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Abstract   
 
Peer-to-peer (P2P) ridesharing is a relatively new concept that aims at providing a sustainable 
method for transportation in urban areas. This research is on the second phase of a sequence 
of projects that follows the previously funded UCConnect project titled “Promoting Peer-to-
Peer Ridesharing Services as Transit System Feeders”. In this phase, the study constructs a 
multimodal network, which includes P2P ridesharing, transit and city bike-sharing. The 
research develops schemes to provide travel alternatives, routes and information across 
multiple modes in the network. In addition, we develop a mobile application that demonstrates 
the research in the context of Los Angeles, CA, by using a combination of subway transit lines, 
proposed P2P ridesharing, and bikesharing to provide multi-modal itineraries to users. 
 
The Los Angeles Metro’s Red and Gold line subway rail and the downtown bike-share system 
are included in the network for a case study. The study includes a simulation of the operation 
of the combined system that provides travel alternatives during morning peak hours for 
multiple riders. The results indicate that a multi-modal network would expand the coverage of 
public transit. Ridesharing and bike-sharing could both act as transit feeders when properly 
designed in the system. 
  
Increased travel demand from the system can induce the problem that pick-up and drop-off 
demand in the bike system is not evenly distributed in space and time, which implies that bike 
redistribution should be introduced. We also develop algorithms to improve service level and 
reduce unsatisfied bike demand. 
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1. Introduction 
Metropoles such as Los Angeles are encountering serious congestion issues due to high 
demand for transportation and limited capacity of the street networks. In such cities, public 
transportation plays a significant role in alleviating congestion on the street network. However, 
the problem of transporting people to and from public transport stations, also known as the 
last-mile problem, remains an issue. Commuters who would have otherwise used public 
transportation choose to drive their vehicles due to difficulty of access to public transportation 
stations. 
 
Introducing sustainable transportation alternatives to provide access to public transportation 
allows the reduction of congestion and its side-effects. These alternatives include Peer-to-peer 
(P2P) rideshare, bike-share, walk, and transit. First, these alternatives encourage people to 
reduce the usage of personal vehicles, which would reduce greenhouse gas emissions. 
Second, mode combination allows for such sustainable modes to complement each other, 
overcoming the weaknesses of each one, were it to be used as the main mode of 
transportation. Last but not least, the combination of modes may reduce travel time and 
improve reliability. This research proposes a transit-feeder system that combines several 
modes of transportation to provide door-to-door transportation. 
 
In P2P ridesharing, drivers who are traveling to perform activities use empty seats in their 
vehicles to transport passengers who have spatiotemporal proximity with them. The first phase 
of this sequence of project (in 2014-15) proposed a transit feeder system to improve transit 
ridership by connecting riders to transit using P2P Ridesharing. Their matching algorithm has 
a multi-hop property where a passenger can transfer between multiple vehicles/modes of 
transport. They also allow for each vehicle to carry multiple passengers at the same time. The 
system will take over the routing of drivers to place them in spatiotemporal proximity with 
passengers. 
 
This research extends the previous project by integrating multiple shared mobility alternatives. 
In this study, bike sharing will also be integrated into the transit feeder system, along with P2P 
ridesharing, in an attempt to increase accessibility to transit stations and improve transit 
ridership. Biking has several advantages compared to normal vehicle usage: (i) it is not 
affected by the street traffic conditions, and (ii) while drivers’ pre-specified schedules 
combined with the transit system’s fixed routes and schedules constrain the potential for 
matches, the route and schedule of bikes are flexible, as long as bikes are available at 
stations. By guiding riders to walk some distances to the nearby bike stations and P2P 
ridesharing go-points and hence aggregating the demand (Stig et. al. 2015), the ride matching 
rate could increase. 
 
Integrating multiple modes into the transit-feeder system is accompanied by certain challenges 
in terms of design and operational management, which this study attempts to address. First of 
all, we introduce a comprehensive multi-modal platform where each transportation alternative 
is allocated a separate layer in a multi-layer network. This multi-modal platform can be 
regarded as Supernetwork. A layer dedicated to a single mode of transportation can contain 
the mode’s specific characteristics, reduce the computing time to find the shortest paths, and 
provide the basis for efficient management of network database (Liao et. al. 2010). 
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This research evaluates the proposed transit feeder system by applying it to the Los Angeles 
Metro Redline and bike-sharing program in downtown LA. The reason why we select this area 
is that ridership of Metro Red line has declined in the recent years (Masoud et. al. 2017). In 
addition, recently launched bike-sharing program in downtown LA has experienced low usage. 
The goal of the transit system feeder is to increase ridership of both. 
 
Another component of the bikesharing system that should be taken into consideration is the 
redistribution of bicycles because our system might induce imbalances between bicycle supply 
and demand at the bike stations. Thus we design an interactive framework to redistribute 
bicycles. To this end, we propose an optimization problem to be solved periodically. The 
solution to this problem suggests how bicycles should be redistributed between bike stations 
to make them available where there is demand, using the available resources. 

 
An important aspect of introducing bike and ridesharing in the transit-feeder system is the 
modal shift it can lead to. We attempt simulations in which individuals have to choose between 
the itinerary provided by the transit-feeder system and their personal vehicles to maximize 
their utility, which is a function of travel cost, time, and level of comfort. The results of these 
simulations can help shed light on the impact of introducing bikesharing in terms of the modal 
shift from automobile- and transit-only modes.  

  



 
 
 

7 

2. Related Research 

2.1 Bikesharing program 
In an attempt to expand the alternative transportation modes in the Los Angeles County, LA 
Metro is in the process of expanding the bikesharing programs. Metro bike system has been 
introduced to the Los Angeles downtown area since June 2016 and is planned to be service in 
Pasadena and Long Beach by July, 2017. Current locations of the bike stations in the LA 
downtown area, along with the red metro line and P2P ridesharing stations are displayed in 
Figure 2.1. In total, 61 bike stations are in operation. Three metro red line stations are located 
within the service area of the rideshare system. By providing connection modes with access 
information, our ride-matching system can attract more riders to Red line. 

 
Figure 2.1 Distribution of bikesharing stations in LA downtown 

 
Although the bikesharing program has been launched a year ago, it has experienced low 
ridership and there is a concern that it is unlikely to contribute to promoting transit ridership at 
the current usage levels. The open data policy of LA Metro Bikesharing program allows us to 
analyze operational conditions from June, 2016 to March in 2017. Figure 2.2 shows the trend 
of bike usage. The trend indicates that bike usage was increasing in the early months. One 
possible reason could be the launch promotions during that period. Between August and  
December of 2016, bike usage was experiencing a linearly dropping trend from around 800 
bikes being used per day to about 200 per day – obviously a truly steep drop. Seasonal 
factors such as weather, temperature, and end-of-promotion may partially explain the 
decrease. Then the usage has been rebounding since late January 2017. Figure 2.3 shows 
the total bike usage in each quarter.  
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Figure 2.2 LA Metro bikesharing usage trend from July 2016 to March 2017 

 

 
Quarter  Third Quarter, 2016  Fourth Quarter, 2016 First Quarter, 2017

Total Bike Usage  55,439  43,202 33,786 

 
Figure 2.3 Total LA Metro bikesharing usage from 3Q, 2016 to 2Q, 2017 

 
According to the LA metro bikesharing usage data, on average, about 410 bikes are 

used per day, and 57 bikes were being used in the morning peak hour on Wednesdays in first 
quarter, 2017 (Figure 2.4). Considering the number of bikesharing stations, only about one 
bike is used at each station in the morning pear hour, which is an alarmingly low rate of usage. 
Such low bike usage might be caused by several factors. First, the lack of awareness of the 
bikesharing system could be one of the reasons. Then, few travel planning systems provide 
the information on bikesharing as a travel mode, and thus there is low chance for travelers to 
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get their travel route information with bikesharing and transfer option between travel modes 
such as autos and public transit.. 

 
In this project, the proposed ride-matching algorithm that connects different transit 

modes (e.g., personal vehicles, LA metro Red Line, and LA metro bikesharing) matches 
multiple riders and drivers in the same itinerary, and proposes multi-hop itineraries in real time. 
In addition, a smart-phone app is developed, so as to provide multi-modal ridesharing options. 
The smart-phone app will provide users with several ridesharing options when they enter their 
origin and destination into the app. By offering more information on ridesharing options with 
bikesharing resources, it is possible to encourage the use of LA metro and to promote metro 
red line ridership. Eventually, the multi-modal ridesharing system, provided by the smart-
phone app, could play an important role as a transit feeder.  

 
 
 

 
 2016 Q3 2016 Q4 2017 Q1 

AM peak (3-hr) bike usage (%) 12.58% 14.49% 13.96% 

Avg. Wednesday bike usage 660 497 410 

Avg. AM peak (3-hr) bike (%) 83 71 57 

 
Figure 2.4 LA Metro bikesharing usage in Wednesday average morning peak hour  
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2.2 Ridesharing and its matching algorithm 
In the late 1990s, the concept of ridesharing emerged. Ine fact the notions of ridesharing 
existed in research as far back as the 1960s and 1970s in demand responsive transit (DRT) 
systems and several studies on taxi systems. True real-time ridesharing and possibilities of 
peer-to-peer communication were considered only by late 1990s. Some of the early research 
at UC Irvine is significant in the developments as well (Cortes and Jayakrishnan, 2002; Pages 
et al., 2006, Jung and Jayakrishnan, 2011). Unrelated to such research studies, 
implementation projects or similar systems were also underway; however, the initial 
ridesharing projects were not very successful due to several reasons, including the difficulty of 
communication between peer riders and drivers, lack of technologies, and the absence of 
incentives. Security and privacy issue was one of the biggest concerns. The summary of 
earlier ridesharing projects and reasons for their failure can be seen in the final report of the 
first phase of this sequence of projects, titled ‘2016 Promoting Peer-to-Peer ridesharing 
services as transit system feeders’ (Jayakrishnan et al, 2016). 
  

Shared economy systems have been in wide-spread discussion since about 2010. 
Thanks to new technologies, the peer-to-peer ridesharing is now considered as a significant 
component of shared economy systems in transportation. One of the most significant features 
of ridesharing services, especially in densely populated cities, is providing on-demand 
transportation to users. Therefore, it is necessary to match riders with drivers in real-time, 
while trying to maximize the ride-share matching rate to serve large numbers of riders.  
 

