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ARTICLE

Disturbance modifies payoffs in the explore-exploit
trade-off
Shay O’Farrell1, James N. Sanchirico1,2, Orr Spiegel 3, Maxime Depalle1, Alan C. Haynie4, Steven A. Murawski5,

Larry Perruso6 & Andrew Strelcheck7

Decision-making agents face a fundamental trade-off between exploring new opportunities

with risky outcomes versus exploiting familiar options with more certain but potentially

suboptimal outcomes. Although mediation of this trade-off is essential to adaptive behavior

and has for decades been assumed to modulate performance, the empirical consequences of

human exploratory strategies are unknown beyond laboratory or theoretical settings.

Leveraging 540,000 vessel position records from 2494 commercial fishing trips along with

corresponding revenues, here we find that during undisturbed conditions, there was no

relationship between exploration and performance, contrary to theoretical predictions.

However, during a major disturbance event which closed the most-utilized fishing grounds,

explorers benefited significantly from less-impacted revenues and were also more likely to

continue fishing. We conclude that in stochastic natural systems characterized by non-

stationary rewards, the role of exploration in buffering against disturbance may be greater

than previously thought in humans.
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Exploration provides us with information about the sur-
rounding world1–3. Whenever we take a new route to work,
for example, we are sampling our environment and adding

to a store of information that may increase our long-term benefits
(e.g., finding the fastest commute) and/or confer resilience to
system dynamics or disturbance should present options become
less attractive or unavailable (e.g., knowing alternative routes if
traffic is heavy). However, exploration comes at a cost, as it
involves increased investment with uncertain outcomes, and time
and resources could instead have been invested in exploiting
current knowledge to gain immediate, tangible benefits2,4,5 This
explore/exploit trade-off (EETO) is pervasive in sequential
decision-making settings from financial portfolio blending to
machine learning to animal foraging6–10, with agents displaying
EETO-mediating strategies that place varying emphasis on
exploration. However, despite the importance of EETO mediation
to adaptive behavior in complex environments2,11, many nor-
mative and empirical aspects of the problem are poorly
understood2.

Behavioral researchers commonly investigate EETO mediation
using bandit tasks, where the subject plays a series of one-armed-
bandit machines or analogous devices with the goal of devising an
EETO strategy with the highest aggregate payoff5. At each choice
occasion, the subject decides whether to play the same ‘machine’
or move to another. For example, a subject who eschews
exploration could waste time exploiting a machine that only pays
off once every 10 trials without ever discovering that a neigh-
boring machine pays off once every three trials. Bandit tasks have
traditionally assumed that the probability of payoff from a given
option (i.e., a machine) is stationary and that the portfolio of
options (i.e., the array of machines) from which the subject
chooses remains constant2,11. Although progress has been made
in relaxing the assumption of reward stationarity12, investigation
of EETO in the lab remains a profoundly different decision-
making setting from the natural systems to which the human
EETO-mediating apparatus is adapted5,13. Natural systems are
subject to ecological and environmental fluctuations which sto-
chastically modify both the payoff probability of a given option,
as well as the portfolio of available options. Under these cir-
cumstances, the consequences of operating at various positions
along the continuum of EETO strategies remain untested.

An ideal system for investigating EETO strategies in a natural
setting is commercial fishing, one of our last remaining
hunter–gatherer activities13. First, vessel captains must repeatedly
decide whether to exploit previously sampled fishing grounds
whose quality is known or to explore new locations. Second, the
payoff of fishing grounds fluctuates within and across years and
the portfolio of options changes over time due to both regulatory
rules (e.g., seasonal closures) and environmental variability (e.g.,
rough seas). Third, commercial fisheries present one of the few
social–ecological systems where there exist both spatiotemporal
data on behavior (vessel movement tracks) and explicit payoffs
(revenue).

We assess real-world payoffs of contrasting EETO strategies
using longline fishing in the US Gulf of Mexico (GoM), leveraging
a unique natural experiment where a large portion of prime
fishing grounds was closed for five months in 2009. The closure
stemmed from excessive bycatch of endangered species of sea
turtles14. As a result of the emergency closure, many affected
vessels were forced to relinquish habitually fished grounds and
either fish elsewhere or retire during the closure. As the inter-
vention was a fisheries management action rather than an
emergency closure, such as an oil spill, no compensation was
given to the longline fleet.

Given that exploration and exploitation are considered to
trade-off against each other in the EETO framework5, we assume

that strategies investing too heavily towards either end of the
spectrum are likely to be suboptimal and that before the dis-
turbance, vessel-level performance may be maximized around
intermediate strategies that more evenly balance exploration and
exploitation. During the disturbance, however, we hypothesize
that more-exploratory strategies should buffer against adverse
impacts, when vessels with diversified portfolios of fishing
grounds should benefit from their enhanced knowledge of non-
impacted resources.

