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Abstract. In this paper, we propose a novel predictor for the conversion from mild cognitive impairment (MCI) to Alzheimer’s
disease (AD). This predictor is based on the shape diffeomorphometry patterns of subcortical and ventricular structures (left and
right amygdala, hippocampus, thalamus, caudate, putamen, globus pallidus, and lateral ventricle) of 607 baseline scans from the
Alzheimer’s Disease Neuroimaging Initiative database, including a total of 210 healthy control subjects, 222 MCI subjects, and
175 AD subjects. The optimal predictor is obtained via a feature selection procedure applied to all of the 14 sets of shape features
via linear discriminant analysis, resulting in a combination of the shape diffeomorphometry patterns of the left hippocampus, the
left lateral ventricle, the right thalamus, the right caudate, and the bilateral putamen. Via 10-fold cross-validation, we substantiate
our method by successfully differentiating 77.04% (104/135) of the MCI subjects who converted to AD within 36 months and
71.26% (62/87) of the non-converters. To be specific, for the MCI-converters, we are capable of correctly predicting 82.35%
(14/17) of subjects converting in 6 months, 77.5% (31/40) of subjects converting in 12 months, 74.07% (20/27) of subjects
converting in 18 months, 78.13% (25/32) of subjects converting in 24 months, and 73.68% (14/19) of subject converting in 36
months. Statistically significant correlation maps were observed between the shape diffeomorphometry features of each of the
14 structures, especially the bilateral amygdala, hippocampus, lateral ventricle, and two neuropsychological test scores—the
Alzheimer’s Disease Assessment Scale-Cognitive Behavior Section and the Mini-Mental State Examination.

Keywords: Alzheimer’s disease, lateral ventricles, linear discriminant analysis, mild cognitive impairment, prediction, principal
component analysis, shape diffeomorphometry, subcortical structures
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INTRODUCTION

Alzheimer’s disease (AD) is a progressive neurode-
generative disorder that is predominantly diagnosed
in people over 65 years of age [1]. It is the most
common form of dementia, which is characterized by
trouble with thinking and language as well as a loss
of long-term memory. The cause and the mechanism
of progression for most AD cases are still unknown.
AD worsens during its progression until death and cur-
rently there are no treatments that can cure or reverse
this progression. Definite diagnosis of AD can only be
made based on histopathologic evidence obtained from
a biopsy or autopsy [2]. Mild cognitive impairment
(MCI) is a syndrome that is regarded as a risk state for
dementia [3] and is associated with an increased risk of
progression to probable AD [4]. More than half of the
individuals with MCI deteriorate to dementia within 5
years [3] at a rate of about 10% to 15% per year. Consid-
erable heterogeneity exists among MCI patients: some
convert to AD with varying progression rates, and oth-
ers remain stable for a long period of time or even
revert to normal cognitive status. In this article, the for-
mer is named MCI converters (MCI-C) and the latter
is named MCI non-converters (MCI-NC). Specifically,
in this study, the MCI-C subjects converted to the AD
status within 36 months from their baseline while the
MCI-NC did not.

The ability to identify an MCI patient’s risk of devel-
oping AD is important for clinical decision making
and timing therapy. Structural neuroimaging measures
have been shown to be sensitive to the degeneration
that occurs in MCI and AD [5], which may provide
robust biomarkers for predicting the conversion from
MCI to AD. Methods of detecting MCI that represents
prodromal AD would aid clinical practice by allow-
ing attention to be focused on those with the highest
risk of conversion. However, accurate prediction of the
MCI-to-AD conversion is very challenging [6], espe-
cially when utilizing only the baseline information.
This difficulty is due to the “lag” between brain atro-
phy and cognitive decline. The MCI-to-AD prediction
can be regarded as a classification problem between the
MCI-C and the MCI-NC. During the last decade, there
have been many methods developed, using structural
imaging, to differentiate between MCI-C and MCI-NC
[6–20]. A majority of the studies focusing on the pre-
diction of MCI-to-AD conversion were based on the
information from a single scan, the baseline dataset.
Recently, longitudinal structural features have been
proposed as better biomarkers for the prediction of
MCI conversion. For a more comprehensive literature

survey of previous work on predicting the MCI-to-AD
conversion using structural imaging biomarkers, we
refer the reader to [15].

There are typically three different types of struc-
tural MCI-to-AD predictors. The most widely used
one is the cortical thickness [6,7,13,15,17–20] because
this measurement is very sensitive to small structural
changes in the cortex. The second measurement is the
volume of specific structure of interest, such as the
hippocampus [6,14,19] and the amygdala [14]. The
third type of predictors is the biomarkers obtained
from whole brain based analyses. To be specific, meth-
ods such as the voxel-based morphometry analysis
have been suggested to locate the most discriminative
regions that are then taken as the biomarkers for the
MCI-to-AD prediction [6,8,10–12,15].

