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Abstract of the Thesis 

 

Effects of Ambient Particulate Matter 2.5 (PM2.5) 

 Exposure on Average Heart Rates and Mean Blood Pressures of 

Spontaneously Hypertensive Rats 

By 

Michael H. Vo 

Master of Science In Environmental Health Sciences 

Associate Professor Andrea De Vizcaya Ruiz, Chair 

 

Air pollution is a major health risk. Chronic exposure to particulate matter (PM) has been 

associated with increased risks for several cardiovascular (CV) diseases. Exposure to fine 

particulate matter (aerodynamic diameter ≤ 2.5 μm; PM2.5) is causally related to increases in 

sudden cardiac death, strokes, and myocardial infarction, which are coupled with erratic heart 

rates and blood pressure changes. The aim of this study is to assess changes in average heart rate 

(HR) and mean blood pressure (BP) in spontaneously hypertensive rats (SHRs) after 11-week 

exposure to ambient PM2.5.  

Six male SHRs were exposed 5 hours per day, 4 days per week (Mon-Thurs) for 11 

weeks (June 10, 2008 to August 21, 2008) to concentrated ambient PM2.5 (133 +/- 20 mcg/m3). 

Six control male SHRs were simultaneously exposed to filtered, purified air for the same periods. 

Study rats were implanted with telemetry devices (DSI, model number C50-PXT), which 

recorded electrocardiograms (ECGs), heart rates (HR), and blood pressure (BP). Data were 

acquired continuously in 5-minute increments, transmitted, stored, and analyzed using the 

DataQuest Art ® software. 
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Mixed-effects ANOVA was used to test for the interaction between four groups (Control-

Day, Exposed-Day, Control-Night, and Exposed-Night) and the respective changes in blood 

pressure and heart rate month-to-month and from the beginning to the end of the study. Marginal 

means with 95% confidence intervals were reported and interpreted for each analysis. Bivariate 

analyses were performed if a significant main effect was detected for an interaction. Statistical 

significance was assumed at an alpha value of 0.05, and all analyses were performed using SPSS 

Version 29 (Armonk, NY: IBM Corp.) 

There was a statistically significant reduction (22%) in average heart rates and a 

statistically significant increase (19%) in mean blood pressures of PM2.5-exposed rats over the 

course of 11 weeks compared to Air-exposed rats. Possible explanations for the reduction of the 

average heart rates include the highly responsive parasympathetic nervous system of the exposed 

rats, which mitigates the elevation of blood pressure caused by activation of the sympathetic 

nervous system and possible development of an adaptation response by exposed rats to repeated 

PM2.5 exposure by strengthening the parasympathetic nervous system, hence leading to 

continuous reduction of average heart rates. 

In summary, following repeated PM2.5 exposure, there was a statistically significant 

reduction in average heart rates and a statistically significant increase in mean blood pressures of 

PM2.5-exposed rats. The reduction of the average HR of exposed rats compensates for the 

increase in the mean BP, thus allowing them to maintain a state of homeostasis. With prolonged 

PM2.5 exposure, the elevation of blood pressure continues to compensate for further reduction of 

heart rate. The relentless increase in blood pressure leads to accelerated hypertension and, 

ultimately, death due to myocardial infarction, arrhythmia, and cardiac failure. 
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1. INTRODUCTION 

Ambient air pollution is a global health problem. Constituents of air pollution are highly 

heterogeneous and are a mixture of particulates and gaseous compounds. Among them, 

particulate matter (PM) is most commonly found in air pollution. It comprises sulfate, nitrates, 

ammonia, sodium chloride, black carbon, mineral dust, and water suspended in the air we 

breathe. PM is subclassified according to their aerodynamic particle size into (a) coarse (PM10-2.5, 

diameter 10-2.5 μm), (b) fine (PM2.5, diameter < 2.5 μm), and (c) ultrafine (PM0.1, diameter < 0.1 

μm) (Figure 1). Estimated yearly global premature deaths attributable to ambient PM2.5 exposure 

in 2019 amount to 2.89 million1. Exposure to air pollution is the largest environmental health 

risk. It ranks ninth among modifiable disease risk factors, above other common factors such as 

low physical activity, high cholesterol, and drug use2. Most of the excess deaths attributable to 

air pollution exposure are due to acute ischemic/thrombotic cardiovascular events. Exposure to 

PM2.5 is significantly associated with an increased risk of cardiovascular admission, 

hypertension, stroke, and coronary heart disease hospitalizations3. Chronic exposure to PM2.5 is 

associated with a higher risk of ischemic heart disease in both aluminum smelter and fabrication 

workers4. Chronic ambient PM2.5 exposure enhances the risk of developing acute myocardial 

infarction5 and other cardiovascular diseases, possibly including hypertension and systemic 

atherosclerosis6,7 
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Figure 1 also shows that coarse particles tend to be suspended dust in the atmosphere, 

while fine particles can form a haze-like layer in the atmosphere. Coarse particles arise from 

frictional actions, such as brake wear and wind resuspension of soil, agriculture, plants, 

volcanoes, road dust, and surface mining operations. They generally do not penetrate beyond the 

upper bronchus and stay in the upper respiratory tract, thus less likely to lead to systemic 

inflammation. Fine particles generally arise from combustion sources, diesel, and gasoline 

Cosselman K. E et al. Environmental Factors in Cardiovascular Disease 

Nat. Rev. Cardiol. 