To capture contrasting aspects of exploratory behavior, we use
two metrics: patch residence time (PRT) and choice entropy.
These metrics focus, respectively, on each of two nested fishing
decisions: (1) should the vessel continue fishing at the current
location or move on; and (2) if the vessel moves on, should it go
to a known location or sample somewhere new? Our metrics echo
foraging studies where behavior is considered to be exploratory if
it alternates between patches and varies over time, and as
exploitative if it continues to utilize the same patches and is stable
over time15. PRT quantifies the dilemma of whether to continue
exploiting at the current location or to explore a new location in
the hope of increasing the rate of reward16, often referred to as
slow vs. fast exploration17,18. In contrast, choice entropy aims to
quantify how much effort agents invest in gathering information
about their environment, and may be thought of as broad vs.
narrow exploration. We make the assumption that greater sam-
pling effort leads to enhanced information about resource dis-
tribution. We calculate choice entropy using the information
entropy concept19, which measures the predictability of time
series such as human mobility datasets20, and may be extended to
become a measure of exploration21. In the context of the bandit-
task paradigm, entropy is highest when there are many available
portfolio options whose probability of selection is uniform, as the
outcome is hardest to predict. Conversely, entropy will be lower
when there are fewer portfolio options and/or the probability of
selection is skewed in favor of certain options, making the out-
come easier to predict19.

First, we analyze data from a 2-year undisturbed period prior
to the closure and we find no relationship, either humped or
linear, between performance and exploration. We then analyze
data from during the disturbance. We find that the revenues of
more-explorative vessels were less adversely impacted by the
closures and they were also more likely to continue fishing.

Results
Undisturbed period. The GoM bottom longline fleet was heavily
impacted by the closure of prime fishing grounds in 2009 (Fig. 1).
We divide our data into two subsets, the undisturbed period prior
to the closure and the disturbed period during the closure. Cal-
culating our exploration metrics using the data from the undis-
turbed period, we find that vessels display a diverse range of
individually consistent choice entropy scores (Fig. 2).

We first ask whether a vessel’s EETO strategy predicts
performance during the undisturbed period. We hypothesize
that vessel-level performance should be maximized around
intermediate entropy and/or PRT scores, representing strategies
that more-evenly balance exploration and exploitation.

Using 2 years of data from the undisturbed period, we measure
performance, Pi, of each vessel i as its mean revenue across all
trips (see “Methods” section, Eq. (2)) after controlling for
variations in trip duration and time-varying fleet-wide exogenous
variables (Fig. 3a). Fitting a regression model (see “Methods”
section, Eq. (5)) with vessel performance modeled as both
quadratic and linear functions of entropy and PRT, we find no
significant relationship—humped or linear—between either
entropy or PRT and performance. Furthermore, model selection
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using AICs and BICs indicates that all of the entropy and PRT
variables can be dropped from the model.

We conclude that more-exploratory vessels performed no
better or worse on average during the undisturbed period. The
only significant predictors of performance during the undisturbed
period were activity (t[103]= 3.47; P < 0.001), which is a lagged
measure to address potential endogeneity issues with perfor-
mance, and vessel length (t[103]= 6.24; P < 0.001). See Table 1 for
details of covariates and Supplementary Tables 1 and 2,
respectively, for results from simplified and fully specified models.

Disturbed period. During the disturbance caused by the closure
of fishing grounds, we hypothesize that more-exploratory stra-
tegies may buffer against adverse impacts, when vessels with
diversified portfolios of fishing grounds should benefit from their
enhanced knowledge of non-impacted resources.

To test this hypothesis, we first ask whether more-exploratory
vessels were more likely to remain in the fishery. Aggregating the
choice entropy and PRT scores for all vessels in the fishery before
(N= 106) and during (N= 57) the disturbance, we find that the
mean entropy of the fleet significantly increased from 4.1 to 4.6
(Fig. 3b; F[159]= 10.97; P= 0.001) meaning that higher entropy
vessels (broad explorers) were more likely to continue fishing
during the disturbance. The mean PRT of the fleet did not change
significantly (Fig. 3c; F[159]= 0.90; P= 0.344) meaning that
neither fast nor slow explorers were more likely to continue
fishing.

Second, we ask whether exploration has a positive influence on
performance during the disturbance. Using the subset of vessels
which remained in the fishery during the disturbance, we
calculate deviance in performance, ΔPi, for each vessel i by
comparing observed revenues against expected revenues (Eqs. (3)
and (4)). Expected revenues are predicted using a business-as-
usual scenario, and ΔPi values above/below 0 indicate, respec-
tively, better/worse than business-as-usual performance.