Referring to the earlier report ‘Promoting Peer-to-Peer ridesharing services as transit 
system feeders’ (Jayakrishnan et al., 2016), a ridesharing operator can increase the 
performance of the ridesharing system by using a ride-matching method than can: (1) 
prescribe the best possible route to drivers that can put them in spatiotemporal proximity of 
riders, (2) allow drivers to carry multiple riders, and (3) suggest multi-hop options to riders 
where riders can transfer between multiple drivers/modes of transportation.  
 

The simplest matching method which pairs a single rider with a single driver is used in 
many studies (Agatz et al., 2011). Similarly, Agatz et al. (2009) suggest ride-matching 
algorithms that allow each driver to carry multiple riders or multiple drivers can carry 
single/multiple riders, but Herbawi and Webber (2012) and Febbraro et al. (2013) assume that 
riders start and end their trips in the same vehicle which means that there is no connection 
between modes (e.g., car to car or car to transit). This assumption cannot be used in a multi-
modal concept.  
 

In a multi-modal setting, the possibility for riders to transfer between vehicles driven by 
different drivers should be considered in ride-matching. A “driver” in this context can 
conceptually refer to the vehicle control in any mode of transportation, i.e. public transit, or 
private vehicles.  That is, In an analytical or network formulation, this means that a “driver” 
need not be a taxi or private driver operating their auto, but any vehicle such as a transit 
vehicle or a bike, A mathematical formulation of a matching algorithm that allows for transfers 
was introduced by Agatz et al., in 2009. To solve the matching problem with transfers to 
optimality, Masoud and Jayakrishnan (2015a) propose a decomposition algorithm. Their 
methodology, however, is suitable for problems in a rolling-horizon framework, but not for 
highly dynamic systems. Other studies that consider the possibility of transfers (Herbawi and 
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Weber, 2011a and 2011b) use a heuristic method to solve the problem. Stiglic et al. (2015) 
introduce a concept of meeting point in a ridesharing system, which is similar to those 
originally proposed at UC Irvine as part of the High-coverage point-to-point transit systems 
(Cortes and Jayakrishnan, 2002). With meeting points, rider can be picked up and dropped off 
at any points such as at their origin, destination, or meeting point. 

 
Success of ridesharing systems depend on the matching rate between the riders and 

the drivers who can serve those riders, along with the possibility of transfers in real-time. To 
maximize the utility of ridesharing systems, a dynamic approach is introduced. Masoud and 
Jayakrishnan (2015b) propose a dynamic programming (DP) algorithm that can optimally 
solve the problem of ride-matching with transfers in a matter of seconds for reasonably sized 
problems with current computing capabilities. In this algorithm, each driver can serve multiple 
riders on board at each point in time, and drivers use optimal routes to place themselves in 
spatiotemporal proximity of riders. Stiglic et al., (2016) study the impact of different types of 
participant-flexibility on the performance of a single-driver, single-rider ridesharing system by 
introducing a dynamic ride-sharing system with the incentives. Masoud and jayakrishnan 
(2017) provide a mathematical model, the multi-hop Peer-to-Peer (P2P) dynamic ride-
matching problem, as a binary program. To reduce the size of the problem and solve the ride-
matching problem to optimality by means of solving multiple smaller problems, a 
decomposition algorithm is devised in their work. 
 

A P2P ride-matching algorithm is central to the successful implementation of a 
ridesharing system. Due to the efficient properties of a P2P dynamic ridesharing system, and 
the ability of the algorithm to provide optimal solutions in real-time, we use this P2P Dynamic 
Programing (DP) algorithm for matching riders and drivers in this study. The study considers 
transfer possibilities in a multi-modal system that includes transit (i.e., LA Metro’s Red line) 
and the bike sharing system in LA downtown, as explained before.  
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2.3 Bike rebalancing 
 
As described before, bike rebalancing is the issue for adding bikes to the ridesharing system, 
so as to adjust for the imbalances between the supply and demand for bikes that arise at bike 
stations at various times during operations. An effective and efficient rebalancing scheme 
needs to be deployed to avoid unsatisfied demand at bike stations and to control the total cost 
involved in repositioning the bikes, which may be done using, for example, bike re-distribution 
trucks or vans.  
 
Bike rebalancing algorithms have been studied for some time. It is still drawing attention 
because the nature of complexity of this kind of NP-hard problem that are known not to allow 
polynomial-time computational solution algorithms. In the literature, the general form is the 
minimization of an objective function that is based on  the total operating cost of rebalancing 
the system (typically, the travel cost or time). A depot of redistribution trucks is defined as a 
starting node for trucks and a truck should finish their journey at the depot as well.  
 
The static bike rebalancing problem (SBRP) was introduced by Benchimol et al (2011). In 
SBRP, a set of bike stations are given. The aim is to restore the desired inventory level at 
each bike station at a minimum cost. Bike station revisit is allowed. The term ‘static’ refers to 
the situation that both the desired inventory level and the current number of bikes at each 
station are known in advance and do not change during the rebalancing procedure. Heuristic 
methods have been developed for this. Rainer-Harbach et al (2014), Papazek et al (2013), 
and Gaspero et al (2013) are all recent heuristic algorithms to solve SBRPs. 
 
In contrast, a dynamic bike rebalancing problem considers the varying inventory level during 
the rebalancing period. The rebalancing in this case could be demand responsive. Dynamic 
rebalancing studies include Nair and Miller-Hooks (2011), Contardo et al (2012) and Chemla 
et al (2013).  
 
In our situation, we are attempting to consider the problem in a relatively complete setting. The 
desired inventory level at each bike station is assumed to be known in advance. However, the 
number of bikes will be changing during the rebalancing period. Also, multiple vehicles would 
be introduced in this scheme. The objective function is to minimize the total route cost with 
respect to satisfying the demand at each station. In summary, we would form the problem as a 
multi-vehicle dynamic bike rebalancing problem (MDBRP). The detailed formulation of 
rebalancing will be discussed in Section 4. 
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3. Bikesharing and Ridesharing as Transit Feeders 

3.1 Multi-modal ridesharing 

3.1.1 Matching algorithm 
In this project we devise a multi-hop and multi-modal ride-matching algorithm. The proposed 
algorithm provides a traveler with an itinerary with multiple potential connections, such as 
walk-ridesharing-transit-bike. This information provides travelers with door-to-door guidelines 
on how to combine several modes of transportation for their trips. The goal of the ride-
matching algorithm is to find passengers’ itineraries that can provide them with the highest 
utility, where utility is defined as a weighted combination of travel time, cost and mode 
preferences. Each passenger will be asked to provide the trip origin (SO) and the trip 
destination (SD), along with the earliest starting time (ES) and the latest arrival time (LA) of the 
trip. 
 
Passengers are also encouraged to state their preferences about the maximum number of 
connections (between different modes of transportation, or different vehicles of the same 
mode), modes of transportation, and characteristics of the vehicles on which they travel. It is 
possible to even elicit preferences on the type of individuals with whom they may share rides. 
Based on user input and available modes of transportation, the system will devise itineraries 
within the travel time windows specified by passengers, and propose it to them. 
 
The dynamic programming algorithm proposed in the first phase of the project has a multi-hop 
and flexible route property. This algorithm, however, only considers the combination of P2P 
ridesharing and transit. We reformulate the algorithm to include bike-sharing and walking to 
access the transit-feeder system. With algorithm enhancement and network expansion, the 
proposed method allows a rider’s itinerary to include as many modes of transportation as 
desired. We redefine a network structure to efficiently manage multiple modes of 
transportation, and introduce methods to improve the matching rate and provide utility-
maximizing itineraries to travelers. 
 
To model the transit feeder system, we discretize the study time horizon into short time 
periods (5-minute periods in this study). Furthermore, we define locations in the network where 
travelers can start and end their trips, and/or transfer between transportation alternatives. Note 
that in this study we have several types of locations with different functionalities, elaborated in 
Table 3.1. The proposed algorithm has a node-link network structure. Let us define a node ni 
to be a tuple of the time period (ti) and the station (si), i.e.,  ni = (ti,si). A link is denoted as (ti, si, 
tj, sj), such that it can be interpreted as a trip that starts from station (si) at time (ti ) and ends at 
(sj ) at time (tj). We define “go-points” that are pre-specified locations where riders can start or 
end a ride in a driver’s vehicle, start or end a shared-bike ride, or transfer between modes.. A 
go-point (SG) can be considered as a pre-specified meeting points in the network. Our 
research does not assume, however, that all riders start their journey from a go-point, as done 
in past research. The riders walk a certain distance between a go-point and their actual 
start/end points (SO and SD). This definition has advantages over the earlier schemes where 
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only go-points were considered: 1) it reflects actual behavior of riders which can be extended 
to real mobile services, 2) it increases riders’ route flexibility because they are not always 
restricted to one selected go-point, and 3) the ridesharing system can improve matching rate 
due to this flexibility. 

3.1.2 Network expansion 
In order to allow multi-modality, we introduce a super network concept which utilizes an 
independent layer for each mode and integrates all modes using connections across modes at 
mode-transfer stations. The locations (physical nodes in the network) are categorized into five 
types as Table 3.1: Go-points for ride-share vehicles (SV), bikes (SB), mode-connection points 
(SC), and transit stations (ST), as well as the riders’ actual origin/destination locations (SO and 
SD). To promote transit ridership, we restrict that Go-points for bike are only connected to 
transit stations in this study.  
 
Table 3. 1. Types of locations in the multi-modal shared-ride network 

Station type Symbol Description 

Go-points-Vehicles SV Points where a rider starts/end their journey by taking a ridesharing 

vehicle ∀ SV ∈ SG 

Go-points-Bike SB Points where a rider starts/end their journey by a bike-sharing ∀SB ∈SG 

Go-points-
Connection points 

SC Points where an individual can connect to other drivers or modes(bike, 
transit) SC ∈ SV , SC ∈ SB, ∀ SC ∈ SG 

Go-points-Transit 
stations 

ST Points where an individual can transfer to/from transit station ∀ ST ∈ SC, 

∀ ST ∈ SG 

Riders’ 
Origin/Destination 

SO , SD Points where a rider starts/end their journey - it is connected to go-
points by walk 

 
A multimodal system implies that we should consider various characteristics of each mode. 
The complete network contains four different modes (P2P ridesharing, Bike-sharing, Transit, 
and riders), which would result in four separate network sub-layers. In Figure 3.1, the black, 
red and green lines represent the three different layers, and the blue lines represent the rider 
network. In this example, as a rider travels from his origin (O) to destination (D), the rider 
would walk to bike station, ride a bike, then transfer to transit, and then a ride-share vehicle 
will be in charge of his last mile. This ride matching can be accomplished through optimization 
on such a multimodal network, along the lines in Masoud and Jayakrishnan (2017). 
 