In recent years, the single-scan based shape diffeo-
morphometry patterns of subcortical and ventricular
structures have been implicated to provide important
anatomical information in characterizing the differ-
ence between healthy controls (HC) and MCI as well
as AD [21–28]. In diffeomorphometry, one utilizes the
diffeomorphisms stemming from a fixed coordinate
system (the template space) to study the shape mor-
phometrics [29] of the target groups rather than the
shapes themselves. In our previous study [28], we have
demonstrated the diffeomorphometric abnormalities
detected in MCI and AD populations, when compared
with HC, of the fourteen subcortical and ventricular
structures: the left and right amygdala, hippocampus,
thalamus, caudate, putamen, globus pallidus, and lat-
eral ventricle. In a continuation of the previous work,
we herein propose a method for the prediction of MCI-
to-AD conversion using the diffeomorphometry-based
shape features of those same fourteen structures in the
baseline data consisting of 210 HC subjects, 175 AD
subjects, and 222 MCI subjects, among which 87 MCI
subjects did not deteriorate to AD within 36 months
from baseline.

The shape features are obtained in the framework
of large deformation diffeomorphic metric mapping
(LDDMM) [30], in which a diffeomorphism is com-
puted as the end point of an energy-minimizing path
(a geodesic) through the group of diffeomorphisms.
Given a fixed template, the anatomical variability in
the targets is encoded by the geodesics from the tem-
plate to each target. The fundamental “conservation of
momentum” property of these geodesics [31] allows
for representing the entire flow of a geodesic with
the initial momentum configuration. This means that,
once a template is fixed, the space of initial momenta
becomes an appropriate linear vector space [32–34] for
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studying shape. Anatomical patterns that are specific
to MCI and AD can therefore be studied by applying
linear statistical techniques, such as principal compo-
nent analysis (PCA), to the initial momentum vectors,
which was already demonstrated in [26,28].

In this experiment, the primary training process,
including feature extraction and dimensionality reduc-
tion, was performed on the baseline HC and AD
subjects while the optimization over possible struc-
ture combinations utilized the addition of the baseline
MCI subjects. The testing process was carried out on
the baseline MCI subjects. Such a design comes from
the observation that the differences, in terms of the
shape diffeomorphometry patterns, between MCI-C
and MCI-NC are similar to those detected between
AD and HC, which has been shown in [28]. It has also
been reported that other patterns of change, within the
brain, of MCI-C are similar to those of AD while those
of MCI-NC are similar to HC [35]. Predicting the con-
version from MCI to AD using classifiers built from
HC-versus-AD information has also been successfully
demonstrated in [35–38].

In this article, we first describe the procedure for
generating the possible HC-versus-AD linear discrim-
inant analysis (LDA) classifiers to be used in the
prediction of MCI-to-AD conversion, which are built
from the diffeomorphometry-based shape features of
subsets of the fourteen subcortical and ventricular
structures from 210 HC subjects and 175 AD sub-
jects, all of which come from the Alzheimer’s Disease
Neuroimaging Initiative (ADNI) baseline dataset. We
then demonstrate the optimization procedure over pos-
sible combinations of structure-specific shape features
by utilizing data from 222 MCI subjects in a 10-fold
cross-validation fashion, thus yielding 10 optimal LDA
MCI-to-AD predictors. After that, we cross-validate
the predictors on the 222 MCI subjects, including
135 MCI-C subjects and 87 MCI-NC subjects, the
conversion of which is determined by a follow-up
of 36 months. At the end of this paper, we evaluate
the correlation between the vertex-based shape diffeo-
morphometry patterns of the fourteen structures and
two neuropsychological test scores for the Alzheimer
dementia – the Alzheimer’s Disease Assessment Scale-
Cognitive Behavior Section (ADAS-cog) [39] and the
Mini-Mental State Examination (MMSE) [40].

MATERIALS AND METHODS

Data used in the preparation of this arti-
cle were obtained from the ADNI database

(http://adni.loni.usc.edu/). The ADNI was launched
in 2003 by the National Institute on Aging (NIA),
the National Institute of Biomedical Imaging and
Bioengineering (NIBIB), the Food and Drug Admin-
istration (FDA), private pharmaceutical companies
and non-profit organizations, as a $60 million, 5-year
public-private partnership. The primary goal of ADNI
has been to test whether serial magnetic resonance
imaging (MRI), positron emission tomography (PET),
other biological markers, and clinical and neuropsy-
chological assessment can be combined to measure
the progression of MCI and early AD. Determination
of sensitive and specific markers of very early AD
progression is intended to aid researchers and clin-
icians to develop new treatments and monitor their
effectiveness, as well as lessen the time and cost of
clinical trials.

