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ABSTRACT

We present the intensity foreground algorithms and model employed within the BeyondPlanck analysis framework. The Beyond-
Planck analysis is aimed at integrating component separation and instrumental parameter sampling within a global framework, lead-
ing to complete end-to-end error propagation in the Planck Low Frequency Instrument (LFI) data analysis. Given the scope of the
BeyondPlanck analysis, a limited set of data is included in the component separation process, leading to foreground parameter de-
generacies. In order to properly constrain the Galactic foreground parameters, we improve upon the previous Commander component
separation implementation by adding a suite of algorithmic techniques. These algorithms are designed to improve the stability and
computational efficiency for weakly constrained posterior distributions. These are: 1) joint foreground spectral parameter and am-
plitude sampling, building on ideas from Miramare; 2) component-based monopole determination; 3) joint spectral parameter and
monopole sampling; and 4) application of informative spatial priors for component amplitude maps. We find that the only spectral
parameter with a significant signal-to-noise ratio using the current BeyondPlanck data set is the peak frequency of the anomalous
microwave emission component, for which we find νp = 25.3 ± 0.5 GHz; all others must be constrained through external priors.
Future works will be aimed at integrating many more data sets into this analysis, both map and time-ordered based, thereby gradu-
ally eliminating the currently observed degeneracies in a controlled manner with respect to both instrumental systematic effects and
astrophysical degeneracies. When this happens, the simple LFI-oriented data model employed in the current work will need to be
generalized to account for both a richer astrophysical model and additional instrumental effects. This work will be organized within
the Open Science-based Cosmoglobe community effort.

Key words. ISM: general – Cosmology: observations, cosmic microwave background, diffuse radiation – Galaxy: general

1. Introduction

The cosmic microwave background (CMB) represents one of
our best sources for knowledge of the early universe. The in-
tensity of the CMB peaks within the microwave frequency range
at about 161 GHz (Mather et al. 1994) and a long line of exper-
iments have targeted this frequency range since the CMB was
first discovered by Penzias & Wilson (1965). However, there are
many sources of radiation in the microwave sky that obscure our
view of the CMB, both from within the Milky Way Galaxy and
from distant sources (see, e.g., Delabrouille et al. 2013; Planck
? Corresponding author: K. J. Andersen; k.j.andersen@astro.
uio.no, andersen.kristian.joten@gmail.com

Collaboration IV 2018, and references therein). Each of these
sources must be modeled to high accuracy in order to establish a
clean estimate of the CMB sky.

A modeling of the Galactic foreground emission in the mi-
crowave frequency range has been a vital venture in the CMB
field as modern observations require higher accuracy to prop-
erly characterize the fluctuations in the CMB (Planck Collab-
oration X 2016). During the Planck mission, several different
component separation software were created and compared to
clean the microwave sky (Planck Collaboration IV 2018). Since
the official Planck analysis ended, considerable development
has occurred within the Bayesian Commander component sep-
aration software, implementing a comprehensive scheme which
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feeds the results from component separation back into the time-
domain analysis, resulting in well defined posteriors (Beyond-
Planck 2022).

The current paper outlines the additions to the component
separation portion of Commander, highlighting the new function-
alities and their feasibility through a set of simulations. The test
case for these features is within the context of the BeyondPlanck
framework, which aims to reprocess the Planck Low Frequency
Instrument (LFI) data in an end-to-end Bayesian approach. Here,
we present the low-frequency foreground sky model and com-
ponent separation algorithms used for intensity analysis within
the BeyondPlanck framework, as applied to the Planck (Planck
Collaboration I 2020) LFI (Planck Collaboration II 2020). As the
focus of the BeyondPlanck analysis is limited to LFI, we limit
the amount of ancillary data used to assist in the component sep-
aration effort, aiming for LFI driven posteriors.

BeyondPlanck is a novel end-to-end Bayesian CMB analysis
framework that builds on decades of experience gained within
the Planck collaboration and its main defining feature is that
instrument characterization and calibration is performed jointly
with mapmaking and component separation, resulting in a single
statistically consistent model for the full data set. As such, the
foreground sky model plays a key role in the process, feeding
directly into many aspects of the analysis, from gain and corre-
lated noise estimation via leakage corrections and mapmaking
to final component maps, CMB estimates, and cosmological pa-
rameters. An overview of the full process is provided in Beyond-
Planck (2022) and its companion papers.

As the goal of the BeyondPlanck project is to focus on end-
to-end error propagation with respect to the Planck LFI data set,
a limited set of external data is concerned in order to ensure that
the statistical weight of LFI drives the results. The ancillary data
included here are described in Sect. 3, and come in two flavors,
namely as foreground amplitude priors and pixelized frequency
maps to add constraining power to spectral index parameters. In
order to properly characterize the foregrounds within this limited
data set, a suite of algorithms are introduced to the Commander
Gibbs sampling framework. These algorithmic implementations
are the focus of the current paper. These algorithms are not ex-
clusively useful to the minimal BeyondPlanck data set and they
are widely applicable to future analyses.

The algorithms used in this paper derives most closely from
a similar Commander-based (Eriksen et al. 2004, 2008) Bayesian
analysis of the Planck, WMAP, and Haslam et al. data presented
by Planck Collaboration IX (2016). The main differences be-
tween the two analyses are as follows. First, in the previous anal-
ysis there was limited feedback between the gain estimation and
component separation, as only a single overall absolute calibra-
tion factor was fitted during the component separation process.
In the current analysis, a full time-dependent time-ordered data
model is propagated throughout the analysis. Second, the pre-
vious analysis provided only a single maximum-likelihood solu-
tion for each component, together with marginal per-pixel uncer-
tainties. In the present analysis, we provide a full Monte Carlo
ensemble of samples drawn from the full posterior distribution,
which represents full end-to-end propagation of all uncertainties.
Third, the computational framework used in the Planck 2015
analysis required uniform resolution across all frequency bands,
thus limiting the resolution to that of the instrument with the
poorest resolution. This was improved upon in the Planck 2018
analysis (Planck Collaboration IV 2018), where a new computa-
tional framework that allows for different resolution and smooth-
ing scales was developed. However, the corresponding analysis
only included a single joint low-frequency component in inten-

sity and did not provide new estimates of the individual low-
frequency components. In the current analysis, we provide full-
resolution parameter maps for all components listed above, lim-
ited only by the signal-to-noise ratio (S/N) of the data in ques-
tion.

In this paper, we also describe the implementation of four im-
portant new algorithmic features into the Commander framework
that are all designed to improve sampling efficiency and stability
for weakly constrained posterior distributions. The first of these
is a joint spectral parameter and amplitude sampler that employs
the marginal spectral parameter posterior distribution to move
quickly through the multi-dimensional parameter space. This al-
gorithm was first introduced in the CMB literature by Stompor
et al. (2009) and later implemented in the Miramare component
separation code by Stivoli et al. (2010). The main advantage of
this approach is a significantly reduced Markov chain Monte
Carlo (MCMC) correlation length and overall lower computa-
tional costs as a result. In this paper, we demonstrate this sam-
pler on the peak frequency of the anomalous microwave emis-
sion (AME) spectral energy density (SED). However, the impor-
tance of this new step will increase significantly when additional
spectral parameters are explored in the future and will be vital
in probing, for instance, the thermal dust spectral index and tem-
perature efficiently with the Planck High Frequency Instrument
(HFI).

The second algorithmic improvement is component-based
monopole determination. As discussed at length by, for instance,
Planck Collaboration X (2016) and Wehus et al. (2017), one of
the most important challenges regarding intensity-based spectral
parameter estimation is an accurate determination of the zero-
levels at each frequency band; any error in this will translate
directly into a bias in spectral parameters, which typically mani-
fests itself as a spatial correlation between the spectral parameter
map and the corresponding component amplitude map. At the
same time, it is important to note that few (if any) CMB exper-
iments actually have sensitivity to the true sky monopole, and
they have therefore typically instead resorted to morphology-
based algorithms to determine meaningful zero-levels. In this
paper, we point out that this problem may be entirely circum-
vented by instead focusing on determining the zero-levels of
the astrophysical component maps, rather than individual fre-
quency maps. The resulting global sky model may then be used
to determine the frequency map offsets. This approach is signif-
icantly more transparent from a physical point of view (e.g., the
CMB temperature perturbation component may be assumed to
have an identically vanishing monopole), it automatically guar-
antees consistency between the zero levels at different frequency
channels and it gives zero statistical weight to the frequency
monopoles in the actual fitting procedure.

Nevertheless, there is a formal degeneracy between the spec-
tral parameters and the frequency monopoles at each step in the
algorithm and to eliminate the Markov chain correlation length
increase from this degeneracy, we additionally implement a new
joint spectral parameter and monopole sampler as our third al-
gorithmic improvement.

Finally, we generalize the concept of informative spatial
component map priors that was introduced by Planck Collab-
oration IV (2018) and Planck Collaboration LVII (2020) and use
the results to apply informative physical Gaussian spatial pri-
ors. This can be leveraged to significantly reduce correlations
between various sky components on small angular scales and,
in particular, degeneracies between AME, free-free and CMB
(Colombo et al. 2022) may be alleviated in this manner. Of
course, the ideal approach to resolve such degeneracies is not
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through the use of informative priors, but rather by integrating
additional data. The current algorithms allow for a gradual and
controlled introduction of such data sets, without introducing
pathological artifacts along the way.

The rest of the paper is organized as follows. Section 2 gives
a short overview of the BeyondPlanck framework, and sky sig-
nal model. Section 3 describes the data set used within this
analysis, the motivation for the data selection, and the simula-
tion data used for algorithm validation. Section 4 describes the
main sampling algorithms for intensity foreground parameters.
The main results are summarized in Sect. 6 and we present our
conclusions in Sect. 7. We note that polarization-based compo-
nent separation results are discussed separately by Svalheim et
al. (2022b).

2. Overview of the BeyondPlanck sampling
framework

The BeyondPlanck project has implemented an integrated end-
to-end data analysis pipeline for CMB experiments (Beyond-
Planck 2022), connecting all steps going from raw time-ordered
data to cosmological analysis in a self-consistent Bayesian
framework, finally realizing ideas originally proposed almost 20
years ago by Jewell et al. (2004) and Wandelt et al. (2004). This
methodology allows us to characterize degeneracies between in-
strumental and astrophysical parameters in a statistically well-
defined framework, with uncertainties propagating consistently
through all stages of the pipeline. It also seamlessly connects
low-level instrumental quantities like gain (Gjerløw et al. 2022)
and correlated noise (Ihle et al. 2022), bandpasses (Svalheim et
al. 2022a), and far sidelobes (Galloway et al. 2022b) via Galac-
tic parameters such as the synchrotron amplitude and spectral
index (current paper and Svalheim et al. 2022b), to the angular
CMB power spectrum and cosmological parameters (Colombo
et al. 2022; Paradiso et al. 2022). In this section, we provide a
brief review of the BeyondPlanck sky model, data selection, and
sampling scheme; we refer to the various companion papers for
more details on the model.

2.1. Data model and Gibbs chain

In BeyondPlanck, the most basic data sets are raw un-calibrated
time-ordered data (TOD), which are modeled as follows:

d j,t = g j,tPtp, j

B
symm
pp′, j

∑

c

Mc j(βp′ ,∆
j
bp)ac

p′ + Basymm
pp′, j

(
sorb

j,t + sfsl
j,t

) +

+s1hz
j,t + ncorr

j,t + nw
j,t.

(1)

Here j represents a radiometer label; t indicates a single time
sample; p denotes a single pixel on the sky; and c represents one
single astrophysical signal component. Furthermore, g denotes
the instrumental gain; P denotes the pointing matrix,;Bsymm and
Basymm denote the symmetric and asymmetric beam matrix, re-
spectively; a represents the astrophysical signal amplitudes; β
shows the corresponding spectral parameters; ∆bp are the band-
pass corrections; Mc j denotes the bandpass-dependent compo-
nent mixing matrix; sorb is the orbital dipole; sfsl are the far
sidelobe corrections; s1hz represents electronic 1 Hz spike cor-
rections; ncorr is the correlated noise; and nw is the white noise.
This simple model has already been demonstrated to be an excel-
lent fit to the Planck LFI measurements by Planck Collaboration

II (2014, 2016); Planck Collaboration X (2016); Planck Collabo-
ration II (2020), although the current work stands as the first time
it has been formulated in terms of one single equation. It is also
important to note that the reason this model actually does work
for Planck LFI is to a large extent, thanks to the fact that the LFI
radiometers have very well behaved systematics; for other de-
tector types, more complex models are very likely needed. For
a more detailed explanation of the current model, we refer to
BeyondPlanck (2022) and companion papers.