P2P ridesharing network only contains the travel route of drivers, turn restrictions, penalties, 
and travel times of vehicles, since it is a vehicle-only network. The bike network would only 
represent availability of bikes, cost, and routes to nearby subway train stations. The transit 
network would have information about frequencies, route, and fare. The layer for each travel 
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mode is independent, except for the connection points in terms of time and space. For riders, 
their travel can be accomplished through a certain combination of several modes. 
Furthermore, riders should walk to a nearby go-point from an actual origin point and from a go-
point to an actual destination, where the origins and destinations are typically homes or 
work/shopping locations. For simplicity, we use a straight line for a walk link, though it can 
represent a separately found walk route. 
 
Each connection go-point (SC) is represented by separate tuples (ti, si) corresponding to each 
mode because each mode has a different available time window. Our decomposed 
optimization algorithm for ride-matching in a rideshare system can optimize a multi-modal 
system in a similar fashion, essentially considering a bike or a transit vehicle as similar to a 
virtual “driver” in a ride-sharing system, as mentioned earlier. 
 
The integrated multi-modal network improves efficiency in pre-processing, ride-matching and 
managing the database. The optimization algorithm includes multiple shortest path 
calculations in pre-processing and ride-matching. The multimodal network structure reduces 
computing time for shortest path calculations by restricting the number of node explorations 
from any node to only those of the associated mode, except at the connection nodes between 
the mode layers (mode transfer nodes). In terms of database management during path 
optimization, this network structure reduces searching time to find feasible drivers, as the user 
limits his/her preferences to only certain modes. The query process then searches for feasible 
drivers in only the preferred-mode set, which. is a relatively small database when compared to 
one that includes all modes. 
 

  
Figure 3.1 Multi-modal layers for the transit-feeder system. 

3.1.3 Demand generation 
The demand generation process is designed to reflect a realistic spatial distribution among the 
riders. As explained above, previous studies (Stiglic et al., 2015, Masoud et al., 2017, Masoud 
and Jayakrishnan, 2017) assume that riders’ origin/destination are predefined locations as 
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shown in blue dots in Figure 3.2. In reality, however, riders should access one of go-points by 
walking unless their starting/ending points are exactly at the go-points. We design our ride 
matching network to reflect the riders’ actual starting/ending points. Instead of generating the 
demand at a representative point, we randomly disperse the travel demand to the associated 
transportation analysis zone (TAZ) as red dots in Figure 3.2. In other words, we take into 
account accessibility to/from a go-point.  

 

 
  

 

Note: blue dot: go-point, red dot: randomly generated riders’ location 
 

Figure 3.2 Example of demand generation 

3.1.4 Dynamic connectors 
 
To connect the randomly generated riders’ Origin and Destination points to the network of go-
points, we introduce dynamic walk links as connectors to the nearby go-points. They are 
indicated by the dashed line in Figure 3.3. We design the dynamic walk links to be connected 
to the nearest n go-points. These dynamic links are temporarily generated in our network 
when a rider requests a ride. After finishing the ride-matching process, the walk links are 
eliminated from the network for next process. This dynamic process allows for a simpler 
network structure for further processing. 
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(a) Ridematch failure case with single 

connector 

 
(b) Ridematch Success with multiple 

connectors 

 
(c) Graph representation of ridematch failure 
case (Single connectors) 

 
(d) Graph representation of ridematch 
success case (Multiple connectors)  

Figure 3.3 Advantage of multiple connectors (improving matching rates) 
 

Multiple dynamic connectors from an origin to go-points, and to a destination from go-points 
have the potential to increase matching rate as shown in Figure 3.3. Connecting a walk link to 
only one go-point has a limitation that the available drivers and possible routes are spatially 
restricted. Figure 3.3 (a) and (b) show an example of a ride-matching failure with a single 
connection. In the example, Rider 1’s origin is R1 in a circle and his/her destination is R1 in a 
rectangle. Figure 3.3 (a) indicates that the rider’s go-points are G1 for Origin and G3 for 
Destination. There are two drivers in the sample network. Driver 1 traverses D1-G1-G2-D1 
and Driver 2 travels to D2 through G4. If there is no driver to the riders’ solely connected go-
point near his destination, the rider’s trip cannot be matched. This problem could be solved if 
we find the second nearest go-point and search a route again. However, it is computationally 
expensive since the matching process should be repeated until the ride is matched. The 
concept of multiple connectors can solve this problem, as shown in Figure 3.3 (c) and 3.3(d), 
since the connected multiple links can include drivers/modes near multiple go-points. Although 
the connectors increase the computational time a little due to the increased network size, the 
better matching rate compensates for this. 
 
Another advantage of dynamic links is to find shorter path for riders. The two sample networks 
in Figure 3.4 explain the reason. In here, we assume that there are three drivers:1) D1-G1-G2-
D1, 2) D2-G2-G3-D2, and 3) D3-G4-D3. The left figure is the case when we connect only one 
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walk link to the nearest station. Rider 1 will be guided to walk to G1 from the origin because 
the nearest go-point is go-point 1. She will then transfer to Driver 2 at go-point 2 (G2) and be 
dropped off at go-point 3. Total travel time of this itinerary is 20 minutes (5 min walk). In 
comparison, our proposed network structure, as shown in (b), can reduce the travel time to 15 
minutes and no transfer although a rider should walk little longer (8 min). In here, three driver 
candidates can be considered for Rider 1.  
 
 

 
(a) Matched-Rides result with a single 

connector(walk-G1-G2-walk) 

 
(b) Matched-Rides results with multiple 
connectors(walk-D3-walk) 

 
Figure 3.4 Advantages of multiple connectors (capability of finding shortest path) 
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3.2 System performance analysis 
For a parametric study of the application of our ride matching system, we select the city of Los 
Angeles, as in our earlier study (Masoud et al., 2017) which developed a network based on the 
Southern California Association of Governments (SCAG) planning model. We enhanced that 
network to include multi-modal layers and the current bike-sharing stations in LA downtown as 
in Figure 3.5. Actual coordinates of the bike stations are collected and used to build the 
network. We used various data and actual travel time information such as the LA Metro time 
table, and the Google directions API for auto, bikes, and walk modes. Spatial connections 
between bike stations and transit stations are included in the network design step to efficiently 
improve accessibility to transit stations. Bike stations near transfer points (including metro 
stations) are selected as connection points. 
 

 
Figure 3.5 Node-Link set and bike network expansion (Los Angeles region and the study area) 
 
In the preprocessing step, participants (riders and drivers) are randomly selected from the 
vehicle Origin-Destination trip table of the SCAG demand model, as the interest is in finding 
how many vehicles will change their mode to our system. Then, as discussed in demand 
generation step, we randomly placed the selected-riders into the given TAZ, as shown in 
Figure 3.2. The demand in OD table is an aggregated level containing Origin ID, Destination 
ID, and volume. SCAG also provides with the geo-locations of each TAZ (both points and 
polygons). Points are generally located at the center of the associated polygon. A point and a 
related polygon are mapped by a key index. Using python programming and GIS libraries, all 
riders’ Origin-Destinations are randomly generated and located. 
 
Under the travel time budget which is the difference between the Earliest Start (ES) and the 
Latest Arrival (LA) times that are specified by any rider, the dynamic matching algorithm finds 
the multi-hop paths maximizing each rider’s utility. To calculate this, we set the utility function 
as a linear combination of the rider’s cost components: travel time, mile-based travel cost, 
transfer penalty, and bike-sharing cost. In this research, we use default values of $20/hour for 
value of time, and $0.25 for each mile of ridesharing. In addition, we consider a $0.1 penalty 
for each transfer, and for each time period of waiting in transfers. In downtown LA, usage of 
bike is priced at $1.5 by a half hour period. When a bike is used in our matching system, the 
bike must be returned to another bike station. 
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3.2.1 Metro rail stations accessibility 
 
Reducing first/last mile for the transit ridership implies improvements of accessibility to transit 
stations. Improved accessibility to the Metro increases transit ridership. Walking is a main 
mode to access to rail stations (Hsiao et al. 1997, Owen, 2010, Moniruzzaman and Páez, 
2012, and Chang and Lee, 2014). One of the main strategies to increase transit ridership is to 
provide increased accessibility to the Metro stations. Walking is a main mode to access to rail 
stations. Owen (2010) shows about 52% of Metro users in Los Angeles County are willing to 
walk to Metro stations. Furthermore, they tend to walk when their walking time is less than 10 
minutes. Bus riding and Park-and-ride can also be a mode to Metro station, which are used by 
approximately 20 percent and 26 percent of travelers as an access mode, respectively. From 
the survey and GIS analysis by Owen (2010), bus and cars are used as an alternative mode to 
reach the metro station when walking distance is over 0.25 miles and walking time is greater 
than 5 minutes. This study shows the opportunity for P2P ridesharing and bikesharing to 
improve accessibility to the Metro stations. 
    
We examine how the proposed system improves accessibility to the Metro red line subway rail 
stations in the morning peak. Assuming that riders only access the red line stations if the 
access time is less than 10 minutes, we find the possible catchment region from where riders 
are willing to use our system. To identify catchment areas, this study applies a network 
analysis with our multi-modal network. To measure improvements of the catchments region, 
we set access time to the Metro red line stations as an index. Access time to a metro station s 
is decomposed into access time by mode m from a go-point i to a metro station s, i.e., ( 	 ,			 	 , 
and walking time to a go-point i, i.e., ( , as in Eq (1). Here 	 ,			  has three components: 
driving time from a go-point i to metro station s, denoted as ( , , ), waiting time for mode 
m at a go-point I, denoted as ( , ), and processing time for a mode at go-point I, denoted 
as ( , ).  
 