The Principal Investigator of this initiative is
Michael W. Weiner, MD, VA Medical Center and Uni-
versity of California – San Francisco. ADNI is the
result of efforts of many co- investigators from a broad
range of academic institutions and private corpora-
tions, and subjects have been recruited from over 50
sites across the U.S. and Canada. The initial goal of
ADNI was to recruit 800 adults, ages 55 to 90, to par-
ticipate in the research, approximately 200 cognitively
normal aging individuals to be followed for 3 years,
400 people with MCI to be followed for 3 years and 200
people with early AD to be followed for 2 years. For
up-to-date information, see http://www.adni-info.org/.

In this study, we included data from 210 HC subjects,
222 subjects with MCI, and 175 subjects with AD.
Within the MCI group, 135 subjects converted to AD
(MCI-C) within a follow-up of 36 months. The con-
version time within the MCI-C group is heterogeneous
since an MCI patient may convert at any time over the
course of 6 months to 3 years. In the case of this study,
17 subjects converted in 6 months, 40 in 12 months, 27

Table 1
Demographic data for the three groups: Healthy controls (HC), mild
cognitive impairment (MCI), and Alzheimer’s disease (AD). The
statistics for age, Mini-Mental State Examination (MMSE), and
Clinical Dementia Rating-sum of boxes (CDR-SB) are displayed

as mean ± SD

Parameter HC Group MCI Group AD Group
(n = 210) (n = 222) (n = 175)

Subject age (y) 76.25 ± 5.01 74.73 ± 7.55 75.28 ± 7.49
No. of male subjects 109 150 94
MMSE score 29.12 ± 1.02 27.57 ± 1.76 23.43 ± 2.01
CDR-SB score 0.03 ± 0.12 1.3 ± 0.60 4.23 ± 1.64

HC, healthy controls; MCI, mild cognitive impairment; AD,
Alzheimer’s disease; MMSE, Mini-Mental State Examination;
CDR-SB, Clinical Dementia Rating-sum of boxes.

http://adni.loni.usc.edu/
http://www.adni-info.org/
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Table 2
Demographic data for the two subgroups of MCI: MCI-C and MCI-
NC. The statistics for age, MMSE, and CDR-SB are displayed as

mean ± SD

Parameter MCI-C (135) MCI-NC (87)

Subject age (y) 74.39 ± 7.04 74.73 ± 7.57
No. of male subjects 81 69
MMSE score 26.68 ± 1.72 27.57 ± 1.76
CDR-SB score 1.84 ± 0.96 1.30 ± 0.60

MCI, mild cognitive impairment; MCI-C, MCI converters; MCI-
NC, MCI non-converters; MMSE, Mini-Mental State Examination;
CDR-SB, Clinical Dementia Rating-sum of boxes.

in 18 months, 34 in 24 months, and the remaining 17 in
36 months. For the group MCI-NC, we only included
those MCI subjects that were followed for at least 3
years, yielding a total of 87 subjects in MCI-NC. Clin-
ical and demographic data for the three groups (HC,
MCI, and AD) are presented in Table 1. In brief, sub-
jects are 55–92 years old, and are not depressed. The
control subjects have MMSE scores of 25–30 and a
Clinical Dementia Rating (CDR) score of 0. The sub-
jects with MCI have MMSE scores of 23–30, a CDR of
0.5, preserved ability to perform daily living activities,
and an absence of dementia. The subjects with AD have
MMSE scores of 20–28, a CDR of 0.5 or 1.0, and meet
the criteria for probable AD. The three groups did not
differ significantly in terms of age (F = 2.53, p = 0.081).
All groups differed on MMSE and CDR-sum of boxes
(CDR-SB) as expected based on diagnostic criteria (all
p < 0.001). Table 2 lists the demographics of the two
sub-groups of MCI: MCI-C and MCI-NC. According
to Student’s t-tests, the two MCI sub-groups did not
differ significantly in age (p = 0.734), but had statis-
tically significant difference in terms of both MMSE
(p = 5.262e−5) and CDR-SB (p = 2.364e−4).