Data sets may also be included in the form of preprocessed
pixelized sky maps, mν, in which case the above data model is
simplified to:

mν,p = gνB
symm
pp′,ν

∑

c

Mcν(βp′ ,∆
j
bp)ac

p′ + nw
ν,p. (2)

When producing mν, all time-dependent quantities (i.e., the far
sidelobe, orbital dipole, 1 Hz spike, and correlated noise contri-
butions) in Eq. (1) are explicitly subtracted from the TOD prior
to mapmaking, leaving only sky stationary contributions in the
final pixelized map. However, at this level only a very limited set
of instrumental parameters may be accounted for per frequency,
namely an overall absolute calibration factor, gν, an azimuthally
symmetric beam, Bsymm, and white noise, nw

ν,p. This latter expres-
sion may be written on the following compact form:

mν = Aν(β)a + nw
ν , (3)

where Aν(β) is an effective mixing matrix that takes into account
both the frequency scaling of each component and beam convo-
lution.

The goal of the Bayesian approach is to sample from the joint
posterior distribution,

P(g, ncorr, ξn,∆bp, a, β,C` | d). (4)

This is a large and complicated distribution, with many degen-
eracies. However, exploiting the Gibbs sampling algorithm (Ge-
man & Geman 1984) we may factorize the sampling process into
a finite set of simpler sampling steps. In this algorithm, samples
from a multi-dimensional distribution are generated by sampling
from all corresponding conditional distributions. The Beyond-
Planck Gibbs chain may be written schematically as follows
(BeyondPlanck 2022),

g ← P(g | d, ξn,∆bp, a, β,C`), (5)
ncorr ← P(ncorr | d, g, ξn,∆bp, a, β,C`), (6)
ξn ← P(ξn | d, g, ncorr, ∆bp, a, β,C`), (7)

∆bp ← P(∆bp | d, g, ncorr, ξn, a, β,C`), (8)
β ← P(β | d, g, ncorr, ξn,∆bp, C`), (9)
a ← P(a | d, g, ncorr, ξn,∆bp, β,C`), (10)

C` ← P(C` | d, g, ncorr, ξn,∆bp, a, β ), (11)

where ← indicates sampling from the distribution on the right-
hand side.

We note that not all of these steps follow the strict Gibbs ap-
proach of conditioning on all other parameters. Most notably for
us, this is the case in Eq. (9) for the spectral parameters sam-
pler, P(β | d, . . .), which places conditions on all parameters,
except for a. Instead, we effectively sample a and β jointly by
exploiting the definition of a conditional distribution, as detailed
in Sect. 4.1. The advantage of a joint sampling step is a signif-
icantly shorter Markov correlation length as compared to stan-
dard Gibbs sampling.
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Table 1. Frequency band summary for the BeyondPlanck intensity analysis.

Survey Detector

label

Central

frequency

[ GHz ]

Bandwidth

[ GHz ]

Beam size

( FWHM )

[ arcmin ]

HEALPix

resolution

( Nside )

Average

RMSa

[ µKCMB arcmin ]

Reference(s)

Planck LFI 30 28.4 5.7 32.4 512 179.3 Planck Collaboration IV (2016)

44 44.1 8.8 27.1 512 213.8

70 70.1 14.0 13.3 1024 189.0

WMAP . . . . . . . Ka 33.0 7.0 40 512 290.2 Bennett et al. (2013)

Q1 40.6 8.3 31 512 400.6

Q2 40.6 8.3 31 512 380.0

V1 60.8 14.0 21 512 517.2

V2 60.8 14.0 21 512 446.6

Planck HFI . . . 857 857 249 10.0b 1024 5984 Planck Collaboration LVII (2020)

Haslam . . . . . . . . . 0.408 0c 60d 512 7.886e Haslam et al. (1982)

Notes.
(a) Average white noise rms without regularization noise.
(b) The native resolution of 857 GHz is 4.64′ FWHM (Planck Collaboration VII 2016), smoothed to 10′ FWHM in this analysis.
(c) 408 MHz bandpass profile is assumed to be a δ function.
(d) The native resolution of 408 MHz is 56′ FWHM (Haslam et al. 1982), smoothed to 60′ FWHM in this analysis.
(e) Unit is KCMB arcmin.

A very convenient property of Gibbs sampling is its modular
nature, as the various parameters are sampled within each condi-
tional distribution, but joint dependencies are explored through
the iterative scheme. In this paper, we are therefore only con-
cerned with the sampling of two of the above steps, namely
Eqs. (9) and (10). For all other sampling steps, we refer to Be-
yondPlanck (2022) and references therein.

2.2. Astrophysical sky model

The dominant astrophysical foreground components in the
Planck LFI frequencies are synchrotron, AME, free-free, ther-
mal dust emission, and compact radio sources. The modeling of
each of these components is detailed in BeyondPlanck (2022), so
we only review the relevant details in this paper. In Table 2, we
summarize the models for each component in terms of free pa-
rameters, priors, and SEDs. In addition, each diffuse component
is modeled in terms of an amplitude sky map, a, at a given ref-
erence frequency ν0 in brightness temperature units. Scaling to
arbitrary frequencies is performed through the SEDs, such that
the actual observed signal at a given frequency, ν, may generally
be written as:

si
RJ(ν) = ai · fi(ν, ν0,i, βi), (12)

where i denotes the specific component, ν0,i is the reference fre-
quency of the given component, βi is a set of component-specific
spectral parameters, and fi is the SED. For diffuse components,
ai is defined in terms of spherical harmonic space with a maxi-
mum multipole, `max defined for each component, depending on
the signal-to-noise ratio (S/N) and angular resolution of the data
sets supporting that component. For instance, synchrotron and
AME have lower values of `maxthan the thermal dust and CMB.
In addition, as discussed in Sect. 4.4, we regularize the high-`
multipoles of each component with some smoothing prior, ei-

ther derived from the known physical behaviour of the respective
component (e.g., Planck Collaboration X 2016) or by a Gaussian
smoothing operator. For compact sources, ai represents simply
the flux density in mJy, with the spectral index α also defined in
mJy, and an explicit unit conversion factor, UmJy, converts from
flux density to brightness temperature units.

With this notation, the astrophysical sky model used for the
current BeyondPlanck analysis may be written as follows:

sRJ =
(
aCMB + aquad(ν)

) x2ex

(ex − 1)2 +, (13)

+ as

(
ν

ν0,s

)βs

+, (14)

+ aff

(ν0,ff

ν

)2 gff(ν; Te)
gff(ν0,ff ; Te)

+, (15)

+ aame

(ν0,ame

ν

)2 fame

(
ν · 30.0 GHz

νp

)

fame

(
ν0,ame · 30.0 GHz

νp

)+, (16)

+ ad

(
ν

ν0,d

)βd+1 ehν0,d/kBTd − 1
ehν/kBTd − 1

+ (17)

+ UmJy

Nsrc∑

j=1

a j,src

(
ν

ν0,src

)α j,src−2

, (18)

where aCMB and aquad are given in thermodynamic temperature
units (KCMB), a j,src in flux density units (mJy), and all other am-
plitudes ai are given in terms of brightness temperature (KRJ).
The amplitude of component i is equal to that observed at a
monochromatic frequency, ν0,i. The sum in Eq. (18) runs over
all compact sources brighter than some flux threshold as defined
by an external source catalogue. In particular, we adopt the same
catalogue as Planck Collaboration IV (2018), which is a hybrid
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Table 2. Summary of main parametric signal models for the temperature analysis. The symbol “∼” implies that the respective parameter has a prior
as given by the right-hand side distribution; Uni denotes a uniform distribution within the indicated limits; N(µ, σ2) denotes a (normal) Gaussian
distribution with the indicated mean and variance; and ai denotes the component amplitude of component i at the given reference frequency ν0,i,
and si is spectral energy density, i.e., the observed signal at a given frequency, ν.

Component Free parameters Spectral energy density, sν[ µKRJ] Additional information

and priors

CMB. . . . . . . . . . . aCMB ∼ Uni(−∞,∞)
x = hν

kBTCMB

g(ν) = (exp(x) − 1)2/(x2 exp(x))

sCMB = aCMB/g(ν)

TCMB = 2.7255 K

Relativistic CMB

quadrupole . . . . .
aquad = TCMB β

2
sun z2

x = hν
kBTCMB

g(ν) = (exp(x) − 1)2/(x2 exp(x))

Q(ν) = (x/2)(exp(x) + 1)/(exp(x) − 1)

squad = aquad Q(ν)/g(ν)

TCMB = 2.7255 K

βsun = 1.2343 · 10−3

β̂sun = (264.00◦, 48.24◦)

z = n̂ · β̂sun

Synchrotron . . . .
as ∼ Uni(−∞,∞)

βs ∼ N(−3.3 ± 0.1),

fullsky

ss = as

(
ν
ν0,s

)βs+ C ln ν/ν0,s ν0,s = 30 GHz

C = 0, low signal-to-noise

Free-free . . . . . . .
aff ∼Uni(−∞,∞)

Te = 7000 K,

fullsky

gff = log
{
exp

[
5.960 − √3/π log

(
ν9 T−3/2

4

)]
+ e

}

sff = aff

(
ν0,ff

ν

)2 gff (ν)
gff (ν0,ff )

ν0,ff = 40.0 GHz

T4 = Te/104

ν9 = ν/(109 Hz)

e = Euler’s number

AME/

spinning dust

aame ∼ Uni(−∞,∞)

νp ∼ N(22 ± 3 GHz),

fullsky

same = aame

(
ν0,ame

ν

)2 fame(ν·νp0/νp)
fame(ν0,ame·νp0/νp)

ν0,ame = 22.0 GHz

νp0 = 30.0 GHz

fame(ν) = External template

Thermal dust . . . .
ad ∼ Uni(−∞,∞)

βd ∼ N(1.56 ± 0.03),

fullsky

γ = h
kB Td

sd = ad

(
ν
ν0,d

)βd+1 exp(γν0,d)−1
exp(γν)−1

Td = NPIPE template

ν0,d = 545 GHz

Radio sources . . .
asrc > 0

αsrc ∼ N(−0.1 ± 0.3)
ssrc = UmJy(ν0,src) asrc

(
ν

ν0,src

)αsrc−2
ν0,src = 30 GHz

UmJy(ν0,src) = Unit conversion

factor

of the AT20G (Murphy et al. 2010), GB6 (Gregory et al. 1996),
NVSS (Condon et al. 1998) and PCCS2 (Planck Collaboration
XXVI 2016) catalogs, comprising a total of 12 192 individual
sources.

When comparing the results from the above model with pre-
vious work, it is important to note that we fit a straight power-
law for the synchrotron SED. This means that the effect of any
potential negative curvature between 408 MHz and 30 GHz, as,
for instance, assumed by Planck Collaboration X (2016), will
instead by interpreted as a slightly steeper spectral index in the
current analysis. This is more explicitly demonstrated in Sect. 6.

For further information regarding this model and a brief dis-
cussion of each individual component, we refer to BeyondPlanck

(2022) and references therein. The main goal of the present paper
is to establish efficient sampling algorithms for the amplitudes
and spectral parameters in Eq. (13)–(18).

3. Data Selection

3.1. BeyondPlanck Data Selection

As discussed in Sect. 2 of BeyondPlanck (2022), the only data
set which is considered at the time-ordered level is the Planck
LFI data. With the minimal sky model, discussed in Sec. 2.2, a
total of four unpolarized astrophysical sky components are con-
sidered. Seeing as LFI only contains three frequency channels, it
is clear that the LFI data itself is unable to properly constrain this
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sky model. A set of selected external data is therefore included
in the foreground analysis in order to constrain the sky model
presented within BeyondPlanck.