To test whether ΔPi was positively influenced by entropy or
PRT, we fit a linear mixed-effects model (see “Methods” section,
Eq. (6)) with vessel identity as a random effect22 to account for
varying numbers of trips among vessels. After controlling for

inter-vessel differences in length, activity, and spatial displace-
ment resulting from the closure, we find that entropy and PRT,
respectively, have positive and negative influences on ΔPi
indicating that vessels with a history of more-exploratory EETO
strategies (higher entropy and/or lower PRT) experienced less-
adverse impacts on performance during the disturbance. Both
entropy and PRT are retained in the model by AIC and BIC
selections, although only PRT is significant at α= 0.05 (Supple-
mentary Table 1).

Although we find measurable benefits during disturbance to
having a history of exploratory behavior, we expect that gains
might dissipate over time, which would be consistent with a
number of lines of reasoning. For example, economic theory
suggests that dissipating advantage may result from exploiters
switching strategies to become more exploratory, social network
theory suggests that private information may be shared between
explorers and exploiters within networks23 and ecological
foraging theory suggests that displaced agents may redistribute
themselves based on public information, such as the observed
performance of others24.

To investigate our dissipation hypothesis, we ask whether the
buffering effect of higher-entropy strategies diminishes with
increasing time from the onset of disturbance. We use a growing-
window analysis whereby we iteratively re-fit the ΔPi regression
model (Eq. (6b), Supplementary Table 1) to subsets of the
disturbance data that increase in 10-day increments. We find that
choice entropy and displacement are the only variables retained
in all models fitted to the five subsets. The benefit of higher-
entropy strategies is greatest in the immediate aftermath of the
closure (Fig. 3d; t[21]= 2.841; P= 0.01) and its effect diminishes
over time (Fig. 3d). We conclude that higher-entropy vessels
(broad explorers) gained the strongest buffering effect in the
short term.

Discussion
There is a rich literature on the EETO in fields ranging from
animal foraging25,26, computer science1,11, organizational learn-
ing27, neurobiology3, psychology2,28, psychiatry5, and others.
Although the concept of explore vs. exploit seems straightforward,

–88

1000
Fishing pings

Florida

Gulf
of

Mexico

2000

3000

4000

5000
25

26

27

28

29

La
tit

ud
e 

(d
eg

re
es

)

30

ba

–86 –84

Longitude (degrees)

–82 –80

Fig. 1 Longline fishing in the Gulf of Mexico. a Bottom longlines are one of the primary gears used to catch commercially important grouper and tilefish. The
longline consists of a line of baited hooks deployed along the seabed in reef areas of the Gulf, which remains in position for a number of hours before being
recovered, at which point the fish are removed, the hooks are rebaited and the line is redeployed. b Heat map of fishing activity by longline vessels in the
eastern Gulf of Mexico during the 2-year period prior to an emergency closure from May to October 2009. Higher fishing activity (darker shading) cells
mostly lie within the boundary of the subsequently closed area (dashed line), highlighting the magnitude of the disturbance when many vessels were
forced to relinquish their most- utilized fishing grounds. To maintain data confidentiality, locations fished by fewer than three vessels are not shown

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-019-11106-y ARTICLE

NATURE COMMUNICATIONS |         (2019) 10:3363 | https://doi.org/10.1038/s41467-019-11106-y | www.nature.com/naturecommunications 3

www.nature.com/naturecommunications
www.nature.com/naturecommunications


there are contrasting approaches to operationalizing the EETO
both within and among these fields15. Furthermore, there is no
universal definition of what constitutes exploratory vs. exploitative
behaviors, as this varies not only among fields but is also influ-
enced by measurable factors, such as the spatial scale of analysis,
as well as with latent factors such as the internal state of the
decision maker15. The problem is further complicated by the fact
that a given decision may integrate both exploratory and exploi-
tative components. Given these challenges, we place our study in
the foraging literature and we use the EETO as an explanatory
framework to ask questions of the agents’ interactions with the
environment rather than to analyze individual choices15.

Recognizing that it is difficult to classify a given decision as
being either more-exploratory or more-exploitative without
understanding the internal state of the decision maker, our study
concerns the consequences of foraging choices rather than how
those choices are made. We use two metrics which capture
contrasting but complementary facets of exploration. PRT cap-
tures speed of exploration (fast vs. slow explorers), whereas choice
entropy captures breadth of exploration (broad vs. narrow
explorers). Although all foraging agents will invest in
both exploration and exploitation, agents tend to maintain fairly
consistent positions along a particular EETO continuum5. In any
given setting, is not immediately clear where any optimal strategy
might be located along an EETO continuum. We hypothesized
for the GoM longline fleet that performance might be maximized
around intermediate strategies, where the explore–exploit trade-
off was more evenly balanced. We found, however, no discernable
relationship—either humped or linear—between average payoff
and either speed or breadth of exploration during the undisturbed
period. This is surprising, given that the motivation for an agent
balancing the EETO is generally assumed to be improving long-
term performance5.

