (b) between 5 and 6 (c) between 6 and 7 (d) greater than 7 

5.3 Model Formation and Determination of Coefficients 

5.3.1 Mix Effect Model 

Our proposed generalized cross-building EDP reconstruction model consists of three event 

and site terms which are consistent with that of GMPE, moment scaling, distance function, and 

site amplification. An additional building term is added to account for structural dissimilarity in 

Equation (5-4). 

  eHFVFdFMFY BBSSJBDM ++++= )()()()(ln 30  (5-4) 

Where Y is the interested EDP, M  is event magnitude, JBd is rupture distance and 
BH is 

height of the building. Compared to popular GMPEs (i.e., [149,150]), where magnitude is coupled 

with distance and site terms, our form is a simplified version with the intention of keeping a  

minimum number of predictors and a simplified formation such that we do not need to specifically 

tune each term as what has been done in many GMPE models. As observed in previous Figure 

5.6a to Figure 5.6d, a nonlinear relationship is believed to exist in magnitude term and a 
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polynomial to the power of two is applied to account for it, similarly to the GMPE model proposed 

by Boore and Atkinson [149]. The distance function and site amplification is designed to be similar 

to early GMPE models [138,139] considering they worked very well and were developed using a 

smaller dataset than used in this study. Two features are included for the building terms in our 

model, height of building jH , and its empirical period jT , which is a quantitative measure of 

structural material (e.g., concrete, steel),the lateral force system type, and stiffness and mass 

distribution over its height. The two considered building terms used were included because they 

reflect linear and nonlinear responses of buildings in a general manner and any other strucutral 

related features, such as moment frame dimensions or structural wall thickness would be too 

complicated to use within the proposed model. In addition, site parameter and building height are 

regularized by applying a normalizing factor for each to avoid overfitting contributed from 

individual outliers. The final complete form of our generalized cross-building EDP reconstruction 

model is in Equation (5-5). 
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 (5-5) 

Where 7...1B  and h are scaling parameters to be determined and i  is index for event and j  

is index for site. h  is an adjustment parameter for the distance measure. refV  is a reference 

coefficient for 30SV  with fixed value of 760m/s as suggested in [149] and refH  is a normalization 

factor for building height H  with fixed value of 12ft such that 
ref

ij

H

H
 becomes a level indicator of 

averaging number of stories for each building. 
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5.3.2 Meta Data Retrieval  

There are five features used in this mix-effect model, namely, event magnitude ( M ), 

rupture distance ( d ), the time-averaged 30 m shear wave velocity ( 30SV ), height of the building 

( H ) and the empirical period (T ). Event magnitude, rupture distance, and height of the building 

are retrieved through the CESMD database. 30SV  data of each considered site is approximated 

through 1-nearest neighbors method using a 30SV  Map for California with Geologic and 

Topographic Constraints provided by Thompson et., al. [155] with adjustments based on updated 

geology provided by Wills and Clahan [156], which contains metadata of 30SV  with resolution at 

7.5 arcseconds, approximately 250m across entire California. A colormap of this database is 

demonstrated in Figure 5.7 where 30SV  ranges from 176.1m/s to 1636.0m/s over the land area of 

California. Considering its dense resolution, 30SV  of nearest site from the database is used as 

estimated 30SV  in our model. A histogram of absolute estimating distance between actual building 

site and the used estimating site is shown in Figure 5.8. It shows that the maximum estimating 

distance is at 150m and the sample mean is at 79.2m. 
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Figure 5.7 Colormap of 30SV  database by Thompson et. al. [155] 

 

Figure 5.8 Histogram of estimating distance between actual building site and the used 

estimated site  

The empirical period of the building could be retrieved through system identification using 

strong motion recording data such that soil structure interaction and onsite strucutral characteristics 

are properly considered to reflect building’s actual response period. Example methodologies 

include [157] by Stewart and Fenves and [158] by Ghahari et. al. However, due to the highly 
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nonlinear responses introduced by soil structure interaction for special strucutral systems (e.g., 

base isolated structures), it is difficult to find a consistent empirical building response period for 

the sites being considered in this study. An alternative approach, estimating empirical building 

response period using ASCE-7-13 Eqn. 12.8-8 [101], is used instead. In order to get ASCE-7 

estimation, the structural material and lateral force system type of each building are needed and 

retrieved through surveying the text information provided by CESMD database. Use of an  

empirical estimation of building response period through ASCE-7-13 is systematically biased from 

actual building response period given the way it was calibrated (to generally underestimate the 

actual period so as to overestimate design forces); the included buildings in our database includes 

a number of special structures such as base-isolated structures and high-rises that require case-by-

case evaluation to retrieve their correct response period. To avoid inconsistence and remain 

concise in the period feature, ASCE-7 estimation is adopted at this point. In the future, a refined 

approach could be introduced to evaluate each building site case by case and apply improved 

methods to estimate building periods.  

5.3.3 2-stage Regression 

A 2-stage regression procedure described in [9, 10] was applied to retrieve model 

parameters in Equation (5-5). In order to regress for the above-mentioned model parameters, the 

original nonlinear form, Equation (5-5), is modified to a linear version (Equation (5-6)) by 

incorporating Taylor expansion at h . 

  1111 eBXY +=  (5-6) 
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1X  (Equation (5-7)) is the predictor matrix expanded by Taylor’s series expansion at h . 

h  is the trail value of h  and n  is total number of data points. The newly introduced coefficient, 

ikE , ,  is an indicator such that it equals to 1 if observation k is from event i  otherwise 0. eN  from 

subscription represents total number of events. In Equation (5-8) and (5-9), h  is an increment of 

h  and iP̂ s are defined in Equation (5-10) including magnitude scaling term and regression residual 

from stage 1. 

  ( ) ( )
2

1 2 3
ˆ
i i ref i ref iP B B M M B M M e= + − + − +  (5-10) 
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The stage-1 regression can be iteratively accomplished by first solving Equation (5-6) 

using ordinary least square estimator, ( ) 1
T
1

1

1
T
11 YXXXB

−
=ˆ , with assumption that the regression 

residual 1e  follows Gaussian distribution with 0 mean and 2

r  variance; and updating the assumed 

h  until convergence achieved as demonstrated in Figure 5.9. 

 

Figure 5.9 Flowchart for stage-1 regression iteration 

Stage-1 provides all model parameters in 1B  of Equation (5-9) except magnitude scaling 

coefficients, which are determined using stage-2 regression by expanding Equation (5-10) to (5-

11). Equations (5-12) to (5-14) involves a stage-2 regression formulated as 2222 eBXY += . Since 

there is covariance between each residual of 2e , a generalized least square estimator, 

( ) 2
1

2
T
2

1

2
1

2
T
22 YVXXVXB −−−=ˆ , is used where 2V  represents covariance matrix of 2e  and is given by 

Equation (5-15). 

  ( ) ( ) ( ) iiirefirefii ePPMMBMMBBP +−+−+−+= ˆˆ 2

321  (5-11) 
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To solve for 2B̂ , a trial and error process is conducted using Equation (5-16).  

  ( ) ( )  )( 2222
1

2

T

222 XBXYVBXY rankNE e −=−− −
 (5-16) 

The above 2-stage regression process calculates all parameters of the generalized cross-

building EDP reconstruction model. Table 5.2 shows all tuned parameter values using the 

prescribed dataset for two considered EDPs, peak story drift ratio and peak floor acceleration 

respectively.  

Table 5.3 Calibrated Model Parameter 

EDP Prediction 

Model 1B  
2B  3B  

4B  h  5B  6B  7B  

Peak Story Drift 

Ratio 
1.0685 1.3492 -0.0363 0.0062 5.9805 -0.1210 -0.1735 0.3449 
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Peak Floor 

Acceleration 
1.3153 1.0565 -0.1449 0.0027 2.2582 -0.1614 -0.0157 -0.0021 

5.3.4 Results 

With the calibrated parameters from Table 5.3 for PSDR, Equation (5-5) is used to 

reconstruct PSDR medians and the total residuals, ije , at each recording site (Figure 5.10a). The 

overall median of observed-to-predicted residual ratio is at 0.79, reflecting an under-estimated bias 

using the proposed reconstruction model. The percentage of data points being over-estimated by a 

factor of 2 or more (observed-to-predicted ratio is less than 0.5) is 3.2% of the total population 

while data points under-estimated by 0.5 or less is about 21.3% (observed-to-predicted ratio is 

greater than 2), with the majority of the bias from rupture distance of 30 km or more. On the other 

hand, the model is relatively unbiased for higher demands, which would produce the most building 

damage and often occur within 30 km from epicenter. For PFA, a median of observed-to-predicted 

ratio is at 1.18 as shown in Figure 5.10b. The figure shows that prediction outliers (ratio that is 

greater than 2 and less than 0.5) occur mostly at higher rupture distance (greater than 30km), 

similarly to that of PSDR. Among all observations, an upward trend is observed between the 

observed-to-predicted ratio and rupture distance. These observations suggest that the current 

reconstruction model is approximately unbiased with close-epicenter data but is not able to capture 

data points that are relatively far from the epicenter with the observed underestimating trend for 

PSDR and overestimating trend for PFA. 

Figure 5.11 shows the total residual e , observed subtracted by predicted, versus rupture 

distance (a), building height (b), event magnitude (c) and ASCE-7 empirical period for PSDR. No 

significant pattern is observed between these prediction features and the total residual indicating 

that additional effort to expand current feature term design, namely, ( )MF M , ( )D JBF d  and 

( )B BF H , may not further improve model performance in terms of reducing bias. Higher dispersion 
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of total residual is observed at lower ASCE-7 empirical period as well as lower rise buildings 

according to Figure 5.11a and Figure 5.11d, suggesting that stiffer buildings introduce higher 

variance in the data-driven model. 

 
(a) 

 
(b) 

Figure 5.10 Observed/Predicted ratio versus rupture distance of (a) PSDR and (b) PFA of 

Equation (5-5) 

 
(a) 

 
(b) 
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(c) 

 
 (d) 

Figure 5.11 Total residual versus (a) rupture distance, (b) building height, (c) magnitude 

and (d) ASCE-7 empirical period for PSDR of Equation (5-5) 

5.4 Adopting Ground Motion Prediction Equation 

Given the observed bias in this EDP reconstruction model, an alternative is to apply modern 

GMPE as a base model and expand it with additional building terms to adopt EDP response instead 

of IMs in GMPE. The advantage of taking existing GMPE model is that modern GMPEs are well-

developed with detail calibration and parameter tuning to consider event characteristics, distance 

decay and soil influences using numerous ground motion data. It is tuned to be unbiased over these 

different dimensions. The proposed model in Equation (5-5) is modified to Equation (5-17). 

  

1

2

1 2 3ln( ) ln( ) ln ln
j j

ij median ij

ref ref

H T
Y C GMPE C C e

H T

   
= + + +      

   

 (5-17) 

1C , 2C  and 3C  are model parameters and medianGMPE  is the corresponding GMPE median 

SA of each data using one of the latest GMPE model from [159], which is considered as most 

suitable for California. The two building terms remain the same format so as their normalizing 

constants, refH  and refT . With this adopted model, the coefficients are summarized in Table 5.4. 
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Table 5.4 Calibrated Adopted Model Parameter 

Adopted EDP 

Prediction Model 1C   2C  3C  

Peak Story Drift 

Ratio 
0.7161 -0.0782 1.2272 

Peak Floor 

Acceleration 
0.5739 -0.1632 0.8104 

Observed/predicted ratio versus rupture distance figure for PSDR and PFA of this adopted 

generalized cross-building EDP reconstruction model is shown in Figure 5.12. Comparing Figure 

5.10a with Figure 5.12a, the result is vastly improved as ratio between observed over predicted is 

restrained below factor of 2 indicating that underestimating PSDR is well bounded. The median 

of this ratio is 0.98 reflecting an ideal unbiased prediction model. In addition, only 8.4% of entire 

dataset is overestimated by a factor of 2 or more suggesting that the model in Equation (5-17) is 

improved to restrain underestimation without sacrificing unbiases and unbounding overestimation. 

The percentage of predictions that underestimate more than 50% compared to actual observed data 

is improved for PFA as well (Figure 5.12b). Median of ratio between observed and predicted is 

0.98 and proportion of overestimated data points is 6.5%.  

 
(a) 

 
(b) 
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Figure 5.12 Observed/predicted ratio versus rupture distance of (a) PSDR and (b) PFA of 

adopted generalized cross-building EDP reconstruction model in Equation (5-17) 

5.5 Total Residual Prediction Incorporating Spatial Demand Parameters 

As discussed before, the proposed model is used to account for feature trends from event, 

rupture distance, site and building properties and predict median responses. In order to reconstruct 

building seismic responses, we need to further develop a model for the total residual, ije . As 

indicated by Equation (5-2), according to Jayaram and Baker [96], residuals from the model can 

be decoupled to two components, inter-event residual and intra-event residual. By rearranging it 

based on a more intuitive notation, Equation (5-17) can be presented as Equation (5-18). 

  , ,ln( ) ln( )ij ij ij e i s j ijY Y e   − = = + +  (5-18) 

Where ,e i  is the inter-event residual for event i , ,s j ij +  is the intra-event residual at site 

j  and ij  is defined as record residual for site j  from event i . In later context, the inter-event 

residual will be called within-event residual and 
,s j  from the intra-event residual will be 

decoupled and called site residual. Assuming that e  follows a zero mean Normal distribution, the 

sample mean of within-event residual 
,e i  can be calculated as: 

  
,

,

1,

1 s iN

e i ij

js i

e
N


=

=   (5-19) 

Where 
,s iN  is total number of sites from event i . The sample variance can also be computed 

by 
,

2

, , ,

1,

1
( )( )

s iN

e i ij e i ij e i

js i

e e
N

  
=

= − − . Similarly, assuming the site residual s  follows a zero mean 

Normal distribution, the sample mean of site residual 
,s j  at site j  can be calculated as: 
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Where 
,e jN  donates number of events being recorded at site j . Sample variance 2

,s j  of 

site j  can also be calculated handy. Equation (5-19) and (5-20) gives sample mean estimate of 

within-event residual and site residual enabling further decoupling event and site effect from total 

residual 
ije . Such procedure provides us the within-event residual 

,e i  for each considered 

earthquake i  and site residual 
,s j  for each considered building site j . The histogram of the 

record residual, 
ij , for both PSDR and PFA is shown in Figure 5.13. The histograms show that 

residuals from the current generalized cross-building EDP reconstruction model and decoupled 

site and event effects is approximately unbiased with standard deviation of 0.613 for PSDR and 

0.492 for PFA. The next step is to reconstruct these residuals using available features to further 

reduce their variances.  

 
(a) 

 
(b) 

Figure 5.13 Record residual   histogram of (a) PSDR and (b) PFA 

Due to the small amount of data recorded per site and very few recorded data for some 

earthquake events (e.g., the 1992 Big Bear earthquake where responses were obtained in only two 
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buildings), site and event terms could be inaccurate. One popular adopted method to reduce record 

residual variance is to utilize geographical features within each event. A common measure to 

quantify spatial correlation is to use the distance separating two sites, i.e., acknowledging that this 

geographical feature of each building site is directly related to covariance between sites through 

the distance separating the sites. A correlogram generated using record residuals 
ij , which are 

regressed from the adopted generalized cross-building EDP reconstruction model using Equation 

(5-17), and excluded corresponding within-event and site residuals using Equation (5-18 to 20) for 

the 2007 Alum Rock earthquake of PSDR and PFA, are shown in Figure 5.14a. It is observed that 

correlation coefficients are proportionally related to the separating distance within 7km inter-site 

distance range, observing perfect correlation at 0 inter-site distance and zero correlation at 7km 

inter-site distance, implying that variance of the record residuals can be further reduced by 

incorporating neighborhood data between recording sites within the same event. The result also 

suggests that spatial trend is properly removed using Equation (5-17) at the resolution scale of 7km 

as correlation between sites are not observed beyond 7km. 

The next step is to reconstruct record residuals using their geographical correlation pattern 

such that the variance of prediction is further reduced. A spatial prediction procedure, kriging, is 

introduced to extract the distance-dependent information from record residuals. Kriging, also 

referred to as Gaussian process regression, is an unbiased estimator that interpolates spatially 

distributed random variables using prior covariances defined by separating distance h  between 

two sites. The prior covariance is retrieved through using available recorded data to fit an empirical 

semi-variogram model ( )h , which is given by Equation (5-21) [109]. 
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Where aX  and bX  are all pairs of data that have separating distance ranges from h h−   

to h h+   and there are ( )N h  pairs of them for each h . h  determines the resolution of 

resulting semi-variogram and is chosen to fit number of available data points. An exponential 

function is used to fit the empirical ( )h  to generate a continuous covariance model (Figure 5.14b) 

of both PSDR and PFA. Observing that the correlation trend in Figure 5.14a for PFA is generally 

stronger than that of PSDR (i.e., 0.55PFA =  compared to 0.42PSDR =  at 3.75km and 

0.15PFA =  compared to 0.02PSDR =  at 6.75km) indicates that record residual of PFA is 

generally spatially correlated which is reflected in Figure 5.14b with a less stiff semi-variogram. 

The kriging procedure is then applied to interpolate PSDR and PFA. Detail fitting and interpolation 

procedures can be found in [28] by Han et. al.  

A standard Machine Learning validation procedure, training/testing random split, is 

applied to examine the constructability of record residuals for the above described 2007 Alum 

Rock earthquake and the overall prediction performance combined with previous proposed 

adopted model. The interpolation result of record residual is shown in Figure 5.15 by randomly 

selecting 30% of PSDR record residuals as training data to predict the remaining 70% of total 31 

observations from the event using the kriging procedure in [28]. The observed versus predicted 

record residual is on par with each other as shown in Figure 5.15a. To further examine the effect 

to reduce variance for prediction, Figure 5.15b shows a plot of observed/predicted ratio before (red 

box) and after (blue circle) the record residual is applied. A significant improvement in prediction 

performance is observed as the ratio variance drops from 0.104 to 0.02 with kriging interpolation. 
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A similar result is also observed for PFA record residuals for this particular event. However, it is 

worth mentioning that there are events with very few recorded data points such as 1984 Morgan 

Hill earthquake with only 7 recorded data available, which makes it impossible to generate valid 

semi-variograms. As a result, the record residual interpolation method is not applicable for every 

event in our dataset. In addition, the kriging interpolation performance of record residuals is not 

stable when the number of available recordings is insufficient to generate a representative semi-

variogram model. Lack of recordings also causes sparse distribution of sites and introduces higher 

variance in the kriging model where site-to-site distance is greater than 10km, where spatial 

correlations vanish. For example, Figure 5.16a shows the observed versus predicted recorded 

residuals from the 30% training data of the 1987 Whitter Narrows earthquake which only has 15 

recordings sparsely distributed in Southern California such that only 6 pairs of data are within the 

range between 2.5km to 7.5km. Due to the inaccurate correlation model together with less closely-

distributed data, the kriging interpolation model has a relatively poor performance as observed 

from Figure 5.16a and the overall model prediction result is not improved with spatial interpolation 

as shown from Figure 5.16b. 

 
(a) 

 
(b) 
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Figure 5.14 (a) Correlogram of record residual from the adopted generalized cross-

building EDP reconstruction model and (b) its fitted exponential semi-variogram model for 

PSDR and PFA of the 2007 Alum Rock earthquake 

 
(a) 

 
(b) 

Figure 5.15 (a) Record residual kriging interpolation result and observed/predicted ratio of 

PSDR using 30/70 percentage training testing split of recorded data from the 2007 Alum 

Rock earthquake 

 
(a) 

 
(b) 

Figure 5.16 (a) Record residual kriging interpolation result and observed/predicted ratio of 

PSDR using 30/70 percentage training testing split of recorded data from the 1987 Whitter 

Narrows earthquake 
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Besides retrieving additional data, which is not likely for past events, an alternative Monte 

Carlo simulation procedure is proposed to generate enough data to construct a representative semi-

variogram model for a given historical event that may not have sufficient recordings by simulating 

within-event and site residuals from previous decoupling procedure in Equation (5-18 to 5-20). 

The within-event residual sample mean 
,e i  for event i and site residual sample mean 

,s j  for site 

j  are already known as well as within event and site residual sample variance. By assuming that 

the residuals follow Normal distribution, we can simulate these residuals based on the sample 

statistics to generate synthetic data for events that lack of actual recordings. The detail procedure 

is given below. 

 

Figure 5.17 Simulated coordinates for 2007 Alum Rock Area earthquake  

Step 1: retrieve sample mean of within-event and site residual using Equation (5-19) and 

(5-20); 

Step 2: for the considered event i , random sample from two independent uniform 

distributions to obtain geo-locations, latitude and longitude respectively, of the simulated 



  

138 

 

observations. In addition, apply interpolation method to retrieve their corresponding 30SV  using 

USGS database of 30SV  [160] (demonstration using 2007 Alum Rock Area earthquake in Figure 

5.17); 

Step 3: random sample from a uniform distribution (12ft to 168ft) to obtain simulated 

building height for each synthetic building; 

Step 4: apply the generalized cross-building EDP reconstruction model to retrieve median 

EDP demand, ln( )ijY , for each simulated observation and recover the full observation by adding 

simulated within-event residual,  
,e i , sampled from 

, ,( , )e i e iN    and simulated site residual, 
,s j , 

from 
, ,( , )e j e jN    which yields Equation (5-22); 

  , ,ln( ) ln( )ij ij e i s jY Y  = + +  (5-22) 

Step 5: generate empirical semi-variograms for each event using the simulated ln( )ijY .  

The above Monte Carlo simulation method is provided as an alternative for historical 

events that lack sufficient recordings to fit a representative semi-variogram model. It is, however; 

limited by the assumption that within-event and site residuals follow Normal distribution with the 

sample variance and mean and additional uncertainties introduced through various simulations of 

geo-locations, soil properties and building heights.  

5.6 Demonstration using Simulation Data 

This proposed generalized cross-building EDP reconstruction model is also demonstrated 

on simulation data. The model calibration procedure described in Equation (5-17) is applied to 

reconstruct PSDR and PFA median for a collection of seismic building responses generated using 

NRHA for concrete moment frame buildings subjected to the 1994 Northridge earthquake at 152 

sites (Figure 5.18). OpenSees [42] models were used for five different concrete moment frame 



  

139 

 

buildings with 2, 4, 8, 12, and 20 stories, respectively. Model details can be found in [100]. The 

two horizontal ground motion acceleration histories are applied to the 2D model and the resultant 

maximum absolute responses from the two orthogonal directions, PSDR and PFA, along building 

height profile are shown in Figure 5.19a and Figure 5.19b versus rupture distance. Comparing to 

Figure 5.5 (recorded building response data subjected to the same 1994 Northridge earthquake 

event), similar attenuation trend patterns over rupture distance are observed for both EDPs across 

different height of buildings. 

 

Figure 5.18 Sites map of the 1994 Northridge earthquake  
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(a) 

 
 (b) 

Figure 5.19 (a) PSDR and (b) PFA subjected to the 1994 Northridge earthquake from 

concrete moment frame model 

Table 5.5 Calibrated Adopted Model Parameter for Simulation Dataset of the Northridge 

earthquake 

Adopted EDP 

Prediction Model 1C   2C  3C  

Peak Story Drift 

Ratio 
1.326 -1.5626 1.5457 

Peak Floor 

Acceleration 
0.6968 0.2784 0.4775 

The same procedure used to develop Equation (5-17) is applied to retrieve model 

parameters for reconstructing PSDR and PFA median using the simulation dataset summarized in 

Table 5.5. Comparing to Table 5.4 of the same model parameters using recorded dataset from 26 

historical earthquake events, considerable changes are observed for both EDPs, indicating that the 

model sensitivity is relatively high between different datasets. It should also be mentioned that the 

simulation data comes from a single event such that the earthquake source term is no longer 

effective. In addition, the building material and types are limited to concrete moment frames. The 



  

141 

 

observed-to-prediction ratio is shown in Figure 5.20 and compared to Figure 5.12, where mean 

ratio for PSDR and PFA is at 1.003 and 0.997 also suggesting unbiased property of the model. As 

observed in Figure 5.20a, prediction performance of PSDR is among the best as it is bounded by 

0.63 and 1.32. On the other hand, there are 1.3% and 5.8% of the entire PFA dataset with over 2 

and less than 0.5 observed-to-predicted ratio and majority of which are within 10km rupture 

distance (Figure 5.20b). Figure 5.21 shows that the observed-to-prediction ratio over rupture 

distance, building height, magnitude and ASCE-7 empirical period for PFA to visualize specific 

bias towards each used feature. It can be observed that the high dispersion in observed-to-

prediction ratio exists for lower rupture distance, lower building height and empirical period. 

Similar trend is also observed in the result of recorded dataset in previous section. The result 

suggests that the proposed model does not fully capture near-epicenter PFA patterns of the 

buildings, which are subjected to the highest seismic forces and response in the nonlinear range. 

Force related seismic responses from buildings are expected to be restrained due to yielding at 

critical components (beam-column joints between first and second floor level for this particular 

dataset) while deformation related seismic responses, PSDR, are expected to increase as 

contribution from plastic deformation increases significantly. The lower predictive performance 

of the PFA model may be caused by greater amount of data focusing at higher rupture distance 

range in this simulation dataset as opposed to the recorded dataset that shifts the model focus at 

the linear seismic demand range. This finding indicates that data-driven model performance is 

highly dependent on appropriate selection of dataset. 
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(a) 

 
(b) 

Figure 5.20 Observed-to-prediction ratio versus rupture distance of (a) PSDR and (b) PFA 

from concrete moment frame models subjected to the 1994 Northridge earthquake  

 
(a) 

 
(b) 
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(c) 

 
(d) 

Figure 5.21 Total residual versus (a) rupture distance, (b) building height, (c) magnitude 

and (d) ASCE-7 empirical period for PSDR of the simulation dataset of the 1994 

Northridge earthquake 

5.7 Summary 

An empirical data-driven model to estimate the median of two critical seismic building 

responses, PSDR and PFA, is presented. Two versions of the model are included in this study. One 

follows the design of GMPE and applies a mix-effect model to calibrate model parameters and is 

referred to as the generalized cross-building EDP reconstruction model. An alternative model, that 

adopts the predicted median of ground motion intensity and spectra acceleration from a current 

GMPE to represent event characteristics, intensity attenuation, and site characteristics, is referred 

to as the adopted generalized cross-building EDP reconstruction model. Both versions contain a 

building term that incorporates cross-building features, building height, and ASCE-7 empirical 

period, which includes fundamental building properties into model consideration. A recorded 

dataset containing building seismic response histories collected from 196 buildings subjected to 

26 historical earthquakes within California since 1984 are used to validate the proposed model. In 

addition, a simulation dataset containing NRHA building seismic responses from 5 representative 



  

144 

 

concrete moment frame buildings subjected to the 1994 Northridge earthquake is also used to 

examine the validity of the model for different datasets. The major contribution of the proposed 

model is that it is the first, generalized empirical data-driven model in the strucutral and earthquake 

engineering field that considers both cross-event and -building features. In addition, the recorded 

dataset used in this study is among the largest real-world set of recordings in terms of building 

seismic responses. The proposed model can be used to estimate median damage related EDPs in a 

rapid manner after a seismic event to provide vital information for community response and 

recovery. It can also be used as in probabilistic seismic risk assessment for buildings to provide a 

median EDP estimation which incorporates additional uncertainties from event, site, and path 

phenomena.  

The two versions of the proposed generalized EDP reconstruction model are different in 

the consideration of moment scaling, distance function, and site amplification terms. While the 

regular version is designed based on earlier GMPE models with a relatively simple layout, the 

adopted version directly uses these terms from modern GMPE which has been carefully calibrated 

in prior studies and includes a fairly complex formulation. The building term for both versions 

remains the same. The observed/predicted ratios indicate that the regular version is biased for both 

EDPs and has more outliers compared to the adopted version, which is perfectly unbiased, most 

likely due to the prior calibration effort from researchers contributing to the development of 

GMPEs. Although the adopted version is recommended based on model performance over the 

recorded dataset, the need for a separate, independent approach to reconstruct EDP median values 

remains an interesting topic to investigate.  

In order to fully reconstruct the EDPs, the total residuals, subtracting the predicted median 

using the proposed model from actual EDPs, are further evaluated by decoupling event and site 
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residuals to generate record residuals, which are predicted using the kriging interpolation method 

developed by Sun et. al. in [28]. Results show that the generalized cross-building EDP 

reconstruction model, together with decoupling procedures, removes trends corresponding to sites 

with more than 10km inter-site distance. The kriging interpolation procedure is applied to 

reconstruct the total residuals using the Alum Rock earthquake. Comparing results from models 

with and without kriging interpolation demonstrates that the kriging interpolation procedure 

reduces variance of the observed/predicted ratio to improve reconstruction performance. However, 

it should be noted that this is not guaranteed for all event cases due to lack of recorded data within 

an event resulting less representative correlation patterns being captured in the kriging 

interpolation. A Monte Carlo simulation procedure is proposed to generate synthetic data as an 

alternative to retrieve more reliable correlation patterns.  

A simulation dataset from 5 representative concrete moment frame buildings subjected to 

ground motions recorded in the Northridge earthquake is used to demonstrate the adaptability of 

the proposed model for a different dataset. The adopted generalized cross-building EDP 

reconstruction model is observed to perform the best for PSDR among all datasets but the worst 

for PFA. The large discrepancy shown in the simulation dataset suggests that the prediction 

performance of the model is highly dependent on appropriate selection of dataset.  

There are several limitations in this proposed generalized model which can be improved 

through the following aspects. First, the recorded dataset is processed based on the assumption that 

torsional responses from buildings are negligible, which can be improved by investigating 

peripheral channels at available floors to correct channel data from unavailable floors. Second, the 

current empirical period feature is retrieved based on ASCE-7 estimation and is systematically 

biased towards empirically stiffer buildings compared to actual building responses period. Future 
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studies could focus on investigating each considered building according to their strucutral type and 

apply system identification methods to retrieve their actual building response period from 

measured data. In addition, the retrieval of 30SV  in this current model is through 1-nearest neighbor 

approach based on a provided map from USGS with resolution at 250m. Due to the high variation 

observed in 30SV , it would be more reliable to retrieve 30SV  at each considered site using their 

exact site geology and survey data. The residual decoupling and interpolation procedure could also 

be improved by applying Bayesian approach to retrieve within-event and site residuals given the 

small size of current dataset rather than sample mean, which will be demonstrated in next chapter.  
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6. Development of A Bayesian Hierarchical Model for Within-event Residual 

using Recorded Seismic Building Responses 

6.1 Introduction  

The Intensity Measure (IM) at a site subjected to an earthquake, such as Spectra 

Acceleration (SA) and Peak Ground Acceleration (PGA), is a critical quantitative measure that is 

related to the intensity of ground shaking and the corresponding seismic risk to buildings at the 

site. Hence, estimating IMs is an essential part of seismic risk assessment for individual structures, 

a cluster of buildings, a city, or a region. However, earthquakes are a sequence of extremely 

complex physical phenomena, resulting from energy release associated with movement of tectonic 

plates that generates consequential seismic wave propagation along rock layers which then travels 

through soil to the ground and becomes site shaking. Due to the numerous physical systems 

involved interacting with each other at such large scale, earthquakes are extremely stochastic and 

complicated, and therefore, it is difficult and impractical to develop physics-based models to 

estimate IMs throughout the entire process. Direct measurement of IMs, e.g., using ground motion 

stations, is ideal but requires too many sensors to be practical. Hence, data-driven models are often 

preferred and most commonly used in IM estimations across seismology and earthquake 

engineering, such as the widely used Ground Motion Prediction Equation model [149,151,159].  

Engineering Demand Parameters (EDPs) derived from seismic responses of buildings are 

building specific IMs that contain strucutral information from the buildings and are directly related 

to building damage caused by earthquakes. In Chapter 5, a generalized cross-building EDP 

reconstruction model is developed to estimate two major types of system level response EDPs, 

Peak Floor Acceleration (PFA) and Peak Story Drift Ratio (PSDR), of a building at any site within 

California subjected to an event. A decoupling procedure to separate within-event residual is also 
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demonstrated using a simplified Frequentist’s approach, sample mean of all data within the same 

event (Equation 5-19). However due to the relatively small amount of recordings available for a 

number of events considered, e.g., 4 recordings from the 1989 Loma Prieta earthquake, 2 

recordings from the 1992 Big Bear earthquake and extreme cases such as only 1 recording 

available from the 2010 Borrego earthquake, using sample mean to estimate population mean is 

obviously not ideal.  

In this chapter, a Bayesian hierarchical model is proposed to address the estimation bias 

using sample mean of unrepresentative samples to decouple within-event residual from the total 

residual. The Bayesian hierarchical model contains three layers, the lowest layer for modeling 

within-event individual EDPs, the middle layer for modeling parameters of each earthquake event 

model in the lowest layer, and the top layer for modeling parameters of the middle layer. Within-

event residuals are considered as a series of model parameters (distribution means of the lowest 

layer within-event models) that can be retrieved through integrating with the observed data (total 

residual in our case) using Bayes’ theorem. The main advantage to apply this hierarchical structure 

is that it incorporates uncertainties from all available data to reduce biased estimation caused by 

smaller number of samples as compared to empirical sample mean of each event as used in Chapter 

5. It is also beneficial to understand the earthquake mechanism as a multi-parameter problem in 

the data-driven model domain to provide insight into the event effect on the total residual and its 

contribution to the overall variation in EDPs.   

6.2 Data 

The details of the EDP data are presented in Section 5.2, which include 371 pairs of 

observed total residual of EDPs, PSDR and PFA recorded in 188 buildings subjected to 24 

historical earthquakes from 1984 to 2018 within California. The EDP data are used to develop the 
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proposed Bayesian hierarchical model. The logarithm total residual e ,  is calculated by 

subtracting the prediction median ŷ , which is given by the generalized cross-building EDP 

reconstruction model, by the observed EDP responses y  as shown in Equation (6-1). From this 

point, the term logarithm will not be used throughout this chapter to avoid repetitive descriptions. 

  ˆln( ) ln( )e y y= −  (6-1) 

Histograms of the PSDR and PFA total residual across all earthquake events are shown in 

Figure 6.1. It is observed that PSDR total residual distributes more ‘normal-like’ compared to PFA. 

Medians of both EDP total residual reside at around zero indicating that both datasets are not 

biased. The highest population bin for both EDP total residual is slightly higher than zero 

suggesting that the within-event residual of majority events most likely is greater than zero. To 

better visualize the total residual according to events, selected event specific histograms are shown 

in Figure 6.2 and Figure 6.3. For events that include more than 20 data points, such as the 1994 

Northridge earthquake (Figure 6.2a and Figure 6.3a), uni-modality is observed from the histogram 

suggesting that sample mean is a reasonable estimation of within-event residual. On the other hand, 

events that lack sufficient data points, such as the 1992 Landers earthquake in Figure 6.3c and 

Figure 6.3c, no clear mode can be retrieved from the histogram and therefore the sample mean 

might be a biased estimation of the within-event residual. This observation is the primary 

motivation for applying Bayesian hierarchical model to get within-event residual.  
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(a) 

 
 (b) 

Figure 6.1 Histograms of the (a) PSDR and (b) PFA total residual across all earthquake 

events 

 
(a) 

 
(b) 
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(c) 

 
 (d) 

Figure 6.2 Histograms of PFA total residual of (a) the 1994 Northridge earthquake, (b) the 

2014 South Napa earthquake, (c) the 1992 Landers earthquake and (d) the 2003 Big Bear 

City earthquake 

 
(a) 

 
(b) 
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(c) 

 
 (d) 

Figure 6.3 Histograms of PSDR total residual of (a) the 1994 Northridge earthquake, (b) 

the 2014 South Napa earthquake, (c) the 1992 Landers earthquake and (d) the 2003 Big 

Bear earthquake 

6.3 Bayesian Hierarchical Model 

6.3.1 Statistical Model Layout 

As previously noted, there are three layers in the proposed Bayesian hierarchical model for 

the total residual dataset (Figure 6.4). The top layer, also known as hyperprior model, is a 

hyperparameter level represented as 2( , )p   , that models the distribution of the hyperparameters 

used in the middle layer. The middle layer, known as the prior model, is a distribution that models 

the mean parameters, the within-event residuals 
,e i  donated in Chapter 5, of each within-event 

model in the bottom layer. The bottom layer, known as the likelihood model, consists of individual 

models for each event that the total residuals, e , is sampled from. The final layout of the proposed 

Bayesian Hierarchical model can be formulated in Equation (6-2).  

  
2 2 2 2 2

, , ,( , , , | ) ( | , ) ( | , ) ( , )e e i e i e i e i

i i

p e p e p p             (6-2) 
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Where 2( , )p    is the hyperprior model with hyperparameters,   and 
2 , respectively. 

2

,( | , )e ip     represents the prior model for the within-event residual, 
,e i  of event i . 

2

, ,( | , )i e i e ip e    is the individual likelihood model for the total residual 
ije  from event i  at site j , 

and ie  represents the sample mean of event i , or within-event residual sample mean. The product 

at both the prior and likelihood model levels indicate that they are independently sampled at their 

corresponding level. By applying the Bayes’ rules, the proposed Bayesian hierarchical model is a 

product of the above three represented models in Equation (6-2) as 2 2( , , , | )e ep e    . 

Furthermore, the middle layer is assumed to be a Gaussian distribution model for the 

within-even residuals since it is theoretically difficult to infer a particular distribution for the 

middle layer without specifically knowing it from a separate source. A Gaussian distribution is 

selected mainly due to its highly adjustable skewness properties to simulate almost any type of 

unimodality distributions. As discussed before, Figure 6.2a and 6.2b as well as Figure 6.3a and 

6.3b suggest that a Gaussian distribution fits the logarithm within-event total residual distribution 

well (bottom layer). Jayaram and Baker rigorously evaluated and showed the univariate normality 

property of total residual for spectra acceleration [161] using various methods, including the Q-Q 

statistical test, which is adopted with a simplified evaluation here. Figure 6.5 provides the Q-Q 

statistical plots for example event, the 1994 Northridge earthquake data, of both PSDR (Figure 

6.5a) and PFA (Figure 6.5b), which correspond to the within-event total residual data visualized 

in Figure 6.3a and Figure 6.2a, respectively. Q-Q plot is a normality indicator for the applied data, 

the closer the blue dots fit to the red theoretical line, the more likely the data can be represented 

by a Gaussian distribution. It is observed that the distribution of within-event total residual for the 

1994 Northridge earthquake, as well as other events that contain sufficient data points not shown 

here, is well-represented by a normal distribution, which validates the assumption of using a 
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Gaussian distribution at the bottom layer. Across the bottom layer, each earthquake event is 

assumed to be independent because their epicenters are different and thus, the source term and 

path term remaining in the total residual are not correlated outside the event considered. However, 

this does not suggest that they are totally independent from each other, as they are correlated 

through the upper layers. In addition, it should be noted that some observations from different 

events are retrieved at the same site; therefore, these observations are correlated through the site 

term remaining in the total residual. To properly account for this, one additional layer for site 

models could be applied. This additional layer is not included in current study due to insufficient 

data from the 188 considered sites (buildings) for the current dataset. With the above assumptions, 

the complete version of Equation (6-2) is given as Equation (6-3) and shown in Figure 6.4.  

  
2 2 2 2 2

, , ,( , , , | ) ( | , ) ( | , ) ( , )e e i e i e i e i

i i

p e N e N p             (6-3) 

It can be shown that 2

,e i , variance of the prior model, appears on the condition side 

indicating that it is known to us. In addition, the hyperprior model, 2( , )p   , has not been specified 

yet. To finalize the complete conditionals of this model, additional assumptions are introduced in 

the following two sections regarding hyperprior model choice and variance consideration of the 

prior model.  
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Figure 6.4 Proposed Bayesian hierarchical model layout 

 
(a) 

 
 (b) 

Figure 6.5 Q-Q plot for (a) PSDR and (b) PFA total residual of the 1994 Northridge 

earthquake 

6.3.2 Hyperprior Choice 

One key step of the Bayesian hierarchical model is to determine which hyperprior model 

to use, namely, 2( , )p   , which represents the prior knowledge of the distribution of 

hyperparameters,   and 
2 , mean and variance of the Gaussian model of the within-event residual 

mean parameter, e . The choice of hyperprior model reflects restrictions on the prior model at the 
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middle layer. Given the small size and unbalanced dataset of our case, it is intended to apply a 

non-informative hyperprior model for the top layer such that no additional information is brought 

into the Bayesian hierarchical model besides the dataset used. In other words, the model 

parameters are only determined using the dataset. A number of justifications over using non-

informative hyperprior for Bayesian hierarchical models have been proposed in the past including 

[162,163] and selection of non-informative hyperprior models are widely discussed such as 

[164,165]. A suitable choice of non-informative hyperprior that matches the dataset used in this 

study is an Inverse Gamma distribution for 
2  with parameter   and   to adjust the model to 

approximate the widely used noninformative Jeffreys prior ( 2

2

1
( )p 


 ), which essentially is a 

non-informative distribution for the hyperprior parameter 
2 . In addition, it is typical to further 

assume that the   and 
2  within hyperprior model are independent from each other such that the 

hyperprior model can be written as: 

  2 2 2 2( , ) ( | ) ( ) ( | , )p p p IG          (6-3) 

Where   and   are chosen to be 0.01 to reflect that a noninformative hyperprior model 

is used, as suggested in [166].  This setup enables applying simulation to retrieve model parameters 

of the proposed Bayesian hierarchical model using Markov Chain Monte Carlo (MCMC), which 

is discussed in the following sections.  

6.3.3 Variance Consideration of Within-event Model 

The variance term 2

,e i  of each likelihood model at the bottom layer is assumed known in 

the proposed Bayesian hierarchical model which, to a certain extent, enables some level of control 

over the dispersion of the individual event model at the bottom layer. As mentioned before, one of 

the most important properties of our dataset is that the amount of observations in each event varies 
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significantly from very few (2 or 3) to quite a lot (50s to 60s), indicating that the within-event 

variance of the dataset is very diverse. In order to properly take this into consideration, 2

,e i  is 

assigned to be proportional to the total variance of entire dataset ( 2

e ) scaled by number of 

observations in that particular event, 
in , as shown in Equation (6-4). 

  

2
2

,
e

e i

in


 =  (6-4) 

6.4 Markov Chain Monte Carlo Simulation and Gibbs Sampler for Posterior Inference 

6.4.1 Simulation Setup 

With the Bayesian hierarchical model setup, the goal is to estimate all relevant model 

parameters, namely,  , 
2  and e . In other words, we wish to learn about the joint distribution 

2( , , )e     with the dataset e and within-event variance 2

e  available, mathematically, 

2 2( , , | , )e ep e    , which is a posterior of the proposed Bayesian hierarchical model 

2 2( , , , | )e ep e     by integrating the dataset. At this point, it becomes convenient to estimate these 

model parameters through MCMC. We start by defining a stationary Markov chain 

0 1 2, , , MC C C C  with the states 2( , ( ) , ( ) )m m m

m eC   = at state m . The simulation continues until 

reaching a state M  such that MC  converges to a stationary 2 2( , , | , )e ee      distribution 

according to [167] which can be achieved by using the Gibbs sampler [168]. The Gibbs sampler 

constructs the Markov chain by repeatedly sampling from the complete conditionals specified by 

updated states of each of the involved model parameter as below.  

  
2 1 1 2~ ( | ( ) , , , )m m m

e ep e    − −
 (6-5) 

   

  
2 1 2( ) ~ ( | , , , )m m m

e ep e    −
 (6-6) 
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And for each event i , we have:  

  
2 2

, ~ ( | , ( ) , , )m m m

e i ep e      (6-7) 

The above Gibbs sampler simulation continues until the convergence criteria are met at 

step M . The following equations list all specific complete conditionals with respect to Equation 

(6-5) to (6-7).  

  ( )
2

2( | ) | , ,i

i e

p rest N p
N


    

 
  

 
  (6-8) 

  
2 2 2 2

,

1
( | ) | 1, ( ) ( , )

2 2

e
e i

i

N
p rest Inv Gamma p     

 
 − − − 

 
  (6-9) 

  

2 2

,

, , 2 2 2 2

, ,

/ / 1
( | ) | ,

1/ 1/ 1/ 1/

i e i

e i e i

e i e i

e
p rest N

  
 

   

 +
   + + 

 (6-10) 

The derivation of the above complete conditionals can be found from [169]. By applying 

the hyperprior defined in Equation (6-4), the Markov chain is formulated, and its result will be 

discussed in next section. It should be noted that a direct simulation through the joint posterior 

2 2( , , | , )e ep e     in this case is also viable due to theoretical closed-form solution available in 

this case, a Bayesian hierarchical Normal model. The essential difference between direct 

simulation through the joint posterior and Gibbs sampler simulation through the complete 

conditionals is that the former requires drawing samples from much higher dimensional models 

(given the number of events in our case: 24), e.g., 2~ ( | , )ep e    as opposed to 

2 2~ ( | , , , )e ep e      in the latter case. This results in substantially improved convergence, 

whereas convergence may not be achieved using the Markov chain for the direct simulation in a 

reasonable time period. On the other hand, due to sampling from dependent models (Gibbs sampler) 

rather than . . .i i d  models (direct simulation), the result from Gibbs sampler requires longer 
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sequences for integration to estimate the model parameters. Still, the Gibbs sampler approach is 

much more computationally efficient and stable compared to direct sampling in our case.  

6.4.2 Convergence Analysis 

To validate convergence has been met in the simulation, three Markov chains are simulated 

independently with 100 Monte Carlo steps initialized at randomly generated states. The estimated 

value of any model parameter ( ) at step M  is calculated by Equation (6-11). 

  
1

1ˆ
M

m

mM
 

=

=   (6-11) 

Using Equation (6-11), the simulation result of estimated   and 
2  of PSDR in Figure 6.6 

shows that the three randomly initialized chains of both hyperparameter approach to the same 

values,   to around 0 and 
2  to 0.51 suggesting good convergence at step 100. Figure 6.6a also 

shows that the prior mean of all events converges to 0 suggesting an unbiased within-event residual 

at the middle layer. This further validates that the generalized cross-building EDP reconstruction 

model in Chapter 5 is unbiased for PSDR. Besides the trend plots of individual model parameter, 

a more rigorous technique, Gelman and Rubin Diagnostics ([170,171]), is applied to validate 

convergence of Markov chains through examining their posterior marginal variance var( | )e , 

defined as 
2̂ . Let the set of C  chains to be  : 1,2,...cMC c C= , the within-chain mean of a 

particular parameter   of chain c  be c  and the mean of   over all chains be  . The between- 

and within-chain variance, 2

b  and 2

w  can be calculated using: 

  
2 2

1

1 C

w c

cC
 

=

=  , where  

  ( )
22

1

1
( ) ( )

M

c c c

m

m m
M

  
=

= −  (6-12)  
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2 2

1

( )
1

C

b c

c

M

C
  

=

= −
−
  (6-13) 

With that, the corresponding ̂  of posterior marginal variance can be estimated as a 

weighted sum using between- and within-chain variance:  

  
1 1

ˆ
w b

M C

M MC
  

− +
= +  (6-14) 

From Figure 6.7 using   as an example, it is observed that the trend of posterior marginal 

variance 
2̂  and between-chain variance 2

w  approach each other after 15 Monte Carlo steps and 

remains almost equal beyond this. According to Gelman et. al. [170], the posterior variance 

estimate 
2̂  should be very close to the within-chain variance 2

w  if all C  chains have reached 

the target distribution, which suggests that convergence of all chains has been achieved for the 

considered model parameter, in our case,  . In addition, the autocorrelations among the sequence 

of Monte Carlo samples of each chain shown in Figure 6.8 are considerably small (samples are 

close to . . .i i d  from each other within the chain), which also validates the convergence of the 

proposed MCMC method for   of PSDR total residual. Autocorrelation is observed to drop 

significantly from 1 at lag 0 to 0.1 at lag 2 for all three chains. Similar findings are observed for 

all other model parameters for both PSDR and PFA total residual data. Therefore, it can be 

concluded that the proposed MCMC has converged in the simulation.  
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(a) 

 
 (b) 

Figure 6.6 Simulation result of   and 
2  of PSDR 

 

Figure 6.7 Trend of the within-chain and the posterior marginal variance of   ( var( | )e ) 

from the Markov chain simulation of PSDR 
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Figure 6.8 Autocorrelation of   from the Markov chain simulation of PSDR 

6.5 Discussion over Within-event Residual Results 

Results using MCMC to estimate within-event residual in the proposed Bayesian 

hierarchical model are shown in Figure 6.9 and Figure 6.10 for PSDR and PFA, respectively. Both 

start with randomly generated states and gradually converge after 70 Monte Carlo steps simulated.  

 

Figure 6.9 Trend of the Within-event residuals of all earthquakes from the Markov chain 

simulation of PSDR 
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Figure 6.10 Trend of the Within-event residuals of all earthquakes from the Markov chain 

simulation of PFA 

A summary of within-event residual after convergence is provided in Table 6.1 for PSDR 

and Table 6.2 for PFA where the deviation ratio is calculated by the absolute difference between 

within-event residual from MCMC and from sample mean divided by that from MCMC. Table 6.1 

shows that the deviation ratio of the within-event residual from MCMC and that from the sample 

mean is within 30%, except for the event Berkeley18 for PSDR, which implies that the two 

methods are generally close with higher within-event observations. However, it does not 

necessarily hold for events with relatively large number of recordings. For example, the deviation 

ratio for the event Berkeley11 is 125.1% with 22 observations available, which ranks sixth among 

all events in current dataset. Some events with fewer number of recordings, such as Anza13 and 

Borrego16, are observed with small deviation ratios. However, the deviation ratio of most events 

with very few observations, such as 1 for the event SanSimeon and Parkfield, 2 for the event 

BigBear, is extremely large ranging from 100% to 8000%, suggesting that sample mean is not a 

good measure for these events. Table 6.2 shows similar findings for PFA, except the deviation 
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ratios are restrained with the highest one at 186.4% of the event SanSimeon with only 1 

observation available. The much lower discrepancy between MCMC and sample mean for within-

event residual of PFA suggests that the total residual of PFA within an earthquake event has less 

variation compared to that of PSDR, which is also observed in Chapter 5. It should be noted that 

these findings are based on use of the current small dataset and may not indicate the actual 

statistical properties of a larger recorded building response dataset. Due to the additional 

assumptions made to process the raw data as mentioned in Section 5.2, these findings may not be 

accurate. Nonetheless, MCMC estimation of within-event residual is demonstrated with much 

higher confidence bound as compared to sample mean in terms of resilience to uncertainty caused 

by insufficient amount of recordings within events.   
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Table 6.1 Summary of Within-event residual of PSDR 

Event Name 

Within-

event 

Residual 

(MCMC) 

Within-event 

Residual 

(Sample 

Mean) 

Deviation 

Ratio (%) 

No. of 

Instrumented 

Buildings 

Northridge 0.680 0.717 5.472 31 

AlumRockArea  -0.788  -0.724  8.135 43 

Landers  0.28  1.006  258.711 8 

BigBearCity  -0.514  -0.852  65.793 4 

SouthNapa  -0.646  -0.881  36.37 44 

LomaPrieta  0.661  0.828  25.331 24 

BigBear  -0.008  0.667  8638.713 2 

Gilroy  0.126  -0.053  141.923 16 

Anza05  0.787  1.512  92.122 5 

Anza13  -0.209  -0.201  3.746 4 

SierraMadre  -0.038  0.147  487.193 8 

Whittier  -0.274  -0.356  29.758 16 

Calexico  -0.055  0.186  439.322 7 

Bolinas  -0.642  -0.649  1.131 12 

Borrego  0.646  0.720  11.418 11 

ChinoHills  0.523  0.491  6.289 48 

Encino  -0.53  -0.114  78.489 22 

SanSimeon  0.864  2.019  133.788 1 

Parkfield  -0.285  2.043  816.776 1 

MtLewis  -0.224  -0.08  64.139 3 
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Borrego16  0.297  0.216  27.271 7 

SimiValley  0.194  0.419  115.763 1 

Berkeley11  -0.315  0.079  125.103 22 

Berkeley18  -0.026  -0.233  784.372 31 
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Table 6.2 Summary of Within-event residual of PFA 

Event Name 

Within-

event 

Residual 

(MCMC) 

Within-event 

Residual 

(Sample 

Mean) 

Deviation 

Ratio (%) 

No. of 

Instrumented 

Buildings 

Northridge 0.606 0.505 10.173 31 

AlumRockArea  -0.584  -0.719  13.512 43 

Landers  0.397  0.361  3.650 8 

BigBearCity  -0.238  -0.611  37.258 4 

SouthNapa  -0.663  -0.924  26.120 44 

LomaPrieta  0.648  0.731  8.246 24 

BigBear  -0.027  0.689  71.603 2 

Gilroy  -0.194  -0.057  13.754 16 

Anza05  0.035  0.436  40.057 5 

Anza13  -0.094  0.048  14.209 4 

SierraMadre  0.061  0.260  19.918 8 

Whittier  -0.073  -0.156  8.230 16 

Calexico  0.181  0.116  6.462 7 

Bolinas  -0.207  -0.425  21.803 12 

Borrego  0.219  0.136  8.376 11 

ChinoHills  0.271  0.289  1.836 48 

Encino  0.079  0.191  11.256 22 

SanSimeon  0.328  2.191  186.372 1 

Parkfield  -0.107  0.199  30.54 1 

MtLewis  0.375  -0.158  53.284 3 
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Borrego16  0.547  0.551  0.420 7 

SimiValley  0.238  -0.058  29.684 1 

Berkeley11  0.054  0.254  20.014 22 

Berkeley18  0.332  0.216  11.637 31 
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6.6 Summary 

This chapter extends the generalized cross-building EDP reconstruction model in Chapter 

5 to further evaluate the within-event residual of two system level EDPs, PSDR and PFA, 

respectively using a total of 371 recorded building seismic response data consisting of seismic 

responses of 188 buildings in California subjected to 24 historical earthquakes. As opposed to 

retrieving within-event residual through taking sample mean of recordings in each event, as is done 

in Chapter 5, a Bayesian hierarchical model consisting of three layers that represent a data-driven 

structure for the building response data is proposed to estimate the within-event residual to produce 

a model that is more robust for cases where insufficient recordings exist for some events within 

the dataset. A few assumptions are made to construct the Bayesian estimation. A noninformative 

hyperprior through an Inverse Gamma distribution is used such that the model parameters are 

purely based on information contained in the dataset. A fixed variance is assigned for each event 

Gaussian distribution model which allows flexibility in modeling variance at the middle layer.  

The model parameters are calibrated by a MCMC simulation process using the Gibbs 

sampler through complete conditionals of the proposed model. The major advantage of this 

approach is that Gibbs sampler simulates the model in a much lower dimensional space as 

compared to direct sampling. In addition, convergence of this simulation is validated through three 

separate means, visualizing the model parameter trend over Monte Carlo steps, examining the 

trend of posterior marginal variance and within-chain variance, and analyzing autocorrelations 

along the Markov chain.  

Results of the within-event residuals are visualized and summarized in Section 6.5. For 

PSDR dataset, discrepancies between the estimated within-event residuals from these two 

approaches are examined together with the number of available recordings for each event. Notable 
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differences are observed for events with very limited number of recordings. However, results also 

suggest that within-event residual estimation discrepancies may still exist for events with higher 

number of recordings, e.g., the 2011 Berkeley earthquake with 22 recordings available. These 

findings suggest that sample mean estimation on PSDR of within-event residual using the Bayesian 

hierarchical model is only valid when more than 30 recordings available within the considered 

event. Therefore, for events with fewer recordings, the sample mean estimation could be extremely 

biased. On the other hand, discrepancies between the two approaches of PFA data are much more 

restricted and majority of the deviation ratio falls into 5% to 30% range, even when very few 

recordings are available. This result suggests that the within-event PFA residual is less variable 

than that of PSDR and can be estimated using a sample mean with fewer recordings to generate an 

unbiased estimation.  

Within-event residual of each event is critical to study the event effect for the two 

considered EDPs and the accuracy of the approach impacts the evaluation of site terms and the 

recording residual reconstruction, as described in Chapter 5. The proposed Bayesian hierarchical 

model appears to be more reliable and generally unbiased for events with less than 30 recordings 

available. However, there are still challenges to overcome, such as validating that the Bayesian 

model structure is appropriate and seeking additional evidence to support the prior choice and the 

distribution within each layer. In addition, a dataset with higher number of recordings available 

per events and additional events is desirable to further validate this approach.  
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7. Conclusion 

7.1 Summary  

Rapid assessment of building condition following seismic events, either low-probability 

extreme events or more frequent occurrences of lower intensity events, is of critical importance 

for densely populated urban regions. The main objective of this dissertation is to develop a data-

driven building seismic response prediction framework to interpolate damage-related Engineering 

Demand Parameters (EDP) for a cluster of buildings using a limited number of recordings from 

instrumented buildings. The proposed framework can be used for rapid damage identification of 

buildings subjected to a seismic event and rapid seismic risk estimation for an individual building 

or a cluster of buildings at a regional scale. The proposed data-driven models are demonstrated 

and validated through 1) simulated seismic responses of various buildings subjected to numerous 

ground motions using Perform3D [43] and OpenSees [42]; and 2) recorded building responses 

from 188 buildings from 24 historical earthquakes in California.  

An overview of Machine Learning (ML) methods and their applications within structural 

engineering problems are presented in Chapter 2. ML applications in structural engineering are 

examined for collecting data, constructing models, and enhancing computation tools, followed by 

a motivations for expanding the range of applications for ML. Finally, a critical assessment of 

future directions for application of ML is presented, including discussions related to data source, 

model interpretation, and model extrapolation.  

Chapter 3 covers an inter-building interpolation model relying on the spatial and structural 

correlation of responses in co-regionally located buildings subjected to a seismic event. A dataset 

of response demands for a portfolio of reinforced concrete moment frame buildings is generated 

by performing Non-linear Response History Analyses (NRHA) on structural models using ground 
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motions recorded from historical scenario earthquakes. The dataset is used to characterize the 

correlation between seismic demands across different buildings. Semi-variograms are used to 

model spatial and structural correlation and then incorporated into a Kriging algorithm, which 

forms the basis of the interpolation models. Chapter 4 further expands the Kriging interpolation 

model into a full-profile seismic response demands reconstruction model across multiple tall 

buildings using kernel-based ML methods. NRHA are used to generate a dataset of Peak Floor 

Accelerations (PFA) and Peak Story Drift Ratios (PSDR) for a portfolio of tall buildings, using 

spatially explicit ground motions from the Northridge earthquake. Structural dissimilarities are 

incorporated by including a range of building heights and differences in the type and combination 

of lateral force resisting systems. Using measurements from limited locations within a subset of 

buildings, the full-profile response demands for all buildings in a portfolio are reconstructed. A 

rigorous evaluation procedure is used to demonstrate the ability of the kernel-based methods to 

accurately capture the highly nonlinear response demand patterns within and across buildings. 

The previous two methods are event-based; in other words, the model used for 

reconstruction of seismic demands is limited to a single earthquake, i.e., event characteristics are 

not considered. Chapter 5 introduces a generalized EDP reconstruction model based on mix-effect 

model that incorporates source, path, and site terms, which is demonstrated by using recorded 

seismic building response data from 1984 to 2016 from 188 buildings subjected to 24 earthquakes 

in California. Two versions of the model are proposed, one is calibrated from the raw data and the 

other is adopted from Ground Motion Prediction Equations for both PSDR and PFA. The total 

residuals from this model are evaluated by further decoupling within-event residuals and site 

residuals. A Kriging interpolation is applied on the remaining residuals to evaluate demand 

reconstruction accuracy. Chapter 6 further improves the decoupling procedure of within-event 
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residual using a Bayesian hierarchical model that properly addresses the issue of insufficient data 

within certain events. A Markov Chain Monte Carlo technique, Gibbs sampler, is applied to 

retrieve model parameters and convergence of the chain is rigorously validated. Within-event 

residuals retrieved using two different approaches, the sample mean from Chapter 5 and the 

Bayesian hierarchical model from Chapter 6, are compared with each other.  

7.2 Key Findings 

Fidelity of data-driven models primarily depends on data quality, model design logic, and 

model evaluation procedures. Development of data-driven models should be conducted based on 

the above three areas. Two categories of data used in this study, simulated and recorded seismic 

building responses, respectively. The simulated data are applied to evaluate the two within-event 

building seismic response prediction models, the kriging interpolation model and the kernel-based 

ML model. The kriging model quantifies spatial similarity through semi-variograms and constructs 

a series of semi-variograms for structural dissimilarity. The kernel-based ML model applies kernel 

functions as a generalized means to incorporate dissimilarities. Kernel is found to be a more 

representative and generalized dissimilarity measure to account for features from different 

perspectives, in our case, spatial, structural and within-building height.  

Model performance is found to be mainly driven by how representative the data are and 

how efficient the model is in fitting the data patterns. For example, it is observed that the PFA data 

show relatively more regulated patterns across different buildings, as PFAs are found to have much 

lower within-building dispersion and variation at higher demand levels compared to PSDRs. 

However, it does not necessarily suggest a better prediction performance as observed in several 

model performance evaluation cases.  

An approach which combines physics-based and data-driven models is highly desirable. 
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The performance of the generalized cross-building EDP reconstruction model has been 

significantly improved by adopting a GMPE estimation which is extensively calibrated according 

to earthquake mechanisms. In addition, the Bayesian hierarchical model for within-event residuals 

is found to be more reliable compared to sample means due to its hierarchical structure that 

simulates the earthquake mechanism and distributes uncertainties based on physical scenarios.  
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