Table 1 provides an overview of all frequency maps included
in the intensity component separation procedure. We note again
that the main motivation underlying the BeyondPlanck analysis
is not to derive a novel state-of-the-art intensity sky model, but
rather to develop and demonstrate the Bayesian end-to-end anal-
ysis framework using Planck LFI as a worked case. Accordingly,
to ensure that the main results are dominated by Planck LFI,
all CMB-dominated Planck HFI bands and the WMAP K-band
channel are excluded from the analysis; the data summarized in
Table 1 represent a minimum set that is able to algebraically re-
solve all main foreground components relevant for Planck LFI.
All sky maps (including LFI and others) are discretized using the
HEALPix1 (Górski et al. 2005) pixelization.

For all non-LFI bands, we adopt nominal bandpass profiles
as recommended by the respective references. However, as an
exception, we adopt the simplified (and commonly used) delta
function approximation for the Haslam 408 MHz channel. For
LFI 30 GHz, we allow for both an absolute bandpass shift for
the full frequency band and relative differences between individ-
ual detectors; whereas for the 44 and 70 GHz channels, we only
allow relative detector shifts, but with no overall absolute shifts;
see Svalheim et al. (2022a) for further details.

The noise is assumed to be uncorrelated and Gaussian for
all channels except Planck LFI, with a spatially varying root
mean square (RMS) as defined by the number of hits per pixel.
Again, the only exception is Haslam 408 MHz, which is nom-
inally strongly signal-dominated per pixel and dominated by
systematic uncertainties, not statistical. In this case, we instead
adopted a noise rms model that is the sum of an isotropic 0.8 K
term (representing statistical uncertainties) and 1 % of the ac-
tual map itself, representing multiplicative uncertainties; this is
the same approach as taken by Planck Collaboration X (2016).
For LFI, correlated noise is accounted for on all angular scales
through explicit time-domain sampling, as discussed by Ihle et
al. (2022).

In the data model given in Eq. (1), only the orbital CMB
dipole and the far sidelobes are modeled with the full asymmet-
ric beams. For astrophysical component modeling, all beams are
assumed to be azimuthally symmetric, with window functions,
b`, provided individually by each experiment. No uncertainties
on these are propagated in the current analysis, but support for
this will be added in future work. The Haslam 408 MHz and
Planck DR4 (NPIPE) 857 GHz maps are smoothed from their
native resolutions to 60′ and 10′, respectively. The latter is ad-
ditionally re-pixelized to a HEALPix resolution of Nside = 1024
to reduce CPU and memory requirements; note that this channel
still has a higher angular resolution than the 70 GHz LFI chan-
nel, which is the highest resolution channel of the main Beyond-
Planck analysis.

An important and novel aspect of the current analysis is
component-based monopole (or “zero-levels” or “offsets”) deter-
mination, as discussed in Sect. 4.2. Rather than attempting to set
the monopoles for each channel before component separation,
we impose physical priors on the monopole for each astrophys-
ical component. This astrophysical model is then used to deter-
mine deterministically the zero-level for each frequency map.
Reasonable priors may be defined for all components except
synchrotron emission, and for this component we instead adopt
explicit literature values. Specifically, we adopted a monopole

1 http://healpix.jpl.nasa.gov

value of 8.9 ± 1.3 KCMB for synchrotron emission at 408 MHz,
as estimated by Wehus et al. (2017) and we thereby neglect pos-
sible contributions from free-free emission to Haslam 408 MHz
outside the very conservative Galactic mask employed by We-
hus et al. (2017). We also applied the dipole corrections to the
Haslam map derived by the same analysis.

Any additional pre-processing applied to the various
maps was kept at a minimal level. Specifically, for WMAP
we added the WMAP solar CMB dipole of (d, l, b) =
(3355 µK, 263.99◦, 48.26◦) to each map (Hinshaw et al. 2009);
while for Planck 857 GHz, we apply a zodiacal light correction,
following Planck Collaboration LVII (2020).

No calibration corrections are applied to any non-LFI data
sets, and we thus rely on the calibration of the original analyses
for these channels. This is particularly important with respect to
the WMAP channels, which have a non-negligible impact on the
solar CMB dipole; consequently, the final BeyondPlanck solar
dipole estimate represents a noise-weighted average between the
WMAP and BeyondPlanck-based LFI estimates.

3.2. Simulation data

Proper testing of the algorithms presented in the current paper
constitutes a vital component in the verification of the feasibility
of these algorithms within the Commander framework. As such,
a suite of simulated data (with controlled noise) and total off-
sets was constructed. These simulated data are created to repre-
sent the full BeyondPlanck sky model, with frequency channels
equivalent to the conditions placed on the data selection (dis-
cussed in Sect. 3.1 and presented in Table 1).

The simulations are entirely created within the map-space
domain. Using a sample from the BeyondPlanck sky model en-
semble, mock frequency maps were created. Using Commander
we output each of the foreground components, as determined
by the BeyondPlanck sky model, at each of the input frequency
channels listed in Table 1. As a result, we were able to create
mock frequency maps by co-adding each of these sky compo-
nents at the corresponding frequencies. Thanks to this simple
method, the full sky model, including the spectral parameters,
are encapsulated in the set of simulated frequency maps.

Noise was then added to each of the simulated frequency
maps by taking a random realization of the noise rms sky maps,
assuming that the noise is white. For the noise realizations, we
utilize the actual noise rms data as used and produced within the
full BeyondPlanck results.

4. Commander extensions for efficient
intensity-based component separation

The specific BeyondPlanck computer code implementation is
called Commander3 (Galloway et al. 2022a), and this is a di-
rect generalization of the code first introduced for CMB power
spectrum estimation purposes by Eriksen et al. (2004) and later
generalized to also account for astrophysical component separa-
tion by Eriksen et al. (2008); Seljebotn et al. (2014, 2019). It was
one of four main component separation algorithms adopted by
the Planck collaboration (Planck Collaboration XII 2014; Planck
Collaboration X 2016; Planck Collaboration IV 2018; Planck
Collaboration LVII 2020). Unless it is useful for context, we
do not distinguish between the different code versions and we
simply refer to all versions as Commander. In this section, we
describe the four algorithmic improvements we have made to
Commander, as introduced in Sect. 1.
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Fig. 1. Illustration of conditional (pure Gibbs; orange) and marginal sampling (blue) algorithms for a highly correlated (Pearson’s correlation
coefficient of ρ = 0.99) two-dimensional Gaussian distribution (black contours). The initial position (βinit, ainit) is indicated by a purple dot.
Left: Comparison of un-normalized conditional P(β | ainit) distribution evaluated at the initial position and the corresponding marginal P(β) dis-
tribution; note that the latter is much wider than the former. Assuming β samples drawn at the 10th percentile, the graphs along the vertical lines
represent un-normalized conditial distributions P(a | β) evaluated at the β values drawn with the conditional (orange) and marginal (blue) distribu-
tions of β; note that the marginal sampling case results in a much longer step length between the initial and final sample values. Right: Samples of
a standard Gibbs sampling chain (orange) using conditional sampling for both a and β, and a sampling chain (blue) using marginal sampling for β
and conditional sampling for a. Both cases show the first 100 samples initialized from the purple point.

4.1. Joint amplitude and spectral parameter sampling

As summarized in Eqs. (5)–(11), the BeyondPlanck pipeline im-
plements a Gibbs sampling chain iterating over all free param-
eters in the data model. While Gibbs sampling in general is a
very powerful method for exploring complicated distributions,
its main weakness is the inability to probe degenerate distribu-
tions. This problem is illustrated for a toy example in the left
panel of Fig. 1: the black contours represents the 68 and 95 %
confidence limits of a two-dimensional Gaussian distribution
with a Pearson’s correlation coefficient of ρ = 0.99. The pur-
ple point indicates the starting position of a Markov chain, while
the dashed, grey horizontal line indicates the baseline of the cor-
responding conditional distribution P(β | ainit), which itself is
shown as an orange curve. Since the Gibbs sampling algorithm
works by moving according to conditional distributions alone,
the allowed step size in each iteration is very narrow compared
to the full marginal distribution, shown as a blue distribution.

To illustrate the step size effect in the Gibbs sampler, we
consider a Gibbs move in Fig. 1, starting with β from the pur-
ple point. The relevant conditional distribution for β is shown as
an orange curve along the horizontal dashed gray line passing
through the purple point and we can thus draw a random value
from this distribution. This could for instance be the value indi-
cated by the right-most vertical dashed gray line. According to
the Gibbs sampling algorithm, we are required to draw a sam-
ple from the corresponding conditional distribution for a, which
is indicated by the orange distribution aligned with the verti-
cal dashed line. One possible outcome of this, after completing
one full Gibbs iteration, is the orange point. Now, because each
conditional distribution is much narrower than the correspond-
ing marginal distributions, the relative Gibbs step size is very
short, and it takes a very long time to move from one side of
the joint distribution to the opposite. The result is poor Markov
chain mixing and a very long correlation length. As a real-world

illustration of this, the orange points in the right panel of Fig. 1
show the 100 first steps of an actual Gibbs chain with this precise
target distribution. We see that less than half of the distribution
is actually explored, and many thousands of samples will be re-
quired in order to probe the full distribution with this algorithm.

This problem is directly relevant for modern Bayesian
intensity-based CMB component separation. For experiments
such as Planck and WMAP, characterized by very high S/N, there
are strong degeneracies between the foreground amplitudes,
the foreground spectral parameters, and map-level monopoles.
Explicitly, if one assumes that all spectral parameters and
monopoles are known, then the conditional amplitude uncer-
tainty is very small. Conversely, if we assume the amplitude and
monopoles to be known, then the conditional spectral parameter
uncertainties are small. However, when all parameters are un-
known, the full uncertainties are significant.

For this reason, Gibbs sampling should usually be consid-
ered a last resort to handle an otherwise intractable distribution.
If direct joint sampling methods are available, then those are
usually more efficient. Fortunately, the Gibbs sampling method
can be interleaved by any combination of conditional and joint
steps while still maintaining the requirement of detailed balance
(Geman & Geman 1984); also, the more steps that can be han-
dled jointly, the more efficient the overall Gibbs chain will be.
For the purposes of intensity-based CMB component separation,
we therefore introduce a new special-purpose joint amplitude–
spectral parameter step by exploiting the definition of a condi-
tional distribution as follows,

P(a, β | mν) = P(β | mν) P(a | mν, β). (19)

The first distribution on the right hand side is the marginal distri-
bution of β with respect to the data mν, and the second distribu-
tion is the conditional distribution of a with respect to β. This
equation therefore implies that we may generate a joint sam-
ple by first drawing β from its "marginal" distribution, and then
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sample a from the corresponding "conditional" distribution:

β←P(β | mν),
a←P(a | mν, β).

We note the absence of a in the first distribution. We then need to
derive sampling procedures for each of these two distributions.
According to Bayes’ theorem:

P(a, β | mν) =
P(mν | a, β)P(a, β)

P(mν)
, (20)

where P(mν) is just a normalization factor (often called the “ev-
idence”), P(a, β) denotes optional priors, and the final factor is
the likelihood function, P(mν | a, β) ≡ L(a, β). From the com-
pact data model in Eq. (3), we note that

mν − Aν(β)a = nw
ν , (21)

and since nw
ν is assumed to be zero-mean and Gaussian dis-

tributed with known variance, we can immediately use the fol-
lowing expression for the likelihood function:

lnL(a, β) ∝ −1
2

∑

ν

(mν − Aν(β)a)T N−1
ν (mν − Aν(β)a), (22)

where Nν is the noise covariance matrix of band ν, which is di-
agonal in the case of pure white noise. The priors are less well-
defined, and are left to the user to determine. In the following, we
adopt Gaussian priors for spectral parameters and for notational
convenience, we assume no spatial amplitude priors, S−1 = 0.