Image protocol and volumetric segmentation

The raw MR scans, in the format of DICOM,
were downloaded from the public ADNI website
(http://adni.loni.usc.edu/data-samples/mri/). Locally,
the raw MR data were automatically corrected for spa-
tial distortion due to gradient nonlinearity [41] and B1
field inhomogeneity [42]. Each subject was scanned
twice with a 3D MPRAGE protocol at 1.5 Tesla. The
two T1-weighted images were rigid-body aligned to
each other, averaged to improve the signal-to-noise
ratio, and then resampled to isotropic 1-mm voxels.
Description of the rigid-body alignment algorithm is
detailed in [43], wherein it served as a first step of a
longitudinal registration pipeline. Averaging the two
scans of the same subject allowed an increase in the
signal-to-noise ratio. Volumetric segmentations of the

fourteen subcortical and ventricular structures were
obtained using FreeSurfer [44]. Based on the trans-
formation of the full brain mask into atlas space, the
total cranial vault value was estimated from the atlas
scaling factor [45] to control individual differences
in head size. The quality of the automated volumetric
segmentations has been reviewed by technicians
who have been trained by an expert neuroanatomist
with more than 10 years of experience. Images that
have been degraded due to motion artifacts, technical
problems (a change in scanner model or change in
the radiofrequency coil during the time-series), or
significant clinical abnormalities (e.g., hemispheric
infarction) were excluded from our analysis.

Baseline shape processing

The processing of the baseline shapes of all the four-
teen structures for each individual subject was detailed
in [28], for which we will briefly summarize the steps
here. For each structure, the 2-D surface that con-
tours the boundary of the 3-D volume segmentation
was approximated by a diffeomorphically deformed
atlas surface to ensure correct topology and smooth-
ness. The deformation was created by aligning the atlas
segmentations (manually labeled) and the subject seg-
mentations (from FreeSurfer) using a multi-channel
LDDMM-image mapping. More details and validation
of this surface-generation methodology can be found
in [28,46].

To obtain the baseline shape diffeomorphometry
features associated with the surface of each structure
for each individual subject, we created a common tem-
plate surface for each structure using the algorithm
proposed and validated in [47]. Briefly, for each sin-
gle structure, every subject surface was first rigidly
aligned (rotation and translation) to a common spatial
position. The rigid registration algorithm computes an
optimal transformation between the vertex sets of two
surfaces by minimizing a score which combines reg-
istration and soft assignment. After rigid registration,
each observed subject surface is modeled as a random
deformation of a hidden template plus additive Gaus-
sian noise. Given this model, the template is estimated
from the subject surfaces using an approximation of the
expectation-maximization algorithm, subject to some
topology constraints. It is enacted by ensuring that the
hidden template surface is a diffeomorphic deforma-
tion of a reference shape, called the hyper-template.

The LDDMM-surface mapping algorithm [48] was
then employed to align the common template sur-
face to each subject surface, creating the deformation

http://adni.loni.usc.edu/data-samples/mri/
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associated with each structure surface of each subject.
The readers are referred to [28] for more details about
the mathematical foundations and the experimental
steps of this procedure.

Generation of the baseline shape
diffeomorphometry features

For each single structure, we generate its baseline
shape diffeomorphometry features separately as fol-
lows. From each LDDMM-surface mapping, we obtain
initial momentum vectors �0 that are defined at all
vertices of the template surface. The initial momen-
tum vectors characterize the shape variations in the
subject surface relative to the template surface. Sim-
ilar to the “conservation of momentum” concept in
physics, given the vertices on the template surface and
the initial momentum vectors �0, the evolution of the
entire diffeomorphic flow is uniquely determined [31].
The initial momentum vectors �0 encode the geodesic
connecting the template surface to the subject surface.
Therefore, we selected the initial momentum vectors
�0 to be our features for prediction. These vectors
form an extremely high dimensional space and thus,
for each structure, we performed PCA on the initial
momentum vectors of all the HC and the AD subjects
to construct an orthonormal basis. The initial momen-
tum vectors of all the MCI subjects were projected onto
that PCA basis. It is worth noting that, in our context,
the inner product used in the PCA is derived from the
Riemannian metric that leads to the geodesic equation
in LDDMM. Details of PCA on the initial momentum
space can be found in [32–34]. To reduce the dimension
of the feature space, we retained only the first M princi-
pal components (PCs) that account for 95% of the total
variance. We then selected only those PCs that show
significant group difference between HC and AD. To
make this selection, for each PC, we performed a Stu-
dent’s t-test between the PC coefficients for HC and
those for AD, and selected the PCs with a p-value less
than 0.05. We also retained the corresponding PC coef-
ficients for all the MCI test subjects. This established
our training and testing features for cross-validation.