Given the characteristics of our setting (changing payoffs and
portfolio options), the EETO strategies displayed by our study
vessels likely span a range of economically viable options and on
average there are no long-run gains from changing strategy. The
fact that we do not find an optimal strategy in our natural setting
is supported by theoretical investigations, which suggest that
performance-maximizing EETO strategies are fundamentally
unknowable in systems with highly non-stationary rewards2,11. If
so, adaptive pressure to develop apparatus capable of optimizing
the EETO dilemma would be considerably weakened, although
such putative adaptations often motivate optimal foraging
hypotheses. However, we cannot completely rule out that our
finding is due to a lack of statistical power, although 2494 trips by
106 vessels is a reasonable dataset size.

During the closure, however, we go on to find that both faster
and broader explorers experienced less adverse performance
deviances, indicating that a history of exploration may deliver
benefits during periods of disturbance. Broad explorers were also
more likely than narrow explorers to continue fishing, leading to
an increase in the mean choice entropy of the fleet (Fig. 3b). Fast
explorers, on the other hand, were no more likely than slow
explorers to continue fishing during the closure, as indicated by
the lack of any significant change in the mean PRT of the fleet
(Fig. 3c). The contrasting results from our two metrics highlight
the benefits of considering multiple aspects of exploration when
investigating the EETO.

A parsimonious interpretation of why broad explorers were
more likely to continue fishing is that investment in exploration
provides agents with spatially diverse and updated information
on resource distribution and dynamics, allowing them to select
from a wider pool of alternatives when their preferred grounds
are suddenly closed. In the context of the multi-armed-bandit
problem, the closure of fishing grounds is analogous to the
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Fig. 2 Quantifying exploration in vessel movement tracks. a The Vessel
Monitoring System records hourly positions (pings) of commercial fishing
vessels in the Gulf of Mexico. In the simulated vessel track shown, markers
represent pings that have been classified into one of three activities: fishing
(red circles), transiting (●) or in port (◆) using a supervised learning
algorithm trained using data from trips when on-board fisheries observers
were present. To discretize fishing grounds, a grid is overlaid on the pings and
then cells containing fishing activity are identified, allowing a portfolio of
fishing locations to be created for each vessel. The location choices of less-
exploratory vessels who repeatedly revisit the same locations are easier to
predict (lower choice entropy) than those of more-exploratory vessels who
regularly sample new locations (higher choice entropy). b Calculated using 2
years of mobility data from before the disturbance, individual choice entropy
trajectories approach plateaus for the 106 vessels in our analysis, showing
consistent and substantial separation among vessels in exploratory behavior.
The first half of each vessel’s trajectory is used as a burn-in period, then the
mean of the second half is calculated to quantify the vessel’s explore-exploit
trade-off (EETO) strategy. Vessels with higher choice entropy scores
have more-exploratory strategies. c There is a weak negative correlation
(−0.242; solid line) between choice entropy and patch residence time.
Markers show the centred scores for each vessel expressed in standard
deviations around zero means. Darker shading indicates higher pre-
disturbance performance
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removal of bandit machines from the portfolio of available
options. Although the machine-removal paradigm does not seem
to be commonly employed in bandit trials involving human
subjects, it would be interesting to know if human EETO med-
iation is better adapted to buffering such disturbances than to
maximizing performance efficiency, given that optimal (or even
near-optimal) strategies may be unknowable. In certain fisheries,
social networks have been shown to have impacts on fishing
behavior23. In the context of our study, social networks may
diminish the value of personal information held by more-
exploratory captains if the information is shared during dis-
turbances, which would erode any putative gains from being
more exploratory. We found, however, a significant benefit to
investing in exploration irrespective of whether or how infor-
mation is shared within networks. It is of course possible that
social networks are weak within our study system, but other
hypotheses are possible. For example, the diminishing benefit
observed in more-exploratory vessels may have resulted from the

diffusion of information through social networks. It is also
plausible that disturbance changes the value of information
within fishing social networks, and information that was openly
shared during times of stability may become more guarded. It
would be interesting to know whether the subsequent introduc-
tion of Individual Fishing Quotas (IFQs) has fundamentally
altered the value of social information within the GoM bottom
longline fleet, and whether more-exploratory vessels will continue
to benefit during future disturbances now that the ‘race to fish’
has dissipated29.