Figure 1. Size categorization of airborne pollutants. (Adapted from 

Cosselman et al., 2015)8. 
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sources. They tend to penetrate into the lower respiratory tract. Ultrafine particles arise from gas-

to-particle conversions, diesel, and gasoline combustion. They can penetrate the small airways 

and alveoli; some can translocate and enter the bloodstream5, causing oxidative stress and 

systemic inflammation.  
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2. HYPOTHESIS 

 Repeated exposure to PM2.5 will alter average heart rate and mean blood pressure in 

spontaneously hypertensive rats (SHRs). 
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3. OBJECTIVE 

The aim of this study is to assess changes in average heart rate (HR) and mean blood 

pressure (BP) in spontaneously hypertensive rats (SHRs) after 11-week exposure to ambient 

PM2.5.  
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4. LITERATURE REVIEW 

 

Long-term exposures to ambient air pollution have been linked with cardiovascular 

morbidity and mortality9, 10. Hypertension is one important risk factor for cardiovascular 

diseases. It has been, therefore, hypothesized that exposure to air pollution could chronically 

raise blood pressure, thereby increasing hypertension11. Such a link has been investigated in a 

few studies. These studies showed that long-term exposure to ambient PM10 and NO2 was 

significantly associated with increased hypertension12,13. However, the association between 

ambient PM2.5 and hypertension has been inconclusive14. One recent meta-analysis pooling 5 

studies15 found a positive association, but the association was nonsignificant, indicating that 

more studies are warranted.  

 Exposure to PM leads to changes in disease biomarkers such as altering heart rate 

variability (HRV), changes in vascular tone, increased oxidative stress, induced vascular 

inflammation, and increased atherosclerotic plaque formation in animals16-18 and humans19-25. 

Chronic exposure to PM has been associated with increased risks for cardiac arrhythmias, 

myocardial infarctions, cardiac hypertrophy, and heart failure, which can contribute to higher 

morbidity and mortality26-28. 
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Figure 2. Working model of how air pollution exposure promotes adverse 

cardiovascular effects (adapted from Chin, 2014)29. 

 

There are three distinct hypotheses to explain the association between PM exposure and 

cardiovascular disease with varying degrees of evidence and consensus29, 30. The first hypothesis 

is best supported and asserts that PM entering the lungs provokes an inflammatory response that 

promotes oxidative stress and is sufficient to promote systemic oxidative stress and 
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inflammation. This pro-inflammatory state is then thought to promote a variety of pathological 

processes related to cardiovascular disease, such as increased thrombosis, hypercoagulability, 

endothelial dysfunction, atherosclerosis progression, and insulin resistance. The second 

hypothesis is somewhat supported and asserts that pulmonary exposure leads to activation of 

lung autonomic nervous system (ANS) arcs mediated by transient receptor potential (TRP) 

channels that then cause ANS imbalance, leading to pathological alterations in vasoconstriction, 

endothelial dysfunction, hypertension, platelet aggregation, tachycardia, increased heart rate 

variability, and increased arrhythmia potential. Only a few studies support the third hypothesis 

and assert that airborne particulates and/or their constituents inhaled through the lungs directly 

enter the circulation, where they may directly interact with tissue components to promote 

vasoconstriction, endothelial dysfunction, atherosclerosis, hypertension, platelet aggregation, 

systemic oxidative stress, and inflammation.  
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5. EXPERIMENTAL DESIGN 

Animals and exposure 

Spontaneously hypertensive rats (SHRs) were chosen as exposed and control subjects in 

this experiment. There are desirable characteristics of spontaneously hypertensive rats (SHRs) 

which may be ideal for this experiment. These include: 1. SHR mimics a specific subtype of 

human primary hypertension, which is inherited in a Mendelian fashion (dominant versus 

recessive)31, 2. SHRs can develop more severe end-organ damage (such as heart failure, stroke, 

and kidney failure) in addition to cardiac hypertrophy and impaired endothelium-dependent 

relaxations32, 3. SHRs demonstrate coping mechanisms to adapt to elevated blood pressure33, and 

4. Blood pressure in SHRs can effectively be lowered by inhibition of the renin–angiotensin 

system, calcium antagonists, and vasodilators34. 