Selecting the optimal baseline classifier and
validation

After performing PCA on the initial momentum
space and an ensuing selection of PC coefficients, we
had feature matrices for fourteen structures. In each
feature matrix, every row contains the PC coefficients
for a different subject while each column contains the

Fig. 2. Flowchart demonstrating the procedure of performing 10-
fold cross-validation without being biased by the subjects removed at
the beginning. This process is repeated for the N MCI subjects in each
fold. NHC indicates the number of HC subjects, NMCI indicates the
number of MCI subjects, and NAD indicates the number of AD
subjects.

coefficients for all of the projections onto a specific
PC basis vector. As we have shown in [28], it is plau-
sible that the combination of features from a subset
of structures is the most discriminating. To find the
optimal combination, we tested all of the possible clas-
sifiers we could build from the PCs of the fourteen
structures. We used linear discriminant analysis (LDA)
to construct our classifiers. Considering each possible
combination, we built a total of 16383 (214–1) different
classifiers and compared their classification perfor-
mance with each other. The procedure of sifting the
optimal LDA classifier for the MCI-to-AD prediction
is demonstrated in Fig. 1.

To estimate the accuracy of our predictor in clas-
sifying MCI-C versus MCI-NC, we adopted 10-fold
cross-validation; about 22 MCI subjects (8 from MCI-
NC and 14 from MCI-C) were excluded before we
selected the optimal LDA classifier. To be specific, we
excluded those 22 MCI subjects at the very beginning
and then sifted the optimal LDA classifier based on
the feature information from the other 200 MCI sub-
jects (called “data from MCI” in Fig. 1) and the 210
HC and 175 AD subjects (the “data from HC and AD”
in Fig. 1), as described in the previous section. We
then used that sifted optimal LDA classifier to deter-
mine the subgrouping of the MCI subjects excluded at
the beginning. The 10-fold cross-validation procedure
is demonstrated in Fig. 2. It is important to notice that
we would obtain a unique optimal classifier for each of
the 10-fold tests. Since the test subjects were removed
from both the initial PCA and the process of selecting
the optimal classifier, we avoid any bias or overestima-
tion of the accuracy of the predictor in forecasting the
conversion from MCI to AD.

Comparison with the hippocampal volume based
biomarker

The hippocampal volume has been suggested to play
a critical role in predicting the MCI-to-AD conver-
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Fig. 1. Flowchart demonstrating the procedure of selecting the optimal linear discriminant analysis (LDA) classifier in classifying MCI-C from
MCI-NC. PC, principal component.

sion [6,14,19]. We therefore treat it as a benchmark for
evaluating our shape diffeomorphometry based MCI-
to-AD predictor. We compared the prediction accuracy
from our shape diffeomorphometry informatics with
that from the hippocampal volumes. Following the
work presented in [19] and [6], we combined the
volumes of the left and right hippocampus together.
Furthermore, we did not use the HC and AD hip-
pocampal volumes as the training features. Instead, we
performed 10-fold cross-validation with respect to the
MCI hippocampal volumes. To be consistent with our
shape-based procedure and the two aforementioned
works, we again used LDA as the classification tech-
nique. It is noticeable that in [19], the hippocampal
segmentations were not obtained from FreeSurfer but
from the authors’ own approach.

Correlating the shape diffeomorphometrics and
neuropsychological test scores

Imaging based biomarkers would not be useful
in clinical trials if they could not be significantly
associated with cognitive deterioration. In this study,
we evaluated the correlation between the shape
diffeomorphometrics of each structure and two neu-
ropsychological test scores (ADAS-cog and MMSE).
ADAS-cog measures a number of cognitive domains,
including components of memory, language, and

praxis. This scale is scored from 0 to 70 with
higher values indicating greater cognitive impairment.
MMSE provides a continuous scale to assess pri-
mary cognitive functions that affect the dementia of
the Alzheimer type, including orientation, registration,
attention, recall, language, and constructional praxis
[40]. The MMSE score ranges from 0 to 30. In con-
trast to ADAS-cog, lower MMSE scores indicate more
severe cognitive impairment.

For the correlation analysis, instead of the initial
momentum vectors �0, we used a scalar field—the
log-determinant of the Jacobian matrix of the diffeo-
morphism from the LDDMM-surface mapping. The
log-determinant of the Jacobian is defined at each
vertex of the template surface, quantifying the fac-
tor by which the diffeomorphism expands or shrinks
the surface area at each vertex [28]. We calculated
the Pearson product-moment correlation coefficients
(PCCs) between the scalar field at each vertex and
the two cognitive test scores, co-varying for the age,
gender, and the estimated intracranial volume. Statis-
tical significance of the correlation at each vertex is
measured by a p-value obtained from non-parametric
permutation tests, in which a total of 40,000 permuta-
tions were performed. Since multiple correlation tests
were performed simultaneously at all vertices of the
template surface, for each structure, we corrected for
multiple comparison by adjusting the p-values in a way
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that controls the familywise error rate (FWER) at a
level of 0.05 based on the “maximum statistic” method
described in [49].