Our study contributes to a growing body of work that takes
advantage of burgeoning availability to human mobility datasets.
In particular, there has been great interest in analyses focused on
mapping or modeling aggregated patterns of space-use at the level
of populations20,30–33. In contrast, our study drills down to
consider the perspective of the moving agents themselves,
demonstrating that mobility datasets can provide rich long-
itudinal records of human decision-making that allow researchers
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to investigate the underlying processes driving space-use patterns.
Although our study asks a question of theoretical interest, agent-
level mobility analysis holds considerable promise for applied
research. For example, climate change models predict that natural
disturbances will increase in frequency and/or severity34. Given
that disturbance impacts tend to cluster in space, as do socio-
economic groups, it is likely that certain groups will be more
vulnerable to disturbances. The vulnerability of any group will
depend on the non-linear interactions between their mobility
capacity and their space use patterns, which themselves depend
on access to financial, human, and social capital35. Analyzing
mobility data at the level of agents could allow scenario planners
and policy analysts to disaggregate adaptive capacity within a
‘population’ and create instruments that explicitly mitigate social
inequity arising from impacts on lower income—and thus lower
mobility—socio-economic groups.

Methods
Datasets. To test our hypotheses, we use three datasets detailing the behavior of
the GoM bottom-longline fleet while targeting commercially important reef fishes.
The first dataset consists of more than half a million hourly GPS positions (pings)
for 106 vessels, recorded by the Vessel Monitoring System (VMS) that has been
implemented fleet-wide since 2006. The second dataset was gathered by inde-
pendent fisheries observers who accompany a subset of all commercial trips in the
GoM, recording the times and locations when fishing gears are deployed and
recovered, allowing us to train a machine-learning algorithm to recognize fishing
activities. Our third dataset comprises logbook records that detail trip-level data,
including revenue earned, which enables us to map behaviors into rewards. We
divide the data into two study periods, undisturbed (19 May 2007–18 May 2009)
and disturbed (19 May 2009–28 October 2009). GoM bathymetry data were
obtained from the National Oceanic and Atmospheric Administration (NOAA).
Data analyses were conducted in R (version 3.4.1)36.

Processing of logbook data. All commercial fishing vessels owning a Gulf of
Mexico reef fish (GoMRF) permit are required to maintain a logbook recording
trip-level data. In the present study, logbook data from 2494 trips by 106 bottom-
longline vessels were analyzed. Variables contained in the analysis were vessel ID
number, trip duration, gear type, revenue earned, date of landing, species landed,
and vessel length. Data were filtered to retain only vessels using bottom-longline
gears to target the grouper–tilefish component of the GoMRF fishery. To facilitate
performance comparisons among vessels that are conducting fishing trips at dif-
ferent times of the year, it is necessary to control trip-level revenues for temporally
variable factors, such as storms and seasonality in market prices. The revenues for
each vessel i on each trip t are controlled by including in models the covariate, fleet
performance, F-it, which is the average revenue of contemporaneous trips by all
vessels in the fleet except vessel i during the 2-week period following trip t. Two
weeks was chosen as a compromise between using too short a window (thus
overfitting to limited data) and too long a window (thus failing to capture short-

term events such as storms). Although it would have been preferable to center each
trip j symmetrically within its temporal window, doing so would have resulted in
miscalculating F-it near the disturbance threshold when data from immediately
after the start of the closure would have been incorporated in calculating F-it from
trips immediately before the disturbance, and vice versa. Instead, the 2-week
window after each trip j was used in calculating F-it, and trips from the 2-week
window immediately prior to disturbance were deleted. Bias induced by using
a skewed window rather than a symmetrical window was minimal, and comparing
F-it from the skewed window method (14 days after each trip) to F-it from a
symmetrical window method (7 days before and after each trip) gives a Pearson
correlation of 0.94 (t= 184, df= 5755, P < 0.001). Activity was quantified as the
number of longline fishing days conducted by each vessel, and endogeneity was
avoided by using data from the 2-year period, 18 May 2005–17 May 2007, which
precedes the study period 18 May 2007–28 October 2009.

Processing of VMS and observer-program data. VMS transponders sending
hourly or better reports (pings) have been mandated on commercial reef-fish
fishing vessels in the GoM since 2006 and were available for all vessels in the
grouper–tilefish fishery by early 2007. Each ping consists of the current latitude and
longitude of a vessel along with a timestamp, allowing vessel tracks to be mapped
with high spatio-temporal resolution. 587,204 pings from 106 longline vessels were
assessed for use in the analysis. Pings with GPS coordinates from outside the GoM
were deleted. Ping timestamps were converted to POSIX objects with UTC time
zone to match VMS data recording protocol. To derive vessel movement speeds,
the interval between each ping’s timestamp and the preceding timestamp was
obtained, the distance between successive pings was calculated using the spherical
geometry function, distRhumb, in the R-package, geosphere37, and then speed was
expressed as a linear distance over time (m s−1). Derived vessel speeds above an
arbitrary threshold of 20 m s−1 were assumed to result from errors and were
deleted. Depth at each ping location was extracted from the NOAA ETOPO1
database using the R-package marmap38.

Identification of fishing grounds. We use supervised learning to identify fishing
grounds by training a random forest ensemble39,40 to discriminate fishing activity
from other behaviors (transiting, moored, etc.) in vessel movement tracks. To
convert the continuous space of the tracks into discrete fishing grounds, we ras-
terize the fishing pings using a 30 × 30 grid fitted to the extent of the entire fleet
dataset and then create a portfolio of fishing location choices for each vessel by
identifying the raster cells within which it had fished during the undisturbed period
(Fig. 2a).

We create a supervised-learning dataset using the subset of bottom-longline
fishing trips for which on-board observer data were available, providing a record of
VMS points where vessels were known to be fishing. We split this dataset evenly
into ‘training’ and ‘testing’ subsets. We build a random forest classifier the R-
package randomForest40 and fit it to the ‘training’ subset, whereby a suite of vessel
movement variables (speed, turning angle, depth, time of day, etc.) is passed to the
classifier, so that it learns to identify the characteristics of vessels engaged in
fishing. We then use the reserved ‘testing’ subset of the observer data to cross-
validate the performance of the classifier, which achieves >90% balanced accuracy,
namely the mean of the true positive and true negative rates, whereby the accuracy
score is penalized for incorrect labeling as well as rewarded for correct labeling. We
use the validated random forest to classify the entire VMS dataset into locations

Table 1 Covariates used to investigate relationships between exploration and performance prior to and during the spatial closure
of Gulf of Mexico longline fishing grounds in 2009

Covariate Description Interpretation

S Choice entropy Higher values indicate more-exploratory EETO strategies
S2 Choice entropy squared Quadratic term used to determine if performance is maximized around

intermediate EETO strategies that more evenly balance exploration and
exploitation

activity Baseline activity level, calculated as the number of longline
fishing days for each vessel

Controls for the fact that high-entropy strategies require high levels of
fishing activity but high-levels of fishing activity do not necessarily predict
entropy, because less-exploratory vessels are often highly active

prt Patch residence time Higher values indicate less-exploratory EETO strategies, with vessels
spending on average longer at each location before moving on

prt2 Patch residence time squared Quadratic term used to determine if performance is maximized around
intermediate EETO strategies that more evenly balance exploration and
exploitation

length Vessel length Controls for the fact that larger vessels have greater mobility potential,
allowing them to more easily relocate during the disturbance regardless of
entropy

displacement Range displacement, calculated as the proportion of each
vessel’s pre-disturbance range that was closed to fishing

Controls for the fact that vessels which lost more fishing ground should
experience more-negative deviance in performance regardless of their
EETO strategy. Higher values indicate greater loss of fishing grounds
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representing either fishing or non-fishing behavior. A detailed description of our
supervised-learning training and testing protocol is available in the literature41.

Quantification of EETO strategy. We use two metrics to quantify EETO strategy,
namely PRT and choice entropy. To develop the PRT score for each vessel, we use
its portfolio of pre-disturbance fishing locations (grid squares) identified by the
random forest classifier. We calculate the mean time interval that each vessel
remains within each fishing location before moving to a subsequent fishing location
or returning to port. We quantify choice entropy using the portfolio of fishing
locations for each vessel (Eq. (1)). The metric can change through time as the
number and frequency of fishing locations of the vessels change. From each vessel’s
choice entropy trajectory, we calculate the mean value, S, after a burn-in period
(Fig. 2b). Vessels with higher S scores have more-exploratory EETO strategies,
maintaining more-diverse portfolios of fishing locations, many of which they
regularly resample. We use the portfolio of fishing locations for each vessel, i to
create a chronologically ordered visitation time series, Li. We iteratively extract
incrementally increasing subsequences of Li and calculate the entropy of each
subsequence. For example, the tenth subsequence of Li comprises the first 10
location choices by vessel i, and the entropy of the subsequence increases with the
number of unique locations in Li and thus decreases if certain locations are visited
more often than others. The choice entropy of vessel i at location m is calculated
using the subsequence of location choices, Lmil¼1, such that:

Sim � �
XNim

j¼1

fi jð Þ log2 fi jð Þ ð1Þ

where Nim is the number of unique locations fished at by vessel i until the mth
element of the time series, and fi(j) is the frequency with which vessel i fished at
location j in the subsequence. Iteratively calculating Sim for the entire location time
series, Li, yields a trajectory of choice entropy scores (Fig. 2b). From each vessel’s
choice entropy trajectory, we calculate the mean entropy score, S, after a burn-in
period (Fig. 2b), which we use as our choice entropy metric.

