
UC Berkeley
UC Berkeley Previously Published Works

Title
IMPERATIVE/FUNCTIONAL/OBJECT-ORIENTED

Permalink
https://escholarship.org/uc/item/4b7146r2

Authors
Steinfeld, Kyle
Olascoaga, Carlos Emilio Sandoval

Publication Date
2014

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/4b7146r2
https://escholarship.org
http://www.cdlib.org/

53

IMPERATIVE/
FUNCTIONAL/OBJECT-ORIENTED
AN ALTERNATIVE ONTOLOGY OF
PROGRAMMATIC PARADIGMS FOR DESIGN

Kyle Steinfeld
UC Berkeley

Carlos Emilio Sandoval Olascoaga
Massachusetts Institute of Technology

ABSTRACT

Distinctions between approaches to programming for design applications are marked by the

split between Visual Programming Languages (VPLs) and Textual Programming Languages

(TPLs).1 While this distinction has proven useful in characterizing the applicability of program-

ming languages to design applications, it struggles to address languages that hybridize visual

and textual modes, and cannot account for other structural features beyond user interface. An

alternative ontology, differentiated by programmatic paradigm2 suggests an improved method of

assessment. This study applies a programmatic paradigm taxonomy to two programming envi-

ronments: Decodes and DesignScript. The former is a domain-specific TPL that exhibits qualities

of an Imperative Programing Language (IPL) and an Object-Oriented Programming Language

(OOPL). The latter, a VPL-TPL hybrid allows users to move between IPL, OOPL, and Functional

Programming Language (FPL) modes. Proceeding through the analysis of case studies, this study

yields a set of guidelines for the application of each of these paradigms.

54DESIGN AGENCY ACADIA 2014 DESIGN AGENCY

INTRODUCTION

PROGRAMMATIC PARADIGMS

Programming paradigms are defined by the methods and struc-

tures used to develop a program. While different programming

paradigms have emerged through time, two distinct paradigms,

Declarative and Imperative, stand in stark contrast. While an im-

perative paradigm structures a program as a set of instructions to

solve a problem in different states, a declarative paradigm solves

a problem based on its description, with language-specific imple-

mentations. A number of further programming paradigms exist

within and outside the range of declarative and imperative par-

adigms, most of them exhibiting characteristics and features of

multiple programming paradigms. Modern programming languag-

es generally rely on a combination of four paradigms: functional,

imperative, object-oriented, and logical.3 Following a rapid expan-

sion of the quantity and variety of programming languages in the

1990s, the utility of these divisions has been called into question.

Modern programming languages structures’ are rarely based

on a single paradigm, and instead allow programmers to select

the most appropriate method for a given problem. While some

of these paradigms combine features of both Declarative and

Imperative modes, for example, each proceeds through a unique

set of methods, structures and terms. The distinctions offered by

the archetypal paradigm described below offer a potentially useful

roadmap to understanding the use of computer programming in

design. Of the general programming paradigms, only three are

regularly employed in a design context:

Imperative Programming Languages (IPL) are the most common

programming paradigm used in mainstream languages. An

IPL workflow can be understood as a series of steps exe-

cuted in a defined order, often described as an algorithm.

“Flow Control” is a fundamental characteristic of an IPL, and

is provided by loops, “if/else” statements and other similar

structures. In this way, the basic operations in an imperative

language are to perform, replicate tasks in sequence, and

track state changes of the program as this process unfolds.

Functional Programming Languages (FPL), rather than defining

a series of steps to be performed and state changes, define

a set of interrelated operations. While the logic of a program

is defined through flow control in IPL, in FPL the logic of a

program is solely described through the algorithm. In other

words, FPL describes what the program should do, while

an IPL describes how the program should do it. Rather than

basing a computation on the state of a program, functional

programming focuses on the evaluation of mathemati-

cal expressions, where the results are dependent on the

function’s inputs. In functional programming, execution order

is a by-product of a set of topological relationships defined

between functions. Most Visual Programming Languages, in-

cluding the popular Grasshopper programming environment,

exhibit characteristics of an FPL.

Object Oriented Programming Languages (OOPL) focus on the

structure of data rather than transformations of that data,

and are most often employed to encapsulate and modularize

systems. An OOPL allows the integration of code and data

into a single object: an abstract data type with fields or prop-

erties describing the object, and methods or operations for

the objects. Object orientation facilitates modularization and

extensibility, encouraging end-users to customize and extend

more primitive languages.

PROGRAMMING LANGUAGES ADDRESSED
IN THIS STUDY

Python, created in the late 1980s by Guido van Rossum, is a

high-level interpreted, non-compiled, multi-paradigm language

that combines elements of an IPL and OOPL. Python is intended to

be a minimalist and highly readable language, favoring style over

complexity. Designed with a basic core library and a simplified

method for defining modules, it is easily extensible by end-users

through dynamic typing.

Decodes, created by Kyle Steinfeld in 2013 4, is a platform-inde-

pendent computational geometry library written for Python that

includes a range of features specific to the domain of architectural

design. This language forms the basis of all of the examples ex-

plored in the case study section of this paper.

An Associative Programming Language (APL), as defined by the

creators of DesignScript, is a multi-paradigm programming lan-

guage, combining Imperative, Object Oriented, and Functional

paradigms in a specific way, with additional functionality provided

by actions termed ‘replication’ and ‘modifiers’. As implemented

within DesignScript, code blocks are allowed to be defined as

functional or imperative modes, enabling to switch between para-

digms. Functional blocks are the default mode and are termed as

“Associative” blocks within the software. For simplicity, we will

hereupon refer to these two types as “associative” vs “impera-

tive” blocks, following the convention found in previous writing.5

The creators of DesignScript argue that the combination of topologi-

cal transformations with replication mechanisms and modifiers con-

stitute a more appropriate generative tool for the design domain.

55

Seen through the lens of programmatic paradigm, DesignScript is

a hybrid programming language, combining object-oriented, im-

perative, and functional languages with domain-specific concepts.

By combining the different programming paradigms, it supports

replication operations common in Associative paradigms, and

by allowing the user to switch into an Imperative paradigm at

the same time enables specific iterative differentiation common

in IPL. While flow control in imperative programming is provided

by mechanisms such as loops and if-else statements, associa-

tive programming uses a concept of associative dependencies

inherent within each statement to create a topological ordering

of statements. It is asserted that this specific combination of fea-

tures selected from FPL and OOPL, and the possibility to intermix

an IPL within the code represents a new programmatic paradigm

that the authors of DesignScript term Associative Programming,

a paradigm that better reflects the typical modeling operations

found in architectural design.

METHODS

Discussed here are the structural and syntactical differences

between IPLs and APLs most impactful in generative design, the

rationale and practicalities of implementing design domain tasks

in both paradigms, and the relative merits of each language in a

selection of specific situations.

The study is presented in the context of a residency in the

Autodesk IDEA Studio.10 Supported by this residency program, the

authors re-implemented in DesignScript over fifty computational

geometry lessons and code samples that had been previously

written for Decodes. The specific case studies presented here are

selected from lessons and examples developed for a forthcoming

book,11 in contract to be published in 2015.

NOTABLE FEATURES OF SELECTED
PROGRAMMING LANGUAGES

The contradictory features of IPLs and APLs facilitate certain ways

of working in a design context, and discourage others. At times the

contrast is acute, wherein one paradigm directly facilitates function-

ality where another forbids it (see object mutability, below). Other

times the contrast is more subtle, wherein both paradigms allow for

similar approaches to be taken, with one strongly supporting it while

the other merely allows it, sometimes encumbering the user with

complicated syntax (see list comprehension vs replication, below)

The following account of contrasting features and approaches to

similar programming tasks is derived both in anticipation of and

reflection upon domain-specific application, as discussed in the

LITERATURE REVIEW

Many recent studies of the application of programming to design

have focused upon distinctions of user interface, in particular the

relative merits of visual programming and textual programing in a

design context. In this section, we summarize the prevailing com-

parisons of visual and textual programming in a design context,

and discuss how DesignScript disrupts this landscape, presenting

itself as a hybrid language.

VISUAL VS TEXTUAL

The introduction of VPLs and TPLs in design software has provided

designers the capacity of understanding, entering, and modifying

the inner workings of design software through programming, al-

lowing designers to customize software and provide flexibility. The

intuitive nature and direct feedback allowed by VPLs make them

easy to learn tools; a property that has helped to make VPLs (most

notably, McNeel’s Grasshopper) among the most popular tools for

generative design. Additionally, VPLs allow for an abstraction and

diagrammatic representation of the design process, making them

powerful tools in design pedagogy. While VPLs are good entry tools

for designers, they pose scalability and complexity limitations.6 The

structure and characteristics of TPLs, in contrast, make them well

suited for more complex operations, allowing modularization, con-

trol mechanisms, and a multi-paradigm approach to programming.

Additionally, TPLs present more possibilities for the development

and implementation of generative systems, going beyond the linear

parametric variation7 supported by VPLs.

DESIGNSCRIPT–A NEW PARADIGM?

As an exploratory, domain-specific design tool, DesignScript,

combines conventional modeling, associative modeling, and

programming, situating it at the midpoint of VPLs and TPLs.8

DesignScript provides an associative language, which represents

the flow of data in a human readable text notation,9 resembling

the graph dependencies of VPLs, and combines it with conven-

tional programming capabilities. By combining both approaches

to computational design, it is accessible to both novice and ex-

pert programmers. DesignScript is defined as a domain-specific

language, providing methods to support geometric manipulation

and representation appropriate to an architectural context, and

supports simplified syntax rules, reducing restrictions associated

with general programming languages. Its limited host-indepen-

dency (it is able to communicate with a range of Autodesk soft-

ware) allows a multi-disciplinary approach and enables different

stages of design process–from design exploration to simulation

and analytics.

IMPERATIVE/FUNCTIONAL/OBJECT-ORIENTEDSTEINFELD, OLASCOAGA

DESIGN AGENCY 56ACADIA 2014 DESIGN AGENCY

case-studies section, below. It was derived both as a report of op-

portunities seen and challenges faced during training on the APL,

and upon reflection after re-implementing examples previously

developed using the IPL.

OBJECT MUTABILITY (IPL) VS GRAPH MAPPING (APL)

When extending the IPL by creating new objects, it is possible

to continuously add new properties and modify the object after

it is constructed, a condition known as mutability of a class.12

Mutability of classes becomes useful when certain properties are

not required for constructing an instance, but would be useful

when later added by private methods. A common use-case of this

feature may be found in class inheritance. In an IPL, a class can be

constructed as a subclass of another class or classes, inheriting

their properties and methods. Following the mutability principle,

a subclass can also modify the parent class if needed. In a design

domain context, object mutability simplifies workflow by allowing

an exploratory approach to object-oriented programming (not add-

ing a property until it is needed), by encouraging a more relaxed

syntax, and by allowing the user extension of a given type.

Differently, objects are immutable in an APL due to the graph

structure of the language. Once an object is created and mapped

to the graph, it is impossible to transform the object’s properties.

While object immutability can provide security by avoiding the

modification of an object by external agents, it can stymie the

exploratory nature of the design process. In such a case, all the

properties would have to be defined a-priori via the class construc-

tor. While the graph’s topological order and relationships would

be constantly updating each variable, unless a property is initially

defined within the constructor, the object won’t change.

FUNCTIONS (IPL) VS MODIFIERS (APL)

As implemented in DesignScript, an APL incorporates the concept

of modifiers, which allow for the creation of transformation blocks

modifying an object, avoiding the creation of a new variable for every

transformation operation. Modifiers facilitate common modeling op-

erations of repetition and variation of elements throughout a field.

In contrast, geometric transformations in an IPL often rely on

static functions that return a new (modified) instance of an ob-

ject, instead of modifying the original instance in-place. In order

to avoid redundancy in naming operations and variables, it is

possible to chain expressions together in an IPL, performing

the set of transformation operations in a single expression. The

original instance of the object can thusly be rewritten with a new

transformed instance, as seen in (Figure 3).

class AmmannA3Tile(object):
 def __init__(self,xf=Xform(), lineage=”RT”,scale=-
None):
 self.lineage = lineage
 self.xf = xf
 self._xf_scale = Xform.scale(1/TAU) #0.618033
 self.scale = scale

 def _cs_from_base_pts(self,pt_o=0,pt_x=1,pt_y=2):
 pt_0 = self._base_pts[pt_o]
 pt_x = self._base_pts[pt_x]-self._base_pts[pt_o]
 pt_y = self._base_pts[pt_y]-self._base_pts[pt_o]
 return CS(pt_0, pt_x, pt_y)

 # world base Points for this tile
 @property
 def base_pts(self):
 return [p*self.xf for p in self._base_pts]

 # draw a PGon from the Points
 def to_pgon(self):
 pg = PGon(self.base_pts[:self.boundary_base_pt_
cnt])
 pg.name = self.lineage
 return pg

class AmmannA3TileA(AmmannA3Tile):
 # the idealized base Points for all Tiles of type A
 @property
 def _base_pts(self):
 return [
 Point(0.0, 0.0),
 Point(TAU_3, 0.0),
 Point(TAU_3, TAU_2),
 Point(TAU_3-TAU_2, TAU_2),
 Point(TAU_3-TAU_2, TAU),
 Point(0, TAU)
]

 def inflate(self):
 xf_pos = self._cs_from_base_pts(0,1,5).xform
 b0 = AmmannA3TileB(self.xf * xf_pos * self._xf_
scale,
 self.lineage+”,b0”)

 xf_pos = self._cs_from_base_pts(1,2,0).xform
 a0 = AmmannA3TileA(self.xf * xf_pos * self._xf_
scale,
 self.lineage+”,a0”)
 return [b0,a0]

 @property
 def boundary_base_pt_cnt(self): return 6

Object mutation in IPL (Sandoval, Steinfeld, 2014)1

p = {
 Circle.ByCenterPointRadius(Point.ByCoordi-
nates(0,0,0), 5.0);
 Translate(40, 0, 0);
 Transform(CoordinateSystem.Identity(),
 CoordinateSystem.BySphericalCoordinates(
 CoordinateSystem.Identity(), 10, 15, 25));
};

An object modifier in DesignScript (Sandoval, Steinfeld, 2014)2

57 IMPERATIVE/FUNCTIONAL/OBJECT-ORIENTED

LOOPS AND LIST COMPREHENSIONS (IPL) VS
REPLICATION (APL)

Associative programming introduces the concept of “replica-

tion”: the ability to interchangeably use collections and single

values, a feature that provides significant flexibility to the de-

signer. When a collection is passed to a functional component,

the function is executed once for each given element in the

collection, simplifying the propagation of common design oper-

ations. The topological relationships characteristic of associative

programming allow for transformations and changes between

different data types, from single elements to collections, when a

variable is modified.

“List Comprehensions”, a functional programming feature in

Python, provides a similar abstraction mechanism, enabling the

simplification of a script. However, as the syntax involved can

be cumbersome, they are limited to low-dimensional data struc-

tures, and are rarely employed on more than two-dimensional

arrays of objects.

Expanding upon this distinction, associative programming sim-

plifies the task of weaving numeric type lists together using

“Zipped Replication”. Building upon a series of replication op-

erations, when a number of collections are matched the corre-

sponding elements are evaluated or “woven” together using the

syntax seen below.

Nested ‘for’ loops are similarly simplified and structured with

“Cartesian Replication”: when two or more collections are

matched together, all members of the collections are evaluated

by cross-referencing them with every member of the collections

in “N” dimensions.

In this way, it is possible to define the sequence of the replica-

tions occurring with the ‘replication guides’, making it possible

to easily modify the structure of the data.

CASE STUDIES

In this section, we present an analysis of a selection of case

studies, chosen from a body of examples both pedagogical

and derived from practice. These case studies are taken from a

larger collection of code samples fully detailed in a forthcoming

book, The Architect’s Field Guide to Computation (working title)13

in contract to be published by Routledge in 2015. See www.

decod.es for list of all case study examples translated, including

notes on the relevant APL/IPL comparisons drawn from each.

STEINFELD, SANDOVAL

3

4

5

def modifier(geometry):
 geometry *= Xform.translation(
 Vec(40)*Xform.change_basis(CS(),-
CylCS(Point(10,1,5))))
 return geometry
a = modifier(Circle(Plane(), 5.0))

A function in Decodes / Python (Sandoval, Steinfeld, 2014)

Imperative
array1 = [0,1,2]
list = []
for i in array1:
 list.append(i * 2)

print list
>> [0,2,4]

Imperative (list comprehension)
array1 = [0,1,2]

print [i * 2 for i in array1]
>> [0,2,4]

Loops and List Comprehension in Decodes / Python (Sandoval, Steinfeld, 2014)

Replication in DesignScript (Sandoval, Steinfeld, 2014)

//Associative
array1 = {0,1,2};

Print(array1 * 2);
>> {0,2,4}

DESIGN AGENCY 58ACADIA 2014 DESIGN AGENCY

CASE STUDY 1: A DESIGN SPACE OF COLORS

A simple color space exploration demonstration, this example

allowed for familiarization with a particular feature of the APL:

replication. A three-dimensional design-space representation

of individual colors is constructed based on the combination

of lower-dimensional collections. In the context of an IPL, the

exploration relies on nested loops. Differently, an APL approach

takes advantage of “Cartesian Replication”; it first replicates a

given operation a number of times by passing a collection, and

then interrelates multiple collections with each other based on

“Cartesian Guides”. This approach enables the intuitive manage-

ment and development of simple data structures, allowing differ-

ent combinations between collections based on the modification

of the “Cartesian Guides”.

CASE STUDY 2: A DESIGN SPACE OF CURVES

Curves can be parameterized and geometrically expressed via

multIPLe mathematical forms. In the context of the IPL, curve ob-

jects were developed using parametric equations: they are the re-

sult of vector / point functions replicated within interval of values.

Essentially, the curve function is replicated by looping throughout

the interval of values creating an array of points.

The example develops two different mathematical curve func-

tions, and interpolates values between them, stacking them

vertically to resemble tower-plate configurations. In the context

of the IPL a nested loop is used to generate the curves and define

their vertical location. While in the context of an APL, Cartesian

Replication is used to perform 3D combinations between collec-

tions, defining the curves and their vertical position with a single

operation. Further exploration of the APL approach demonstrated

advantages in the easy transformation of the resulting collections’

data structure, thus allowing different curve configurations that

vary between vertical, radial, and diagonal.

CASE STUDY 3: FLOCKING

As a simple flocking code, this example allowed the exploration

of the graph structure features of the APL. Traditional flocking

examples are based on the capacity of individual agents to be

aware of other agents. In the context of an IPL, flow control

through conditional statements is employed for context aware-

ness. Through the associative relationships of variables in the APL,

it is possible to define graph-like relationships between the agents,

thereby eliminating the need for flow control structures. While it is

possible to extend the IPL and the APL, the APL’s graph structure

make objects immutable; an immutable object forces the designer

7

8

6

#Imperative
array1 = [0,1,2]
array2 = [3,4,5]

list = []
for i, element in enumerate(array1):
 list.append(element + array2[i])

print list
>> [3,5,7]

#Imperative (list comprehension)
array1 = [0,1,2]
array2 = [3,4,5]

print [element + array2[i] for i, element in enu-
merate(array1)]
>> [3,5,7]

Imperative list combination (Sandoval, Steinfeld, 2014)

Associative zipped replication (Sandoval, Steinfeld, 2014)

//Associative
array1 = {0,1,2};
array2 = {3,4,5};

Print(array1 + array2);
>> {3,5,7}

#Imperative
array1 = [0,1,2]
array2 = [0,1,2]

list = []
for i in array1:
 for n in array2:
 list.append(Point(i,n))

print list
>> [Point(X=0, Y=0, Z=0), Point(X=0, Y=1,
Z=0),Point(X=0, Y=2, Z=0)
,{Point(X=1, Y=0, Z=0), Point(X=1, Y=1, Z=0),
Point(X=1, Y=2, Z=0)
,{Point(X=2, Y=0, Z=0), Point(X=2, Y=1, Z=0),
Point(X=2, Y=2, Z=0)]

Imperative nested list combination (Sandoval, Steinfeld, 2014)

59 IMPERATIVE/FUNCTIONAL/OBJECT-ORIENTED

to define all object properties, a disadvantage for the exploratory

nature of generative design in the domain. Through the development

of the example, the object had to be rewritten constantly to accom-

modate object immutability.

CASE STUDY 4: REACTIVE SPACING OF
TOOLPATHS

Similarly to curves, surfaces can be geometrically expressed using

parametric equations. In the context of the IPL, the construction of

a surface requires only a parametric function, but its representation

(surrogate) is constructed with 3D nested loops. In the context of

the APL, Cartesian Replication is used to combine collections in 3D,

constructing surfaces without the need of nested loops. At the same

time, surface directionality is easily modified with Cartesian Guides.

In an IPL a nested loop is used to combine collections and create

UV values to evaluate the surface at given parameters. Through

the loops, points are structured in a nested 2D collection to create

polylines between them. In an APL approach, Cartesian Replication

evaluates a surface at the given parameters and structures them ac-

cordingly with Cartesian Guides.

CASE STUDY 5: PARAMETRIC MODEL OF ICD /
ITKE RESEARCH PAVILION

In the context of the APL, the code allowed a scalable design explo-

ration, starting with the design of a single element. Once a single

element was properly defined, the replication functionality allowed

increasing the scale and number of elements computed without

rewriting the operations, by passing a collection, instead of a single

element to the initial code.

In the context of the IPL, the initial code and explorations developed

for a single element had to be rewritten, packaged and modularized

when scaling up to multiple elements. The example showed the

limitations of a purely functional approach within the APL. While it is

possible to easily replicate a function that requires a single variable

as an input, it is not possible to weave multiple lists together into a

new multi-dimensional collection in order to replicate functions that

require multiple parameters as inputs. Within the APL, it is possible to

use IPL code blocks to complement the functional approach.

DISCUSSION

Upon reflection, the case study described above yields a set of sug-

gested guidelines for the context-appropriate application of the IPL

and APL programming paradigms. These guidelines are impactful to

STEINFELD, SANDOVAL

Associative Cartesian Replication (Sandoval, Steinfeld, 2014).

//Associative
array1 = {0,1,2};
array2 = {0,1,2};

Print(Point.ByCoordinates(array1<1>,array2<2>,0));
>> {{Point(X=0, Y=0, Z=0), Point(X=0, Y=1, Z=0),
Point(X=0, Y=2, Z=0)}
,{Point(X=1, Y=0, Z=0), Point(X=1, Y=1, Z=0),
Point(X=1, Y=2, Z=0)}
,{Point(X=2, Y=0, Z=0), Point(X=2, Y=1,
Z=0),Point(X=2, Y=2, Z=0)}}

9

10

#Imperative
array1 = [0,1,2]
array2 = [0,1,2]

list = []
for i in array1:
 sublist = []:
 for n in array2:
 sublist.append(Point(i,n))
 list.append(sublist)

print list
>> [[Point(X=0, Y=0, Z=0), Point(X=0, Y=1, Z=0),
Point(X=0, Y=2, Z=0)]
,[Point(X=1, Y=0, Z=0), Point(X=1, Y=1, Z=0),
Point(X=1, Y=2, Z=0)]
,[Point(X=2, Y=0, Z=0), Point(X=2, Y=1, Z=0),
Point(X=2, Y=2, Z=0)]]

Imperative nested structured list combination (Sandoval, Steinfeld, 2014)

DESIGN AGENCY 60ACADIA 2014 DESIGN AGENCY

design pedagogy and practice, both as a way of choosing appropri-

ate programming languages for a given task, and as a use guide for

programming environments (such as DesignScript) that hybridize the

two approaches. In such a hybrid environment, one may selectively

apply imperative and associative models. The guidelines found be-

low may assist the user of such hybrid software in the selection of

IPL and APL features of the language.

GUIDELINE ONE–APPROPRIATE USES OF
REPLICATION

An APL largely simplifies replicating operations throughout

collections of objects. Replication mechanisms allow an easy

propagation and interrelation of single or multiple collections, pro-

viding the designer more control over shaping the resulting data

structures. Anytime a designer is exploring different collection

data structures by modifying their relationships, an APL will en-

able a clearer syntax and code in comparison to an IPL’s “nested

loops” strategy. Replication operations in nested collections that

are common to the architectural design domain can be easily

implemented with an APL (up to three-dimensions). Similarly, the

relationships between the resulting data structures can be con-

trolled through “Cartesian Guides”, enabling an exploratory coding

characteristic of initial design phases.

This technique, however, has its limits: while with an APL it is pos-

sible to explore a one-dimensional collection of generic objects

through replication, producing nested combinations between

collections in this way is limited to collections of numeric types. In

this case, an IPL would be preferred, and is able to operate on any

object type. Similarly, an IPL allows “weaving” or combining multI-

PLe collections into a new collection.

GUIDELINE TWO–CONDITIONALS

While the APL allows some degree of flow control with the imple-

mentation of “in-line conditionals”, equivalent to an “if/else” state-

ment, more intricate flow control is more cumbersome. At the same

time, APL’s “in-line conditionals” are limited to a single statement

and cannot be combined with additional conditional statements.

Whenever flow control through conditional statements requires more

than a binary evaluation, or a conditional statement modifies multiple

variables or further conditional statements, an IPL should be used.

GUIDELINE THREE–DESIGN EXPLORATION
THROUGH TYPE DEFINITION

While both IPL and APL languages allow user extension through

dynamic typing, the APL’s graph structure does not allow object

11

//Associative
array1 = {0,1,2};
array2 = {0,1,2};

Print(Point.ByCoordinates(array1<2>,array2<1>,0));
>> {{Point(X=0, Y=0, Z=0), Point(X=1, Y=0, Z=0),
Point(X=2, Y=0, Z=0)}
,{Point(X=0, Y=1, Z=0), Point(X=1, Y=1, Z=0),
Point(X=2, Y=1, Z=0)}
,{Point(X=0, Y=2, Z=0), Point(X=1, Y=2, Z=0),
Point(X=2, Y=2, Z=0)}}

Associative Cartesian Replication (Sandoval, Steinfeld, 2014).

61 IMPERATIVE/FUNCTIONAL/OBJECT-ORIENTEDSTEINFELD, SANDOVAL

mutability. When exploring a design through the definition of new

object types, specific properties often need to be added dynam-

ically after the object has been constructed. In this use case, an

IPL should be used. This includes extending an object through a

subclass; with an APL, the subclass will only share the same prop-

erties of the parent class.

GUIDELINE FOUR – RECURSIVE STRUCTURES

Recursive solutions, where the result of an operation depends on

previous instances of the operation, generally depend on defining

loops. An APL relying only on the replication of function calling

increases the challenge and complexity of recursive operations.

Furthermore, nested recursive operations cannot be implemented by

the APL. For ease of implementation, designs that rely heavily on re-

cursive operations, such as fractals, should be performed with an IPL.

IMPACT AND FUTURE WORK

The comparison between the implementation in an APL and an IPL of

the selected case studies has yielded a number of suggested guide-

lines for an application of each paradigm within the domain of study.

Expanding this selection of case studies will allow the exploration and

comparison between both paradigms; the graph structure character-

istic of the APL has a particular potential for future study. While most

of the selected case studies employ the graph structure to propagate

transformations and operations across the nodes of the graph, a large

potential lies in defining graph relationships between the objects re-

placing IPL’s flow control. Similarly, future case study implementations

hold the potential to determine the application of the APL’s graph struc-

ture for analysis and optimization operations commonly encountered

in the domain.

Features of both TPLs facilitate certain ways of working within a para-

digm and sometimes forbid a particular functionality. As the APL inves-

tigated here, DesignScript is quite new, new applications are likely to be

discovered as the language continues to develop. In particular, the abil-

ity to combine collections of any type would allow the incorporation of

the clarity and syntax simplicity characteristic of the APL into the design

process and present further incentive to this framework over an IPL.

In the context of the residency in the Autodesk IDEA Studio, the case

studies were implemented the APL’s textual IDE. Current development

work focuses on merging the APL with the VPL “Dynamo”. Once com-

pleted, the hybrid VPL-TPL will extend the abstraction mechanisms of

the APL, unveiling further domain specific implementation guidelines.

ACKNOWLEDGMENTS
This work was supported as part of the Autodesk IDEA Studio
Residency Program in San Francisco, CA.

NOTES
1. António Leitão, Luís Santos, and José Lopes, “Programming
Languages For Generative Design: A Comparative Study”,
International Journal of Architectural Computing 10, no. 1 (March
2012): 139–62, doi:10.1260/1478-0771.10.1.139.

2. Peter Van Roy and Seif Haridi, “Concepts, Techniques, and Models
of Computer Programming”, MIT Press (2004).

3. Shriram Krishnamurthi, “Teaching Programming Languages in
a Post-Linnaean Age”, SIGPLAN Not. 43, no. 11 (November 2008):
81–83, doi:10.1145/1480828.1480846.

4. Kyle Steinfeld, “Decodes: A Platform-Independent Computational
Geometry Environment”, in Open Systems: Proceedings of the 18th
International Conference on Computer-Aided Architectural Design
Research in Asia (2013), ed. R Stouffs, P Janssen, and B Tuncer
(presented at the CAADRIA 2013, Singapore, 2013), 499–508.

5. Robert Aish, “DesignScript: Origins, Explanation, Illustration,” in
Proceedings of the Design Modeling Symposium Berlin 2011, vol. 3
(presented at the Computational Design Modeling - Design Modeling
Symposium Berlin 2011, Berlin: Springer Berlin Heidelberg, 2011), 1–8,
doi:10.1007/978-3-642-23435-4_1.

6. Celani and Vaz, “CAD Scripting And Visual Programming Languages
For Implementing Computational Design.”

7. Robert Woodbury, “Elements of Parametric Design” (Routledge,
2010).

8. Aish, “DesignScript: Origins, Explanation, Illustration.”

9. Robert Aish, “DesignScript: A Learning Enviroment for Design
Computation”, in Proceedings of the Design Modeling Symposium
Berlin 2013 (presented at the Computational Design Modeling -
Design Modeling Symposium Berlin 2013, Berlin: Springer Berlin
Heidelberg, 2013).

10. “Autodesk IDEA Studio Residency Program,” accessed April 20,
2014, http://www.autodesk.com/gallery/idea-studio.

11. Kyle Steinfeld and Joy Ko, “The Architect’s Field Guide to
Computation (Working Title)” (Routledge, 2015).

12. Brian Goetz et al., Java Concurrency in Practice, 1 edition (Upper
Saddle River, NJ: Addison-Wesley Professional, 2006).

13. Kyle Steinfeld and Joy Ko, “The Architect’s Field Guide to
Computation (Working Title)”.

REFERENCES
António Leitão, Luís Santos, and José Lopes. 2012. “Programming
Languages For Generative Design: A Comparative Study”,
International Journal of Architectural Computing 10, no. 1: 139–62,
doi:10.1260/1478-0771.10.1.139.

Aish, Robert. 2011. “DesignScript: Origins, Explanation, Illustration,”
in Proceedings of the Design Modeling Symposium Berlin 2011, vol. 3
(presented at the Computational Design Modeling - Design Modeling

DESIGN AGENCY 62ACADIA 2014 DESIGN AGENCY

KYLE STEINFELD Assistant Professor specializing in digital
design technologies in the Department of Architecture at UC Berkeley,
is the author of the “Architect’s Field Guide to Computation”, in
contract with Routledge to be published in 2015, and the creator of
Decod.es, a platform-agnostic geometry library, and a collaborative
community that promotes computational literacy in architectural
design. He teaches undergraduate and graduate design studios,
core courses in architectural representation, and advanced seminars
in digital modeling and visualization. Professionally, he has worked
with and consulted for a number of design firms, including Skidmore
Owings and Merrill, Acconci Studio, Kohn Petersen Fox Associates,
Howler/Yoon, Diller Scofidio Renfro, and TEN Arquitectos. His
research interests include collaborative design technology platforms,
design computation pedagogy, and bioclimatic design visualization.
He holds a Masters of Architecture from MIT and a Bachelor’s Degree
in Design from the University of Florida.

CARLOS SANDOVAL OLASCOAGA is an architect
that specializes in computational design. Before joining the
Computation Group at MIT, he was a researcher at UC Berkeley,
and a consultant at the Data Lab at UC Berkeley, investigating the
convergence of design, data science, and social sciences. In the past
four years, Carlos has been a lecturer at UC Berkeley and a Visiting
Professor at UNAM, and has taught computational design seminars
and workshops in the United States, Italy, China and Mexico. His
work has been supported by numerous fellowships, more recently
by the IDEA Studio at Autodesk, the National Council of Science
and Technology, and the Jumex Foundation for Contemporary Arts.
He is interested in urban data visualization, computation in design
cognition, and technological platforms for design collaboration. Carlos
holds a Master of Architecture from UC Berkeley, and a Bachelor of
Architecture with Distinction from UNAM in Mexico.

Symposium Berlin 2011, Berlin: Springer Berlin Heidelberg, 2011), 1–8,
doi:10.1007/978-3-642-23435-4_1.

Aish, Robert. 2013. “DesignScript: A Learning Enviroment for Design
Computation”, in Proceedings of the Design Modeling Symposium
Berlin 2013 (presented at the Computational Design Modeling -
Design Modeling Symposium Berlin 2013, Berlin: Springer Berlin
Heidelberg.

Brian Goetz et al. 2006. Java Concurrency in Practice, 1 edition, Upper
Saddle River, NJ: Addison-Wesley Professional.

Gabriela Celani and Carlos Eduardo Verzola Vaz. 2012. “CAD Scripting
And Visual Programming Languages For Implementing Computational
Design”, International Journal of Architectural Computing 10, no. 1:
121–38, doi:10.1260/1478-0771.10.1.121.

Krishnamurthi, Shriram. 2008. “Teaching Programming Languages
in a Post-Linnaean Age”, SIGPLAN Not. 43, no. 11: 81–83,
doi:10.1145/1480828.1480846.

Peter Van Roy and Seif Haridi. 2014. “Concepts, Techniques, and
Models of Computer Programming”, MIT Press.

Steinfeld, Kyle. 2013. “Decodes: A Platform-Independent
Computational Geometry Environment”, in Open Systems:
Proceedings of the 18th International Conference on Computer-Aided
Architectural Design Research in Asia (2013), ed. R Stouffs, P Janssen,
and B Tuncer (presented at the CAADRIA 2013, Singapore, 2013),
499–508.

Steinfeld, Kyle, and Ko, Joy. 2015. “The Architect’s Field Guide to
Computation (Working Title)”, Routledge.

Woodbury, Robert. 2010. “Elements of Parametric Design”,
Routledge.

Figure 11. Sandoval, Carlos and Steinfeld, Kyle (2014) Associative
Cartesian Replication

Figure 12. Sandoval, Carlos and Steinfeld, Kyle (2014) Imperative code
for building curves

Figure 13. Sandoval, Carlos and Steinfeld, Kyle (2014) Similarly,
curves can be built using parametric equations in an APL, using the
replication mechanism

IMAGE CREDITS
Figure 1. Sandoval, Carlos and Steinfeld, Kyle (2014) Object
mutation in IPL

Figure 2. Sandoval, Carlos and Steinfeld, Kyle (2014) An object
modifier in DesignScript

Figure 3. Sandoval, Carlos and Steinfeld, Kyle (2014) A function in
Decodes / Python

Figure 4. Sandoval, Carlos and Steinfeld, Kyle (2014) Loops and List
Comprehension in Decodes / Python

Figure 5. Sandoval, Carlos and Steinfeld, Kyle (2014) Replication in
DesignScript

Figure 6. Sandoval, Carlos and Steinfeld, Kyle (2014) Imperative list
combination

Figure 7. Sandoval, Carlos and Steinfeld, Kyle (2014) Associative
zipped replication

Figure 8. Sandoval, Carlos and Steinfeld, Kyle (2014) Imperative
nested list combination

Figure 9. Sandoval, Carlos and Steinfeld, Kyle (2014) Associative
Cartesian Replication

Figure 10. Sandoval, Carlos and Steinfeld, Kyle (2014) Imperative
nested structured list combination