RESULTS

The PCA procedure resulted in 48 PCs for the left
hippocampus, 49 PCs for the right hippocampus, 21
PCs for the left amygdala, 24 PCs for the right amyg-
dala, 44 PCs for the left lateral ventricle, 39 PCs for
the right lateral ventricle, 61 PCs for the left thalamus,
60 PCs for the right thalamus, 45 PCs for the left cau-
date, 45 PCs for the right caudate, 58 PCs for the left
putamen, 59 PCs for the right putamen, 30 PCs for the
left globus pallidus, and 29 PCs for the right globus
pallidus. After a further reduction via the Student’s t-
tests between HC and AD, we retained 9 PCs for the
left hippocampus, 11 PCs for the right hippocampus,
5 PCs for the left amygdala, 6 PCs for the right amyg-
dala, 16 PCs for the left lateral ventricle, 15 PCs for the
right lateral ventricle, 8 PCs for the left thalamus, 16
PCs for the right thalamus, 5 PCs for the left caudate,
7 PCs for the right caudate, 9 PCs for the left putamen,
15 PCs for the right putamen, 6 PCs for the left globus
pallidus, and 7 PCs for the right globus pallidus.

From the 10-fold cross-validation, we obtained 10
optimal LDA classifiers. For 7 out of 10, the opti-
mal LDA classifiers came from the same combination
of structures: the left hippocampus, the left lateral
ventricle, the right thalamus, the right caudate, and
the bilateral putamen. For 2 out of 10, the optimal
combination came from four structures: the left hip-
pocampus, the left lateral ventricle, the right thalamus,
and the right caudate. For the remaining classifier,
the optimal combination came from six structures:
the bilateral hippocampus, the left amygdala, the right
thalamus, the right caudate, and the left globus pal-
lidus. Applying the optimal LDA selection procedure
to the complete MCI sample (all 222 MCI subject),
we obtained a combination of the left hippocampus,
the left lateral ventricle, the right thalamus, the right
caudate, and the bilateral putamen. Based on this exper-
imental result, to predict the conversion for future MCI
scans using the shape diffeomorphometry patterns built
from the HC and AD population, we consider the com-
bination of those six structures to be the optimal LDA
predictor.

According to the 10-fold cross-validation results, we
are capable of achieving a total classification accuracy
of 74.77%, a sensitivity of 77.04% (classifying MCI-
C) and a specificity of 71.26% (classifying MCI-NC).

The area under the receiving operating characteristic
curve (AUC) is found to be 73.81%. The accuracy of
our approach in predicting the outcome for the MCI-C
subjects varies depending on the subject’s conversion
time. To be specific, we correctly predicted 82.35%
(14/17) of the MCI subjects converting in 6 months,
77.5% (31/40) of the MCI subjects converting in 12
months, 74.07% (20/27) of the MCI subjects convert-
ing in 18 months, 78.13% (25/32) of the MCI subjects
converting in 24 months, and 73.68% (14/19) of the
MCI subjects converting in 36 months. Generally, the
closer the MCI subject is about to convert, the more
accurately the classifier can predict that conversion.

Using the hippocampal volume to predict the MCI-
to-AD conversion for our MCI dataset, we successfully
predicted the outcome for 57 out of 87 MCI-NC sub-
jects and 83 out of 135 MCI-C subjects, yielding a
specificity of 65.52% and a sensitivity of 61.48%.
For the MCI-C subjects, the hippocampal volume pre-
dicted 58.82% (10/17) of the MCI subjects converting
in 6 months, 62.5% (25/40) of the MCI subjects con-
verting in 12 months, 62.96% (17/27) of the MCI
subjects converting in 18 months, 68.75% (22/32) of
the MCI subjects converting in 24 months, and 47.37%
(9/19) of the MCI subjects converting in 36 months.
A comparison of the prediction accuracy given by
using our shape diffeomorphometry patterns and the
hippocampal volumes for the dataset in this study as
well as the prediction results reported in [19] and [6]
are listed in Table 3. Compared with the hippocam-
pal volume biomarker, our shape diffeomorphometry
biomarker boosted the overall prediction accuracy by
12%. Comparing the prediction accuracy from the
hippocampal volume biomarker applied to three dif-
ferent subsets of ADNI dataset (the first three rows in
Table 3), we observed that all three prediction results
are in the same range with only slight differences.
These differences may have been caused by varia-
tions in the MCI dataset used in each study, especially
the MCI-C subjects; [6] only examined MCI-Cs with
conversion periods of up to 18 months which are gener-
ally considered as relatively easy cases for prediction.
Also the hippocampal volumes examined in [19] were
not obtained from FreeSurfer but from the authors’
own segmentation approach. This difference in the hip-
pocampal definition may have also contributed to the
slight differences in the prediction accuracy of the three
works.