The intuition of using entropy to quantify fisheries exploration is that it
captures the non-stationary nature of fish stocks which fluctuate both in space
(across habitats) and time (across seasons). Vessels with the highest entropy will be
those that maintain a large portfolio of fishing locations (spatial exploration) which
they regularly resample (temporal exploration), providing them with a spatially
diverse and up-to-date pool of information on resource distribution and dynamics.
Conversely, vessels with the lowest entropy will be those that exploit a small
portfolio of locations and/or skew their fishing effort towards a small subset of their
overall portfolio, handicapping them with spatially limited and/or out-of-date
resource information.

Although all vessels will invest time both in exploring and exploiting, some
demonstrate consistently more-exploratory strategies than others, as is clear from
the vertical separation of the entropy trajectories (Fig. 2b). The correlation between
PRT and choice entropy is weak (Pearson coefficient, −0.242; P < 0.001; Fig. 2c)
indicating that these metrics capture different facets of exploratory behavior. The
total fleet/size of longline vessels active during our study period was 125, 19 of
which were dropped for having sparse and erratic data (Supplementary Fig. 1),
leaving 106 vessels.

Sensitivity of metrics to grid (raster) size. To test the sensitivity of the results to
the selected grid size (30 × 30= 900 cells), choice entropy was recalculated using
grids ranging from 20 × 20= 400 to 95 × 95= 9025 cells, which represents more
than an order of magnitude difference in scale. Pairwise Spearman correlation tests
were then performed between the variable scores for each vessel resulting from our
chosen grid size and each of the other grid sizes (Supplementary Fig. 2).

Quantifying displacement. Not all vessels use the same fishing grounds and
therefore not all vessels will have been equally affected by the closure. Among-
vessel differences in loss of fishing grounds were controlled for using a variable,
displacement, which quantifies the proportion of fishing grounds lost by each
vessel during the disturbance, using spatial objects created and analyzed with the R-
package, sp.42 A spatial polygon object was created from the vertices of the closure
boundary14 and a spatial-points object was created from the fishing locations for
each vessel during the 2-year pre-disturbance period. The number of pre-
disturbance fishing locations that fell within the boundary of the subsequently
closed area was quantified and expressed as a proportion of the total number of
fishing locations during the pre-disturbance period. For instance, a vessel scoring a
displacement value of 0.8 would have lost 80% of its pre-disturbance fishing
locations during the closure, and would be expected to be more adversely affected
than a vessel which lost only 5% of its pre-disturbance locations.

Modeling framework. A straightforward way of modeling a system before vs.
during a disturbance would be to include in the model a binary ‘dummy’ variable,
which indicates the period to which each record belongs. However, the nature of
our data necessitated a more complex multistage process, as most vessels have few
records—often only a single record—during the disturbed period and thus there is
little or no within-vessel replication. We handle this by first modeling fishing

payoff (performance) for each vessel prior to the disturbance, then using this model
in a business-as-usual scenario to predict what performance should have been
during the disturbance if the vessel were unaffected, and finally comparing these
predictions against the observed performance for each vessel. A conceptual dia-
gram of our statistical modeling framework is shown in Supplementary Fig. 3.
Details and equations are as follows:

Quantifying undisturbed performance. We model the performance of vessel i on
each trip t during the undisturbed period using revenue observations (Ruit) to fit a
linear model with vessel identity, Vi, as a fixed effect such that:

Ruit ¼ PiVi þ β1Dit þ β2F�it þ εit ð2Þ

The resulting estimate of Pi is the mean performance of vessel i across all trips
while controlling for trip duration, Dit, and contemporaneous fleet performance,
F−it (where –i reflects that the measure explicitly omits vessel i from the
calculation) and is our measure of undisturbed performance. When fitting linear
models in R, the fixed effect estimates are calculated relative to a reference vessel,
which is the model intercept. We correct this by calculating the absolute
performance for each vessel i by adding its estimate, Pi, to the model intercept.

Quantifying disturbed performance. We first control for Dt and Ft in the raw
revenue values, giving measured performance on disturbed trip t, such that:

Mdit ¼ Rdit � bβ1Dit � bβ2F�it ð3Þ

where Rdit is the disturbed revenue for vessel i on trip t, and bβ1 and bβ2 are
coefficients estimated from Eq. (3). We then predict the expected performance for
vessel i on disturbed trip t, Edit, by re-parameterizing Eq. (2) with the trip-level
values for Dit and F−it using the native R-function, predict. Finally, we standardize
the deviance in performance for vessel i on trip t by dividing the measured
performance by the expected performance, then rescaling the result so deviances
are centered on zero such that:

ΔPit ¼
Mdit
Edit

� 1 ð4Þ

Thus positive/negative values of ΔPtit indicate better/worse than business-as-
usual performance. When aggregated at fleet level to investigate whether greater
exploration predicts less-negative deviances in performance during the disturbance,
the ΔPit scores approximate Gaussian distributions (Supplementary Fig. 4). Because
some vessels completed more than one trip during the disturbance, a linear mixed
effects model is used with vessel identity declared as a random effect to avoid
pseudo-replication from non-independent ΔPit scores.