Access	Time 	 	 ,			          (1) 
where	 	 ,			 , , , ,   
 
From our multi-modal network, in which the actual travel times during the morning peak hour is 
found from the Google Directions API, a Dijkstra shortest path search identifies all possible go-
points where mode travel time ( , , ) is less than a certain limit (in minutes). Each mode 
layer has mode-specific characteristics such as average wait time ( ,  for the mode m at 
a go-point i, and processing time ( , 	of a mode m at a go-point i as presented in Eq 
(1). Average wait time for transit is calculated as half of the average transit headway (i.e., 
1/frequency), which technically assumes, implicitly, that the scheduled headways are generally 
uniform and that there is no substantial schedule variance. Waiting time for bikes is set to zero 
and the processing time for bike rental is assumed to be 2 minutes. Our network does not 
include actual walk links, thus we again utilized a private API (Google Directions) which 
provides walking level travel time and its geographic boundaries from a point.  
 
Figure 3.6 (a) shows the accessible area to Red line stations, which indicates that our 
ridesharing system improves accessibility of Red Line stations in the Morning Peak. Red areas 
show the case where no feeder mode exists (except walking). Blue areas imply that more 
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travelers can reach their nearest station by P2P ridesharing. We found the system to improve 
the area of accessibility to from 8.64 sq miles to 14.10 sq miles. The proposed method with 
bike-sharing also has the potential to improve accessibility to 15.64 square miles. An 
interesting fact is that the bike-sharing system in the downtown area has more potential to 
increase the red line’s accessibility area than an autos-based ridesharing due to the fact that 
bikes are generally faster than such autos which may be stuck in downtown congestion. 
 
 

 
Figure 3.6 Accessibility improvement by P2P Ridesharing and Bikesharing 

 
 
3.2.2 Demand Characteristics 
 
Figure 3.7 and 3.8 are heat maps that demonstrate the origins and destinations of demand 
during the AM peak hour. The red color indicates high level of traffic demand in that region as 
origins or destinations. These heat maps are useful to develop a visual sense of the travel 
intensity (for travel by private vehicles). 
 
Based on our study area, most of the demand originates from Santa Monica, Culver City, 
Hollywood, Burbank, Glendale and Pasadena. Each city has more than 3500 trips per square 
miles during morning peak. These cities have higher-population-density residential areas. The 
downtown area is of course a Central Business Center (CBD) and does not have the 
residential city characteristics. Therefore, this area does not have much traffic originating from 
there during the morning peak hour. The demand distributes intensively along the state 
highway 101 as several cities are located nearby. 
 
The higher-demand destinations during the morning peak include Santa Monica, Beverly Hills, 
Hollywood, Burbank, Glendale, Pasadena, and downtown LA. As expected, the downtown 
area has considerable number of travelers as incoming population. They are naturally potential 
bike users for their trips’ ending portions. Again, the demand is along state highway 101, and 
the Metro red line in a cross direction. Passengers with origins and destinations in Hollywood, 
and downtown LA is potential users of the Metro red line.  
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Figure 3.7. Spatial distribution of riders’ origin 
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Figure 3.8. Spatial distribution of riders’ destination 

 
  



 
 
 

24 

3.2.3 Matching rates 
 
Under the assumption that travelers will change their mode from personal autos, our 
simulation first changes the number of riders from 1000 to 4000, and increases the number of 
drivers gradually from 1000 to 10,000. The matching rate increases sharply at the beginning 
when we increase the number of drivers, as can be seen in Figure 3.9. Then the marginal 
matching rate decreases. When we increase the number of drivers from 1000 to 5000, the 
matching rate triples. However, when the number of drivers is twice that of the riders, the 
matching rate improves only slowly.  
 

 
  

Figure 3.9 Parametric study for the impact of riders and drivers to matching rates 
 
 
The general pattern is similar as in our Phase I (first-year) research which used only transit 
and the rideshare option, but we can recognize that matching rate in our study is significantly 
higher. The Figure indicates that in Phase II, with the same number of drivers and riders, more 
riders will be served than we found in Phase I. The most improvement happens with around 
1000 riders and 5000 drivers. In Phase I, around 30% riders are served. However, with the 
Phase II algorithm, more than 60% are served. It can be seen that network expansion, addition 
of bike-sharing, and introduction of a multiple-layer network with dynamic walk connectors that 
we propose enable the riders to have more alternatives. 

3.2.4 Effectiveness on transit demand and bike usage 
 
Increasing metro rail and bike usage among those who use autos is our main research 
interest. A series of simulations is designed to understand how the usage numbers change 
when we increase the number of riders and drivers. We expect the number of Metro rail and 



 
 
 

25 

bike users to also linearly increase when the number of total participants increases linearly. 
The usage results are shown in Figure 3.10 and 3.11. 
 
First, for metro users (Figure 3.10), we could observe an approximately linear trend when we 
increase the number of participants. Out of the entire simulation sample (224,196 individuals), 
not all have access to the Metro line (i.e., origins and destinations are far away from metro 
stations). Out of all individuals in the much larger area, around 8400 individuals are potential 
metro users (since only the Metro red line is included in this study, and it covers only a small 
portion of the area). For a sampled 4000-rider case, there are about 150 potential metro users, 
and 5 of them are matched with a metro usage (3.3%). When the rider-to-driver ratio is high, 
the algorithm tends to match more people with metro rail. Therefore, designing a proper 
proportion of rider/driver ratio would help the usage of metro transit. 
 

 
Figure 3.10. Number of Metro users in our system according to increasing participants  

 
 
For bike users (Figure 3.11), the situation is similar. The trend is approximately linear when the 
total number of participants increases. Since the study only considers bike as a transit feeder, 
it does not include bike-only usage for temporary travel within the downtown region. In the 
4000-rider case, 75 riders have either the origin or the destination located in the downtown 
area. We identify this group of people as potential bike users. Among 75 riders, 1 was 
matched with a bike (1.4%). If we include bike-only travel, we will however see higher bike 
usage rate for the downtown area. 
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Figure 3.11. Number of Bike users in our system according to increasing participants  

3.2.5. Analysis of number of transfers 
Masoud et al. (2017) suggested that either too large or too small a number of drivers would 
result in low number of transfers. The reason is that with large number of drivers, most of the 
passengers can be served by single matching, and with extremely small number of drivers, the 
service rate would be low.  
 
Figure 3.12 shows that in the 6000 riders case, 4987 riders have been served. 4329 riders 
(86.8%) riders are served without any transfer. Only less than 14% riders experience at least 
one transfer. 10.6% has one transfer. 2.2% has 2 transfers. Only 18 riders (0.36%) has 3 or 
more transfers. The maximum transfer could be 5. 
 

 
Figure 3.12 Details about number of transfers for 6000 riders 
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Figue 3.13 shows the number of transfers with the change of rider/ driver combinations. If the 
number of riders/drivers increases as a linear trend, the average number of transfers will also 
decrease also in an approximately linear manner. Therefore, number of participating drivers 
determines the average number of transfers at a high extent. 
 

 
Figure 3.13 Details about number of transfers according to the number of participants 

 
The result suggests that to avoid high level of transfers, the system needs to have sufficient 
supply of drivers. 
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4. Bike Rebalancing 

4.1 Introduction and Overview 
Bike rebalancing in this study is defined as an operation or a series of operations that allows 
service vans to pick up and drop off bikes among bike stations to maintain a certain level of 
service for bikers. This type of operation is also known as bike-repositioning or bike-
redistributing. Recently, many cities have proposed regulations to allow and constrain private 
bike sharing services which renders the bike sharing and rebalancing operations to be more 
profit-oriented than equity/public good-oriented as well. Considering the cost involved in 
repositioning bikes to address demand-supply imbalances, there is a need to have a bike 
rebalancing algorithm that can be quickly and effectively implemented and easily interpreted 
by operators.  
 
In the previous sections, we have assumed that there is no situation where a traveler would 
encounter a depleted or fully-racked bike station. This section, we study whether this 
assumption is valid under the current operational budget. That is, we consider whether the 
existing bike-rebalancing strategy can handle extra demand from the newly added ridesharing 
services, and if not, what the cost would be, to accommodate it. If the assumption made about 
bike-rebalancing is invalid, it is necessary to adjust the other parts of the model to produce a 
coherent result. Pickup and drop-off demand are treated as exogenous and the model will test 
if a strategy can handle such pickup and drop-off demands. Important factors and constraints 
include redistribution truck capacity, bike station capacity, and collaborative operations among 
multiple redistribution trucks.  
 
The bike rebalancing problem is so far known to be NP-hard and thus without a polynomial 
time computation algorithm to solve (Ting and Liao, 2013). Thus it is challenging to formulate 
and optimize with a predefined objective function. However, any solution is relatively easy to 
evaluate. It is particularly so in this dynamic case, where one effective way to evaluate would 
be simulation.  
 
Three major contributions in the proposed solutions are: (1) the solution algorithm works on a 
solution set of bike-station-pair instead of individual bike stations by realizing the essence of 
the problem, namely that routing can be studied as a series of station pairs rather than 
individual stations. This realization not only eases the analysis and model tractability but also 
significantly reduces the computational effort in large-scale cases and improved interpretability 
of the algorithm. (2) the “dynamic-static-dynamic” procedure significantly eases the complexity 
of the issue and allows convenient route visualization. (3) A validation data set is used to 
adjust the hyper-parameters to avoid the model overfitting issue that is commonly omitted in 
bike rebalancing literature.  
 
After the initialization process where a highway/bikeway network is converted to a station-to-
station network by skimming, the algorithm follows three general steps. First, the problem is 
converted from dynamic to static using a discounting-based method. Applying a discounting 
factor to convert a dynamic inventory problem to a static one is not an uncommon practice 
under uncertain demand (Ravindran, et al., 1987). The discounted total demand allows 
evaluating the “urgency gap” between any two bike station pairs, conveniently scaled by the 
van travel cost. In addition, a bicriteria problem -- reducing operation cost and maintaining bike 
station inventory levels simultaneously – can be immediately incorporated within the objective 
function. For example, suppose a discounted demand for station i is -7 bikes with respect to its 
predefined target stock while the station j is +8 with respect to its target stock. Then the 
urgency gap for delivering bikes from station j to i would be proportional to the 15 (assuming a 
linear cost function). This gap can be further scaled using impedance between the two stations 
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so that the higher the cost to deliver, the less likely the station pairs is selected. In actual 
operation, such discounting can be practiced at any decision point, and the weighting and the 
demand can be relaxed to be adaptive to real-time information. 
 
The second step randomly groups bike stations pairs to form the basis of van service routings. 
In this case study, we used an enumeration approach for top-ranked bike station pairs in terms 
of the “desire” to be served and the travel cost, thanks to the limited problem scale and the 
short study period (7-8am). When the problem scale is large, a heuristic method is 
recommended to reduce computational effort. 
 