We first consider the marginal spectral parameter distribu-
tion, P(β | mν). This is derived by integrating Eq. (22) with re-
spect to a, and this was done by Stompor et al. (2009) and Stivoli
et al. (2010) as part of developing the Miramare component sep-
aration code. The result is expressed as:

lnLmarg(β) = ln
∫

da exp
[
−1

2
(m− Aa)T N−1 (m− Aa)

]

= const − 1
2

(AT N−1 m)T (AT N−1 A)−1 (AT N−1 m)

+
1
2

ln
∣∣∣(AT N−1 A)−1

∣∣∣ , (23)

where all terms should be interpreted as sums over frequencies.
The same authors also introduced a so-called “ridge likelihood,”
in which one does not marginalize over a, but rather sets a equal
to its maximum likelihood value for a given value of β. This
may also be analytically evaluated, and is in fact identical to the
above expression, with the exception of the last determinant term
being excluded. We implemented support for both options in our
codes. We note that this expression requires all data to be defined
at the same angular resolution and so, all data must be smoothed
to a common resolution before evaluating Eq. (23).

The second required distribution is P(a | mν, β). This is a
simple multi-variate Gaussian distribution in a, for which there
are efficient samplers readily available (see, e.g., Appendix A of
BeyondPlanck 2022 for details). One particularly efficient sam-
pling equation is as follows:
(∑

ν

At
νN
−1
ν Aν

)
a =

∑

ν

At
νN
−1
ν mν +

∑

ν

At
νN
−1/2
ν η, (24)

where η is a vector of random Gaussian N(0, 1) variates. This
equation may be solved efficiently using preconditioned Conju-
gate Gradient methods (Shewchuk 1994), as discussed by Selje-
botn et al. (2019).

0 200 400 600 800 1000
Sample number

25
.8

4
25

.9
2

26
.0

0
26

.0
8

p [
GH

z]

Marginal
Conditional

Fig. 2. Comparison of AME νp chains derived using the conditional
(orange; Eq. 22) and marginal (blue; Eq. 23) samplers discussed in the
text. For the purposes of this illustration, all other parameters than aAME
and νp are fixed.

These equations are integrated into the main BeyondPlanck
Gibbs sampling loop according to the following steps. First, we
run a short (typically a few hundred steps) standard Metropo-
lis sampler (see Appendix A of BeyondPlanck 2022) for each
spectral parameter, using the product of Eq. (23) and any desired
priors to define the accept rate, that is, the relative number of
Metropolis proposals being accepted (which should preferably
stay between 0.3 and 0.7 for an efficient sampler). All data are
smoothed to a common angular and pixel resolution before eval-
uating the expression. Immediately following the last Metropo-
lis step, we draw one sample from P(a | mν, β) using Eq. (24);
it is critically important that no other parameters are updated be-
tween β and a, as the previous value of a is completely incon-
sistent with the new β value, which is drawn marginally with
respect to a.

Returning to Fig. 1, the improvement achieved by this joint
two-step sampler is illustrated as blue distributions and points.
Starting with the left panel, the fundamental difference between
the joint and Gibbs samplers is that the first step in the β-
direction is drawn from the full marginal distribution (horizontal
blue distribution) instead of the conditional distribution (hori-
zontal orange distribution). This is much wider, and covers by
construction the full width of the underlying target distribution.
One single proposal may therefore move from one side of the
distribution to the other, and there is no memory of the previous
parameter state. However, to obtain a valid sample, it is critically
important to draw a corresponding sample from the appropri-
ate conditional amplitude distribution (vertical blue distribution)
immediately after the marginal move. Correspondingly, the blue
points in the right panel shows 100 samples drawn with the joint
sampler. In this case, they cover the full distribution very effi-
ciently.

Figure 2 shows a similar comparison for AME νp for a test
chain that only explores the AME parameters in the Beyond-
Planck data model with both methods. Also in this case, we see
that the marginal sampler explores the full range much more ef-
ficiently than the conditional sampler.

4.2. Component-based monopole determination

Next, we considered the problem of monopole determination
for CMB experiments, which has long been one of the main
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challenges for parametric component separation methods (see,
e.g., Planck Collaboration X 2016; Wehus et al. 2017, and ref-
erences therein). The problem stems from the following chal-
lenge: For traditional CMB experiments and maximum likeli-
hood mapmaking methods, there are no data-driven constraints
on the monopoles in the derived frequency sky maps. For exam-
ple, WMAP is explicitly differential in nature, measuring only
differences between pairs of points, and therefore cannot by con-
struction constrain the zero-level. For Planck, the high level of
1/ f noise prohibits any useful constraints on the zero-levels. An
important exception to this is COBE/FIRAS (Mather et al. 1994),
which is absolutely calibrated; but its mK-level uncertainties are
still orders of magnitude too large to be useful for modern CMB
component separation purposes.

For this reason, several indirect methods have been estab-
lished to determine the frequency map monopoles based on the
morphology of the maps themselves. Four examples are mean
subtraction in a small region (Planck Collaboration V 2014);
fitting a plane-parallel co-secant model (Bennett et al. 2003;
Planck Collaboration II 2016); imposing foreground SED con-
sistency between neighboring frequencies (Wehus et al. 2017);
and cross-correlation with external data sets with known zero-
levels (Planck Collaboration VIII 2016). However, all of these
methods have in common the fact that they operate on the basis
of frequency maps and are aimed to determine the zero-level at
a given frequency channel, before feeding these into traditional
component separation algorithms. In this study, we have made
the observation that it is, in fact, much simpler to determine
the monopoles of the component amplitude maps and to then
use these to deterministically set the frequency map monopoles
through the resulting sky model. The frequency map zero-levels
have thus no independent impact on any higher order analy-
ses (most notably, the spectral parameters), but simply adjust to
whatever the model dictates at any given moment.

As a result, the question that immediately rises considers
how we may, in fact, determine the component monopoles. This
must be done on a case-by-case basis, applying the most natural
prior for each component. We note that any true monopole sig-
nal in the components that do not agree with the chosen priors
will end up in the frequency map monopoles. Starting with the
CMB case, this can either be set to zero or 2.7255 ± 0.0006 K
(Fixsen 2009), depending on whether we want sky maps with-
out or with the CMB monopole. In practice, we additionally ac-
count for sub-optimal foreground modeling by applying a mask.
For the current analysis, we derived the CMB monopole mask
from a set of smoothed component amplitude maps, namely, by
thresholding the sum of synchrotron, AME, free-free and ther-
mal dust emission, all smoothed to 10◦ FWHM. In addition, we
masked out radio sources and any pixel with a reduced normal-
ized χ2 higher than 5σ. The resulting mask is shown in Fig. 3,
and has an accepted sky fraction of fsky = 0.64. The monopole
of the CMB component map is set to zero (or 2.7255 K) outside
this mask, while simultaneously fitting for (but not modifying)
the dipole component.

Regarding the free-free component, Planck Collaboration
X (2016) found that the measured emission is strongly noise-
dominated over large areas of the sky, with no detectable ampli-
tude. Also, in this case, we therefore set the monopole to have
zero mean outside a conservative mask. In this case, the mask
is derived from the free-free amplitude map itself, evaluated at
30 GHz and smoothed to 10◦ FWHM, and truncated at 5 µKRJ. In
addition, we excluded areas where the other foreground signals
are high to account for signal-leakage into the free-free compo-
nent, similarly to the CMB mask, but while thresholding the sum

mmono

mff

50 0 50
KRJ

Fig. 3. Masks used for signal amplitude zero-level and band monopole
sampling: Frequency-band monopole and CMB amplitude zero-level
(top) and free-free amplitude zero-level (bottom), with a free-free am-
plitude sample at an angular resolution of 30′ FWHM plotted under-
neath.

of all other components evaluated at 44 GHz. The resulting mask
is shown in the bottom panel of Fig. 3, accepting fsky = 0.50.
We do note that any true unmasked free-free signal is by defi-
nition positive and this can bias the monopole also in the noise-
dominated regime. Future works should aim to correct for this
bias by directly estimating the residual free-free monopole in
the unmasked region. We do note, however, that this bias will
decrease as more high sensitivity data become available, as more
and more of the free-free signal may be masked directly.

In contrast, synchrotron emission as observed by the Haslam
408 MHz map is highly diffuse on the sky and there are no re-
gions on the sky that can be assumed to be approximately clean
of synchrotron emission, namely, exhibiting no synchrotron sig-
nal. In this case, the best estimates of the synchrotron amplitude
are those already estimated for the Haslam 408 MHz map itself.
In this paper, we adopt the zero-level correction of 8.9±1.3 KCMB
derived by Wehus et al. (2017). We marginalized over the un-
certainty by drawing a random offset correction in every Gibbs
iteration, as defined by a Gaussian distribution with the quoted
mean and standard deviation.

For the thermal dust emission, we adopted essentially the
same approach as the Planck HFI DPC (e.g., see Planck Collab-
oration III 2020), setting the zero-level through cross-correlation
with H i column density observations (e.g., see Lenz et al. 2017),
although with a few minor variations. First, we applied this
method to the thermal dust component map, as opposed to indi-
vidual frequency maps. Second, for Planck DR4 (Planck Collab-
oration LVII 2020), the HFI 545 GHz zero-level was set through
a linear fit for pixels with NH i < 4 · 1020 cm−2. However, as the
545–NH i scatter plot appeared to be non-linear around values of
NH i = 1.5 · 1020 cm−2, they also performed a second degree fit.
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Fig. 4. Cross-correlations between the H i column density NH i and
(top) the thermal dust amplitude and (bottom) the AME amplitude.
The thermal dust cross-correlation is evaluated at HEALPix resolution
Nside = 64 and a common angular resolution of 60′ FWHM, while the
AME cross-correlation is evaluated at HEALPix resolution Nside = 16
and a common angular resolution of 10◦ FWHM. The lines represent
best-fit lines for pixels with H i column densities less than 2 · 1020 cm−2

(blue) or 4 · 1020 cm−2 (orange). The green curve is the best-fit sec-
ond degree polynomial to pixels with H i column densities less than
4 · 1020 cm−2. The contour lines are plotted at 0.001, 0.01, 0.05, and
0.1 Npix/( µKRJ 1020 cm−2 N2

side ); where only the lower three contour
line values are plotted for AME. The contours have been smoothed for
visualization.

We show in Fig. 4 a similar scatter plot between NH i and the
thermal dust amplitude from one of our Gibbs samples, where
we performed both a first and second degree polynomial fit to
the plot at NH i < 4 · 1020 cm−2. Furthermore, we also performed
a linear fit at NH i < 2 · 1020 cm−2 and we see that the inter-
section of the linear fit with a lower threshold is close to the
intersection of the second degree fit. This raises the question of
the uncertainty of the threshold value for the linear fit, as Planck
Collaboration XXIV (2011) found a good correlation up to at
least NH i = 2 · 1020 cm−2. We therefore implement this cross-
correlation method as a prior on the thermal dust zero-level using
a range of thresholds, and for each Gibbs iteration we perform
linear fits of NH i and the thermal dust amplitude with NH i thresh-
old values ranging from 1.5 to 4 [1020 cm−2] with increments of
0.5. Then we draw the intersection value from a Gaussian dis-

tribution given the mean and variance of the linear fits, which
is subtracted from the dust amplitude. This way, the uncertainty
of the thermal dust amplitude zero-level also propagates through
the pipeline.

The zero-level of the AME component is determined using
the same procedure, noting that Planck Collaboration X (2016)
demonstrated a very tight spatial correlation between AME and
thermal dust emission on large angular scales. The only differ-
ence with respect to the thermal dust procedure is that we smooth
all maps to a common angular resolution of 10◦ FWHM and a
HEALPix resolution of Nside = 16, and adopt thresholds of 2 to
4 [1020 cm−2], with increments of 0.5; both the smoothing and
the lower resolution are imposed to reduce the impact of instru-
mental noise. A scatter plot between AME and NH i is shown in
Fig. 4 for one arbitrary Gibbs sample.