For each of the 14 subcortical and ventricular struc-
tures, the vertex-based correlation maps between the
two neuropsychological test scores (ADAS-cog and
MMSE) and the shape diffeomorphometry patterns,
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Table 3
Comparisons of the shape diffeomorphometry and the hippocampal volume as biomarkers for the prediction of MCI to AD

Study Features Conversion period N (MCI-NC, MCI-C) Acc Sen Spe

Cuingnet et al. [6] Hippocampal volume 0–18 months 134, 76 0.67 0.62 0.69
Wolz et al. [19] Hippocampal volume 0–48 months 238, 167 0.65 0.63 0.67
Proposed Hippocampal volume 0–36 months 87, 135 0.63 0.66 0.61

Shape diffeomorphometry 0–36 months 87, 135 0.75 0.77 0.71

MCI, mild cognitive impairment; MCI-C, MCI converters; MCI-NC, MCI non-converters; Acc, accuracy, Sen, sensitivity, Spe, specificity.
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Fig. 3. Statistically significant correlation maps between the
vertex-based shape diffeomorphometrics of the 14 subcortical and
ventricular structures and the values of ADAS-cog (top panel)
and MMSE (bottom panel). Colors represent the Pearson product-
moment correlation coefficients. For each correlation map, two
views are presented. vent, lateral ventricle; am, amygdala; hi, hip-
pocampus; ca, caudate; thal, thalamus; put, putamen; gp, globus
pallidus.

as quantified by the log-determinant of the Jacobian
matrix, are demonstrated in Fig. 3. In that figure, PCCs
are assigned non-zero values only for vertices where
the shape diffeomorphometry correlated statistically
significantly with the corresponding score after per-
forming multiple comparison correction by controlling
the FWER at a level of 0.05.

As shown in Fig. 3, for a majority of vertices on
each structure surface, especially the surfaces of the
bilateral hippocampus, amygdala, and lateral ventri-
cle, significant correlations were observed between the
shape diffeomorphometrics and the values of ADAS-
cog and MMSE. The shape diffeomorphometrics of
the bilateral hippocampus and amygdala were mostly
negatively correlated with the ADAS-cog value and
positively correlated with the MMSE value. The oppo-
site trend was observed for the lateral ventricle; the
shape diffeomorphometrics of the bilateral ventricles
were positively correlated with the ADAS-cog value

and negatively correlated with the MMSE value. This
observation implies that the atrophy of a majority of
regions on the hippocampus and the amygdala, as well
as the ventricular expansion, is indicative of the cogni-
tive deterioration that occurs in the progression toward
AD. Inhomogeneous correlation maps were observed
across the surface of the basal ganglia structures and
the thalamus; some vertices were positively correlated
with the ADAS-cog score while others were nega-
tively correlated. This observation may explain why,
globally, the basal ganglia and the thalamus are not
significantly different in the MCI and AD population
when compared to normally aging subjects in general.
We also notice that the spatial maps of the ADAS-cog
and MMSE correlations are highly consistent with each
other, revealing vertex-wise reverse correlation trends
on the template surfaces.

DISCUSSION

In this paper, we proposed a new structural imaging
based biomarker for the prediction of conversion from
MCI to AD. The features were extracted from the shape
diffeomorphometry patterns of fourteen subcortical
and ventricular structures (the left and right amygdala,
hippocampus, thalamus, caudate, putamen, globus pal-
lidus, and lateral ventricle) of baseline HC and AD
subjects from the ADNI database. Shape diffeomor-
phometry patterns offer new biomarkers in addition
to the more conventional structural biomarkers: cor-
tical volumes [6,14,18–20,50] and cortical thickness
[6,7,17–20,50]. So far, there have been very few stud-
ies exploring the possibility of predicting MCI-to-AD
conversion via the shape diffeomorphometry patterns
in those fourteen subcortical and ventricular structures.
That said, the shapes of subcortical and ventricle struc-
tures have been shown to be affected by the dementia
of Alzheimer type [9,21–26,28,51,52], which may
suggest discriminant features for the prediction of
MCI-to-AD. The application of diffeomorphometry
patterns to the classification of AD from HC has
already been successfully demonstrated in several
other studies [11,26,27] and one can see the possibil-
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Table 4
A comparison of the success rates of various methods in predicting the conversion of MCI-C patients grouped by conversion times. The total