The third step “converts” the problem back to a dynamic one through simulation for 
determining the feasibility of the service routing strategy given the limited bike station and 
truck capacities. The actual dynamic demand is used instead of the discounted one in this 
case. Relatively detailed variables of routing and scheduling such as the specific numbers of 
bikes to drop off and pick up are also determined in this step. The result generates a new 
dynamic inventory profile so that the system service level can be evaluated. Figure 4.1 
illustrates this process. The “feedback” arrow from the third step to the first step represents the 
process of system service evaluation and hyper-parameter tuning where parameters such as 
discounting factors, optimal number of vans, target inventories, impedance weighting (relative 
to the urgency gap) are adjusted. 
  

 
FIGURE 4.1 Conceptual Explanation of the Heuristic Solution Algorithm 

 
Note that, in the estimation process, though specifying parameters such as discounting factors 
and impedance scalers with respect to individual stations and/or time steps might significantly 
improve the objective function, it may lead to a model overfitting issue. That is, the estimated 
parameters would fit well with the data of the study day but not data from other days that have 
different bike pick-up and drop-off patterns. Therefore, we use the data from 2017 April to 
validate the estimated model, and adjust if necessary to achieve a balance between reducing 
the objective function of the study day and reducing the objective function of the validating 
day.  
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4.2 Problem Formulation 
In this section, the dynamic bike rebalancing problem described in the previous section is 
represented mathematically. Using the objective function along with the constraints, it 
prepares the next section to propose algorithm to improve the system. The underlying 
assumption is that the decision maker/operator’s (subjective) goal would be to minimize this 
objective function. Although the objective function is linear, some of the constraints are either 
nonlinear or integer.  
 
Since the travel time is treated to be stationary in this case study, a highway network can be 
degenerated by skimming to a G={V, A} where V is the set of vertices that represent depot 
({0}) and bike stations ({1,2,3,...,n}). Directional arc set A contains every two vertices that have 
an attribute of travel cost for a bike redistribution van to travel on.  
 
The objective function aims at minimizing general cost of truck operation and demand service, 
which can be formulated as 

	 	

1 11
 

 

where  is the operation cost of the van  during in the study period 0, . Operation cost 
is a combination of staff cost, fuel consumption, maintenance, and management. When 

0, the operator focuses solely on maximizing service level without considering 
operation cost.  is the unserved demand -- when negative, it is number of users who 

encounter empty station while positive means the number of users for the fully racked.  ∙  

converts unserved demand to the cost/penalty due to unserved demand. For example,  in 

the case study is defined as a linear function of S where 
	
 when 0, while 

 when 0.  is a scaler that converts number of bikes to the same unit of truck 
operation cost. Consider the truck operation cost in the case study is mileage, 	is a scalar 
that converts number of bikes to the same unit of truck operation cost. In this case study, 

1.2. and  are subjective to the operator’s goal and preference.  
 
Below is the list of variables used in the formulation. 
  

the travel time for truck k driving from i to j departing at the beginning of time interval  
 

: the time length of the time duration for time step  
: is the proportion of cost for serving j from i during time interval with respective to  
: the number of bikes the van  is going to pick up/drop off driving from i to j arriving at time 

. When positive, it is dropping off; when negative, it is picking up. 
: capacity of van k 

: capacity of station i 
: the number of bikes dropped off by users at station i from station m at time interval  

: the number of bikes picked up by users at station i to station j at time interval  
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: the inventory at bike station i at the beginning of the time interval  
: the number of bikes on the van k at time interval  
: dummy variable indicating whether the van k is at station i at time step . 1 yes, 0 no.  

 
Constraints: 
 

∑ ∑ ∑ ,  #Bike station inventory conservation 
 

,  if 0 #the number of bikes dropped off at station  should be 
equal or less than the slack on the van  as well as the empty racks at station . 
 

,  if 0 #the number of bikes picked up should be less than the 
slack capacity in this van (or else no place to put the bikes) as well as the how much the 
bikestation  can “offer”. 
 
	 ∑  # service time includes fixed time + unfixed time 

(depending on how many bikes being dropped off and picked up at the given station j). 
 
∑ 1 #a van can only appear at a station one at a time 

0 if , ∨ , ,  #sure van won’t be able to serve another station 

before it actually arrives 
 
Note that a van’s departure time from a station (or depot) is rounded to the nearest beginning 
of a time interval. This means that the simulation time step should be set small enough 
compared to the between-station travel times so as to avoid the situation where a van departs 
from the origin station and arrives at the destination station in the same time step. Another 
detailed but important setting in this case study is the fixed travel times, which can be 
extended to incorporate dynamics in a future study.  
 

4.3 Solution Algorithm 
As described in the beginning of the section 4, the proposed heuristic solution algorithm 
contains three main steps: converting the dynamic problem to a static one, bike station pair 
assignment, and simulation (converting back to dynamic problem). The results are fed back to 
the first step’s assumptions about operation cost and demand gaps to test for consistency. 
The following subsection describes these steps in more detail. 
 

4.3.1 Procedure 
The initialization process (before the first step) prepares information for the later steps. First, at 
a given decision time point, critical bike station pairs are identified based on two criteria. The 
first criterion is the gradient of the inventory gaps between the pick-up station and a drop-off 
station. The second criterion is the travel impedance between these two pairs. To take into 
account the dynamic demand for each station (assumed known, based on historical data), a 
discounting method is used. Since the travel cost on the roadway network (Figure 4.2 Left) is 
assumed fixed, the network is simplified to a station-to-station network (Figure 4.2 Right) by 
skimming the impedance the roadway network.  
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Note: The red node represents the depot. 
FIGURE 4.2 Left: Highway network of LADOT 2016 Travel Demand Forecasting Model (light 

blue); Right: the station-to-station network skimmed from the LADOT highway network.  
 
Figure 4.3 shows a part of the skim matrices for the bike stations for illustrative purposes.  
 

 
FIGURE 4.3 Service Van inter-station skim matrix for AM peak  

 
The urgency gap is calculated based on the following formulation.  
 

∙  

where is the discounted inventory for station .  is the target inventory for  at time  (in 
this study, we assume constant inventory target throughout the AM peak period).  scales 
travel time as impedance to be weighted for obtaining the gradient.  
 
To consider future demand (with respect to the moment the strategy is being considered), a 
discounting method is used so that the weight is distributed in a way that the more into the 
future of a pickup or drop off the less weight it affects the urgency gap. This concept is 
formulated for station i as  

1
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where  is a parameter that puts more weight on the future demand when closer to 0 and 
requires calibration and operation objectives.  
 
Therefore, discounted inventory of station  at the initial time step is 
 

 
 
Intuitively, a van does not solely determine the urgency of a station pair two be served t 
 
The resultant gap matrix is shown partially in Figure 4.4 for illustrative purposes. The urgency 
of a bike pair to be served is marked and ranked as red. As can see, Pair 11-15, Pair 33-19, 
and Pair 33-17 are urgent to be served among other bike station pairs.  
 

 
Note: The red cell indicates how urgent a bike station needs to be served. This is before being 
scaled by the impedance. 

FIGURE 4.4 Urgency Gap Matrices.  
 

 
The desire line analysis is visualized in Figure 4.5 
 

 
FIGURE 4.5. Left: The top 30 Inter-zonal gradients (evaluated based on inventory gap and 

impedance); Right: All the non-zero inter-zonal gradients (The thickness represent the values).  
 
One possibility can arise in the situations such as, for example, when a van picks up bikes 
sequentially at two bike stations and drops off bikes at a third station. This situation occurs 
because when there’s a major gap between the third one and the combination of one and two 
(but one of them). Moreover, the second station is favorably along the path from the first one 
to the third one. Although due to the limitation of van capacity, this situation happens less, it is 
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possible to consider when using a hierarchical clustering method where not only the demand 
gap of individual station pairs are measured but also gap between clusters. For example, in a 
three-station (A, B, C) scenario, instead of only measuring gap of {A, B}, {A, C}, and (B, C}, we 
can also measure {A, {B, C}), {{A, B}, C}, {B, {A, C}}. As we see, for larger problems, clustering 
methods should be used that take into account the spatial impedance among stations.  
 
The second and third step can be seen as an algorithm to aid the vans in picking up bikes in a 
strategic way for two objectives -- maintain stocks to be close with stations’ target inventory 
and reduce travel time as much as possible. A challenge is to avoid a multiple-van scenario 
where collaboration is needed. The study clusters the bike stations into different regions which 
are adjusted over time when the vans’ locations change. The clustering criterion is based on 
the skim matrices, though other criteria can be incorporated, such as the number of bike 
station urgently needing service.  
 
Two important advantages of using simulation are: (1) many constraints such as the capacities 
of bike stations and vans in the formulation section are nearly trivial. (2) Finding an optimal 
solution can be viewed as a learning process by the operator and therefore, easier to present 
and adopt.  
 
The operation cost for rebalancing is mainly composed of staffing cost, mileage/fuel cost, and 
vehicle maintenance. This study considers the number of staff and operation mileage as the 
proxies for staffing cost and fuel consumption. Vehicle maintenance cost is treated as a long 
term cost and considered not significant in any one-day operation. 

  
TABLE 4.1 Van Cost Table 

Vans in Operation 1 2 3 5 7 9 

Staff Cost ($) 15.65 31.30 46.95 78.25 109.55 140.85 

VMT (Miles) 3.72 5.44 12.31 19.57 26.63 38.33 

Total Bikes Served 16 31 44 69 77 92 
 
This rebalancing process can also be seen as an ordering procedure of pick-up and drop-off 
stations with collaboration among vans based on the two criteria (i.e., travel cost and urgency). 
Since the routing is obtained through random combination in which bike station pairs with high 
urgency scores are more likely to be chosen, the collaborative one that renders lower cost can 
be naturally selected without explicitly being designated.  
 
Converting a dynamic problem into a static one needs to allow for a static index that contains 
information about the prioritization so that a van attempts to serve urgent bike pairs earlier. 
This information is captured by the urgency weighted by the distance with a parameter  which 
can be tuned during operation. An operator can increase or decrease the relative weight of 
distance with respect to urgency.  
 
 

4.3.2 Parameter Estimation 
 
Due to the nonlinear nature of the problem, a grid-search method is used for parameter 
estimation on the discounting factor, impedance scaler, number of trucks, and target inventory. 
Table 4.2 shows some results.  
  