Model fitting. Each continuous covariate was normalized by rescaling units as
standard deviations around its own mean using the native R-function, scale, and
data were explored following the protocol of Zuur et al. 22. Outliers were checked
using Cleveland dot-plots, and a single revenue outlier was removed for being ~8
times greater than the second-largest value. Homogeneity of variance was checked
using boxplots, and violations of homogeneity in the raw revenue data were cor-
rected when fitting Eq. (2) by specifying log-link functions and checking plots of
model residuals vs. fitted values for lack of structure. Error distribution was
checked for approximate normality using qq plots. The number of trips varied
among vessels in the disturbance-period data, and the resulting pseudo-replication
was handled by fitting a mixed-effects model22 with vessel identity as a random
effect. Stepwise model selection was undertaken, whereby model terms were
sequentially dropped and each simpler model was compared against the more
complicated model using AICs and BICs. Simpler models that did not result in
increased AIC or BIC values were selected and the process was repeated.

We investigate whether pre-disturbance performance was predicted by EETO
strategy by fitting the linear regression model,

Pi ¼ αþ β1Si þ β2S
2
i þ β3prti þ β4prt

2
i þ β5activityi þ β6lengthi þ εi ð5Þ

where Si and Si2 test, respectively, for linear or quadratic relationships between
entropy score and performance Pi; prti and prti2 test, respectively, for linear or
quadratic relationships between PRT and performance. The quadratic terms test
for humped relationship where performance is maximized around intermediate
strategies that more evenly balance exploration and exploitation.

During the disturbance event, we investigate whether a history of exploration
(higher choice entropy or lower PRT) had a positive influence on performance
deviance, ΔPi, while controlling for activity, vessel length and spatial displacement
resulting from the closure. ΔPi values above/below 0 indicate, respectively, better/
worse than business-as-usual performance (Supplementary Fig. 3). We use a
mixed-effects model to avoid pseudo-replication caused by varying numbers of
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trips among vessels:

ΔPi ¼ β0 þ b0i
� �þ β1Si þ β2S

2
i þ β3prti þ β4prt

2
i

þβ5activityi þ β6lengthi þ β7displacementi

þεi; Random intercept; b0i � Normal 0; σ2i
� �

ð6Þ

Growing window analysis. To investigate temporal changes in the variables
predicting deviance in performance, ΔPi, during the disturbance, a growing (or
expanding) window approach was used. A fully specified model (Eq. (6b), Sup-
plementary Table 1) was fitted to incrementally increasing subsets of the dis-
turbance period data, with 10 days of additional data being added at each iteration.
10-day increments were chosen as a compromise between obscuring short-term
changes in effect sizes by integrating data over a longer period, and overfitting by
including too few data in the first few iterations. Model results were plotted using
the R-package, ggplot243, which was also used to plot changes in fleet level entropy.
Models were fitted to the first 50 days of the disturbance only as data became sparse
after this time (Supplementary Fig. 5). Density plots of the response variable,
performance deviance, ΔPi, are shown in Supplementary Fig. 4, demonstrating that
the variable follows an approximately Gaussian distribution without being piled
against the bounds.

Entropy score is not confounded by fishing depth. Although the GoM reef fish
longline fishery consists of vessels targeting shallow-water fish, or deep-water fish,
or a combination of the two, and deeper waters are systematically further offshore
in the GoM, there is no systematic relationship between fishing depth and our
entropy metric (Supplementary Fig. 6).

More-exploratory vessels incur higher travel costs. Investment of resources in
exploration introduces risks in terms of expected payoffs and likely requires
additional travel costs relative to an exploitation strategy. To investigate whether
vessels with higher choice-entropy EETO strategies incurred higher costs relative to
revenues, we regress entropy score, S, on revenue per kilometer traveled. We
find that higher entropy vessels traveled farther per unit of revenue (F[104]= 17.29,
P < 0.001), confirming that there are measurable costs to investment in exploration
(Supplementary Fig. 7).

Data availability
The study data were obtained under a contractual agreement with the U.S. National
Marine Fisheries Service (NMFS). The agreement prevents distribution of personally
identifiable information, including variables directly included in the analysis. These data
are archived at NOAA's Southeast Fisheries Science Center. Researchers under a
contractual agreement with NMFS can access the data provided a nondisclosure
agreement is signed.

Code availability
The full R-code used to conduct the analysis is available at GitHub.
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