number of MCI-C subjects used in each study is given in parenthesis

m06 m12 m18 m24 m36 m48

Eskildsen et al. [15]
cortical thickness 78.7% (122) 75.2% (128) - 69.4% (61) 69% (29) -
cortical thickness+age 77.1% (122) 76.6% (128) - 70.5% (61) 72.4% (29) -
Zhang et al. [12] 50% (2) 100% (9) 87.5 (8) 80% (10) 50% (6) 66.67% (3)
Proposed method 82.4% (17) 77.5% (40) 74.07% (27) 78.1% (32) 73.7% (19) -

MCI-C, mild cognitive impairment converters.

ity for this given the fact that, for a fixed template,
the evolution of the target is completely determined
by the deformation. In the same sense, the diffeomor-
phisms stemming from a single template to different
targets can be used to characterize the morphomet-
rics in those targets. Statistical inference based on
the metric, the geodesic length of the flows of dif-
feomorphisms connecting human biological shapes,
enables machine learning of the statistical represen-
tation of shape [53]. Indeed, we have found that the
shape diffeomorphometrics of the 14 structures, espe-
cially the amygdala-hippocampus memory circuit and
the adjacent lateral ventricles, are statistically signif-
icantly correlated with two neuropsychological test
scores—ADAS-cog and MMSE (Fig. 3). This clearly
suggests that the shape diffeomorphometrics can be
indicative of the cognitive impairment in the pathology
of AD.

In recent years, compared to single-structure
approaches, multi-structure based diffeomorphometry
has become widely employed in application to shape
abnormality detection in various disorders [28,54,55].
In this study, we developed and validated a shape
diffeomorphometry based biomarker from multiple
subcortical and ventricular structures to predict the
conversion from MCI to AD. To the best of our knowl-
edge, this is the most detailed application of machine
learning to diffeomorphometry markers from multiple
structures and the first one applied to the MCI-to-AD
prediction. Instead of using the shape patterns from
all of the fourteen structures, we developed an auto-
mated feature selection procedure, as demonstrated in
Fig. 1, to select the optimal subset for predicting the
MCI-to-AD conversion. In our experiment, the opti-
mal LDA predictor arises from a combination of the
shape diffeomorphometry patterns of a subset contain-
ing six of the original structures: the left hippocampus,
the left lateral ventricle, the right thalamus, the right
caudate, and the left and right putamen. In reaching this
conclusion, all the shape diffeomorphometry patterns
were obtained from the HC and AD baseline datasets
while the MCI baseline dataset was used in the opti-

mization procedure to determine which combination
yields the highest prediction accuracy. According to a
10-fold cross-validation, our pipeline achieved a clas-
sification accuracy of 74.77%, a sensitivity of 77.04%,
a specificity of 71.26% and an AUC of 73.81%, which
are superior or comparable to results reported in other
classification methods (Tables 4 and 5).

The performance of the LDA classifier, in the pre-
diction of MCI-to-AD conversion, is affected by the
conversion times of the MCI-C subjects (82.35% for
MCI subjects converting in 6 months, 77.5% for MCI
subjects converting in 12 months, 74.07% for MCI
subjects converting in 18 months, 78.13% for MCI sub-
jects converting in 24 months, and 73.68% for MCI
subjects converting in 36 months). As expected, the
accuracy for the prediction of MCI-C subjects that con-
verted within 6 months after the baseline is the highest
while the accuracy for those who had not converted
until 36 months later from baseline is the lowest. This
suggests that it is relatively easier to predict the con-
version of MCI subjects who will convert sooner since
their patterns have more similarities with those of AD
subjects.

In a majority of existing studies on the prediction
of MCI-to-AD conversion, we find a lack of details
on the variability of prediction accuracy with respect
to the conversion times of the MCI-C subjects. This
is largely due to the fact that many studies focused
entirely on the MCI-C subjects with a follow-up time
of no longer than 18 months or had a relatively small
number of subjects with longer conversion times. In our
study, we presented the prediction results for MCI-C
subjects with a variety of conversion times, and com-
pared them with two recently published works that
proceeded similarly [12,15]. The comparison is shown
in Table 4. Compared with the results reported in [15],
our approach is capable of achieving a higher predic-
tion accuracy at each conversion time. However, more
subjects were examined in [15]. The small number
of MCI-C subjects investigated in [12] at each con-
version time (2 MCI subjects that converted within 6
months, 9 MCI subjects that converted with 12 months,
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Table 5
A comparison of the proposed method with previous work on predicting conversion from MCI to AD. