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We report on a lattice QCD calculation of the nucleon axial charge, gA, using Möbius Domain-
Wall fermions solved on the dynamical Nf = 2 + 1 + 1 HISQ ensembles after they are smeared
using the gradient-flow algorithm. The calculation is performed with three pion masses, mπ ∼
{310,220,130} MeV. Three lattice spacings (a ∼ {0.15,0.12,0.09} fm) are used with the heaviest
pion mass, while the coarsest two spacings are used on the middle pion mass and only the coarsest
spacing is used with the near physical pion mass. On the mπ ∼ 220 MeV a ∼ 0.12 fm point, a
dedicated volume study is performed with mπL ∼ {3.22,4.29,5.36}. Using a new strategy motivated
by the Feynman-Hellmann Theorem, we achieve a precise determination of gA with relatively low
statistics, and demonstrable control over the excited state, continuum, infinite volume and chiral
extrapolation systematic uncertainties, the latter of which remains the dominant uncertainty. Our
final determination at 2.6% total uncertainty is gA = 1.278(21)(26), with the first uncertainty in-
cluding statistical and systematic uncertainties from fitting and the second including model selection
systematics related to the chiral and continuum extrapolation. The largest reduction of the second
uncertainty will come from a greater number of pion mass points as well as more precise lattice
QCD results near the physical pion mass.

I. INTRODUCTION

The nucleon axial charge, gA, is one of the most fun-
damental quantities that characterize the nucleon. This
coupling measures the strength with which the weak axial
current couples to the nucleon and plays a central role in
our theoretical understanding of nuclear physics. The ax-
ial charge governs many fundamental nuclear processes,
such as nuclear beta decay and pion exchange between
nucleons. Furthermore, small changes to its value may
have resulted in a profoundly different universe than that
which we observe today, as some astrophysical and cos-
mological processes, such as Big Bang nucleosynthesis,
depend very sensitively on gA [1].

If nature respected chiral symmetry exactly, the axial
charge, in conjunction with the vector charge, would be
exactly one. However, chiral symmetry is explicitly bro-
ken by nonzero quark masses and is spontaneously broken
by the QCD vacuum. The axial charge is measured to be

gexpA = 1.2723(23) [2] . (1)

This very precise determination of gA is the current PDG
(Particle Data Group) experimental world average from

cold neutron decays [3–9]. Because it can be very well-
measured experimentally, the axial charge is a prime
candidate for searches for BSM (beyond the Standard
Model) physics: if one can determine gA with similar
precision directly from QCD, any deviations from exper-
iment may be interpreted as BSM contributions.

Given the prominence of gA, this quantity should be
the first important benchmark calculation for demon-
strating that uncertainties associated with LQCD (lat-
tice QCD) calculations relevant to nuclear physics can
be appropriately quantified and controlled. However,
this quantity has been notoriously difficult to compute in
LQCD, largely due to systematics that were not fully ap-
preciated, see for example the review [10]. Only recently
has the first LQCD calculation of gA been produced with
the major sources of systematics addressed, notably the
continuum and infinite volume limits, as well as an ex-
trapolation/interpolation to the physical pion mass. This
LQCD result, reported in Ref. [11], is:

gPNDME
A = 1.195(33)(20) , (2)

where the first uncertainty is statistical in nature and the
second arises from the model extrapolation to the phys-
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ical point. We note this result differs from the physical
PDG value by 2 standard deviations. Given that the
LQCD calculation is still an order of magnitude less pre-
cise than the experimental determination, it seems pre-
mature to assign such a large discrepancy to new physics,
and further investigation into the systematics behind gA
is necessary.

In addition to providing a benchmark for nuclear
physics from LQCD in general, a precise determination
of gA is an important first step toward calculations of cor-
rections to gA due to in-medium effects in nuclei [12–14].
This so-called gA quenching effect is relevant for under-
standing potential signals for 0νββ (neutrinoless double-
beta decay), see for example the recent review [15], a
process which would confirm the Majorana nature of
neutrinos as well as provide a potential explanation for
the matter-antimatter asymmetry in the universe. Enor-
mous world-wide experimental efforts searching for this
process are both planned and underway, and a determi-
nation of these axial matrix elements may also be use-
ful for planning future experiments. Recent work has
explored the importance of two-body currents for weak
matrix elements in light [16–18] and medium [19] nuclei
using EFT (Effective Field Theory) [20]. In principle,
LQCD can be used to determine these corrections di-
rectly from QCD, see for example the exploratory cal-
culation in Refs. [21, 22]. However, before having con-
fidence in LQCD calculations of unknown corrections to
gA, one must first have full command over the systemat-
ics for gA itself.

The most significant remaining systematic to be ad-
dressed, according to Ref. [11], concerns the excited state
pollution of the ground state matrix elements. In this
work, we calculate gA from a method inspired by the FH
(Feynman-Hellmann) Theorem [23]. This method allows
for the removal of excited state contamination through
extrapolation in a single time variable, much like the sim-
pler two-point correlation function. This not only gives
better control over systematics associated with excited
state contamination, but also eliminates the need to vary
two time variables independently, greatly saving in com-
putational cost.

Using this method, we present a new determination of
gA with controlled systematics. We use the publicly avail-
able HISQ configurations generated by the MILC Collab-
oration, allowing for an exploration of discretization and
finite volume effects, as well as extrapolation to physical
pion mass. We use the recently-developed MA (mixed ac-
tion) from Ref. [24], producing MDWF (Möbius Domain-
Wall fermion) propagators after smearing the gauge fields
using the gradient-flow method, which significantly im-
proves the chiral symmetry properties. The aforemen-
tioned savings in computational cost from the FH method
are compounded through the use of the QUDA library,
which significantly accelerates the Möbius Domain-Wall
fermion solutions. These improvements have allowed us
to achieve both precision and accuracy in our final deter-

mination of

gA = 1.278(21)(26), (3)

where the first uncertainty is statistical and the second
is the extrapolation systematic. Our result is compatible
with the PDG value.

We provide a full explanation of the methods we used
to achieve this result. In Sec. II, we summarize the
FH method [23] for evaluating matrix elements. After
that, in Sec. III, we briefly summarize the mixed action,
which is fully described in Ref. [24]. Then we present our
data analysis methods, in Sec. IV, along with results for
the correlator analysis. Renormalization is discussed in
Sec. V, various methods of performing the continuum, in-
finite volume and chiral extrapolations are summarized in
Sec. VI, and finally our results are presented in Sec. VII.

II. THE FEYNMAN-HELLMANN METHOD

A. Correlation functions

Recently, there has been significant interest and devel-
opment with methods related to the Feynman-Hellman
Theorem [23, 25–27]. We employ the method introduced
in Ref. [23] to construct and analyze correlation functions
relevant to this work. The Feynman-Hellmann theorem
relates matrix elements to linear variations in the spec-
trum with respect to an external current,

∂En
∂λ

= ⟨n∣Hλ∣n⟩ , (4)

where H = H0 + λHλ. On the lattice, the spectrum is
determined from the two-point correlation function,

Cλ(t) = ⟨λ∣N(t)N †(0)∣λ⟩ (5)

where N is a nucleon interpolating operator [28, 29],
and λ denotes the vacuum in the presence of an exter-
nal source Sλ = λ ∫ d4xj(x), where j(x) is some bilinear
current density and J(t) ≡ ∫ d3x⃗j(t, x⃗). The sourceless
zero-temperature vacuum is recovered by taking λ → 0
and labeled as Ω. In Euclidean calculations, only space-
like correlation functions are directly accessible; as a con-
sequence, the effective mass can be constructed from a
ratio of two-point correlation functions,

Meff
λ (t, τ) = 1

τ
ln( Cλ(t)

Cλ(t + τ)
) . (6)

We invoke the Feynman-Hellmann theorem and take the
analytic derivative with respect to λ of Eq. (6) to obtain
the effective derivative,

∂Meff(t, τ)
∂λ

∣
λ=0

= 1

τ
[∂λCλ(t)
Cλ(t)

− ∂λCλ(t + τ)
Cλ(t + τ)

] ∣
λ=0

(7)
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where the derivative of the two-point correlation function
is related to the three-point correlation function,

−∂Cλ(t)
∂λ

∣
λ=0

= −C(t)∫ dt′⟨Ω∣J(t′)∣Ω⟩

+ ∫ dt′⟨Ω∣T{N(t)J(t′)N †(0)}∣Ω⟩, (8)

which we define as the derivative correlation function. In
subsequent figures and text, we define the quantity

g̊effλ ≡ ∂Meff
λ = ∂λMeff

λ ∣λ=0 , (9)

to denote the effective mass plot of the derivative corre-
lation function constructed with the bare current Jλ.

The first term of Eq. (8) has vacuum quantum num-
bers and is only non-vanishing for the scalar current, and
even in this case, exactly cancels in Eq. (7). The second
term contains the quantity of interest for t > t′ as well
as contact terms and other unwanted contributions from
t ≤ t′. The t dependence of the unwanted contributions
differs from that of the quantity of interest, allowing it to
be removed in the analysis of the derivative correlation
function.

Before extracting the spectrum and matrix elements
from these correlation functions, we first construct the
spin averaged combination for both the two-point and
derivative correlation function. Furthermore, for the
derivative correlation function, the iso-vector combina-
tion is constructed to eliminate contributions from dis-
connected diagrams.

B. Spectral decomposition

For convenience of notation, we define the relevant ma-
trix elements as,

Jnm ≡⟨n∣J ∣m⟩, (10)

Z†
nj ≡⟨n∣N

†∣j⟩, (11)

and overlap factors of various interpolating operators as,

Z†
n ≡⟨n∣N †∣Ω⟩, (12)

J†
j ≡⟨j∣J ∣Ω⟩, (13)

Z†
J ∶n ≡⟨n∣JN

†∣Ω⟩. (14)

The spectral decomposition of the two-point correla-
tion function of the nucleon is derived by inserting the
resolution of the identity into Eq. (5), and yields

C(t) =∑
n

znz
†
ne

−Ent (15)

such that zn is related to the overlap factor Zn as

zn ≡
Zn√
2En

(16)

under relativistic normalization.
The spectral decomposition of the derivative correla-

tion function is similarly derived, assuming a vanishing
vacuum expectation value, ⟨Ω∣J ∣Ω⟩ = 0, and leads to

NJ(t) =∑
n

[(t − 1)zngJnnz†
n + dJn] e−Ent

+ ∑
n,m≠n

zng
J
nmz

†
m

e−Ent+
∆nm

2 − e−Emt+
∆mn

2

e
∆mn

2 − e
∆nm

2

, (17)

where ∆mn = Em −En and

gJnm ≡ Jnm√
4EnEm

, (18)

dJn ≡ZnZ
†
J ∶n +ZJ ∶nZ

†
n +ZnZ†

n⟨Ω∣J ∣Ω⟩

+∑
j

ZnZ
†
njJ

†
j + JjZjnZ

†
n

2Ej (eEj − 1)
. (19)

All contributions arising from the contact terms (t = 0
and t = t′) and unwanted time orderings (t′ > t) are com-
pletely parameterized by dJn. Furthermore, an estimate
of dJ0 may be obtained by observing that

NJ(1) =∑
n

dJne
−En (20)

with the assumption that the ground state dominates the
sum for smeared lattice interpolating operators.

Finally, the effective derivative motivated by the
Feynman-Hellmann theorem, as expressed by Eq. (7),
may be analysed from the analogous ratios of the spectral
decomposition of the two-point and derivative correlation
functions,

GJ(t) ≡
1

τ
[NJ(t + τ)
C(t + τ)

− NJ(t)
C(t)

] . (21)

In the large time limit, the ground state matrix element
of interest is recovered,

lim
t→∞GJ(t) = g

J
00 , (22)

as can be verified by plugging in the spectral decompo-
sition of NJ(t) and C(t) into Eq. (21). The numerical
implementation of Eq. (21) serves the same role as the nu-
merical implementation of the traditional effective mass.

III. MIXED ACTION LATTICE QCD

We perform our calculation on a subset of the publi-
cally available HISQ gauge configurations generated by
the MILC Collaboration [30–32] with Nf = 2 + 1 + 1 dy-
namical sea quarks, consisting of two flavors of dynami-
cal light-quarks with degenerate masses, along with dy-
namical strange- and charm-quarks with masses near the
physical values. Formally the HISQ action has leading
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discretization errors starting at O(αSa2, a4), however im-
proved link-smearing greatly suppresses taste-changing
interactions leading to numerically smaller discretization
errors. The gluons are simulated using the tadpole-
improved [33], one-loop Symanzik gauge action [34] with
leading discretization errors starting at O(α2

Sa
2, a4).

Table I lists the HISQ ensembles used in this work. The
smallest ensemble consists of approximately 800 configu-
rations and the largest almost 2000 configurations. The
list of ensembles includes three different lattice spacings
at {∼ 0.15 fm,∼ 0.12 fm,∼ 0.09 fm}, allowing for control
over the continuum extrapolation. The lightest simu-
lated taste-5 pseudoscalar pion mass, mπ,5 ∼ 130 MeV,
is slightly smaller than the physical pion mass, and two
heavier pion masses are at approximately 220 MeV and
310 MeV, allowing for good control over interpolation
to the physical pion mass. Most ensembles have large
spatial volumes (mπ,5L ≥ 3.78) where finite volume ef-
fects are expected to be small [35], with the a15m130
ensemble at a smaller volume (mπ,5L = 3.25). Control
over volume dependence of the matrix element is demon-
strated by performing the calculation on three ensembles
(a12m220S, a12m220, a12m220L) with separate volumes
(mπ,5L = 3.22,4.29,5.36 respectively) while holding all
other parameters fixed.

For the valence quarks used in this work, we employ
the MDWF action [36–38], and tune the valence pseu-
doscalar masses to within 2% of the HISQ taste-5 pseu-
doscalar masses. This action has been used to compute
the π− → π+ matrix element [39] relevant for 0νββ in the
scenario that heavy new physics contributes significantly
to the decay [40]. A discussion on the salient features of
mixed lattice QCD action using MDWF on HISQ is de-
tailed in Ref. [24]. As mentioned above, the gradient-flow
is used to smear the HISQ ensembles, highly suppressing
the residual chiral symmetry breaking of the MDWF ac-
tion allowing us to keep the residual mass mres less than
10% of the valence light quark mass on each ensemble.
After absorbing mres into the quark mass through the
PCAC relation, the MDWF action has discretization er-
rors beginning at O(a2) [41].

Following Ref. [24], we study the flow time dependence
of the gradient-flow smearing used in this calculation. In
Fig. 1, we show ratios of the axial over the vector effec-
tive derivatives for the a15m310 and a09m310 ensembles
with 196 configurations at a single source. The point-sink
(squares) and smeared-sink (circles) effective derivatives
are plotted with tgf = 1.0,0.6,0.2 respectively from left
to right. In both ensembles, we observe minimal flow
time dependence in the ratio of correlators. Addition-
ally the flow time is fixed to tgf = 1.0 in lattice units
on all gauge configurations, ensuring that any quantity
extrapolated to the continuum limit will be flow-time in-
dependent. For tgf = 1.0, we find it sufficient to solve the
Wilson-flow diffusion equation with 40 integration steps
using the Runge-Kutta algorithm. Furthermore, we ob-
serve smaller stochastic uncertainty at increasingly larger
values of tgf . We find these conclusions consistent with
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FIG. 1. Flow study for the (top) a15m310 and (bot-
tom) a09m310 ensembles. The effective mass of the deriva-
tive correlater is shown with point-sink (◻) and smeared-
sink (◯) correlation functions. For each time slice, data for
tgf = {1.0, 0.6, 0.2} are displayed from left to right with pro-
gressively lighter shades.

what was observed in Ref. [24] for other hadronic quan-
tities (e.g. Fig. 3 therein).

Throughout this paper, we use the subscript 5 (e.g.
mπ,5) to denote quantities relevant to the HISQ taste-
5 pion, and drop the subscript for the pion constructed
from Domain-Wall valence quarks (e.g. mπ).

IV. CORRELATOR ANALYSIS

A. Statistics and autocorrelations

The large time extent of the HISQ configurations al-
lows us to compute correlation functions with multiple
sources, totaling those listed in Tab. I. On each configura-
tion, for a series of evenly spaced time-locations, a seeded
random origin is chosen, (x0, y0, z0, t0). Then, at this ori-
gin, and its antipode, (x0, y0, z0, t0)+L/2(1,1,1,0) (mod-
ular the periodic spatial boundary conditions) a source
is generated to solve for the MDWF propagators. The
sources are created with Chroma using a SHELL SOURCE
with the GAUGE INV GAUSSIAN routine. The width (σsmr)
and number of iterations (Nsmr) are also listed in Table I.
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abbr. name ensemble Ncfg Nsrcs volume ∼ a [fm] ∼mπ,5 [MeV] ∼mπ,5L σsmr Nsmr

a15m310 l1648f211b580m013m065m838a 1960 24 163 × 48 0.15 307 3.78 4.2 60

a12m310 l2464f211b600m0102m0509m635a 1053 4 243 × 64 0.12 305 4.54 4.5 60

a09m310 l3296f211b630m0074m037m440e 784 8 323 × 96 0.09 313 4.50 7.5 167

a15m220 l2448f211b580m0064m0640m828a 1000 12 243 × 48 0.15 215 3.99 4.5 60

a12m220S l2464f211b600m00507m0507m628a 1000 4 243 × 64 0.12 218 3.22 6.0 90

a12m220 l3264f211b600m00507m0507m628a 1000 4 323 × 64 0.12 217 4.29 6.0 90

a12m220L l4064f211b600m00507m0507m628a 1000 4 403 × 64 0.12 217 5.36 6.0 90

a15m130 l3248f211b580m00235m0647m831a 1000 5 323 × 48 0.15 131 3.30 4.5 60

TABLE I. The HISQ ensembles used in this work along with the number of configurations Ncfg, number of sources per
configuration Nsrc, lattice volume, approximate lattice spacing a, approximate HISQ taste-5 pion mass, and approximate value
of mπ,5L. Values are obtained from Table I of Ref. [30] with increased number of configurations. We also list the values of the
gauge invariant Gaussian source smearing algorithm used.

These parameters were chosen to reduce the contamina-
tion from excited states in the proton while not observing
signs of over-smearing.

We shift all time sources to t0 → 0 and average over all
sources before analyzing the correlation functions, where
t is the source-sink separation time. We observe no corre-
lation between different sources, resulting in a reduction
of

√
Nsrc in statistical uncertainty. We further double

the statistical sampling by generating analogous correla-
tion functions for the negative parity nucleon. Under
time-reversal, the nucleon reverses parity, allowing us
to average the forward propagating nucleon correlation
functions with the time-reversed negative-parity nucleon
correlation functions.

We perform a simultaneous fit of the two-point corre-
lator and the axial effective derivative together with the
vector effective derivative which further constrains the
ground state energy of the nucleon, and indirectly leads
to a more precise extraction of the axial charge g̊A, where
the ring indicates this as the bare charge. Futhermore,
the simultaneous fit naturally gives access to the corre-
lated ratio of g̊A/̊gV and simplifies the renormalization
procedure, which is discussed in Sec. V.

The Feynman-Hellmann method used to construct the
three-point correlation functions leads to an increase of
O(t) in statistical sampling from equal computation time
from the sum over the current insertion. The method also
yields the complete source-sink separation time depen-
dence of the correlation function, leading to exponential
improvement in the signal-over-noise ratio for the cor-
relator at small source-sink separation times. The im-
provement in signal quality is demonstrated in detail in
Ref. [23].

We study possible autocorrelations in our data set by
binning the derivative correlation functions for every en-
semble used in this work. Fig. 2 shows a representative
example of a binning study. We observe that both the
central value and standard deviation of the raw correla-
tion function is stable under binning for bin sizes up to
four, demonstrating that no autocorrelations are present

2 4 6 8 10 12

t

1.1

1.2

1.3

1.4

1.5

∂
M

ef
f

A

a12m220

FIG. 2. Plot of the effective derivative of the axial form factor
for the a12m220 ensemble as a function of source-sink sepa-
ration t for point- (◻) and smeared-sinks (◯). Bin sizes of 1
(unbinned), 2, 3, and 4 are shown with increasingly lighter
shades from left to right for both choices of sink smearing.

in the data. The complete binning study is presented in
Appendix A. We do not bin any of our data in this work.

B. Method

We construct the effective derivative from the two-
point and derivative correlation function as detailed in
Eq. (7) for the axial-vector and vector currents. A simul-
taneous fit is then performed to the two-point correlation
function in tandem with the effective derivative of both
currents, leading to a tripling of the amount of corre-
lated data when determining a large subset of shared fit
parameters (i.e. En and zn). In order to perform the si-
multaneous fit, we first explore the parameter space with
a Bayesian constrained fit. The central value of the poste-
rior is then used as an initial guess for the corresponding
frequentist fit. For our preferred fit, we use the results
from the frequentist fit, and motivate our choice of fits
under frequentist inference. The correlated uncertainty
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of the fit parameters is propagated through bootstrap re-
sampling. We perform both the initial Bayesian fit and
the final frequentist fit using lsqfit [42].

We use the fit ansatz given by Eqs. (15) and (21) re-
spectively for the two-point and effective derivatives re-
spectively. For our preferred fit, we choose to fit the
effective derivative, which involves the ratio of the two-
point and derivative correlation functions, because the
ratio eliminates leading order excited-state contamina-
tion. In practice, we often times are able to fit closer
to the origin for the effective derivative compared to the
two-point correlation function because of this cancella-
tion. However, we find our results statistically consistent
compared to fits using Eq. (17) (directly fitting the nu-
merator in the derivative correlation function).

C. Bayesian preconditioning

The initial Bayesian constrained curve fit serves to pro-
vide starting values of fit parameters for the preferred
unconstrained fit; additionally with sensible priors, con-
vergence to the maximum likelihood estimate of the fit
parameters is accelerated, and therefore provides an ef-
ficient method for an initial survey of a wide range of
fit regions. Since the distribution of expectation values,
hence averages, are of interest, the central limit theorem
guarantees that the posteriors are Gaussian distributed
in the limit of large statistics, therefore we use Gaussian
distributions for all the priors.

The two-point correlation function depends on the en-
ergies and overlap factors, En and zn respectively. The
prior for the ground state energy is chosen by observing
the large t limit of the effective mass given by Eq. (6).
The prior width of the ground state energy is set to 10%
of the central value, approximately two orders of mag-
nitude larger than the width of the posterior distribu-
tion. The excited state energy splitting is set to the two
pion splitting with a log-normal distribution, with the
lower bound of the 68% confidence interval set to the one
pion splitting. The smeared and point overlap factors are
given respectively by,

zS0 = lim
t→∞

√
CSS(t)eE0t, (23)

zP0 = lim
t→∞CPS(t)e

E0t/zS0 . (24)

The prior width of the overlap factors are set to half the
central value, constraining the parameter to be non-zero
within two standard deviations. The excited state over-
lap factors are set to a central value of zero, with a width
that is five and ten times the ground state central value
for the smeared and point overlap factors respectively.
The smeared overlap factors are set with a tighter prior
with the expectation that smearing enhances the overlap
with the ground state.

A simultaneous fit with the axial effective derivative
includes gAnm and dAn , parameterizing the axial charge

and unwanted time-ordering contributions respectively,
as described by Eqs. (18) and (19). The prior for the
ground state axial charge parameter is set by observing
the long time limit of the effective derivative given by
Eq. (7). The prior width is set to half the central value,
approximately one order of magnitude larger than the
resulting width of the posterior distribution. The excited
state axial charge parameters are set to zero, with a width
that is one order of magnitude larger than the ground
state central value. The time-ordering artifact parameter
is set to,

dASS(PS);0 =
1

2
N
SS(PS)
A (1)eE0 (25)

as discussed in Section II B, where the factor of one-half
reflects the expectation that smearing enhances the over-
lap with the ground state. The width of dA0 ensures that
the parameter is zero within one standard deviation. For
excited states, dAn is set to zero, and with the same width
as the ground state.

The addition of the vector charge correlation function
introduces gVnm and dVn for the vector charges, with priors
set analogously to the axial charge parameters.

D. Frequentist analysis

With knowledge of the Bayesian analysis, we perform
two-state unconstrained simultaneous fits to the two-
point correlation function, and axial and vector effective
derivatives. Only fit results with a frequentist p-value
greater than 0.05 are considered as statistically signifi-
cant. Additionally, excited state systematic uncertainty
is controlled by checking for stability of the unconstrained
fits under varying regions of source-sink separation in all
three correlation functions, with the preferred fit lying
in the region of stability. The correlated uncertainty is
propagated by bootstrap resampling. For the preferred
fit, 5000 bootstraps are sampled, while 1000 bootstraps
are sampled for others. In this section the final result of
the simultaneous fit for the a12m220 ensemble are pre-
sented, and serve as a representative example of all cor-
relator analyses performed in this work. A compilation
of all correlator analyses are presented in Appendix B.

The preferred fit for ensemble a12m220 is presented
in Fig. 3. A simultaneous two state unconstrained fit is
performed to all six correlators shown, with a frequentist
p-value of 0.34. The correlated ratio of g̊A/̊gV recon-
structed under bootstrap results in a near perfect Gaus-
sian distribution. The p-value for all fits are listed in
Table IV and accompanying bootstrap histograms in Ap-
pendix B. We further demonstrate the robustness of these
fits by demonstrating stability of g̊A/̊gV under varying
values of tmin.

Fig. 3 shows the stability of the preferred fit under
varying values of tmin. In each fit variation, only the fit
region of one correlator was varied. We observe statisti-
cally insignificant changes under variations of the fit re-
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FIG. 3. Analysis of the a12m220 ensemble with 5000 bootstrap samples. (top left) effective mass (top right) axial effective
derivative (middle left) vector effective derivative are shown with smeared-sink (◻) and point-sink(◯) correlation functions,
with corresponding reconstructed fit curves plotted in light- and dark-green respectively. The grey regions encompass data not
included in the analysis. The data is staggered for clarity. (middle right) Stability plot of g̊A/̊gV for ensemble a12m220. The
preferred fit is presented by the solid black symbol, the green band shades the 68% confidence interval and helps guide the
eye. Variations of the fit region of the two-point correlator (◻), GA(t) (△), and GV (t) (◇) are presented. The corresponding
frequentist p-values are plotted below, with the dashed red line at p = 0.05 discriminating the statistical significance of the
fit results. Uncertainty of the fit variations are determined by 1000 bootstrap samples. (bottom left) Bootstrap histogram of
g̊A/̊gV . Different shaded regions mark the 68% and 95% confidence interval. The central value of g̊A/̊gV is consistent with the
median at the sub-percent level. (bottom right) Bootstrap histogram for επ, discussed in Sec. IV E. The shaded regions are
defined similarily to the g̊A/̊gV histogram.
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ensemble tCmin tCmax tAmin tAmax tVmin tVmax

a15m310 4 14 4 10 4 15

a12m310 7 12 2 12 5 15

a09m310 6 16 3 12 6 17

a15m220 2 12 2 8 4 11

a12m220S 4 10 5 10 3 10

a12m220 3 15 4 10 3 14

a12m220L 4 12 4 12 5 10

a15m130 2 10 2 6 2 7

TABLE II. Fit regions in lattice units for the two-point corre-
lation function (C), and the axial (A) and vector (V ) effective
deriatives.

gion with the exception of fittingGA(t) more aggressively
to tmin = 3. The approximately one and a half standard
deviation shift in the central value observed in the excep-
tional fit suggests that possibly additional states would
be needed to describe excited state systematics of a fit
including this time-slice. We conclude from Fig. 3 that
the preferred fit sits in the region of stability under vary-
ing fit regions in all three correlators. Similar studies are
performed on all ensembles pertinent to this work, with
the preferred fits chosen in regions with stability. Fit re-
gions for all ensembles are presented in Tab. II. Stability
plots for all ensembles are presented in Appendix C. The
complete set of correlator analysis results are tabulated
in Tab. IV.

Finally, the reconstructed curve of the preferred fit is
shown on top of the effective mass and derivatives. The
ability to control the fit at small time separations pro-
vides leverage for identifying the plateau region at larger
time separations. In particular, we observe agreement in
the plateau region of the fit and data for the effective
mass and axial effective derivative within one standard
deviation, and identify behavior for the vector effective
derivative at large time as a statistical fluctuation result-
ing slight tension. This hypothesis is further supported
by the fact that the ratio g̊A/̊gV is shown to be stable un-
der varying separation time in the axial effective deriva-
tive.

In summary, we observe our data to be flow-time in-
dependent and free of autocorrelations. We also observe
our unconstrained fits to be stable under bootstrap re-
sampling, yielding nearly ideal Gaussian distributions for
g̊A/̊gV . Stability of g̊A/̊gV under varying fit regions is
demonstrated. The reconstructed fit curves and error
bands are in good simultaneous agreement with the two-
point correlation functions and the axial and vector ef-
fective derivatives. With this preponderance of evidence,
we demonstrate full control over systematic uncertainty
emergent from the fit procedure at unprecedentedly small
time separations. As a result, we have a robust, ex-
ponentially improved determination of the nucleon axial
charge.

E. επ and εju

The chiral-continuum extrapolation can be reparame-
terized to depend on the dimensionless quantities

επ ≡
mπ

4πFπ
and εju ≡

mju

4πFπ
(26)

circumventing the necessity of performing a scale-setting
analysis. mju is the mass of the mixed-pion composed of
one valence and one sea quark. Calculation of the pion
mass, mπ, and the pion decay constant, Fπ, are per-
formed on the same lattice actions, gauge configurations,
and sources as the main analysis of this paper, while the
calculation of mju is performed with just one source.

A Bayesian constrained fit with a two-state fit ansatz is
performed on the pion two-point correlation function in
order to extract mπ and its overlap factors; in Ref. [24],
we show that oscillating states present in the Domain-
Wall action are highly suppressed when the gauge fields
are smeared with gradient-flow, and therefore are ne-
glected in this analysis. A simultaneous fit to both
the point-sink and smeared-sink correlators is performed,
and statistics is further doubled by exploiting the prop-
erty of time-reversal symmetry in the meson correlators.
Similarly, a Bayesian constrained fit to a constant is per-
formed to extract mres from the mres correlator, as de-
fined by Eq. (5) of Ref. [24]. The 5D Ward Identity is
used to obtain Fπ from mπ and mres as given in Eq. (6)
of Ref. [24].

A Bayesian constrained fit to 2+2 states is performed
on the mixed meson pion correlator due to oscillations
present in the HISQ action. A single fit to the point-sink
correlator is performed. We increase statistics by folding
the correlator.

Similar to Sec. IV C, for both the pion and mixed ac-
tion pion two-point correlator, the ground state priors for
the pion mass and overlap factors are determined by the
long-time limit of the effective mass and scaled correla-
tors. The ground state prior widths are set to 10% of the
prior central value, approximately two orders of magni-
tude larger than the width of the posterior distribution,
thus leaving the ground effectively state unconstrained.
The prior for the excited state energy splitting is lognor-
mal and is set by approximately the mass splitting be-
tween the a0 meson and pion, with a width encompassing
the two-pion splitting within one standard deviation. For
the mixed pion, we set the splitting to the opposite par-
ity state to mσ −mπ ≈ 375 MeV. The prior for mres is
set by plotting the mres correlator, with a width set to
10% of the central value, and is approximately one order
of magnitude larger than its posterior distribution.

The fit regions for the pion two-point correlation func-
tions and the mres correlators are chosen in the region of
stability under varying choices of source-sink separation
time to ensure full control over excited state systematic
uncertainty.

Uncertainties are propagated by bootstrap resampling.
Random bootstrap draws are prepared in advance and
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ensemble amπ amres × 104 aFπ amju

a15m310 0.2362(2) 9.56(7) 0.0753(1) 0.3061(12)

a12m310 0.1888(2) 7.71(6) 0.0615(1) 0.2189(08)

a09m310 0.1409(1) 2.69(3) 0.0455(1) 0.1481(05)

a15m220 0.1657(2) 5.75(4) 0.0727(1) 0.2554(20)

a12m220S 0.1357(2) 3.99(4) 0.0587(1) —

a12m220 0.1343(1) 4.04(3) 0.0587(1) 0.1770(10)

a12m220L 0.1341(1) 4.05(2) 0.0588(1) —

a15m130 0.1010(2) 2.55(2) 0.0708(2) 0.2252(45)

TABLE III. The pion spectrum and Fπ are needed for ex-
trapolation. The quantity επ = mπ/(4πFπ) is used for the
chiral extrapolation. The mixed-pion masses amju are gener-
ated and analyzed on the same ensembles as the rest of this
work, except for the a12m220S and a12m220L ensembles, for
which we assume the a12m220 value.

ensemble g̊A g̊V p ZA/ZV − 1

a15m310 1.216(11) 1.0009(16) 0.32 14(01) × 10−7

a12m310 1.261(08) 1.0191(11) 0.34 54(04) × 10−7

a09m310 1.289(14) 1.0248(13) 0.06 69(03) × 10−7

a15m220 1.229(09) 0.9959(56) 0.07 72(46) × 10−7

a12m220S 1.294(28) 1.0177(34) 0.35 20(04) × 10−6

a12m220 1.277(15) 1.0146(17) 0.34 20(04) × 10−6

a12m220L 1.276(21) 1.0198(49) 0.09 20(04) × 10−6

a15m130 1.262(53) 0.994(35) 0.05 47(53) × 10−5

TABLE IV. The resulting bare axial-vector and vector cou-
plings with their corresponding p-values from the correlation
function fits on ensembles used in this work. The renormal-
ized axial coupling is determined by gA = (ZA/ZV )(̊gA/̊gV ).
The uncertainty is obtained from the bootstrapped standard
deviation.

saved, guaranteeing that identical bootstrapped configu-
rations are generated for each ensemble across different
datasets. For the preferred fits, 5000 bootstrapped con-
figurations are analyzed, allowing for a correlated anal-
ysis with the bootstrapped samples of g̊A/̊gV . For each
bootstrap, the prior central values for all parameters are
set to a value randomly drawn from their corresponding
initial prior distributions. The bootstrap histogram for
επ for the a12m220 ensemble is provided in Fig. 3. The
exhaustive list of histograms for επ is provided in Ap-
pendix D and are all demonstrably Gaussian distributed.

V. RENORMALIZATION

In the isospin limit, the axial charge gA is computed
from the ratio of bare g̊A/̊gV and the ratio of the renor-
malization constants as the vector charge is normalized
to ZV g̊V = 1,

gA = (ZA/ZV )(̊gA/̊gV ) , (27)

where ZA and ZV are the renormalization factors of
the axial-vector and vector current to convert from the
bare, local to renormalized currents. Since we use a for-
mulation which preserves chiral symmetry to very good
approximation, we expect ZA = ZV up to some lat-
tice artifacts and potential IR (infrared) contamination.
However, since the ratio ZA/ZV can be computed very
precisely through an NPR (non-perturbative renormal-
ization) procedure, we might observe a deviation from
ZA/ZV = 1. We implement the Rome-Southampton
renormalization method [43], with non-exceptional kine-
matics [44]. We also implement momentum sources, as
proposed in [45], leading to very high statistical accuracy
(see also [46]). We first solve

∑
x

D(y, x)G̃x(p) = eip.y (28)

and then multiply by the appropriate phase factor

Gx(p) = G̃x(p)e−ip.x =∑
y

D−1(x, y)eip.(y−x) (29)

to obtain the incoming momentum source propagator
with momentum p, denoted by Gx(p). As usual, the
outgoing propagator (with momentum −p) is given by
γ5-hermiticity:

Ḡx(p) ≡ γ5Gx(p)†γ5 =∑
y

D−1(y, x)e−ip⋅(y−x) . (30)

Incoming and outgoing refer to the point x where the
vertex is located. For amputation, we introduce the full
momentum propagator

G(p) =∑
x

Gx(p) . (31)

Next, we define the bilinear two-point function

VΓ(p2, p1) =∑
x

[Ḡx(p2)ΓGx(p1)] (32)

for Γ = γµ, γµγ5. For the choice of momenta, we follow
the SMOM condition: p1 ≠ p2 with p2

1 = p2
2 = (p1 − p2)2.

The amputated vertex function reads

ΠΓ =⟨Ḡ(p2)−1⟩⟨VΓ(p2, p1)⟩⟨G(p1)−1⟩ , (33)

where ⟨O⟩ denotes the gauge average. The amputated
vertex function is a matrix in Dirac-color space (12×12),
which we still have to project onto its tree level value.
We implement the so-called γµ and /q schemes, with q =
p2 − p1. Explicitly for the vector Γ = γµ, we have

Λ(γµ)γµ =P(γµ) [Πγµ] = Tr[γµΠγµ] , (34)

Λ(/q)γµ =P(/q) [Πγµ] =
qµ

q2
Tr[/qΠγµ] , (35)

where the trace is taken over both color and Dirac in-
dices. Similarly, the projected Green’s function for the
axial current is obtained by the substitution γµ → γµγ5
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FIG. 4. Non-perturbative determination of ZA/ZV using the
SMOM momentum condition for two schemes (/q and γµ) on
some of the ensembles used in this work. These are represen-
tative of the results found on all ensembles.

in the previous equations. Denoting the scheme (s), and
the scale µ (with µ2 = p2

1 = p2
2 = (p2−p1)2 ) the renormal-

ization conditions read

ZΓ

Z
(s)
q (µ)

×Λ
(s)
Γ (µ) = F (s)Γ , Γ ∈ {γµ, γµγ5} . (36)

The only scale and scheme dependence in Eq. (36) is
due to the quark wave function renormalization factor Zq
(as the vector and axial current are protected by Ward

Identities). F
(s)
Γ is the corresponding tree level value.

For example, if we want ZV = Zγµ , the momentum space

propagators can be set to G = δijδαβ (with color indices
i, j and Dirac indices α,β), resulting in

[Πγµ]
ij

αβ

tree= [γµ]αβ δ
ij , (37)

P(γµ) [Πγµ]
tree= [γµ]βα δ

ji [γµ]αβ δ
ij = 4 × 12 . (38)

As we are only interested in the ratio ZA/ZV , we do not
need to determine Zq. In practice, we compute ZA/ZV
from

ZA
ZV

=
Λ
(s)
γµ

Λ
(s)
γµγ5

. (39)

The values of the renormalization coefficients calcu-
lated from the γµ and /q schemes agree well within uncer-
tainty above 2 GeV. Representative results are shown in
Fig. 4, with similar results found for all ensembles used
in this work. With momenta up to 4.5 GeV, there is
no evidence for an onset of growing discretization uncer-
tainty for the ratio ZA/ZV . There is evidence of the IR
contamination which all but vanishes for µ ≳ 3 GeV. This
demonstrates systematic control over the renormalization
coefficients over a wide range of momenta.

In principle, the renormalization conditions Eq. (36)
are imposed in the chiral limit (for a massless scheme), so

one should take the chiral limit. In practice, we observe
that even at finite mass, the deviations from ZA/ZV = 1
are tiny—as seen in Table IV. A detailed study of the
renormalization of various matrix elements with our ac-
tion [24], including the vector and axial-vector currents
will be provided in a forthcoming publication [47].

VI. CHIRAL, CONTINUUM AND INFINITE
VOLUME EXTRAPOLATIONS

Given the renormalized values of gA, the remaining
systematic uncertainties to control are the standard pion
(quark) mass1 extrapolation and the continuum and in-
finite volume extrapolations. EFT methods can be used
to parameterize the dependence upon the pion mass, the
discretization scale and the finite volume such that these
systematic uncertainties can be controlled.

For a static quantity such as gA, standard HBχPT
(Heavy Baryon χPT) [50] can be used. Given the con-
vergence issues of SU(3) HBχPT [51–55], a controlled
extrapolation requires the use of the two-flavor theory in
which the strange quark is integrated out [56]. However,
even in SU(2) HBχPT it is not clear if mπ ∼ 300 MeV
is a sufficiently light pion mass for a converging chiral
expansion [51, 57, 58]. The NLO (next-to-leading or-
der) chiral corrections to the nucleon axial charge were
first determined in Ref. [59] in SU(3) HBχPT including
explicit decuplet baryons and in Ref. [56], they were de-
termined in the two-flavor theory without explicit deltas.
If Ref. [60], the NNLO (next-to-next-to-leading order)
chiral corrections of O(m3

π) were determined in SU(2)
HBχPT. In Ref. [61], explicit delta degrees of freedom
were included in the SU(2) corrections using the so-
called small scale expansion [62]. In Ref. [63], the double
logarithm coefficient arising from the two-loop contribu-
tions at NNNLO (next-to-next-to-next-to-leading order)
was determined using the renormalization group.

We have results at three different pion mass values
and should therefore restrict the extrapolation function
to have at most two unknown coefficients describing the
pion mass dependence, as a third parameter would sim-
ply amount to a model that could accomodate all three
points. The same is true for the continuum extrapola-
tion, discussed further below.

At NLO in SU(2) HBχPT, there are 2 unknown
LECs which must be determined, the leading axial cou-
pling in the chiral limit, g0, and a local counter-term
associated with a loop divergence proportional to m2

π.
At NNLO, O(m3

π), there is an additional counter-term.
However, this counter-term is not completely arbitrary

1 Using SU(2) χPT (Chiral Perturbation Theory) [48, 49], we
can freely interchange between a quark mass expansion and pion
mass expansion. Unless specifically noted, we synonymously in-
terchange between describing these chiral corrections as quark
mass dependence or pion mass dependence.
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as the NNLO contribution is purely non-analytic in the
quark mass, and therefore it must be proportional to g0.
There are still 3 LECs to be determined at NNLO, and
since we have only 3 pion mass points, this extrapolation
can be used to estimate the importance of higher order
chiral corrections, but not for a robust extrapolation.
gA is a dimensionless quantity. If one takes the χPT

dimensional regularization scale to be µ = 4πFπ, then the
entire extrapolation function can be expressed in terms
of purely dimensionless quantities which we can be deter-
mined in the LQCD calculation. The correction to this
formula from using a quark mass dependent scale versus
a fixed scale appears at NNNLO, O(m4

π), as the differ-
ence between 4πFπ and 4πF0 is an O(m2

π) correction.
Therefore, through NNLO, the pion mass extrapolation
function can be simply expressed as

gχPT
A = g0 − ε2π [(g0 + 2g3

0) ln (ε2π) − c2]
+ g0c3ε

3
π +⋯ , (40)

where the ⋯ denote terms of higher order in the chiral
expansion and all LECs are dimensionless.

Our results indicate very mild pion mass dependence
within the range of pion masses used. This is also con-
sistent with LQCD results for gA from other groups,
which show a nearly flat pion mass dependence up to pion
masses on the order of 1 GeV [11, 64–77]. We therefore
also consider a simple Taylor expansion around a point
ε20

gTA = c0 + c2(ε2π − ε20) + c4(ε2π − ε20)2 +⋯ . (41)

The Taylor expansion about ε2π is synonymous with a
Taylor expansion in the light quark mass. One could
also consider a Taylor expansion in επ, however this is
synonymous with an expansion in

√
ml, which is not a

natural expansion in terms of the input parameters of
QCD. This form can be phenomenologically motivated
through the observation of linear pion mass dependence,
similar to that observed in the nucleon mass [51, 57, 58].
An extrapolation of our results in (επ − ε0) is consistent
with that in Eq. (41), however, we do not consider it
further in this work.

The quadratic term in the Taylor expansion requires
the determination of a 3rd unknown parameter, as with
the chiral expansion at NNLO, and so one can only use
these higher order fits to estimate chiral extrapolation
uncertainties. For the linear extrapolation, the choice of
ε0 of course has no impact on the final result.

For sufficiently large volumes, it is trivial to incorpo-
rate the corrections arising from a finite periodic volume
into χPT. In the so-called p-regime [78], one simply re-
places the spatial integrals arising in quantum loop cor-
rections with their finite volume sums. For quantities
without kinematic singularities appearing in the momen-
tum integral, the difference between the finite volume and
infinite volume quantum corrections can be shown to be
suppressed exponentially in the volume, with an asymp-
totic suppression at least as strong as e−mπL. The lead-
ing volume corrections arising at NLO for gA were first

worked out in Ref. [79]. Using the notation of this refer-
ence but keeping only the contributions from intermedi-
ate nucleons, the volume corrections can be expressed in
terms of the two dimensionless quantities επ and mπL,

δL ≡ gA(L) − gA(∞)

= 8

3
ε2π [g3

0F1(mπL) + g0F3(mπL)] (42)

where

F1(mL) = ∑
n≠0

[K0(mL∣n∣) −
K1(mL∣n∣)
mL∣n∣

] ,

F3(mL) = −
3

2
∑
n≠0

K1(mL∣n∣)
mL∣n∣

, (43)

and Kν(z) are modified Bessel functions of the second
kind. The two features of note are that the coefficient of
the volume corrections depends upon g0, the LO (leading-
order) contribution to gA and that at fixed mπL the vol-
ume corrections scale quadratically in the pion mass.

While the finite volume corrections can be under-
stood through an infrared modification of the low-energy
EFT, the discretization corrections can be parameter-
ized through a modification of the ultra-violet behavior
of the theory, and similarly mapped into an EFT descrip-
tion. In order to characterize the finite lattice spacing
corrections, one follows a straightforward two-step pro-
cedure [80]. First, the lattice action is expanded for small
lattice spacing into the Symanzik local EFT [81, 82]. The
discretization effects are then encoded in a tower of op-
erators suppressed by higher powers of the discretization
scale,

S = S0 + ∑
n>0

anSn , (44)

where S0 = SQCD is the QCD action and Sn are the set
of effective continuum operators of dimension 4 + n con-
sistent with all symmetries of the underlying lattice ac-
tion. For the mixed lattice action we are using, the lead-
ing discretization effects begin at O(a2). The dynam-
ical HISQ action is perturbatively improved such that
the leading discretization effects begin at O(αSa2) and
the valence MDWF action has leading corrections which
begin at O(a2). The MDWF action has an O(a) correc-
tion proportional to the residual chiral symmetry break-
ing parameter, but this quantity can be absorbed into
a redefinition of the quark mass, and in our case, it has
been tuned to be less than 10% of the valence light quark
mass [24], see also Table III.

The MA EFT for this action is known [83, 84], includ-
ing the MA EFT expression for gA at NLO [85, 86],

gMA
A = g0 − (g0 + 2g3

0)ε2π ln (ε2π) + c2ε2π

− (g0 +
24g3

0 − 15g2
0 ḡ0 + 14g0ḡ

2
0 + ḡ3

0

12
)

× [ε2ju ln (ε2ju) − ε2π ln (ε2π)]

− g0ḡ
2
0ε

2
PQ [1 + ln (ε2π)] + cMA

2a

a2

w2
0

. (45)
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In this expression, there are two additional LECs, ḡ0 and
cMA
2a , while the other new parameters are all determined

in the LQCD calculation. εju is the mixed-meson term

ε2ju =
m̃2
ju

(4πFπ)2
, (46)

where m̃ju is the mixed meson mass including discretiza-
tion corrections [87, 88], which we have determined, see
Table III. With the tuning we have performed (mπ =
mπ,5 +O(2%)) the partially quenched parameter is pro-
portional to the taste-Identity HISQ pion splitting

ε2PQ = a2∆I

(4πFπ)2
. (47)

cMA
2a is the LEC/counter-term for the leading discretiza-

tion corrections, which we have parameterized with the
dimensionless quantity a/w0, where w0 is the gradient
flow scale [89] which has also been determined with the
dynamical HISQ ensembles we are utilizing [32]. The
new axial coupling ḡ0 parameterizes the strength of the
singlet axial current coupling to the nucleon.

We find our numerical results are insufficient to con-
strain all three unknown LECs, g0, c2 and ḡ0. Using
partially quenched and SU(3) flavor symmetries, the new
coupling can be estimated to be ḡ0 =D−3F where D and
F are the SU(3) axial coupling constants with g0 =D+F
at LO in the SU(3) flavor expansion. Using phenomeno-
logical values of D ∼ 0.75 and F ∼ 0.45 leads to the es-
timate ḡ0 ∼ −0.6 which is consistent with determinations
from recent LQCD calculations [73, 75]. However, as our
numerical results are themselves insufficient to constrain
all the LECs, we do not include the MA χPT fit in the
final analysis.

Despite this issue, one observes our results also have
very mild discretization corrections. Further, they are
consistent with a pion mass independent continuum ex-
trapolation. This motivates us to consider a simple form
for the extrapolation, with the continuum χPT expres-
sion, Eq. (40), supplemented explicit discretization cor-
rections. For example, the leading discretization term is
given by

δa = c2a
a2

w2
0

+⋯ , (48)

where the dots represent higher order terms in the contin-
uum extrapolation. In order to perform the continuum
extrapolation with dimensionless LECs, we have chosen
to scale the lattice spacing by the gradient flow scale,
w0. The leading discretization corrections for the HISQ
action begins at O(αSa2) and so a natural higher or-
der term to include would be such a term. However,
this introduces a 3rd unknown parameter controlling the
continuum extrapolation, and therefore can not provide
a robust extrapolation as we have only 3 lattice spacings
in this work. One can estimate the systematic uncer-
tainty arising from such a truncated continuum extrapo-
lation by instead extrapolating in terms of αSa

2/w2
0 and

ensemble επ mπL a/w0
a αS gA

a15m310 0.2495(3) 3.780(3) 0.8804(3) 0.58801 1.215(12)

a12m310 0.2442(5) 4.531(4) 0.7036(5) 0.53796 1.237(07)

a09m310 0.2462(4) 4.507(4) 0.5105(3) 0.43356 1.258(14)

a15m220 0.1814(3) 3.977(4) 0.8804(3) 0.58801 1.234(11)

a12m220S 0.1839(5) 3.257(5) 0.7036(5) 0.53796 1.272(28)

a12m220 0.1820(4) 4.299(4) 0.7036(5) 0.53796 1.259(15)

a12m220L 0.1814(4) 5.363(4) 0.7036(5) 0.53796 1.252(21)

a15m130 0.1135(5) 3.233(7) 0.8804(3) 0.58801 1.270(72)

a We use a/ω0 determined at the physical-mass ensembles for
fixed lattice spacing.

TABLE V. Renormalized values of gA and the parameters
needed in the various extrapolations determined in this work.
The lattice spacing a/ω0 and strong coupling-constant αS are
obtained from Table IV and III from Ref. [32] respectively.

comparing to an extrapolation with the leading correc-
tion. Alternatively, one could introduce Bayesian priors
to prevent the discretization LECs from wandering far
away from their natural sizes. For this work, we find the
continuum extrapolated answer is consistent within the
1-sigma level whether one takes a2/w2

0 as parameteriza-
tion of the continuum limit versus the term further sup-
pressed by αS using a standard frequentist minimization.
We conclude this continuum extrapolation systematic is
a sub-dominant contribution to the total uncertainty rel-
egating further investigation to future work.

VII. RESULTS AND DISCUSSION

In this section, we apply various extrapolations to our
results and make a post-diction for gA. In Table V, we
provide the various input parameters and the renormal-
ized values of gA(επ, a/w0,mπL).

A. Analysis and error budget

In order to assess the extrapolation uncertainty, we set-
tle on 10 different models for performing the combined
continuum, infinite volume and chiral extrapolations. All
10 of these models have few enough unknown parameters
that they provide some measure of predictive power. We
exclude any models with parameters that are in principle
determinable with our data set but which have 100% or
greater uncertainty in the resulting fit, as they are clearly
not constrained by our results. This restriction excludes
the MA EFT fit, Eq. (45), as well as the addition of
a term proportional to ε2π(a/w0)2 to either the χPT or
Taylor expansion extrapolation functions. Since we have
only 3 lattice spacings, in order to assess the uncertainty
in the continuum extrapolation from higher order correc-
tions, we perform extrapolations using Eq. (48) as well as
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αSδa, where αS is the strong coupling constant. The dis-
crepancy between the O(a2) and O(αSa2) extrapolations
should provide a reasonably conservative estimate of the
continuum extrapolation uncertainty. The resulting set
of extrapolation functions is given by

gA = c0 + δa + δL , (49a)

gA = c0 + αSδa + δL , (49b)

gA = c0 + c2ε2π + δL , (49c)

gA = c0 + c2ε2π + δa + δL , (49d)

gA = c0 + c2ε2π + αSδa + δL , (49e)

gA = g0 + δa + δL , (49f)

gA = g0 + αSδa + δL , (49g)

gA = g0 − (g0 + 2g3
0)ε2π ln(ε2π) + c2ε2π + δL , (49h)

gA = g0 − (g0 + 2g3
0)ε2π ln(ε2π) + c2ε2π + δa + δL , (49i)

gA = g0 − (g0 + 2g3
0)ε2π ln(ε2π) + c2ε2π + αSδa + δL , (49j)

where δL and δa are given by Eqs. (42) and (48) respec-
tively. For the latter five fits from Eqs.((49f)–(49j)), the
unknown coefficient in δL, g0, is taken to be the same
as in the infinite volume χPT expression while in the
Taylor expansion fits, Eqs. (49a)-(49e), the value is left
to float as a free parameter, gL0 . To evaluate the finite-
volume functions F1(mπL) and F3(mπL), we include up
to ∣n∣ = 20 in the summations, well beyond the point
of negligible contributions from higher around-the-world
effects [90]. For NLO Taylor expansion fits given by
Eqs. (49c–49e), we expand around ε20 = 0 as the choice
of ε0 has no impact in this linear in ε2π expansion.

We perform a numerical least-squares minimization of
the χ2 constructed from our results and the 10 extrap-
olation functions listed above. The input parameters,
the independent x-variables, have uncertainties which are
correlated with the values of gA(επ, a/w0,mπL) on each
ensemble. We have not performed calculations with dif-
ferent sets of valence parameters on the same underlying
ensemble, so the covariance matrix needed for the χ2 is
diagonal in the ensemble space,

χ2 =∑
q

(gqA − f(xq, θ))
2

σ2
q

, (50)

where q runs over the ensembles, gqA is the mean value
of gA, xq is the set of x-variables, σ2

q is the variance in-
cluding that from the x-variables, all on ensemble q and
θ is the set of unknown parameters in a given extrapola-
tion function. In order to estimate σq, we compute the
variance

σ2
q = var(gqA[bs] − f(xq[bs], θ)) , (51)

using the bootstrap distributions of gA and the x-
variables. For a function with linear dependence upon x,
this exactly reproduces the linear least squares variance
with uncorrelated uncertainties in x and y, σ2 = σ2

y+θ2σ2
x,

for a function f(x, θ) = θx. For each minimization, we
also perform a fit in which we set the x-variance to zero,
and find that these uncertainties have no impact on the
results within the quoted precision. We have prepared
a set of Python scripts that perform these various mini-
mizations, which we make available with this article.

To judge the relative quality of these various extrap-
olations, we utilize the AIC (Akaike information crite-
rion) [91] defined as,

AIC = 2k − 2 ln(L̂) (52)

for a model with k free parameters and L̂ is the maximum
of the likelihood function. The hat on L indicates that
the likelihood is evaluated at its extrema. In the case
that the objective function is the χ2-statistic, −2 ln(L̂) =
χ2
min. The AIC is derived from the Taylor expansion

of the Shannon entropy up to quadratic dependence in θ
evaluated at its maximum likelihood estimate. Therefore
within a set of models, any model i with AICi has the
relative probability Pi (where Pi ≤ 1) of being the “truth”
compared to the model with AICmin where,

Pi = exp [− (AICi −AICmin) /2] . (53)

It is important to note that AIC does not provide a
means for hypothesis testing, but instead only provides
a method for model selection. The model-weighted aver-

age θ̂ and variance ˆ̄σθ of parameter θ over N models can
be calculated from the AIC weights wi,

θ̂ =
N

∑
m=1

wiθ̂i, (54)

σ̂θ = [
N

∑
m=1

wi

√
σ̂i,θ + (θ̂i − θ̂)2]

2

, (55)

wi =
Pi

∑Nm=1 Pm
, (56)

where the hat on θi (and its variance) indicates its value
determined by the maximum likelihood estimate of model
i. We employ AIC as means of model selection, and
ultimately for estimating the model extrapolation uncer-
tainty. In Table VI, we list quantities from the minimiza-
tion of the 10 extrapolation functions listed in Eqs. (49a)-
(49j). Our final determination of the axial charge is

gA(εphysπ , a→ 0,mπL→∞) = 1.278(21)(26) , (57)

where the first uncertainty is the statistical/systematic
uncertainty arising from the LQCD calculations and the
second uncertainty arises from the spread in predictions
from the various extrapolation functions considered. The
resulting distribution is displayed in Fig. 5.

B. Discussion

The largest uncertainty in our determination of gA
results from the model extrapolation uncertainty. The
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short name Eq. extrapolation function χ2/dof AIC weight gA(εphyπ )
Tε0πa

2 (49a) c0 + δa + δL 4.73/5 10.729 0.0447 1.275(17)

Tε0παSa
2 (49b) c0 + αSδa + δL 4.73/5 10.728 0.0447 1.269(14)

Tε2πa
0 (49c) c0 + c2ε2π + δL 7.82/5 13.819 0.0095 1.257(14)

Tε2πa
2 (49d) c0 + c2ε2π + δa + δL 0.14/4 8.138 0.1632 1.321(26)

Tε2παSa
2 (49e) c0 + c2ε2π + αSδa + δL 0.13/4 8.131 0.1637 1.311(24)

χε0πa
2 (49f) g0 + δa + δL 6.47/6 10.467 0.0509 1.272(16)

χε0παSa
2 (49g) g0 + αSδa + δL 6.41/6 10.413 0.0523 1.265(14)

χε2πa
0 (49h) g0 − (g0 + 2g30)ε2π ln(ε2π) + c2ε2π + δL 9.13/6 13.126 0.0135 1.208(12)

χε2πa
2 (49i) g0 − (g0 + 2g30)ε2π ln(ε2π) + c2ε2π + δa + δL 1.46/5 7.463 0.2286 1.260(22)

χε2παSa
2 (49j) g0 − (g0 + 2g30)ε2π ln(ε2π) + c2ε2π + αSδa + δL 1.46/5 7.462 0.2289 1.253(20)

weighted avg. 1.278(21)(26)

TABLE VI. Minimization results from the various extrapolation functions and our weighted average as described in the text.
For the average, the first uncertainty arises from the fitting statistical and systematic uncertainties and the second uncertainty
is from the variation due to the model extrapolation. The resulting distribution is displayed in Fig. 5.

1.15 1.20 1.25 1.30 1.35 1.40 1.45
gA

Akaike average

FIG. 5. The AIC weighted histogram distribution of our
extrapolation results as described in Sec. VII A. The overall
magenta distribution is from the weighted bootstrap distri-
butions from each analysis, with the varying shaded regions
representing the 1, 2, and 3+ sigma confidence intervals. The
underlying distributions visible are from the weighted distri-
bution from each analysis.

spread in the resulting distribution is driven by the high-
est weighted fits, Eqs. (49d), (49e), (49i) and (49j) which
show tension at the 1-sigma level. The dominant source
of this discrepancy arises from the pion mass extrapola-
tion, rather than the discretization corrections. To un-
derstand this, first observe that the discrepancy between
the O(a2) and O(αSa2) extrapolations (the subsequent
pairs in Table VI), differ by less than one standard de-
viation. Contrast this to the discrepancy between the
final result from Eq. (49d) and (49i), for example, which
differ by more than one standard deviation of each re-
sult. At the same time, the coefficient of the discretiza-
tion LEC in these two fits are consistent with each other
c2a[(49d)] = −0.101(40) and c2a[(49i)] = −0.084(30), as
displayed in Fig. 6. Further, at the coarsest lattice spac-
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FIG. 6. Continuum extrapolation of gA using the two fit
ansätze Eqs. (49d) (top) and (49i) (bottom). The values of gA
in the plots have been adjusted for finite volume corrections.

ing, our value of gA is only 6% different from the con-
tinuum extrapolated value and at the finest, it is 2.1%,
demonstrating a very mild continuum extrapolation.

The resulting pion mass dependence (επ) is displayed
in Fig. 7, for the two most weighted fits. From bottom
to top, the solid red, green and blue curves are the re-
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sulting extrapolation as a function of επ at fixed lattice
spacing. The filled magenta band is the 68% confidence
interval for the continuum, infinite volume extrapolated
value of gA(επ). The Taylor expansion fit results in a
very mild pion mass dependence, whereas the χPT fit
shows some noticeable pion mass dependence. This cur-
vature is generated by the χPT extrapolation formula
as the coefficient of the NLO logarithm is constrained
by the leading order term, generating a large logarithm.
The local counter-term contribution, proportional to c2,
competes with the logarithmic correction, leading to the
observed strong pion mass dependence.

In Ref. [92], the first conclusive evidence for such
chiral-logarithms in the baryon sector was observed and
presented for the iso-vector nucleon mass. In that case,
the presence of the chiral logarithm was more prominent
as the low-order Taylor expansion was incapable of pa-
rameterizing the LQCD results. This is not the case in
the present work, so such strong conclusions about the
evidence of the non-analytic quark mass dependence pre-
dicted from χPT can not be currently drawn from gA. In
order to reduce the pion mass extrapolation uncertainty
(by ruling out or finding consistent the χPT and Taylor
expansion analysis), one would need to have enough of
a lever arm to constrain higher order corrections, for ex-
ample by obtaining results at more pion masses as well
as more precise results at the physical pion mass.

The NLO χPT analysis results in the LECs

g0 = 1.144(21) , c2 = −9.48(72) . (58)

The parameter covariance matrix can be extracted from
the Python analysis scripts and/or resulting sqlite file
accompanying this work, as well as the resulting param-
eters and parameter covariance matrices from all fits,
Eqs. (49a)-(49j).

1. Volume dependence

There has been some discussion in the literature that
gA may be particularly susceptible to finite-volume cor-
rections such that the leading χPT prediction for the
volume dependence is grossly insufficient to explain the
observed volume dependence [67, 93–95]. In Fig. 8, we
display the result of our dedicated volume study. In the
Taylor expansion fit, Eq. (49d), the coefficient of the vol-
ume corrections is determined to be gL0 = 1.42(53). In
the χPT extrapolation enhanced by discretization correc-
tions, Eq. (49i), the coefficient of the volume correction
is the same as that which appears in the infinite volume
extrapolation, which is determined to be g0 = 1.144(21).
We conclude that the leading volume corrections are in
extremely good agreement with the numerical LQCD re-
sults and that the coefficient of the volume corrections as
determined by these various fits are also consistent.
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FIG. 7. Chiral extrapolation of gA resulting from the fit
ansätze Eqs. (49d) (top) and (49i) (bottom). The values of gA
in the plots have been adjusted for finite volume corrections.

2. Truncation error

The NNLO χPT corrections to gA scale as ε3π. Us-
ing EFT power-counting arguments, the estimate of such
corrections is of order (εphysπ )3 ∼ 0.002 which is less than
10% of our statistical uncertainty. However, tension be-
tween the NLO Taylor expansion and χPT suggests that
the truncation leads to error comparable to our statis-
tical uncertainty. We fully account for this error in our
final AIC averaged result.

At the physical pion mass, the total extrapolation from
our coarsest lattice spacing to the continuum limit, us-
ing the a2 ansätze, is less than 5% of the central value
of gA. Assuming the dimensionless coefficient of the a4

contribution is similar in magnitude to that of the a2,
these higher order contributions are näıvely 5% of 5%
(∼ 0.25%) at the coarsest spacing. This is comparable to
the ∼ 0.3% difference between the a2 and αSa

2 extrap-
olations in both the Taylor expansion and χPT fits at
LO and NLO. While we are unable to constrain the a4

coefficients with only three lattice spacings, these obser-
vations, and the mild continuum extrapolation suggests
this study is not necessary. We include as an uncertainty
the difference between the a2 and αSa

2 in our final AIC
averaged result, which we find to be a reasonable esti-
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FIG. 8. Volume corrections compared to the predicted lead-
ing volume dependence from SU(2) χPT [79]. In the Taylor
expansion fit (top), the coefficient of these corrections are a
free parameter, while in the χPT fit (bottom), the coefficient
also serves as the leading contribution to gA. In both cases,
the volume corrections agree very well with the predicted χPT
formula, Eq. (42).

mate of higher order discretization corrections.

C. ∣Vud∣ from neutron decay

Knowledge of gA, together with experimentally mea-
sured value of the neutron lifetime τn, can be used to
determine the value of the CKM (Cabbibo-Kobayashi-
Maskawa) matrix element ∣Vud∣,

∣Vud∣2 =
4908.7(1.9)sec

τn(1 + 3g2
A)

, (59)

where the uncertainty in the numerator comes from elec-
troweak RC (radiative corrections) [96, 97]. Using the
world average value [2]

τn = 880.3(1.1) sec (60)

and the AIC averaged value of gA determined from our
lattice calculation, we obtain

∣Vud∣ = 0.9697(6)τn(233)gA(2)RC. (61)

This result is consistent at the percent level of the
PDG value, 0.9758(6)τn(15)gA(2)RC, but still an order-
of-magnitude less precise.

An even more precise determination of ∣Vud∣ may
be obtained experimentally from decay rates of
super-allowed nuclear beta-decays, giving a value of
0.97417(5)exp.(9)nucl.dep.(18)RC. This result however,
introduces model-dependent uncertainty. ∣Vud∣ may be
determined to similar precision by calculating, using
LQCD, the ratio of pseudoscalar decay constants FK/Fπ
and ∣Vus∣ from K → π semileptonic decay. When
these values are combined with the experimentally de-
termined ratio of ∣Vus/Vud∣FK/Fπ, one arrives at the
FLAG (Flavor Lattice Averaging Group) value of ∣Vud∣ =
0.97440(18)2 [98]. Here we present an alternative way
to constrain ∣Vud∣. However, effort beyond the scope of
this work is required for the hadronic uncertainty to be
comparable to the uncertainty in the neutron lifetime
measurement.

VIII. CONCLUSION

We have performed a calculation of the nucleon ax-
ial charge, gA, using lattice QCD methods. We utilize a
new method motivated by the Feynman-Hellmann theo-
rem [23] for computing matrix elements, which gives us
good control over finite temporal effects at a modest com-
putational cost. Of important note, we achieve precise re-
sults with only O(4−5K) thousand stochastic samples on
all but 2 of the ensembles used in this work, substantially
less than the tens to many tens-of-thousands of samples
used with more traditional computational strategies.

We have performed extrapolations in lattice spacing,
volume, and pion mass, and report a final value of

gA = 1.278(21)(26) .

This calculation is only the second lattice QCD determi-
nation of gA with all systematics accounted for, and is the
first to do so and agree with the experimental determina-
tion within error bars. Because the previous calculation
by the PNDME collaboration was performed using the
same lattice ensembles, it will be important future work
to determine the source of discrepancy between the re-
sults.

The first error we quote includes all statistical and fit-
ting systematic uncertainties and the second encodes sys-
tematic uncertainties due to the extrapolations to the
physical point. We use a variety of different models to
perform our extrapolations, and use a weighted average
utilizing the AIC to determine the systematic uncertainty
from all extrapolations. The majority of the uncertainty
results from the extrapolation in pion mass, and fur-
ther reducing this uncertainty will require additional pion

2 Nf = 2 + 1 + 1 average from January 2017 update.
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mass points in order to pin down higher order contribu-
tions to both the chiral perturbation theory and Taylor
expansion fits. We find very mild dependence on the lat-
tice spacing, and moderate finite volume effects which
match the expected corrections as determined from ef-
fective theory. Finally, we use our result, in combination
with the experimentally determined neutron lifetime, to
determine the CKM matrix element ∣Vud∣, which we also
find to be consistent with the PDG value at the percent
level.

Interested readers can download the Python analysis
scripts used for this work and an hdf5 file with the rele-
vant numerical results at the github address:

https://github.com/callat-qcd/project_gA

Correlation functions and bootstrapped correlator fit
results are stored in a PostgreSQL database hosted at
NERSC, serving as the centralized up-to-date resource
for our main analysis. PostgreSQL serves as an ideal
database for large structured datasets common in Lat-
tice QCD calculations (e.g. gauge configurations, prop-
agators, correlation functions), while added flexibility
through native implementation of JavaScript Object No-
tation (JSON) accomodates unstructured data in the form
of analysis results (e.g. varying fit ansatz). With the
publication of this paper, we release tables from the
PostgreSQL database relevant to this project for the gen-
eral public in the above mentioned hdf5 file.
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Appendix A: Autocorrelation study
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FIG. 9. Autocorrelation study for all ensembles used in this work. Plots have the same color scheme as Fig. 2.
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Appendix B: Bootstrap correlator fits
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FIG. 10. Unbiased bootstrap fit curves with 68% confidence intervals. Results from one simultaneous fit are represented in
each column. The resulting biased bootstrap histograms for g̊A/̊gV follow at the bottom. In the histograms, regions mark the
68% and 95% confidence interval.
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FIG. 11. Same as Fig. 10 for the a15m130 and a12m310 ensembles.
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FIG. 12. Same as Fig. 10. The ordinate for Meff , g̊effA , and g̊effV and the abscissa of the histogram for the a12m220 ensemble
is manually set to be the same as Fig. 13.
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FIG. 13. Same as Fig. 10. The ordinate for Meff , g̊effA , and g̊effV and the abscissa of the histogram for the a12m220S and
a12m220L ensembles are manually set to be the same as the a12m220 ensemble in Fig. 12.
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Appendix C: Correlator stability plots
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FIG. 14. Stability plot of g̊A/̊gV for all ensembles. Solid symbols accompanied by shaded bands are the preferred fits. Varying
fit regions for the two-point correlator (◻), and axial (△), and vector (◇) effective deriatives are presented. Corresponding
p-values are presented, with the dashed red line at p = 0.05 discriminating statistical significance of the fit results.



28

Appendix D: Bootstrap histograms of επ
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FIG. 15. Bootstrapped histograms from επ. The abscissa is set to the same range for the three a12m220 ensembles.
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