Six male spontaneously hypertensive rats (SHRs) were exposed 5 hours per day, 4 days 

per week (Monday to Thursday) for 11 weeks (June 10, 2008 to August 21, 2008) to 

concentrated ambient PM2.5 (133 +/- 20 mcg/m3); and six control male SHRs were exposed to 

filtered, purified air for the same periods. All exposures to PM2.5 occurred at the University of 

California, Riverside (UCR) while non-exposure periods were collected at UC, Irvine. Non-

exposure day and all the night measurements were made at UCI while rats breathed purified air.  
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A Versatile Aerosol Concentration Enrichment System (VACES)35allowed for the 

concentration of local ambient PM, known as CAPs, and has been adapted for animal exposures 
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in real-world environments and can enrich the concentration of ambient particles in the diameter 

range of 0.02 to 10 μm by a factor of 1036. In this system, ambient PM2.5 is pulled in through a 

size-selective inlet with air saturated with water vapor. The particle-containing air is passed 

through a condensation tower and chilled, causing water to condense on the ultrafine and fine 

particles and allowing them to grow large enough in size to be separated by inertia. The 

schematic of the VACES37 used to study the seasonal effects of PM is shown in Figure 3. 

Study rats were implanted with electrocardiogram (ECG) telemetry devices (DSI, model 

number C50-PXT) to measure heart rates (HR) and mean blood pressure (BP). Data were 

acquired continuously in 5-minute increments and stored in DataQuest Art ® software. 

Husbandry and Housing  

Animals were housed at the University of California, Irvine in a vivarium accredited by 

the Association for Assessment and Accreditation of Laboratory Animal Care (AAALAC). The 

vivarium was maintained in temperature-controlled rooms with a 12-hr light/dark cycle, and rats 

were housed in ventilated cages supplied with purified air. All rats received a standard chow diet 

(Teklad Envigo, Indianapolis, IN, USA) and water ad libitum while in housing. 

Statistical Analysis 

Mixed-effects ANOVA was used to test for the interaction between groups (Control-Day, 

Exposed-Day, Control-Night, and Exposed-Night) and the respective change in blood pressure 

and heart rate month-to-month and from the beginning to end of the study. Marginal means with 

95% confidence intervals were reported and interpreted for each analysis. If a significant main 

effect was detected for an interaction, bivariate analyses were performed, and simple main 

effects were established using Tukey’s HSD tests in a post hoc fashion. Statistical significance 
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was assumed at an alpha value of 0.05, and all analyses were performed using SPSS Version 29 

(Armonk, NY: IBM Corp.). 

 

 

Figure 3. Schematic diagram of VACES and Exposure. (Taken from 

Herman et al., 2020)37. 
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6. RESULTS 

 

A statistically significant interaction effect was detected for the monthly analysis of 

exposure average heart rate: F (9,60) = 4.21, p = 0.003, partial eta-squared = 0.39, power = 0.95. 

There were significant differences between the groups at baseline, F(3,20) = 17.41, p < 0.001, 

and post hoc tests showed significant differences between Control-Day and Exposed-Day, p < 

0.001, and Exposed-Day and Exposed-Night, p = 0.001. At the end of the first month, there was 

a significant main effect, F(3,20) = 50.94, p < 0.001, and post hoc differences were found 

between Control-Day and Control-Night, p < 0.001 and Exposed-Day and Exposed-Night, p < 

0.001. At the end of the second month, there was a significant main effect, F(3,20) = 4.34, p = 

0.017, and post hoc tests showed differences between Control-Day and Control-Night, p = 0.007, 

and Control-Day and Exposed-Night, p = 0.005. At the end of month 3, there was a significant 

main effect, F(3,20) = 13.00, p < 0.001, and post hoc tests showed significant differences 

between Control-Day and Control-Night, p < 0.001 and Exposed-Day and Exposed-Night, p = 

0.007. See Table 1 for the marginal means and 95% confidence intervals and Figure 4 for a 

visual depiction of the interaction. 

 

For month-to-month weekday analysis, there were statistically significant differences in 

heart rates of exposed rats, daytime vs. nighttime (n = 6, p < 0.007) and control rats daytime vs. 

nighttime (n=6, p<0.001) with lower heart rates of exposed and control rats in the daytime. 
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Table 1. Month-to-month marginal mean heart rates and 95% confidence intervals 

of exposed and control rats weekday – Interaction and Simple Effects Analysis. 

 

 

 

 

 

Group Month 0 Month 1 

1h 1 

Month 2 Month 3 
Main Effect 
p value  

P value 
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A statistically significant interaction effect was detected for the monthly analysis of 

weekend heart rate: F(9,60) = 2.82, p = 0.017, partial eta-squared = 0.30, power = 0.86. There 

were significant differences between the groups at baseline, F(3,20) = 6.55, p = 0.003, with post 

hoc differences between Control-Day and Control-Night, p = 0.003, Control-Day and Exposed-

Night, p = 0.004, and Exposed-Day and Exposed-Night, p = 0.01. At the end of Month 1, there 

was a statistically significant main effect, F(3,20) = 27.06, p < 0.001, with post hoc tests showing 

significant differences between Control-Day and Control-Night, p < 0.001 and Exposed-Day and 

Exposed-Night, p < 0.001. At the end of Month 2, there was a significant main effect, F(3,20) = 

Figure 4. Month to Month Average Heart Rates of Exposed and Control Rats 

Weekday.  
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Months 

0 = June 10 

1 = July 1 

2 = August 1 

3 = August 21 

0 1 2 3 
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19.00, p < 0.001, and post hoc tests showed differences between Control-Day and Control-Night, 

p < 0.001, Control-Day and Exposed-Night, p < 0.001, and Exposed-Day and Exposed-Night, p 

< 0.001. At the end of Month 3, there was a significant main effect, F(3,20) = 17.01, p < 0.001, 

with significant post hoc differences detected between Control-Day and Control-Night, p = 0.014 

and Exposed-Day and Exposed-Night, p < 0.001. See Table 2 for the marginal means with 95% 

confidence intervals and Figure 5 for a visual depiction of the interaction. 

 

Table 2. Month-to-month marginal mean heart rates and 95% confidence intervals 

of exposed and control rats weekend - Interaction and Simple Effects Analysis. 

 

 

Group Month 0 Month 1 Month 2 Month 3 
Main effect 

p value 
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For month-to-month weekend analysis, there were statistically significant differences in 

heart rates of exposed rats, daytime vs. nighttime (n=6, p<0.001), and control rats daytime vs. 

nighttime (n=6, p<0.014) with lower heart rate of exposed rats daytime. 

For beginning to end analysis of exposure heart rate, there was not a statistically 

significant interaction effect, F(3,20) = 0.78, p = 0.52, partial eta-squared = 0.10, power = 0.19. 

There was a significant main effect detected at beginning of the study, F(3,20) = 17.41, p < 

0.001, and post hoc differences were found between Control-Day and Control-Night, p < 0.001, 

Control-Day and Exposed-Night, p < 0.001, Exposed-Day and Control-Night, p < 0.001, and 

Figure 5. Month to Month Average Heart Rates of Exposed and Control Rats 

Weekend. 

Months 

0 – June 10 

1 = July 1 

2 = August 1 

3 = August 21 
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Exposed-Day and Exposed-Night, p = 0.001. At the end of the study, there was a significant main 

effect, F(3,20) = 13.00, p < 0.001, with post hoc differences found between Control-Day and 

Exposed-Day, p < 0.001, Control-Day and Exposed-Night, p < 0.001 and Exposed-Day and 

Exposed-Night, p = 0.007. See Table 3 for the marginal means with 95% confidence intervals for 

this analysis, and the interaction effect is depicted visually in Figure 6. 

 

Table 3. Beginning to End marginal mean heart rates and 95% confidence intervals 

of exposed and control rats weekday - Interaction and Simple Effects Analysis. 

 

 

Group Start End 
Main Effect p 

value 

Start to 

End 



19 
 

 

 

For the beginning to the end of the study weekday analysis, there were statistically 

significant differences of average heart rates of exposed rats, daytime vs. nighttime (n =6, p = 

0.007). 

Analysis from beginning to end of weekend heart rate, showed no significant interaction 

effect, F(3,20) = 3.07, p = 0.052. There were significant main effects observed at the beginning 

of the study, F(3,20) = 6.55, p = 0.003, with post hoc differences found between Control-Day and 

Control-Night, p = 0.003, Control-Day and Exposed-Night, p = 0.004, Exposed-Day and 

Control-Night, p = 0.007, and Exposed-Day and Exposed-Night, p = 0.01. At the end of the 

study, a significant main effect was detected, F(3,20) = 17.01, p < 0.001, and post hoc differences 

were found between Control-Day and Control-Night, p = 0.014, Control-Day and Exposed-

Night, p < 0.001, Exposed-Day and Control-Night, p < 0.001, and Exposed-Day and Exposed-

1 = June 10 

2 = August 21 
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Figure 6. Beginning to End Average Heart Rates of Control and Exposed Rats 

Weekday. 
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Night, p < 0.001. See Table 4 for the marginal means with 95% confidence intervals and see 

Figure 7 for a depiction of the interaction. 

 

Table 4. Beginning to End marginal mean heart rates and 95% confidence intervals 

of exposed and control rats weekend - Interaction and Simple Effects Analysis. 

 

 

Start 

to End 

Group Beginning End 
Main effect 

p value 
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For the beginning to end of study weekend analysis, there was statistically significant 

differences of average heart rates of exposed rats, daytime versus nighttime (n =6, p = 0.001), 

For the monthly analysis of exposure mean pressure, a statistically significant interaction 

effect was detected, F(9,60) = 3.23, p = 0.003, partial eta-squared = 0.33, power = 0.91. There 

were significant differences between the groups at baseline, F(3,20) = 4.12, p = 0.02, and post 

hoc tests showed significant differences between Control-Day and Exposed-Day, p = 0.04, and 

Control-Night and Exposed-Day, p = 0.002. At the end of the first month, there was a significant 

main effect, F(3,20) = 9.56, p < 0.001, and post hoc differences were found between Control-Day 

and Control-Night, p < 0.001, Control-Day and Exposed-Night, p = 0.003, Exposed-Day and 

Exposed-Night, p = 0.004, and Control-Night and Exposed-Day, p < 0.001. At the end of Month 

1 2 

    Time 

Figure 7. Beginning to End Average Heart Rates of Control and Exposed Rats 

Weekend. 
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2, a significant main effect was detected, F(3,20) = 4.63, p = 0.013, with post hoc differences 

detected between Exposed-Day and Control-Night, p = 0.001. At the end of Month 3, there was 

also a significant main effect detected, F(3,20) = 11.03, p < 0.001, with post hoc differences 

found between Control-Day and Control-Night, p = 0.001, Exposed-Day and Control-Night, p < 

0.001, Exposed-Day and Exposed-Night, p = 0.007, and Exposed-Night and Control-Night, p = 

0.02. See Table 5 for the marginal means and 95% confidence intervals for these findings and see 

Figure 8 for a visual depiction of the interaction. 

 

Table 5. Month-to-Month marginal mean blood pressures and 95% confidence 

intervals of Exposed and Control Rats Weekday- Interaction and Simple Effects 

Analysis. 
 

 

 
 

Group Month 0 Month 1 Month2 Month 3 Main effect 

p value 
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For month-to-month weekday analysis, there were statistically significant mean blood 

pressure differences, daytime vs nighttime of exposed rats (n =6, p = 0.007) and daytime vs 

nighttime of control rats (n = 6, p = 0.001). 

For the monthly analysis of weekend mean pressure, there was not a statistically 

significant interaction effect, F(9,60) = 1.24, p = 0.31. There were no simple main effects 

detected at baseline, F(3,20) = 0.38, p = 0.77, the end of the first month, F(3,20) = 1.35, p = 0.29, 

the end of the second month, F(3,20) = 0.87, p = 0.48, or at the end of the third month, F(3,20) = 

1.51, p = 0.24. The marginal means with 95% confidence intervals for these findings are 

presented in Table 6 and depicted visually in Figure 9. 

 

Figure 8. Month-to-Month Mean Blood Pressures of Exposed and Control Rats 

Weekday. 
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Table 6. Month-to-month marginal mean blood pressures and 95% confidence 

intervals of Exposed and Control Rats Weekend- Interaction and Simple Effects 

Analysis. 

 

 

 

 

Group Month 0 Month 1 Month 2 Month 3 Main effect p 

value 



25 
 

 

Figure 9. Month-to-Month Mean Blood Pressures of Exposed and Control Rats 

Weekend. 

 

There were no statistically significant differences of mean blood pressures of exposed 

rats and control rats in the weekend. 

For the beginning to end of study analysis of exposure mean pressure, a statistically 

significant interaction effect was detected, F(3,20) = 3.12, p = 0.049, partial eta-squared = 0.32, 

power = 0.64. There was a significant main effect at the beginning of the study, F(3,20) = 0.02, 

with post hoc differences between Control-Day and Exposed Day, p = 0.05, and Exposed-Day 

and Control-Night, p = 0.002. A significant main effect was also detected at the end of the study, 

AF(3,20) = 11.03, p < 0.001, with post hoc differences found between Control-Day and Control-

Night, p = 0.001, Exposed-Day and Control-Night, p < 0.001, Exposed-Day and Exposed-Night, 

p = 0.007, and Control-Night and Exposed-Night, p = 0.016. The marginal means with 95% 
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confidence intervals can be found in Table 7, and the interaction is depicted visually in Figure 

10. 

 

Table 7. Beginning to End marginal mean blood pressures and 95% confidence 

intervals of Exposed and Control Rats Weekday- Interaction and Simple Effects 

Analysis. 

 

 

 

 

 

Mean 

Blood  

Pressure 

Weekday 
Beginning  

to End Group Starting End 

Main effect p 

value 
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There were statistically significant differences of mean blood pressure, weekday daytime 

vs nighttime of exposed rats (n =6, p = 0.007) and weekday daytime vs nighttime of control rats 

(n = 6, p = 0.001). 

 

For the beginning to end of study analysis of weekend mean pressure, there was no 

statistically significant interaction effect, F(3,20) = 0.98, p = 0.42. There were no significant 

main effects detected at the beginning of the study, F(3,20) = 0.38, p = 0.77, or at the end of the 

study,  F(3,20) = 1.51, p = 0.24. The marginal means with 95% confidence intervals for this 

analysis are presented in Table 8, and the interaction is depicted in Figure 11.  

Figure 10. Beginning to End Mean Blood Pressures of Exposed and Control 

Rats Weekday. 
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There were no statistically significant changes in mean blood pressures of exposed or 

control rats in the weekend, daytime vs nighttime. 

 

Table 8. Beginning to End marginal mean blood pressures and 95% confidence 

intervals of Exposed and Control Rats Weekend- Interaction and Simple Effects 

Analysis. 

 

. 

 

 

 

 

 

Mean blood 
Pressure 
Weekend 

Beginning 

to End Group Beginning   End 
Main effect 

p value 
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Figure 11. Beginning to End Mean Blood Pressures of Exposed and Control Rats 

Weekend. 
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7. DISCUSSION 

Course of hypertension development in young spontaneously hypertensive 

rats (SHR)  

The measurement of changes in systolic blood pressure (BP), body weight, and heart rate 

(HR) of SHRs and Wistar-Kyoto (WKY) rats at 2, 3, 4, and 6 weeks of age was performed by 

Dickhout and Lee38. Systolic BP was similar between SHR and WKY at 2 and 3 weeks of age. 

Differences were small in the 4th week, and by the 6th week, systolic BP in SHR had become 

significantly elevated compared with that in WKY. In the 2nd week, most of the variation in 

systolic BP was found between individuals. At 3rd and 4th week, differences between inbreeding 

lines accounted for most of the variation in systolic BP, with differences between strains smaller 

than those between lines. However, by the 6th week, differences between strains overshadowed 

the differences between inbreeding lines. The period of prehypertensive tachycardia for SHR was 

found between 2 and 4 weeks. The subsidence of tachycardia and an increase in systolic BP of 

SHR compared with that in WKY became apparent in rats older than 4 weeks. 

The sympathetic component of the autonomic tone in both strains at 4 weeks of age 

increased the intrinsic HR an average of 16 beats/min in WKY and 31 beats/min in SHR or as a 

percentage of intrinsic rate (SHR = 23% and WKY = 20%). After the removal of all autonomic 

tones, SHR still showed a significantly higher intrinsic HR than that in WKY. The 

parasympathetic component of the autonomic tone of both strains at 4 weeks of age decreased 

the intrinsic rate by 16% in SHRs and 17% in WKY rats. 
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In our study, there were two important findings:  

1. Statistically Significant Reduction of Heart Rates of Exposed Rats after Repeated PM2.5 

Exposure. The average age of our exposed and control rats is 8 weeks old. If we extrapolate 

from the graph of Heart Rate in Figure 12, the expected heart rate at 8-week-old is about 350 

beats per minute (bpm). Figure 13 shows that the intrinsic heart rate of spontaneously 

hypertensive rats at 4 weeks old has a mean of 410 bpm and a range from 350 bpm (with 

parasympathetic stimulation) to 510 bpm (with sympathetic stimulation). As the spontaneously 

hypertensive rat becomes older, the intrinsic heart rate should also decline, with a mean of nearly 

350 bpm. In our experiment, there is a statistically significant reduction of the heart rates of 

exposed rats to 275 bpm (daytime weekday), 305 bpm (nighttime weekday), and 290 bpm 

(daytime weekend),  

There are two possible explanations for the reduction of average heart rate following 

PM2.5 exposure:  

A. Exposed rats initially had a highly responsive and competent parasympathetic nervous 

system, which reduces the heart rate and counters the elevation of blood pressure caused by 

PM2.5-induced sympathetic nervous system activation. 

B. SHRs develop an adaptive response to repeated PM2.5 exposure by strengthening the 

parasympathetic nervous system, leading to a continuous reduction of average heart rates later.  

Previous research studies show an increase in heart rate and mean blood pressure in 

SHRs. Chang et al. (2004)39 reported that increased exposure to concentrated PM2.5 may be 

responsible for the increase in heart rate and mean blood pressure in spontaneously hypertensive 

rats (SHRs) in the spring and summer months. In this study, SHRs were exposed to concentrated 
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ambient particles for 2 days in February, 2 days in March, 5 days in June, and 1 day in July. Also, 

SHRs served as exposure and control groups alternatively. Wagner et al. (2014)40 showed that 

mean heart rate and blood pressure were increased, while the heart rate variability was decreased 

over 4 days of exposure to PM2.5. Our experiment was conducted over a period of 11 weeks, thus 

the data reflecting the change in the average heart rates of the exposed rats on a sub chronic 

basis.  

For our experiment, the temperature was kept constant for both the exposed rats and the 

control rats. Wang and Ogawa (2015)41 reported that precipitation had a negative correlation with 

PM2.5, while temperature was positively correlated with PM2.5. In other words, a rise in 

temperature would correlate with an increase in the number of PM2.5 in the air. 

 

2. Statistically Significant Increase of Mean Blood Pressures of Exposed and Control Rats 

after Repeated PM2.5 Exposure Weekday, Daytime vs Nighttime. And No Statistically 

Significant Differences in Mean Blood Pressure on the Weekend.  

Spontaneously hypertensive rats are prone to develop higher blood pressure with age. 

With repeated PM2.5 exposure, the elevation of mean blood pressures of exposed rats is not as 

vigorous as the control rats during the weekday, daytime (Figure 8). The finding implies that the 

exposed rats may have developed an adaptation to the elevated blood pressure, thereby 

suppressing the effects of the sympathetic nervous system. This adaptation appears to be 

transient as the blood pressures of the exposed rats rise above those of the control rats in the 

weekend nighttime (Figures 9, 11). Our findings are consistent with prior studies (Zhang et al. 
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2022)42, Ying et al. (2014)43, and Liang, et al. (2014)44, which reported a positive association 

between acute and chronic PM2.5 exposure and blood pressure. 

 

Average Heart Rate and Mean Blood Pressure Relationship 

 In our study, the reduction of the average heart rate (HR) of exposed rats appears to 

compensate for the increase in the mean BP, thus allowing them to maintain a state of homeostasis. 

With prolonged PM2.5 exposure, there is a general trend of increase in heart rate x blood pressure 

product. The finding implies that most of the increase is caused by an elevation of blood pressure. 

Possible Mechanisms Proposed for Elevation of Blood Pressures after PM2.5 Exposure. 

PM2.5 was found to increase the blood pressure of rodents by activating toll-like receptor 

3 (TLR3)45. Toll-like receptors (TLRs) are pattern recognition receptors (PRRs) that recognize 

molecular patterns correlated to microbial pathogens and defense against pathogens46. TLRs 

activation can induce low-grade vascular inflammation, modulate vascular function, and thus 

lead to hypertension.  

Cuimei et al. (2021)47 suggest that paternal PM2.5 exposure causes hypertension in 

offspring. The mechanism that could be involved in paternal PM2.5 exposure-associated oxidative 

stress induces the elevated renal G-protein–coupled receptor kinase type 4 (GRK4) level, leading 

to the enhanced angiotensin II type 1 receptor (AT1R) expression and its-mediated sodium 

retention, consequently, causes hypertension in male offspring. See Figure 12. 
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Aztatzi-Aguilar et al. (2015)48 found that acute and subchronic exposure to air particulate 

matter induces the expression of angiotensin and bradykinin-related genes in the lungs and heart. 

Angiotensin-II type-I receptor serves as a molecular target of particulate matter exposure.  

Finally, Ying et al, (2014)49, proposed that long-term exposure to concentrated ambient 

PM2.5 increased basal blood pressure (BP) by inducing an inflammatory response in the arcuate 

nucleus of the hypothalamus. 

 

Mechanism of PM2.5 Effects on the Cardiovascular System 

There is a proposed model that explains the pathophysiological and molecular 

mechanisms of atmospheric PM2.5 affecting cardiovascular health50. See Figure 13. 

Figure 12. Paternal long-term PM2.5 exposure causes hypertension via increased 

renal AT1R expression and function in male offspring. (Adapted from Cuimei et 

al, 2021)47. 
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As PM2.5 penetrates deeply into the respiratory tract, it may disrupt multiple physiological 

barriers to integrity and translocate from the lung into the systemic circulation, gaining access to 

a range of secondary target organs, including the heart, kidney, liver, spleen, lymph nodes, and 

brain in humans and animal models51,52.  

 

 

 

 

PM2.5 can affect the cardiovascular systems through molecular mechanisms such as 

metabolic activation, oxidative stress, inflammation, dysregulation of Ca2+ signaling, and 

apoptosis. PM inhalation activates inflammatory responses in the lung, leading to systemic 

Figure 13. Pathophysiological and molecular mechanisms of PM2.5 affecting 

cardiovascular health (adapted from Shaolong et al, 2023)50. 
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inflammation, which promotes thrombosis, endothelial dysfunction, and atherosclerosis. Inhaled 

PM can also activate sensory receptors in the lung, leading to imbalance of the autonomic 

nervous system (ANS), favoring sympathetic pathways, and leading to alterations in heart rate, 

vasoconstriction, endothelial dysfunction, and hypertension.  

A number of studies have shown that PM2.5 can impair the function of the cardiac 

autonomic nervous system (ANS) and lead to a decline in heart rate variability (HRV), which is 

considered an independent risk factor for cardiovascular morbidity and mortality53,54. Induced 

oxidative stress and inflammatory impairments in the central nervous system, especially in the 

hypothalamus, were suggested to be the important mechanisms underlying this abnormal 

activation of the ANS49, 54. The PM2.5-induced oxidative stress and inflammation in the 

hypothalamus may lead to dysfunctions of its neuroendocrine, such as an increase of 

norepinephrine and 5-hydroxy-indole acetic acid in its paraventricular nucleus and 

corticotrophin-releasing hormone levels in the median eminence. As a result, PM2.5 exposure 

would elicit the dysfunctions of the ANS, leading to a decline in HRV and ultimately increasing 

cardiovascular diseases. 

PM2.5 can also trigger a battery of pathophysiological responses that increase blood 

pressure and result in the development of hypertension49,54. The specific biological mechanisms 

have been suggested to include an increase in sympathetic tone and/or the modulation of basal 

systemic vascular tone49 and endothelial and vascular dysfunctions55. The endothelium acts to 

maintain vascular homeostasis. The systemic inflammation and oxidative stress following PM2.5 

exposure will trigger endothelial dysfunction and lead to vasoconstriction56, resulting in higher 

vascular resistance and, ultimately, hypertension. 
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Moreover, PM2.5 exposure has been shown to link to cardiovascular diseases via 

accelerated atherosclerosis (AS), which is a chronic disease of the arterial wall57. Both 

inflammation and endothelial dysfunction are considered to be the important mechanisms that 

trigger AS58.  

Also, PM2.5 may directly act on the heart and induce cardiac tissue remodeling and 

function altering, leading to the occurrence and development of cardiac diseases. Cardiac 

histopathology results have revealed PM2.5 deposition and myocardial inflammation in the tested 

rats54. Long-term PM2.5 exposure could induce obvious myocardial ultra-structural changes (with 

increased hypertrophic markers), and lead to adverse ventricular remodeling54,59. 

 

In summary, following repeated PM2.5 exposure, there was a statistically significant reduction in 

average heart rates and a statistically significant increase in mean blood pressures of exposed rats. 

The reduction in heart rate is mainly due to overcompensation of the parasympathetic system to 

counter the elevation of blood pressure and maintain a state of homeostasis. The implications are 

as the blood pressure continues to rise, the heart must work harder, and the blood vessel walls 

stiffen. The cardiovascular end results are uncontrolled hypertension, arrhythmia, myocardial 

infarction, and heart failure. In particular, for individuals with a preexisting elevation of blood 

pressure, repeated exposure to PM2.5 appears to accelerate the progression of hypertension and its 

effects on the end organs such as the heart, brain, and kidneys. 
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Strengths of the study 

The main strength of this study is the continuous monitoring of the average heart rates and mean 

blood pressures of exposed and control rats over the course of 11 weeks of PM2.5 exposure. Also, 

the control conditions of exposure and the use of the SHR model. 

 

Limitations of the study 

There are limitations to this study. First, the study has a small sample size of 6 exposed SHRs 

and 6 control SHRs, which limits its power. Secondly, all the study rats are male. In this regard, 

it is uncertain where the heart rates and blood pressures of female SHRs would respond to 

repeated PM2.5 exposure in the same way as their counterparts. Finally, the study rats were only 

exposed to concentrated ambient particles (CAPs). The advantage of using CAPs is that the 

PM2.5 exposures closely match the human exposures in the regional population. The main 

disadvantage is that these exposures are difficult to compare when obtained from different 

regions because PM2.5 composition will vary widely both regionally and temporally. 
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8. CONCLUSIONS 

Following repeated PM2.5 exposure over the course of 11 weeks, there was a statistically 

significant reduction in average heart rates and a statistically significant increase in mean blood 

pressures of spontaneously hypertensive rats. These findings support the hypothesis that 

repeated exposure to PM2.5 decreases the average heart rate and increases the mean blood 

pressure of spontaneously hypertensive rats. 

 

9. FUTURE STUDIES 

Our study has shown a statistically significant reduction in average heart rates and a 

statistically significant increase in mean blood pressures of male spontaneously hypertensive rats 

after repeated exposure to PM2.5. However, the current study has a small group size and 

comprises only male subjects. Future endeavors should include a larger study to determine which 

systemic biochemical markers (c-reactive protein (CRP), sedimentation rate, fibrinogen, or 

lactate) would assist in identifying the pathological processes that precede the onset of 

hypertension or in tracking its progression, as well as for predicting greater risk of developing 

hypertension in exposed individuals. In addition, future studies could focus on the effects of 

PM2.5 on the heart rate variability and blood pressure of normotensive young male and female 

rats. Recognition and treatment of hypertension in young individuals would likely prevent the 

dreaded complications of uncontrolled hypertension in the future.  
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