 
 
 

35 

TABLE 4.2 Sensitivity Test for 1 truck for urgency gap served per mile 

 \   0.25 0.5 0.75 1.0 1.25 

0.001 1.490 1.490 1.490 1.490 1.490 

0.01 1.427 1.427 1.428 1.427 1.425 

0.50 1.344 1.345 1.345 1.346 1.349 

1.00 1.356 1.356 1.356 1.357 1,358 
Note: The bold and italic cell indicates a relatively ideal fine-tuned value 
 
TABLE 4.3 Sensitivity Test for 2 trucks urgency gap served per mile 

 \   0.25 0.5 0.75 1.0 1.25 

0.01 0.015 0.011 0.015 0.023 0.011 

0.50 0.015 0.010 0.013 0.021 0.213 

1.00 0.013 0.018 0.018 0.018 0.017 

2.00 0.023 0.023 0.023 0.024 0.024 
Note: The bold and italic cell indicates a relatively ideal fine-tuned value 
 
TABLE 4.4 Sensitivity Test for 3 trucks urgency gap served per mile.  

 \   0.25 0.5 0.75 1.0 1.25 

0.50 0.007 0.009 0.008 0.008 0.006 

1.00 0.011 0.007 0.010 0.011 0.012 

2.00 0.012 0.012 0.011 0.008 0.010 

4.00 0.009 0.011 0.007 0.010 0.011 
Note: The bold and italic cell indicates a relatively ideal fine-tuned value 
 
As can be seen in the Table 4.2 – 4.4, when we increase the number of service vans, 
discounting factor r should be increased, in order to achieve better routing strategy. That is, 
when there are more vans, there is less need to consider “future demand” and more focus on 
the present inventory. Also note that the objective function is non-monotonous, implying that a 
stochastic searching mechanism might be beneficial to avoid being “trapped” in local optima. 
However, we did observe a general “stochastic monotonicity” in the fine-tuning region.  
 
The results show that the current demand can be handled by one to two vans. According to LA 
Metro staff, they are currently (at least in 2017 Q3 to 2016 Q2) dispatching three vans 
simultaneously serving the downtown area during AM and PM peak hours. This suggests that 
there exists a cost reduction opportunity from implementing more advanced bike redistribution 
strategies such as proposed here. This may be more significant in the future, if the bikeshare 
usage is significantly higher and several more redistributions vans are in operation. 
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Owing to the hyperparameter tuning, the model might run the risk of being overfitted to one 
particular data set. The 2017 Spring data set is used for validation. The result (Figure 4.6) 
shows no overfitting issue for the estimated parameters. 
 

 
FIGURE 4.6 Checking for overfitting of the estimated models in 3-van operation simulation 

4.4 Results and Discussion 

4.4.1 Results Analysis 
 
We imported the newly induced demand from the P2P service by adding the additional pick-up 
and drop-off demand to the 2016 Sep. 17 conditions. Note that the algorithm is so set that the 
pickup/delivery van has no need to return to the depot by the end of the delivery.  
 
Table 4.5 shows the top 9 station pairs based on two criteria: demand gap and impedance 
(van travel time). The inter-station travel time is obtained from skimming SCAG highway 
network. Travel times for regular workday from Google API are used to validate the result.  
 
TABLE 4.5 Station Pair Identification 

No Pair_ID Impedance UrgencyGap UrgencyScore 

1 24-0 3.8118 20.5033 5.3788 

2 30-35 2.5959 12.6080 4.8567 

3 21-2 2.9370 9.6106 3.3875 

4 27-18 5.6020 13.0247 2.3249 

5 49-38 3.3680 7.5643 2.2458 

6 10-14 4.1261 9.0276 2.1879 

7 48-56 5.8379 10.0661 1.7242 

8 41-26 4.2764 7.2555 1.6966 

9 12-7 4.1512 6.9648 1.6777 
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Figure 4.7 shows the static routing optimization strategy given 1, 2, 3, 5, 7, 9 vans. 
Redistribution vans operating under current (though tuned) parameter settings for discounting 
and weighing over distance and “inventory gap” still show a tendency to avoid central areas 
where congestion is significant. Therefore, further weighting might be needed to adjust if 
serving transit hub is more of priority (though it might lead to a suboptimal solution for the 
rebalancing problem). We applied the same method to study the impact of various number of 
trucks (1,3,5,7). Currently, Metro is typically designating 3 vans for peak hours with exceptions 
when demand is particularly irregular.  

 

 

 

 
 

FIGURE 4.7 Van Routing (Total of 1, 2, 3, 5, 7, 9 Vans) 
 
 
Below is an example 3-van scenario with 0.9 weight on inventory gap (and 0.1 weight on 
impedance). Below are the station sequence for each truck (P for pick-up station, D for drop-
off station) and the total number of bikes served. 
 
 - Van 1:  10 (P)-14 (D)-21(P)-2(D)-15(P)-17(D): 35 Bikes 

- Van 2:  39(P)-32(D)-54(P)-22(D)-27(P)-18(D): 27 Bikes 
- Van 3:  49(P)-38(D)-60(P)-57(D)-36(P)-27(D): 33 BIkes 
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Figure 4.8 shows one example of individual van. Note that the dotted line indicates that it 
reaches 8:00am simulation termination before the van actually arrives at the destination 
station. 
 

 
FIGURE 4.8 (a) Van 1 Trajectory; (b) Van 2 Trajectory; (c) Van 3 Trajectory 

 
Based on the above analysis, it is seen that the current 2-van service is sufficient and only 
needs rerouting to accommodate the extra demand from the newly added ridesharing 
services. That is, marginal increase caused by ridesharing may not require change of the 
current service vans, provided an adjusted strategy is used, as proposed here. 
 
Relationships among the spatial demand distribution, the number of bike stations, and the 
number of vans in service need to be studied. Online algorithms for the direct use by the 
operator may be a potential direction of study. Future study on vehicle routing for various 
numbers of stations is also desirable.  
 
The data collection procedure and measurements are confirmed to be consistent with those 
during September to December of 2016. The result shows minor overfitting and therefore, the 
parameters are adjusted (with the compromise of minor increasing of the final objective 
function) to achieve a balance between the reducing the evaluated objective function for the 
training dataset as well as the validation dataset. 

4.4.2 Why The Proposed Solution Algorithm Is More Efficient And 
Tractable 
 
The essential action of bike redistribution is to pick up some bikes from one or several stations 
and to drop off at other bike station(s) then the van drives to another station to pick to iterate 
the process. The proposed algorithm starts from this observation and builds a solution set on 
the sequence of station pairs rather than that of individual stations to significantly reduce the 
computational effort and output performance. A more mathematical way to illustrate this is that 
the proposed algorithm converts a “ !” problem (where n being the number of stations) to a 
problem that is about !. Below shows the corresponding graph which presents a significantly 
larger gap when  gradually increases.  
 

4.4.3 Future Extension 
 
The algorithm can be improved through more refined simulation that considers more details 
during operation. An actual day-to-day learning process using the algorithm would also be 
beneficial for understanding the prescriptive power of the algorithm. During the progress of our 
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study, the Los Angeles Metro has been expanding the bike sharing stations to locations near 
the Port of Los Angeles, City of the Pasadena, and Venice. The impact of the bikeshare 
program in the City of Santa Monica would be also interesting to consider and be integrated 
into the proposed P2P analysis framework. In addition, one might be curious of the possible 
scenario where a van would pick up (drop off) consecutively at two or more stations and drop 
off (pick up) afterwards. This requires clustering using the proposed method, as mentioned 
above. That is, the algorithm requires clustering the stations and creating “super stations” to 
run simulation. This will significantly increase the computational effort. In this study, this 
scenario is not considered, though it is possible that during the simulation, a van would be able 
to serve a station “along with way.”  
 
It will certainly be useful to work directly with the LA Metro bike redistribution operators and 
decision makers to test the validity and effectiveness of the proposed algorithms and further 
fine tune the parameters.  
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5. Mode Shift Study 

5.1 Demand Model Overview 
This study utilizes Southern California Association of Governments (SCAG) RTP 2016 
regional travel demand forecasting model by using 2016 Scenario 3 as the base year. 
Ridesharing, transit, and bikeshare are modeled as one holistic system due to the model’s 
resolution limit. Because of this, the model can predict the modal shift from drive alone to an 
“augmented transit system” but it is not clear what the distribution among the modes involved 
within that augmented transit system is, i.e., among transit, transit-rideshare, transit-bikeshare, 
and transit-rideshare-bikeshare. Figure 5.1 shows Tier 2 Traffic Analysis Zones (TAZs), the 
highway network, and the transit network near the downtown LA area which are used by 
SCAG RTP 2016 travel demand forecasting model. 
 

 
       (a) Tier 2 TAZ setup          (b) Highway network setup      (c) Transit network setup 
 

FIGURE 5.1 SCAG 16 RTP travel demand forecasting model setup near the downtown LA 

5.2 Incorporating P2P and Bike Share Service 
 
Since the SCAG RTP model has no explicit consideration of services such as Transit Network 
Companies (TNCs) and ride share, some indirect adjustment is needed to act as the proxy of 
these emerging business models. We first added a non-motorized mode (i.e., bikeshare) along 
with its travel cost attributes in downtown area to reflect the bikesharing service. Then we 
adjusted the 87 Tier 1 TAZ pairs (914 Tier 2 TAZ pairs) for access and egress from urban rail 
and commuter rail service. Then we re-skimmed the network to obtain the accessibility index 
for mode at the end, and a partial model run was conducted from trip distribution, mode split, 
and PA-to-OD steps by assuming new total trip changes during the day (which means that we 
may lose or gain more trips during certain periods). The next section presents the results from 
the SCAG RTP 2016 model run. The modification is based on the project’s need and SCAG, 
as they state, takes no responsibility for any of the results. 
 
Below shows a summary of the adjusted parameters for SCAG model to consider P2P from a 
regional level perspective. 

● Adjusting non-motorized travel cost only in downtown areas to reflect the addition of 
bikeshare services 

● Adjusting 87 Tier 1 TAZ pairs (i.e., 914 Tier 2 TAZs) for access and egress from urban 
rail and commuter rail (Union Station) 

● Adjusting both walk skims and access/egress urban and commuter rail in downtown 
● Model run on the trip distribution, mode split, PA-to-OD steps on the last (5th) iteration 

of the SCAG model. 
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5.3 Results and Discussion 
Due to the large number of TAZs, we picked two TAZ pairs as examples and then present a 
general change of trend in the overall study area. The comparison of OD pair 0920-1947 is 
shown in Figure 5.2. UR stands for Urban Rail and CR stands for Commuter Rail. Both 
rideshare and bikeshare are incorporated in this example. 
 

 
FIGURE 5.2 Location of Origin (0920) and Destination (1947) 

 
TABLE 5.1 The before-after analysis of mode distribution for OD pair 0920-1947. 

 Origin 
(Tier1) 

Destination 
(Tier 2) Acc UR or CR Egr UR or CR Other 

AFTER 920 1947 19.0834 2739.5225 0.0972 

BEFORE 920 1947 16.3315 2688.3430 0.0717 
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Figure 5.3 shows another (TAZ 1008 to TAZ 1947).  
 

 
FIGURE 5. 3 Location of Origin (0920) and Destination (1947) 

 
 
TABLE 5.2 The before-after analysis of mode distribution for OD pair 1008-1947.  

 Origin 
(Tier1) 

Destination 
(Tier 2) Acc UR or CR Egr UR or CR Other 

AFTER 1008 1947 95.4936 2739.5225 2.2389 

BEFORE 1008 1947 82.3542 2715.3430 2.3176 

 
Note that the cost of a given OD pair also influences the trips of other OD pairs in scenarios 
where P2P has significant influence on the system performance. Thus the elasticity or 
sensitivity to pricing is worth further exploration.  
 
Table 5.3 shows the AM peak hours (6AM-9AM) passenger trips arriving within downtown Los 
Angeles. As can be seen, the change is not significant when we integrate only the P2P service 
with the Metro Red Line. This finding is consistent with the finding from the section 3. We 
suggest a broader network integration in the future study. 
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TABLE 5.3 AM peak passenger trips arriving within DTLA  

Mode  Base  Bikesharing 
Only 

Ridesharing 
Only 

Bikesharing + 
Ridesharing 

Drive‐Alone  93,519  ‐17  ‐113  ‐136 

Drive 2+  27,927  0  ‐25  ‐32 

Rail  12,609+4,798  15  144  179 

Other Transit 
Modes  10,198  15  ‐6  ‐5 

 
 
The reduced travel cost produces moderate mode shift. In total, more trips are shown to shift 
from highway (auto) trips to transit and active transportation. In transit submodes, rapid bus is 
shown to receive a reduced demand. This could be because of the reduced cost to access to 
rail (UR and CR) from using the newly enhanced ride-sharing and bike share services.  
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6. Mobile Application 

6.1 Overview 
Information technology (IT) such as a mobile application provides an opportunity to attract 
more people to participate in ridesharing systems because mobile apps provide easier 
accessibility to the system. When many travelers are unfamiliar with an integrated-modes 
transit feeder concept, a mobile application can help them understand how it works and how 
their travel can be optimized. We design the mobile application in which a user gets the 
matched connections after simply inputting their origin/destination, early departure time and 
latest arrival time. The user Interface of the app smoothly guides users in finding his/her route. 
After a user chooses a proposed route, he/she can also easily follow the guidance from the 
mobile phone. Furthermore, this mobile application can collect a massive dataset to analyze 
travelers’ behavior, subject to privacy settings and regulations. From this dataset which 
includes revealed preferences, the system designer or policy maker can redesign their ride-
matching strategies as well. Table 6.1 summarizes the benefits of mobile the application. 
 
Table 6.1. Benefits of Mobile application for P2P Ridesharing and Bikesharing 

- Ease of Use 
- Improved access for new transportation service 
- Reducing the nervousness about a new ridesharing system concept. 
- Visualization of multi-modal options 

 
- Data collection and analysis 

- Collecting real-time data for planning to increase transit ridership 
- Analysis of users’ travel behavior 
- Spatial usage pattern such as hot-spots and frequently used go-points 
- Connection to a web-based survey 
- Field survey application 

                  -    Integration of public/private transportation supply 

 
 
In addition to the developed components in the precursor Phase-I (2015-16) project, this task 
involves integrating the bikesharing program in the mobile application. The mobile application 
developed in the first phase of the project includes the Metro red line and the P2P ridesharing 
stations, and can provide itineraries that include a combination of these alternatives. In this 
task, we added the bikesharing stations located in downtown LA to the mobile app. To improve 
visualization of the matched routes, we redesigned the mobile application so as to indicate the 
options more intuitively by showing specific icons for each mode and to provide more detailed 
information. The details of the modifications will be addressed in the next section.  
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6.2 Application Design 

Figure 6.1 is a general overview of our mobile application. We call this application 
“DeepRides” because the app takes advantages of multiple modal layers including transit, 
auto, and bike, and is thus “deeper” in its analysis of the “rides”. Furthermore it is capable of 
expanding travel modes to all possible shared mobility options for work envisaged for the 
following project in the sequence (Phase 3 research in 2017-18). We have designed all 
activities on digital maps. The map system is powered by Google maps. Based on this 
information, the algorithm in our server finds available drivers in the Driver Database and 
matches drivers by network database using our advanced matching algorithm. It also checks 
bike availability by parsing the LA metro bikesharing system data.   
 
The DeepRides server is also designed to collect alternatives’ travel time and cost information 
from third-party agents like rideshare or ride-hailing companies (such as Uber/Lyft) or Transit 
agencies,. A rider can make a decision based on their preferred mode as well. For the purpose 
of any data collection through comprehensive surveys, respondents will be asked to give 
answers to a short satisfaction questionnaire, on pushing the button on the ride-matching 
result screen. From the survey window, we can capture the traveler’s preferences and 
important variables such as their willingness to pay. This app also guides travelers to respond 
to more detailed surveys if they are willing to do so. 
 

 
Figure 6.1 System overview of the mobile application (DeepRides)  

 
We fully utilize several open source IDE and libraries to develop the mobile application, 
namely, Android Studio 2.3, Pycharm Studio, Python2.7, Tornado Server, MongoDB and 
Matlab 2016b. The number of drivers in our research scope is approximately two hundred 
thousand, for a morning period that we studied. Furthermore our algorithm inherently includes 
a large number of complex querying processes such as geo-spatial queries, and data-join, 
which requires high performance computing power. Multi-processor computation is used with 
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rider and driver databases, for efficient and fast processing. Shared distribution and geo-index 
techniques in MongoDB enable fast processing of querying from our database. The core 
matching algorithm is coded in MATLab, and Python programming manages the database. In 
addition, Python enables the interaction between the MATLab engine (installed on the server) 
and the mobile application. 
  
In overall design of DeepRides, Application Programming Interfaces (APIs) play an important 
role for communication between the server and the various applications. DeepRides fully 
utilizes HTTP RESTful APIs, which enables an application and a server to dynamically interact 
by using a requesting form of a url type and responses of a json/xml type. Table 6.2 and 
Figure 6.2 show examples of a requesting url and its response. The main advantage of an 
HTTP RESTful API is that any internet-connected device can access the DeepRides server. 
We expect that the accessible app will increase the number of participants in our ride-
matching system. This means that it is capable of attracting 3rd party participants such as from 
TNCs (Uber, Lyft and Carpool companies, for instance).  

 
After our mobile application requests a matched ride, the ride-matching engine on the server 
finds the optimal matching results. In addition, the server provides travel time and cost for 
other modes to help the user select a reasonable alternative. In our study, the alternative 
modes are private vehicle, public transportation only, Uber, and Carpool. The information is 
obtained via commercial Open API (Google directions for Car and Transit, Uber, and Carpool).   

 
Table 6.2. Examples of HTTP Open API requesting ride-matching   

Function Request Url 

Ride match http://address/routes/SLat/SLng/ELat/ELng/EarlyD/lateA/OType/DType/OID/DI
D/APIkey 

Near go-points list http://address/gopoint/SLat/SLng/APIkey

Preference setting http://address/preference/String/APIkey

Travel history http://address/travelhistory/APIkey

 

 
Figure 6.2. Sample results of trip-matching through an HTTP API request  
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6.3 Mobile application UI 
 
Figure 6.3 and 6.4 indicate the user interfaces (UI) of DeepRides. This application is 
developed from a rider’s point of view, i.e. the drivers’ trips are encoded in the app, although it 
is straightforward to extend the app to accept driver trips as input as well.  
 
For a convenient UI, we have designed all activities on digital maps. The map is powered by 
Google maps and Google Place Autocomplete. By dragging a map on a screen, a user can 
simply register his/her destination by checking address (a). Users can also search their 
itinerary by pushing the direction button (pink button on the screen) and input their Origin and 
Destination on the input box (b). For user convenience and accurate place information, we 
utilized Google Place Autocomplete. As can be seen (c), suggested words help a user easily 
find his/her place. Since there are many places with the same place name existing in other 
regions, we restrict the Autocomplete searching coverage to only our research-scope area. It 
is also possible to set the departure time and the arrival time by using a clock UI.   
 

 
Figure 6.3 User Interfaces for user input 

 
Fig 6.4 shows the user interface with the matched results. Each mode has a different icon and 
route color for distinctive visualization. When a rider pushes the mode icon, he/she can see 
their approximate arrival time to each go-point. A rider can check their detailed route 
information and location by enlarging the screen. The app provides not only matching results 
but also travel time and cost information on the mode alternatives. From this information, 
participants can realize that our matched results are attractive. For example, when a rider asks 
rider-matching from Hollywood to California District 7 in LA downtown, DeepRides shows the 
route that has walk, ride-share, Redline, and Bikesharing. That is, 1) walk to the near go-point 
and use a rideshring 2) transfer to Red line at Hollywood/Vine station, 3) get off the train at the 
Civic Center station and ride a bike to the destination. It takes 31 minutes, which is only 1 
minute slower than a vehicle trip. It is faster and cheaper than Uber in this particular case 
(based on the data we accessed for the particular time; thus it is not to be generalized). 
Furthermore, matching result says that it is faster than using purely the transit mode. 
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Figure 6.4 User Interfaces for matched results 

 
The mobile app is capable of collecting riders’ preferences about our ride-matching 

system from the short survey screen. A user can go to this screen by pushing a blue survey 
button activated after route matching. Figure 6.5 shows the survey screen. A user is asked to 
show their preference toward the matched-result and their willingness to pay (WTP) for the 
service. Since the previous screen provides price information for other modes, we expect that 
a user can give their opinion about the price properly. Mode choice preference under the given 
conditions can be collected from the last question. With this survey data, the route results will 
be sent to the DeepRides server so that we can analyze the behavior of the participants in 
detail.     