With the introduction of component-based monopole priors,
all frequency-band monopoles become free parameters and can
be deterministically fitted. Explicitly, for each frequency channel
we first subtract the predicted sky model as defined by Eq. (2)
and then fit and subtract the residual monopole outside some
mask. The mask should be defined such that it excludes areas
on the sky prone to foreground mismodeling, hence we adopt
the same mask as we do for the CMB monopole prior, shown
in the top panel of Fig. 3. We note that this monopole adjust-
ment needs to be done immediately after any change in any of
the component maps, in order to not break the Gibbs chain, fully
analogously to the immediate amplitude update that must follow
any marginal spectral parameter move discussed in the previous
section.

4.3. Joint spectral parameter and frequency-band monopole
sampling

Returning to the AME–H i cross-correlation plot in Fig. 4, we
notice that the zero-level is associated with a large statistical un-
certainty. When sampling the AME peak frequency, νp, this un-
certain monopole is also directly affected by the resulting SED
changes, and corresponding monopole offsets are induced at all
frequencies. If νp is sampled conditionally with respect to the
band monopoles, these will therefore tend to pull νp towards the
old value and thereby increasing the overall Markov chain cor-
relation length.

This inefficiency may be alleviated by exploiting the new
component-based monopole sampler described in Sect. 4.2.
Since all frequency-band monopoles are now deterministically
defined by the sky model, these can be adjusted jointly when-
ever that is modified. We therefore implement internal estima-
tion of frequency band monopoles during the spectral parameter
sampling algorithm, such that for each proposed spectral param-
eter value, we estimate a new band monopole value conditioned
on the input amplitude and the proposed parameter value. The
frequency band monopoles are updated together with the final
parameter at the end of the sampling.

To illustrate the usefulness of this combined sampling step,
we generate an idealized simulation that includes only AME sig-
nal and noise at each frequency channel, with an angular reso-
lution of 10◦ FWHM and a HEALPix resolution of Nside = 16.
We choose an input peak frequency of νp = 26 GHz, and
adopt a zero-level from H i column density cross-correlation to
2 µKRJ. Figure 5 shows the resulting log-likelihood (or χ2) dis-
tributions as evaluated from the marginal definition in Eq. (23),
for cases both with (green curve) and without (orange curve)
marginalizing over the frequency band monopoles. We see that
by marginalizing over the band monopoles the log-likelihood
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Fig. 5. Comparison of AME νp χ
2 distributions with (green) and with-

out (orange) monopole marginalization. These distributions are evalu-
ated using the marginal spectral parameter likelihood given in Eq. (23),
but the same qualitative behaviour holds irrespective of which spec-
tral parameter distribution is used (conditional, ridge, or marginal): the
distribution becomes significantly wider when marginalizing over band
monopoles.

function widens by a factor of 1.5–2. This translates into cor-
respondingly longer Metropolis step sizes in the spectral index
sampling steps, and thereby faster exploration of the full poste-
rior distribution. The higher conditional S/N a given component
has, the more important this effect will be.

4.4. Breaking small-scale degeneracies through spatial
priors

The final algorithmic improvement presented in this paper is the
introduction of informative spatial priors for foreground compo-
nents, either in the form of purely algorithmic smoothing power
spectrum priors or as actual informative Gaussian priors with a
non-zero mean. The first of these has already been used in the
latest Planck analyses (Planck Collaboration IV 2018; Planck
Collaboration LVII 2020), but in the following, we generalize
the approach to non-zero cases and we systematically show how
different choices affect the final results.

Mathematically speaking, the only difference between an in-
formative prior and a smoothing prior is whether a pre-existing
mean map is assumed for the astrophysical component in ques-
tion (in which case the prior is called “informative”) or whether
the prior mean is assumed to be zero. Practically speaking, how-
ever, there is also an important difference between the prior vari-
ances in the two cases, since for informative priors the variance
quantifies the allowed level of fluctuations around the mean map;
while for smoothing priors, it quantifies the allowed level of fluc-
tuations around zero. Thus, for informative priors a prior vari-
ance of zero is fully acceptable, in which case the output compo-
nent map will be identical to the prior mean; while for a smooth-
ing prior the variance should be larger than the actual component
fluctuations in order to avoid oversmoothing.

We start by revisiting the sampling equation for the compo-
nent amplitude maps, as defined by Eq. (24). This equation pro-
vides a sample from a posterior defined only by the likelihood
itself. If we additionally want to impose a Gaussian prior on the
amplitudes, as defined by a multi-variate Gaussian distribution,
N(µ,S), then this is generalized to:

(S−1 +AtN−1A)a = AtN−1mν +S−1µ+AtN−1/2η1 +S−1/2η2. (25)

We refer to Appendix A in BeyondPlanck (2022) for an explicit
derivation. In this expression, µ has the same dimension as a,
and represents the prior mean for a, while S is an associated
prior covariance matrix that defines the “strength” of the prior,
fully analogous to the usual standard deviation, σ, of a Gaussian
uni-variate prior. Thus, if S = 0, the final solution for a will
be identical to µ, while if S → ∞ (or, equivalently, S−1 = 0),
then the prior term vanishes, and one is left with the original
likelihood expression in Eq. (24). For reference, we note that the
previous Planck analyses (Planck Collaboration IV 2018; Planck
Collaboration LVII 2020) set µ = 0 in this equation and only
used S to impose smoothness on a.

Computationally speaking, introducing informative priors
with non-zero means in Eq. (25) represents no additional algo-
rithmic complications compared to the prior-free case: the equa-
tion is in both cases solved using the same preconditioned conju-
gate gradient implementation. If anything, the equations are ac-
tually a bit easier to solve with informative priors, as they reduce
degeneracies between different parameters, and thereby reduce
the condition number of the coefficient matrix on the left-hand
side of the equation. As pointed out by Seljebotn et al. (2019),
from an algorithmic point of view an informative prior defined
in terms of a mean map with a specified covariance may simply
be considered to be a new independent data set with sensitiv-
ity only to the component in question and it therefore provides
orthogonal information with respect to the likelihood term con-
tributions. Rather, the main challenge regarding priors is how to
define them in a useful and controlled manner that does not sig-
nificantly bias or contaminate the final posterior distribution and
this must be assessed on a case-by-case basis.

In the current BeyondPlanck analysis, we followed Planck
Collaboration IV (2018) and define S in harmonic space, giv-
ing different prior weights to different angular scales. Explicitly,
each component map is defined in terms spherical harmonics:

a =
∑

`,m

a`mY`m, (26)

and we define the prior covariance matrix as:

S = S`m,`′m′ ≡
〈
a`ma∗`′m′

〉
= P`δ``′δmm′ , (27)

where P` is an angular prior power spectrum for a, which, again,
is fully analogous to the standard deviation of a Gaussian prior,
but now defined per angular multipole.

4.4.1. Algorithmic smoothing priors

Starting with the algorithmic smoothing priors adopted by
Planck 2018, we note that if we define Pa

`
to be an estimate of

the true angular power spectrum of a, then the following power
spectrum prior,

P` = Pa
` e−`(`+1)σ2

, (28)

simply represents a Gaussian smoothing prior of a with a
smoothing kernel width equal to σ, which often is defined in
terms of θFWHM =

√
8 ln 2σ. We call this an algorithmic smooth-

ing prior, as it explicitly pushes the solution to be smooth on
small angular scales. We also note that Pa

`
does not have to be an

accurate estimate of the true component power spectrum, but it
should in general be greater than the true spectrum, in order to
prevent the prior from being overly constraining. This is again
fully analogous to choosing a prior width that is wider than the
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Fig. 6. Comparison of AME (left) and free-free (right) amplitude maps
derived without any spatial priors in a 20 × 20◦ field centered on the
Galactic South Pole, (l, b) = (0◦,−90◦) at an angular resolution of 60′
FWHM. We note the striking anti-correlation between the two maps.

expected target distribution in standard univariate analysis prob-
lems. Thus, simply setting Pa

`
to a constant that is a few times

larger than the expected spectrum is usually a perfectly good
choice.

It is important to note that Eq. (28) is indeed just a prior, and
not a deterministic postprocessing smoothing operator. This has
both advantages and drawbacks that are important to be aware
of when using the products from the analysis. The main ad-
vantage is that signal-dominated localized objects (for instance
point sources) are not excessively smoothed when applying the
smoothing as a prior. The main disadvantage is that the effec-
tive angular resolution of the amplitude map becomes spatially
varying and depends on the local S/N in a given pixel; if the S/N
is high, the angular resolution will be determined by the resolu-
tion of the data, while if the S/N is low, it is given by θFWHM.
This is similar to the GNILC method (Remazeilles et al. 2011),
which also implements S/N dependent angular resolution. The
main difference between the two methods is that while GNILC
requires regions of different resolutions to be pre-defined, the
current approach automatically and dynamically adopts the res-
olution while solving Eq. (25).

In the current BeyondPlanck analysis, where the main scien-
tific target is CMB power spectrum and cosmological parameter
estimation, we do not impose any priors on the CMB compo-
nent amplitudes, but we do impose a Gaussian smoothing prior
for thermal dust emission in intensity with θ = 5′ FWHM and
Pa
`

= 107 µK2
RJ at 545 GHz. For studies that are primarily inter-

ested in the angular power spectrum of thermal dust emission, it
would be more useful to instead impose a Lambda-Cold-Dark-
Matter (ΛCDM) spectrum on the CMB amplitude map, and no
priors on the thermal dust spectrum. Then the resulting thermal
dust power spectrum would be an unbiased estimator; with the
current analysis, the thermal dust spectrum will be biased low on
small angular scales due to the smoothing prior. We also impose
a Gaussian smoothing prior on synchrotron emission in intensity,
with θ = 60′ FWHM and Pa

`
= 3 · 1014 µK2

RJ at 408 MHz.

4.4.2. Informative Gaussian spatial priors

For AME and free-free emission, we adopt informative priors
with µ , 0. The reason for this is simply that the limited data
combination considered in the current BeyondPlanck analysis
(see Table 1) is inadequate for constraining all of AME, free-
free, and CMB separately without additional information; when

= 2 10 5

= 3 10 5

= 4 10 5

100 0 100
KRJ

Fig. 7. Difference maps between the derived amplitude and prior maps
for AME for three different 857 GHz scaling factors. From top to bot-
tom, the three panels show scaling factors of α = 2 · 10−5, α = 3 · 10−5,
and α = 4 · 10−5.

future observations from, for instance, C-BASS (King et al.
2010) and QUIJOTE (Génova-Santos et al. 2015) become pub-
licly available and integrated in the analysis, this will hopefully
no longer be necessary. As an illustration of the problem, Fig. 6
compares the AME and free-free amplitude maps derived with-
out any priors near the Galactic South Pole; even at a visual
level, these two maps are nearly perfectly anti-correlated, with
no true constraining power on their own. This also makes other
components (most importantly the CMB) susceptible to small
systematic residual mismatches between the AME and free-free
components and it significantly increases the CMB noise.

Starting with the AME case, we first note that the prior-free
Planck 2015 analysis (Planck Collaboration X 2016) found a
very strong spatial correlation between their AME and thermal
dust component maps at an angular resolution of 1◦ FWHM. In
general, a high degree of correlation between these components
is expected from current theoretical AME models (e.g., Erickson
1957; Draine & Lazarian 1998; Ali-Haïmoud 2010; Silsbee et al.
2011; Hensley & Draine 2020), although the specific correlation
coefficient depends on model details. Based on these observa-
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q = 104β = −1 q = 104β = 1
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Fig. 8. Effects of the spatial prior on the sampled AME amplitude. AME amplitude prior map, derived by scaling the Planck DR4 857 GHz
by α = 3 · 10−5 and smoothing to 10′ FWHM (top). Derived AME amplitude maps for four different spatial prior combinations (bottom),
D̂AME(`) = q (`/`0)β. Rows show results for q = 102 µK2

RJ and 104 µK2
RJ, respectively, while columns show results for β = −1 and 1.

tions, we adopted the Planck DR4 857 GHz map2 (Planck Col-
laboration LVII 2020) as a spatial mean template for AME, that
is, µ in Eq. (25). However, before it can be inserted into Eq. (28),
it must be adjusted in amplitude to account for the mean SED
difference between thermal dust emission at 857 GHz and AME
at 22 GHz. To do this, we solved Eq. (28) using the 857 GHz map
scaled by a range of values between α = 2 · 10−5 and 4 · 10−5 as
the AME prior. We then took the difference between the derived
amplitude map and the input prior and adopted the scaling factor
for which the difference is smallest as our default prior. Example
difference maps are shown in Fig. 7 and we adopted α = 3 · 10−5

as our default prior.

2 The Planck DR4 857 GHz map is corrected for both zodiacal light
emission and a zero-level of −0.657 KCMB, and smoothed to 10′ FWHM,
before adopted as an AME prior.

The final step is to define the strength of this prior, as given
by P`. Ideally, we want the prior to be stronger (i.e., S to be
smaller) for the noise-dominated small angular scales and looser
for the signal-dominated large angular scales. To quantify these
considerations, we must define the following a power-law prior
power spectrum for AME:

PAME
` = q

(
`

`0

)β
, (29)

where q is an overall amplitude at a pivot multipole, `0, and β
is a tilt parameter. A negative (positive) β results in a stronger
(weaker) prior at high multipoles and a smaller (higher) ampli-
tude, q, gives a stronger (weaker) prior on all angular scales.

Figure 8 compares the resulting AME amplitude maps for
various choices of q and β (bottom panels) with the prior mean
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Fig. 9. Average χ̄2 per Nside = 16 pixel as a function of AME (top)
and free-free (bottom panel) prior amplitude, q, where χ̄2 ≡ (χ2 −
ndof)/

√
2ndof and ndof = 15 400. Colored solid lines show results for

different tilt parameters, β, and the intersection between the thick green
curve and dashed line indicates the prior combination adopted for the
main BeyondPlanck analysis.

map (top panel). Here we see that a high value of q = 104 µK2
RJ

leads to very similar solutions for β = −1 and β = 1, indicat-
ing that the prior is largely irrelevant, and the solution is data
dominated. We also note that there is substantial instrumental
noise at high latitudes. For q = 102 µK2

RJ, the maps are notably
smoother at high latitudes, but we also see clear smoothing arte-
facts near the Galactic plane, corresponding to harmonic space
ringing from the Galactic plane. A value of β = −1 leads to
sharper edges than β = 1.

To actually determine the parameters used for the final prior,
we solve Eq. (28) over a grid in q and β and evaluate, as follows,

χ2(q, β) ≡
∑

ν,p

(
mν,p − sν,p(q, β)

σν,p

)2

(30)

for each configuration, where s is the derived sky model in
each case. The results from this evaluation are shown in the
top panel of Fig. 9 in terms of the normalized reduced χ̄2 ≡
(χ2 − ndof)/(2ndof) where ndof is the number of degrees of free-
dom; for a perfect model fit and ndof � 1, this quantity should
be distributed approximately as a Gaussian distribution with zero
mean and unit standard deviation. For q = 102 µK2

RJ and β = 0,
we see that χ̄2 ≈ 1, which indicates a clear excess residual.

However, for q = 104 µK2
RJ and β = 0, this excess is greatly

diminished, while there still is some effect from the prior. In the
following, we adopt this latter combination as our default AME
prior.

For free-free emission, there are no corresponding full-sky
independent spatial templates available in the literature. Obser-
vations of Hα (Finkbeiner 2003) or radio recombination lines
(RRL; Alves et al. 2015) might serve useful roles, but both are
associated with significant short-comings for the purposes of the
current analysis: the Hα observations lack most of the Galac-
tic plane signal due to dust absorption, while the RRL observa-
tions only cover a part of the Galactic plane. For now, the best
available full-sky free-free tracer is in fact the Planck 2015 free-
free map (Planck Collaboration X 2016), which is based on the
same data set as studied in the current paper, but additionally
(and critically) the Planck HFI observations as well. We there-
fore adopted this map as a spatial prior in the current analysis,
while recognizing that this is strictly speaking not admissible
in the Bayesian framework; some data (i.e., LFI, WMAP, and
Haslam) are used twice to constrain free-free emission and the
resulting uncertainties will therefore be underestimated. In prac-
tice, this solution is a way of integrating HFI observations into
the analysis without directly affecting the CMB component. A
critical goal for near-future work is to integrate HFI observations
directly into the analysis in the form of frequency maps and at
that point, this informative free-free prior will be removed.

We adopted the same parametric function for free-free emis-
sion as for AME, defined by Eq. (29) and adjusted the free
parameters in the same way. The results from this optimiza-
tion are shown in the bottom panel of Fig. 9 and we adopted
q = 103 µK2

RJ and β = 2 in this case. A comparison of different
prior choices with the actual input prior map is shown in Fig. 10.

The only algorithmic difference with respect to AME is that
we additionally imposed a Gaussian smoothing for free-free
emission, as per Eq. (28) with θ = 30′ FWHM. This is done
to account for the fact that the distribution of free-free emission
is highly localized on the sky and therefore requires a high max-
imum multipole moment to capture all significant structures; the
additional Gaussian smoothing ensures that no ringing emerges
from the high-` truncation.

5. Validation by simulations

In order to validate the component separation implementa-
tions, we ran Commander on the simulated data as described
in Sect. 3.2. In this section, we describe the efficacy of the al-
gorithmic developments by comparing the input foreground sky
maps with the resulting mean of an ensemble of 300 component
separation samples as produced by Commander. As described in
Sec. 6.1, the only spectral parameter which is sampled and con-
strained by data is the AME peak frequency, νp, which is deter-
mined as a full sky value.

For the amplitude maps, we defined a new variable to rep-
resent the relative difference between the input amplitude map
and the results of running the simulation through the Commander
component separation procedure. We define ε as the relative dif-
ference given by:

εc =
ain

c − aout
c

ain
c

, (31)

where, again, c is an astrophysical sky component, ain is the in-
put simulation amplitude map, and aout is the mean amplitude
map of the component separation samples.
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Fig. 10. Free-free amplitude prior map, adopted from the Planck 2015 analysis which includes HFI observations (top). Derived free-free amplitude
map for four different spatial prior combinations (bottom), D̂ff(`) = q (`/`0)β. Rows show results for q = 102 µK2

RJ and 104 µK2
RJ, respectively,

while columns show results for β = 1 and 3.

The results of the amplitude maps, represented in terms of
the relative difference maps defined in Eq. 31, are summarized
in Fig. 12. Inspecting the difference maps shows that there is
good agreement with the input amplitude map, with departures
from small relative differences in parts of the sky which are
easy to explain. Notably, both the free-free and AME compo-
nents show high levels of noisy departures off of the Galactic
plane. Compared to the relative difference between two samples
within component separation, the relative differences seen here
are small. We see that in the high S/N observations along the
Galactic plane, the agreement is excellent, with the outline of
each components amplitudes clearly defined.

For the other three sky components, we see even better agree-
ment. Unsurprisingly, the thermal dust amplitude map shows ex-
cellent agreement over the majority of the sky, though with de-
viations at the 10-20% level in the low signal-to-noise regions

of the sky. Finally, the synchrotron amplitude map shows very
small differences in εs, though the imprint of the component is
significantly less notable here than in the other components.

The results of the 300 samples for the full sky spectral pa-
rameters and band monopoles can be seen in Figs. 13 and 14
respectively. Much like the sky component maps, we see excel-
lent agreement with the input values for both spectral parameters
and the band monopoles. We note that both the spectral indices
and the band monopoles show a few samples which are signif-
icant deviations from the input value. This is to be expected,
and is in fact an intention of the algorithms implemented in this
work. As described in Sec. 4.3, the marginalization over the band
monopoles allows for a broader log-likelihood, corresponding to
a more complete exploration of the underlying distribution.
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Fig. 11. AME (left) and free-free (right) amplitude maps derived for two different synchrotron spectral indices. The top row shows results for
βs = −2.8, while the bottom row shows results for βs = −3.3. In the top row, we see a negative synchrotron-like (see Fig. 19) imprint, which is not
present in the bottom row.
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Fig. 12. Relative difference maps, εi, for each of the sky components within the simulated BeyondPlanck dataset. Top row: AME, CMB, and
thermal dust maps. Bottom row: Free-free and synchrotron maps.

6. BeyondPlanck analysis and posterior distributions

We now turn our attention to the actual BeyondPlanck analy-
sis and intensity component posterior distributions derived from
the data combination discussed in Sect. 3. The results described
in this section represent the intensity foreground results of the
BeyondPlanck project and are a practical demonstration of the
algorithms described and tested in Sects. 4 and 5 respectively.
We once again note that the goal of the BeyondPlanck project
is not to derive a new state-of-the-art astrophysical component
model within the relevant CMB frequency range (given that crit-
ical data sets such as Planck HFI and WMAP K-band are not

included), but rather to lay the algorithmic groundwork for a
statistically robust community-wide sky model, as will be im-
plemented through the Open Science Cosmoglobe3 community
effort. As far as Bayesian intensity sky modeling is concerned,
Planck Collaboration X (2016) still represents a state of the art
approach.
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Fig. 13. Full sky spectral parameters as a function of sample (blue) for
the controlled simulation. The nominal input value of the simulation is
overlayed as the black dashed line.

6.1. Spectral parameter prior tuning

Before presenting the BeyondPlanck Markov chains and poste-
rior distributions, there is still one task that must be completed
before the algorithm described in Sect. 2 is carried out to com-
pletion, namely, finalizing the informative spectral parameter
priors. With the reduced number of data sets included in this
work, we have reduced constraining power when sampling spec-
tral parameters, and strong priors are required for most spectral
SED parameters. With this in mind, we can assume that all free
parameters can only be fitted with a single constant value over
the full sky, at least for now. Already at this stage, we fix the
thermal dust temperature, Td, at the sky map derived by Planck
DR4 (Planck Collaboration LVII 2020), noting that LFI has no
constraining power for this particular parameter.

Even though LFI should have some constraining power of
the thermal dust spectral index, βd, the thermal dust and AME
components are found to be highly degenerate with the limited
data set used in this work. A joint fit of the AME νp and βd would
therefore lead to unphysical results, with preliminary analyses
showing that the βd diverged to values βd > 2, raising νp to much
higher frequencies. The uncertainty in the βd value is important
for error propagation and, thus, we must simply marginalize over
the adopted prior, instead of trying to constrain βd with the cur-
rent data set.

For each free spectral parameter, we created a dedicated sam-
pling mask, where we exclude regions on the sky where the
other components are strong in order to reduce potential mod-
eling mismatch errors to propagate between the various compo-
nents. These masks are created from the amplitude maps of the
modeled components, evaluated at 44 GHz and smoothed to 10◦
FWHM. In addition, we masked radio sources by thresholding
the Planck 30 GHz compact source map at three different an-
gular resolutions, namely, at native resolution and at 1◦ and 10◦
FWHM. For βs and νp, we excluded regions of the sky where any
other component signals is greater than 40 µKRJ; while for Te ,
we excluded the areas where the other components are greater
than 50 µKRJ. For all parameters, we exclude any pixel for which
the smoothed radio sources are stronger than 30 µKRJ. Finally,
we masked out regions of the sky contributing to the largest

3 http://cosmoglobe.uio.no

15 % of a 10◦ FWHM χ2 map to exclude regions with large
known modeling errors. The accepted sky fractions of the re-
sulting masks are fsynch = 0.66, fff = 0.74, and fAME = 0.66,
respectively.

For each free parameter, we adopted a Gaussian informa-
tive prior with some mean and standard deviation, P(β) =
N(µβ, σ2

β). The prior parameters are informed by literature re-
sults and listed in Table 2. For synchrotron emission, we note
that few intensity-based constraints are available for frequencies
higher than 30 GHz in the literature and we therefore adopted
βs = −3.3 ± 0.1, as derived from polarization measurements in
Planck Collaboration V (2020). We also note that we have at-
tempted to use flatter mean values of βs = −3.1 and −3.0, as
suggested from low-frequency surveys, but these result in obvi-
ous artefacts in the current analysis in the form of a significantly
overestimated synchrotron amplitude at 30 GHz. As an example,
Fig. 11 compares the AME and free-free amplitude maps derived
for two different values of βs, namely, βs = −2.8 and −3.3. While
neither of these solutions produce an excess χ2 and, therefore, a
free likelihood-driven fit is unable to distinguish between them,
it is obvious from visual inspection that the former spectral index
leads to clear synchrotron leakage into both the AME and free-
free components. With a prior of βs = −3.3±0.1, the nonphysical
flat-index solutions are largely excluded, while some parameter
space is still allowed toward the steeper end to explore degen-
eracies. Another approach of reducing the predicted amplitude
at CMB frequencies is by introducing a negative curvature in the
synchrotron SED (as discussed in Sect. 2.2) and when comparing
the results from this paper with previous results, it is important
to ensure that the models are compatible.

Given the listed priors, we performed a coarse χ2 grid eval-
uation for each free parameter, conditioning on all other spec-
tral parameter means, but allowing for amplitudes and band
monopoles to adjust to the given spectral parameter. The result-
ing χ2’s (evaluated at a HEALPix resolution of Nside = 16) are
shown in Fig. 15.

Starting with AME νp, shown in the top panel, we see that the
χ2 is well-defined with a typical best-fit value around 22 GHz.
The actual χ2 values show rapid increases at both lower and
higher values with variations ranging in the thousands, and cor-
respondingly, the prior (which is on the order of unity) is there-
fore largely irrelevant. It is clear that the current data combina-
tion has significant constraining power for νp.

The second panel shows similar results for βs. In this case,
we see a rapid χ2 increase for β . −2.7, but it is otherwise slowly
increasing for smaller values of βs in the region βs < −3.2, be-
coming almost flat. Additionally, we already know from Fig. 11
that spectral indices flatter than βs . −2.8 lead to clearly con-
taminated AME component maps, even if the χ2 is not able to
identify this. At the same time, the actual χ2 variations are in-
deed larger than the prior, and this typically indicates that the
algorithm prefers to use this unconstrained degree of freedom
to fit other degrees of freedom, for instance, modeling errors in
the thermal dust model. To avoid pathological solutions, we in-
stead chose to marginalize explicitly over the prior and disable
the likelihood term entirely when sampling this parameter. In
other words, we simply marginalized over the adopted prior, but
we did not attempt to constrain βs with the current data set.

The same considerations hold to an even greater extent for
the last parameter. For the electron temperature, Te, the χ2 vari-
ations are entirely spurious and we therefore disable the likeli-
hood term for Te.
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Fig. 14. Band monopoles for each of the simulated frequency bands as a function of sample. The nominal input value is given by the overlaid
black dashed line. The right panel shows the distribution of the samples.

In summary, the only spectral parameter that the current data
set is able to robustly constrain in intensity is the AME peak fre-
quency, νp. All others are either drawn from their corresponding
priors in the current analysis or frozen. We note that introducing
additional data sets to constrain these parameters is a critically
important next step for future works.

With βs and βd drawn from priors and Te frozen, we find that
the mask used in the coarse grid sampling of νp is too conser-
vative when sampling νp, masking out too much of the galactic
plane and leading to large dust-like residual signals in the LFI
30 GHz and the WMAP Ka channels. Additionally, a more dust-
like signal was found to be leaking into the free-free compo-
nent amplitude. In order to limit these effects, a less conservative
mask had to be used. The mask used to sample νp in the final
BeyondPlanck production is generated by excluding all pixels
with values above 200 µKRJ of the free-free amplitude at both
30′ and 2◦ FWHM angular resolution evaluated at 40 GHz; all
pixels with values above 100 µKRJ of the point source ampli-
tudes smoothed with a 1◦ FWHM beam evaluated at the LFI
30 GHz band frequency; and the regions of the sky contributing
to the largest 2.5 % of the χ2. The accepted sky fraction of the
resulting mask is fAME = 0.91.

6.2. Markov chain trace plots and correlations

With the data, sampling algorithms, and priors in place, we are
ready to consider the actual Markov chain results. As described
by BeyondPlanck (2022), for the final analysis, we produced two
independent chains, each with 750 samples.

Figure 16 shows the first 250 samples for a selection of rel-
evant parameters. Several points are worth noting in this figure.
First, we note that the burn-in period for most of the foreground-
induced parameters is very short, while it is slightly longer for
some of the global gain and bandpass instrumental parameters.
We removed the first ten samples for burn-in for the following
analysis. This short burn-in is a combination of the novel sam-
pling algorithms introduced in Sect. 4 and the prior choices dis-
cussed above. At the same time, we do observe a weak shift
in the average of νp, where the chains split away from each
other around sample 120, which appears to trace some of the
more slowly varying instrumental parameters, primarily the to-
tal bandpass correction of LFI 30 GHz; this is quite typical, as
many global instrumental parameters tend to have long Markov
correlation lengths and these directly affect foreground residuals.

In Fig. 17, we plot Pearson’s correlation coefficients between
the various parameters. For this particular plot, we have sub-
tracted a running average with a length of ten samples (five sam-
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Fig. 15. χ2 distributions (blue curves) from coarse grid evaluation of
each free spectral parameters. From top to bottom, the panels show 1)
AME peak frequency, νp; 2) synchrotron spectral index, βs; and 3) free-
free electron temperature, Te. The minimum χ2 value for each parameter
has been subtracted in each case. Orange curves show the priors adopted
for the given component; see Table 2. The prior values for βs and νp
have been scaled by a factor of 100 to fit in the plot with the derived χ2

values.

ples prior and succeeding) from each function before evaluat-
ing the correlation coefficient, in order to highlight sample-by-
sample correlations; two parameters may appear to be spuriously
correlated if there are long-term gradients, irrespective of their
origins.

Several interesting observations may be made from this plot.
First, we note that there is a very high correlation between βd and
both the AME peak frequency νp and the CMB dipole amplitude
ACMB

dp . This is not unexpected, given the critically important role
of thermal dust emission at all CMB frequencies. At the same
time, this also serves as a useful reminder that several important
BeyondPlanck results depend directly on official Planck results
through the use of the HFI 857 GHz frequency band and the as-
sumed thermal dust spectral index prior of βd = 1.56 ± 0.03
(Planck Collaboration X 2016; Planck Collaboration IV 2018;

Planck Collaboration LVII 2020), and the systematic errors in
these are not propagated properly in the current analysis. Inte-
grating HFI observations into the BeyondPlanck framework at
the TOD level is clearly an important goal of near-term work.

Next, we note that all microwave frequency monopoles are
internally strongly correlated and, notably, anticorrelated with
the component monopoles. Both of these observations make in-
tuitive sense, as if one increases a given component monopole,
the frequency monopoles have to decrease to result in a net
zero change to the overall model. In addition, all frequency
monopoles have to change in the same direction to a given
change in the component monopoles. Accurately accounting for
all of these correlations in terms of MCMC samples is perhaps
the most important advantage of the Bayesian end-to-end Be-
yondPlanck framework.

6.3. Goodness-of-fit statistics

Before presenting the actual posterior distributions, we consider
the goodness-of-fit of the derived model. First, Fig. 18 shows
posterior mean residual maps on the form rν = dν − sν for each
of the ten frequency bands included in the analysis, where the
average is evaluated over all samples in the Markov chain.

Starting with the LFI channels shown in the top section of
the figure, we see that the residuals at high Galactic latitudes are
largely consistent with instrumental noise, except for scattered
point source residuals at 30 GHz, while at low Galactic latitudes
there is an obvious dust morphology residual coming from either
AME or thermal dust. At 30 GHz it is also possible to see some
bright negative free-free residuals. Overall, though, the fits are
performing quite well, with typical residuals smaller than 3 µK
over most of the sky, and the remaining artefacts are relatively
easy to mask through Galactic and point source thresholding.

The middle section shows the WMAP channels, plotted on a
color range of ±5 µK. The most striking residual feature in this
case is a strong dust residual in the Ka (33 GHz) channel. This,
combined with the weaker dust residuals observed in the LFI
channels, strongly suggests that the current single-component
AME model adopted for the BeyondPlanck analysis is not a sta-
tistically adequate model for the actual AME sky. In fact, this
shortcoming was already pointed out by Planck Collaboration
X (2016), who introduced a second AME component to fit the
full contribution. Doing the same with the current data selection
would lead to a massively increased noise level for all derived
components, and we instead accept the foreground mismodeling
here and we instead simply make sure to mask out the contami-
nated regions of the sky in higher-order analyses.

Other notable features in the WMAP residuals are large re-
gions of low-level residuals at high Galactic latitudes that do not
obviously trace known Galactic components. As discussed by
Barnes et al. (2003), an important challenge regarding this data
set on large angular scales is sidelobe modeling and this may also
be relevant for the residuals we see in Fig. 18. A re-analysis of
the time-ordered WMAP data within the BeyondPlanck frame-
work is already ongoing (Watts et al. 2022).

The last two frequency channels, Haslam 408 MHz and HFI
857 GHz, show very uniform residuals. This is simply due to the
fact that their unique S/N values massively dominate the syn-
chrotron and thermal dust components, respectively, and any po-
tential mismodeling would therefore leak directly into the com-
ponent amplitude maps. A flat residual should thus not be inter-
preted as the absence of systematic errors, but rather simply as
an indication that these two channels have no significant cross-
check in terms of their effect on the signal model by any other
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Fig. 17. Correlation coefficient plot of local deviation, from a running mean of five prior and five succeeding samples of the sampled spectral
parameters, component cross-correlation intersections, frequency band monopoles, absolute gain calibration, LFI 30 GHz bandpass shift, and
CMB dipole amplitude, all as described in Fig. 16.

channel. We note that this is not entirely true for the Haslam
408 MHz map, which does have competitors in terms of free-
free emission near the Galactic center in Planck and WMAP, and
corresponding residuals may be seen here.

The bottom right panel of Figure 18 shows the reduced and
normalized χ2 per Nside = 16 pixel, as defined by:

χ̄2(p) =

∑
ν,p′∈p

[
dν(p′)−sν(p′)

σν(p′)

]2 − ndof√
2ndof

, (32)

where the sum runs over all pixels within a given low-resolution
pixel, and ndof = 15 400 is an estimate of the total number of
degrees of freedom for each low-resolution pixel. Since ndof is
large, this quantity is expected to be N(0, 1) distributed in the
ideal case, and Fig. 18 thus quantifies the agreement between
the data and the model in units of standard deviations per pixel.
Overall, we see that the distribution agrees with the expectation
to about 1σ at high Galactic latitudes, except for some compact
sources, while at low Galactic latitudes there is a strong resid-
ual with a clear dust-like morphology. This χ2 map serves as an
important input for producing masks for higher order analyses.

6.4. Signal component posterior distributions

Next, we consider the signal component posterior distributions
and we start with the frequency monopoles, as summarized in
terms of posterior mean and standard deviations in the second
column of Table 3. For comparison purposes, the third column
shows corresponding results derived by the Planck team; all re-
sults except 857 GHz are reproduced from the Planck 2015 anal-
ysis (Planck Collaboration X 2016), while the 857 GHz result is
taken from Planck DR4 (Planck Collaboration LVII 2020).

Several important differences between the two sets of results
can be identified. First, we note that the BeyondPlanck LFI mean
monopoles are all zero; this happens by construction during the
mapmaking process, as the frequency band monopoles are deter-
mined directly from the sky model and any deviation from this
is assigned to the correlated noise component (Ihle et al. 2022).
On the other hand, we do see that the uncertainties of the LFI
zero-levels are larger at both 30 and 44 GHz, reflecting the dif-
ficulty of uniquely determining the AME offset, as discussed in
Sect. 4.2. In addition, the uncertainty of the Haslam, and thereby
the synchrotron monopole propagates down to the lower fre-
quency Planck and WMAP channels and contributes to increased
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Fig. 18. Mean residual maps for the different frequency channels included in the BeyondPlanck analysis. All maps have been smoothed to a
common angular resolution of 2◦ FWHM. The Planck LFI residuals are plotted with a range of 3 µKCMB, and the WMAP residuals are plotted with
a range of 5 µKCMB. The bottom right panel shows the mean reduced chi-squared χ̄2 per Nside = 16 pixel of the BeyondPlanck Gibbs chain.

uncertainties of these monopoles. We argue that the uncertainties
determined through component-based monopole determination
are more realistic than those obtained through morphologically
based frequency monopole determination.

For WMAP, we note that the our monopole corrections are
considerably larger compared to those determined in the Planck
2015 estimates. This is caused by two main differences. First,
the 2015 analysis adopted the WMAP Ka-band explicitly as
a fixed “anchor channel” (Planck Collaboration X 2016) that
was not allowed to vary in the analysis. In the current anal-
ysis, for which we instead impose constraints directly on the
component monopoles, this channel is instead associated with
a 16 µKCMB correction, which is then accounted for by an offset
of −17 µKCMB at LFI 30 GHz in the 2015 analysis. Second, we
have changed the average synchrotron index from βs = −3.1 in

the Planck 2015 analysis (Planck Collaboration X 2016) to βs =
−3.3 in the current analysis. Since the synchrotron monopole is
set to 8.9 KRJ at 408 MHz (see Sect. 3), the predicted monopole
at WMAP Ka-band is 11 µKCMB with βs = −3.1 and 4 µKCMB
with βs = −3.3, a difference of 7 µKCMB. The frequency band
monopole has to adjust for this difference. Similarly, differences
in the zero-level of the other components, especially the AME,
will contribute to frequency-band monopole differences in equal
fashion. Regarding the offsets for the 857 GHz channel, we see
that these agree within 2σ as estimated by BeyondPlanckand
the uncertainties are significantly larger (and, we believe, more
realistic) in the new approach, which is a reflection of the fact
that we are now propagating uncertainties in the thermal dust
zero-level as discussed in Sect. 4.2.
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Fig. 19. Posterior mean amplitude maps for each of the four fitted foreground component; synchrotron (top-left), free-free (top-right), AME
(bottom-left), and thermal dust emission (bottom-right). The angular resolutions of the four maps are 120, 30, 120, and 10′ FWHM, respectively.
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Fig. 20. Posterior standard deviations for the same maps as shown in Fig. 19. We note that synchrotron and dust emission are potted with linear
scaling.
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Fig. 21. Partial sky plots of the mean (top) and standard deviation (bottom) amplitude of the fitted compact sources (point sources) as seen by the
three Planck LFI detector bands; 30 GHz (left), 44 GHz (middle), and 70 GHz (right). The plots show gnomonic projections of a 20 × 20 degree
patch of the sky centered on 90◦ longitude and 70◦ latitude, with the north galactic pole located towards the top-center of the plots. All plots are at
native angular resolution and pixelization, see Table 1 for details.

Regarding spectral parameters, the AME peak frequency is
the only spectral parameter that is fully sampled from the data
in this component separation work. For this, we find a posterior
mean and standard deviation of νp = 25.3 ± 0.5 GHz. From the
high correlation coefficient between νp and the thermal dust βd
seen in Fig. 17, it is clear that this result is highly dependent on
the assumptions made regarding thermal dust modeling in this
paper, and future work that includes Planck HFI observations
will be critically important to make the AME model more robust.

Posterior mean and standard deviation maps for each of the
four component maps (synchrotron, free-free, AME, and ther-
mal dust emission) are shown in Figs. 19 and 20, each at their
own angular resolution (120, 30, 120, and 10′) and reference
frequency (408 MHz, 40 GHz, 22 GHz, and 857 GHz), and all
shown in terms of brightness temperature. In Figure 20, we no-
tice the dark stripes following the Planck scanning pattern at
high galactic latitudes in the standard deviation map of the free-
free component. These stripes are barely visible in the AME

standard deviation map while being completely absent from the
synchrotron and thermal dust maps. This can be explained by the
sampling of the amplitude zero-levels, where the free-free zero-
level is the only one not marginalized over in the BeyondPlanck
Gibbs chain. The base value at higher latitudes of the amplitude
RMS is equivalent to the RMS of the sampled zero-levels.

Figure 21 shows mean and standard distribution plots for the
compact source component for a 20◦ × 20◦ field of the sky in
the Northern Galactic hemisphere for each of the three LFI fre-
quency channels. The four-component posterior mean maps may
be compared to similar products from the Planck 2015 analy-
sis (Planck Collaboration X 2016) and corresponding difference
maps are shown in Fig. 22. All maps are smoothed to a com-
mon angular resolution of 2◦ FWHM before differencing, and
a free offset has been fitted and subtracted using the frequency-
band monopole mask discussed in Sect. 4.3. In addition, for the
components that have different reference frequencies in the two
analyses (i.e.., free-free, AME, and thermal dust emission), a sin-
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Fig. 22. Difference maps between the component amplitude maps derived in BeyondPlanck and the Planck 2015 analysis, for synchrotron (top-
left), free-free (top-right), AME (bottom-left), and thermal dust emission (bottom-right), respectively. All maps have been smoothed to a common
angular resolution of 2◦ FWHM, a relative offset has been fitted and subtracted using the frequency-band monopole mask discussed in Sect. 4.3
and differences in reference frequencies (where relevant) have been accounted for by a single multiplicative scaling factor.

Table 3. Comparison of frequency channel monopole constraints from
BeyondPlanck and Planck. For Planck, all numbers correspond to the
Planck 2015 analysis (Planck Collaboration X 2016), except for the HFI
857 GHz, which is taken from Planck DR4 (Planck Collaboration LVII
2020). We note that the Planck 2015 analysis did not fit for the WMAP
Ka-band monopole, but fixed it at the given value; this parameter there-
fore has no associated uncertainty. Lastly, we note that while the WMAP
and HFI maps are the same in both columns, the LFI maps are not, and
they have different zero-levels coming from the TOD processing.

Channel BeyondPlanck Planck Unit

LFI 30 GHz 0 ± 6 −17 ± 1 µKCMB

LFI 44 GHz 0 ± 2 11 ± 1 µKCMB

LFI 70 GHz 0 ± 1 16 ± 1 µKCMB

WMAP Ka 16 ± 3 3 µKCMB

WMAP Q1 12 ± 2 2 ± 1 µKCMB

WMAP Q2 11 ± 2 2 ± 1 µKCMB

WMAP V1 6 ± 1 1 ± 1 µKCMB

WMAP V2 6 ± 1 1 ± 1 µKCMB

HFI 857 GHz −0.65 ± 0.03 −0.72 ± 0.01 KCMB

gle multiplicative factor has been fitted to take into account SED
scaling differences.

Starting with the synchrotron case, we note that typical high-
latitude differences are small compared to the overall amplitude

of the Haslam 408 MHz map, typically less than 1 KRJ. This is of
course entirely expected, since the two analyses are both domi-
nated by the same map. However, we do see differences at both
low and high Galactic latitudes; for high latitudes we note that
the current analysis explicitly models individual point sources,
while in the Planck 2015 analysis there was no such component
and compact sources were therefore part of the diffuse compo-
nents. At low latitudes, the differences are dominated by differ-
ences in the free-free, AME, and thermal dust emission models.

For free-free emission, we see clear negative imprints of the
free-free amplitude map itself at low Galactic latitudes. In this
case, we note that while the Planck 2015 analysis fit the electron
temperature pixel-by-pixel, we adopt a single constant value of
Te = 7000 K in the current analysis. Second, we see clear pos-
itive imprints of AME or dust around the negative free-free im-
print at low Galactic latitudes, resulting from degeneracies be-
tween the component signals. Lastly, we also note that the cur-
rent analysis suffers significantly with respect to free-free emis-
sion due to the absence of the Planck HFI channels, which pro-
vide both angular resolution and sensitivity to this component.

The AME component residual map is largely dominated by
a dipole component aligned with the direction of the Galactic
center. In this case, we note that the BeyondPlanck analysis es-
timates the absolute calibration of each Planck LFI frequency
channel through a joint fit with all frequencies and this provides
more robust estimates of the CMB dipole. We also see a nega-
tive free-free imprint at low Galactic latitudes similar to what we
see in the free-free difference map. One key feature is the almost
circular blob just above and slightly to the left of the Galactic
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Fig. 23. Brightness temperature RMS as a function of frequency and astrophysical component for temperature. Each component is smoothed to an
angular resolution of 1◦ FWHM, and the lower and upper edges of each band are defined by masks covering 27 and 88 % of the sky, respectively.
We note that foreground RMS values decrease nearly monotonically with sky fraction, whereas the CMB RMS is independent of sky fraction, up
to random variations. The vertical bands represent the frequency range of detector data, where the top panel shows the data employed in this paper
and the bottom panel shows some data available for future analysis.

center, which is also clearly seen as a dark blob in the mean map
in Fig. 19. This coincides with a similarly bright circular blob
in the free-free amplitude. A similar signal can be seen in the
Planck 2015 free-free signal (Planck Collaboration X 2016), al-
though it did not affect the AME amplitude in the same way. If
we look at the residuals in Fig. 18, we notice the same blob in the
LFI 30 GHz and the WMAP Ka maps, indicating a degeneracy

between the modeled AME and free-free components. To break
this degeneracy, either more data sets needs to be introduced or
the free-free Te and the AME νp needs to be sampled with spatial
variance, or both. This is, however, not possible with the limited
data set in this analysis and therefore needs to be left for future
analyses.
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Finally, for the thermal dust emission amplitude map, which
is essentially defined by the Planck 857 GHz frequency map, the
differences are explained very closely by the morphology of the
thermal dust spectral index map βd(p) presented by Planck Col-
laboration X (2016). This is also entirely expected, given the fact
that we only model βd in terms of a single spatial constant over
the full sky.

7. Summary and outlook

The main goal of the current paper is to establish an efficient
Monte Carlo sampling scheme for intensity foregrounds within
an end-to-end Bayesian CMB analysis pipeline, as implemented
in the BeyondPlanck framework. This sampling scheme must
be able to operate in both low and high signal-to-noise regimes,
and it must be able to incorporate both algorithmic and infor-
mative priors in a controlled and transparent manner. Degenera-
cies between different parameters must be explored properly and
it must be possible to propagate corresponding uncertainties to
higher level products.

Most of the algorithmic elements in the machinery used in
this paper were developed and applied within the context of the
official Planck project, as described in, for instance, Planck Col-
laboration X (2016), Planck Collaboration IV (2018), and Planck
Collaboration LVII (2020). In this paper, we have added four
new algorithmic components to this machinery, namely: 1) joint
amplitude and spectral index sampling, borrowing heavily from
ideas already introduced by Stompor et al. (2009) and Stivoli
et al. (2010); 2) component-based monopole determination; 3)
joint spectral index and monopole sampling; and 4) the appli-
cation of informative spatial priors. Each of these steps signif-
icantly improve the computational efficiency and robustness of
the Gibbs sampling-based Commander approach.

We stress that the current BeyondPlanck results are not in-
tended to define a new state-of-the-art model of the astrophys-
ical sky. Rather, the current framework and analysis constitute
a “skeleton” to which additional data sets, both legacy and fu-
ture, may be added in a controlled fashion, keeping track of
both instrumental and astrophysical modeling errors. As more
and more data sets are added, the dependency on external priors
may be gradually lifted until, hopefully, all key parameters of the
model become data driven. Obviously, the single most important
step towards realizing this goal is the introduction of Planck HFI
TOD observations, which still define the state-of-the-art in terms
of full-sky CMB sensitivity to date. On a longer term, we argue
that all key data sets in the community should be integrated into
the model, allowing one set to break the degeneracies of others.
This is the goal of the Open Source Cosmoglobe project, and
the transition from BeyondPlanck to Cosmoglobe may be illus-
trated in Fig. 23: the top panel of this figure shows the standard
deviation brightness temperature as a function of frequency for
each primary intensity CMB foreground as colored bands. The
BeyondPlanck frequency bands are indicated by vertical bars.
Looking at this figure, noting the large unexplored frequency
ranges, it is strikingly obvious why the current data model is
significantly prior dominated; thus, more data are desperately
needed. The bottom panel of Fig. 23 shows an alternative sce-
nario, in which almost the entire frequency range is covered by
including data from several past and planned sky surveys. Pro-
viding a computationally and organizationally efficient platform
to make this happen is the goal of Cosmoglobe and the Beyond-
Planck project represents an important step towards realizing
this promise.
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