 
Figure 6.5 Survey screen of DeepRides app 
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7. Survey design 
As the P2P ridesharing system is a travel that is largely not experienced by travellrs at this 
time, it is important to know how users accept the proposed system. In order to conduct a user 
acceptance study, we have prepared a set of survey questions for conducting a field survey. 
Based on discussions with Caltrans, the survey is scheduled to be conducted in conjunction 
with the subsequent UCConnect research on a fully integrated system that includes bus transit 
as well as other shared-mobility options, during 2017-18. We however describe the expected 
survey details here. 
 
This survey is modified from a plan for a survey that was initially prepared during the first 
phase of this sequence of projects, during 2015-16. The bikesharing system is now added to 
the transit-ridesharing alternative that was initially considered in phase-I. Therefore, this 
survey also includes questions regarding bikesharing and is designed for individuals who use 
the LA Metro red line, the LA bike share system, or the public parking lot near LA Metro red 
line. In the rest of this section, we present the detailed survey plan, survey screening, and a 
possible analysis methodology.  
 

7.1 Survey Plan 

7.1.1 Field Survey Area 
● Survey period 

- The survey is conducted during three days Tuesday through Thursday in morning 
peak hour (7:00 - 9:00 am) and evening peak hour (4:30 - 6:30 pm).  
 

● Survey area 
- LA Metro red line user: the survey for the LA metro red line users is conducted on the 
red line.  
- LA public parking lot user: the survey for the parking is conducted at the public 
parking lots near red line stations. 
- LA bikesharing program user: In the morning peak hour, the survey for the LA 
bikesharing program user is conducted at the Union station west portal bike station and 
1st & central bike station. In the evening peak hour, the survey for the bikesharing user 
is conducted at the Main & 1st bike station and Broadway & 3rd bike station.    
 

Table 7.1 Target number of Survey respondents 

 LA red line 
station Bike station Parking lot Total 

target 
number 50 50 50 150 

 

7.1.2 Survey Method 
During the survey, a smart-phone (or a tablet) programmed with the mobile application 
discussed in the previous section will be made available to the survey participants. 
Participants will be asked to try the app by requesting their trip, and will choose the best travel 
mode among alternatives and will be asked follow up questions on their opinion on the 
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ridesharing cost, and the ease of working with the app. The mobile survey instrument is 
connected with the QuestionPro survey program. The survey results are submitted directly to a 
secure server, QuestionPro data collection set.  
 

The survey for the P2P ridesharing system as a transit feeder contains 20 questions 
including some open-ended questions for which the respondents can provide commentary. 
The survey is offered in English, and is designed to take about 15 minutes to complete. 
Obviously this means that many busy travelers may need to be asked to take the survey after 
their busy travel period, if a field survey needs to be done. One option in this case is to 
conduct the survey in person at their leisure, after the travel or during a trip in a car or transit 
vehicle. Parking lot surveys after the trip are also possible. Initially, however, the survey can 
be done on the internet, with users who are not on their trip at the time, though corrections for 
biases will also be needed in this case. The initial target is to collect at least 50 completed 
survey result from each survey area. The survey data will be analyzed to see the mode choice 
pattern among given travel alternatives.  
 

7.2 Screening Questions 
The survey is composed of four parts: (1) Testing and feedback on the App described in 
section 6; (2) Screening questions on the P2P ridesharing system; (3) Current travel status; (4) 
Socio demographic information. The screening questions are designed to assess their mode 
choice behavior with sociodemographic information. Participants will be asked to try the app 
and requested to answer the following questions within four categories.  
 
Table 7.2 Overview of screening questions 

Category Elements 

․Testing and feedback on App Mode choice, ridesharing cost, ease of working with the app, 

․Screening questions on P2P 
ridesharing system 

Necessary incentive, distance between origin/destination 
and red line station, proper mode to red line station, checks 
on whether the user wants to transfer or not when using the 
p2p ridesharing system, preference to be a driver or rider in 
the p2p ridesharing system 

․Current travel status Travel mode, mode choice reason, travel distance, travel 
time, number of transfer 

․Socio demographic 
information 

employment status, trip purpose, household income, 
number of cars available, number of people in household 

 

7.3 Analysis Methodology 
During the survey, respondents will be asked to choose the most preferable mode from among 
the proposed travel modes based on characteristics such as time, cost, and socio-economic 
characteristics. It is possible to conduct a predictive analysis based on the respondents’ 
choices collected in the survey. To examine the discrete choice behavior, So and Kuhfeld 
(1995) indicates generalized logit model, conditional logit model and mixed logit model as 
possible statistical techniques for this kind of a survey. We provide below some possible 
models of this kind, so as to detail the possible candidate analysis methodologies which are 
well-known the transportation field. We however also suspect that the validity of the calibrated 
models would be questionable when such discrete choice models are built from data on stated 
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preference to alternatives that are not experienced fully by the respondents yet. Alternative 
methods such as conjoint analysis that is more prevalent in consumer behavior analysis for 
business and marketing may also be relevant, though not used extensively the transportation 
user behavior studies. This will be further explored in the third phase of this sequence of 
projects on shared travel, during 2017-18.   

7.3.1 Multinomial discrete choice model  
Consider an individual choosing from among m alternatives in a choice set. Let  denote the 

probability that individual j chooses alternative k, let represent the characteristics of 

individual j, and let  be the characteristics of the kth alternative for individual j (So and 
Kuhfeld (1995)).   
 
(1)  Generalized logit model 
 
In a generalized logit model, each individual is considered as the unit of analysis, and 
characteristics of each individual is regarded as explanatory variables. The explanatory 
variable which consists of its own characteristics is assumed to be constant over other 
alternatives. The probability of the individual j to choose alternative k is: 
  

Π
	 ′

∑ 	 ′
1

 

 
, . . . ,  are m vectors of unknown regression parameters. The last set of coefficients (that is, 
) is to be null ( 0) value because the coefficients  represent the effects of the X variables 

on the probability of choosing the kth alternative over the last alternative. To conduct the 
goodness of fit test such a model, (m-1) sets of regression coefficients are needed. 
 
 
(2)  Conditional logit model 
 
In a conditional logit model, it is assumed that explanatory variables (Z) for each alternative 
has different values, but the impact of a unit of Z is assumed to be constant across 
alternatives. In this model, the probability of the individual j to choose alternative k is: 
 

Π
	 ′

∑ 	 ′
1

 

 
 is a single vector of regression coefficient. It is possible to derive the impact of each variable 

on the choice probabilities by exploring the difference of its values across the alternatives. 
 
(3)  Mixed logit model 
 
So and Kuhfeld (1995) state that in a mixed logit model, both the characteristics of the 
individual and the alternatives are considered at the same time. The choice probability is:  
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Π
	 ′ ′

∑ 	 ′ ′
1

 

, . . . , and ≡ 0 are the alternative-specific coefficients and  is the set of global 
coefficients.  
 

7.4 Limitations 
There are some limitations to the generalizability of the data. The first limitation is that survey 
areas are limited at certain spots and place. Location bias, therefore, is possible since 
participants are not chosen randomly. The bias ensure from the fact that an individual’s 
decision to choose their travel mode may be related to their travel purpose; however in this 
research, we only consider a commute trip and non-commute trip. Such considerations, as 
well as the specific methodology (standard discrete choice models vs alternatives such as 
conjoint analysis, as mentioned above) are left for further research during the survey phase of 
the subsequent project in 2017-18. 
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8. Conclusion 
This project introduces schemes to study sustainable transportation alternatives that provide 
access to public transportation. We design a transit feeder system by matching a ride to P2P 
ridesharing, bike-sharing, walk, and transit. Green transportation modes in the system can be 
mutually beneficial in terms of improving ridership, saving cost and increasing mobility. 
Following our earlier study (Phase 1 research in 2015-16), we further proposed schemes to 
integrate multiple transportation modes and methods to increase ride-matching rates. 
 
The proposed system is tested in LA County. Target modes are metro red line subway rail in 
the, Metro bike-sharing program in Downtown LA, walk, and P2P ridesharing. Geographical 
analysis for accessibility indicates that both P2P ridesharing and bike-sharing enlarge the 
catchment area of the red line stations. In the morning peak, bikes are more effective in 
Downtown LA because bikes are generally not affected by downtown street congestion. The 
parametric study indicates that our system generally improves matching rates when we 
compare it to our earlier results on only the rideshare system being a feeder to transit (from 
Phase 1). 
 
The insights gained from our parametric study include the following. First, the matching rate is 
determined by the riders-to-drivers ratio. The rate increases sharply at first and then remains 
relatively stable when the number of drivers is more than two times that of riders. Besides, 
both P2P ridesharing and shared bikes are used as transit feeders by some riders. The usage 
would increase linearly when the availability of drivers and bikes increases. One limitation, 
which is also a future research topic, is that this study only included travel demand from 
vehicle demands. In other words, this study focused on the rideshare matching potential from 
vehicle demands, and not the total travel demand (vehicle and transit). In future research, 
transit demand data could be included to study the potential improvements and mode shift. 
 
In addition, we propose a heuristic search algorithm to resolve the bike-rebalancing problem. 
The case study result demonstrates the algorithm’s practicality and effectiveness. The core of 
the algorithm evolved from two key concepts. The first is to view the element of the solution 
set as bike station pairs rather than individual stations, and the second is the parameter 
estimation and validation procedure using the concept of unsupervised learning. Dynamic bike 
rebalancing problem with uncertain demand is challenging using conventional programming-
based method because routing, operation cost, dynamic demand, and specific number of 
bikes to pick up and drop off are highly intertwined. We proposed a ready-to-implement 
alternative to solve the rebalancing problem with high model interpretability and tractability. 
The proposed methodology was tested in our research area (Downtown LA). We are 
interested in extending the study to the upcoming scenarios where additional service vans are 
dispatched near the Port of Los Angeles, City of the Pasadena, and Venice. Integrating the LA 
Metro bike redistribution with that in the City of Santa Monica may also be beneficial for both 
cities and worth examining.  
 
Finally, a large component of the existing transit system , namely the bus system, needs to be 
incorporated into or studies to fully determine the full breadth of possibilities offered by the new 
shared-mobility alternatives in achieving green and sustainable transportation. This is 
expected to be a focus in our further research during the subsequent phase-III of the 
sequence of projects, in 2017-18. 
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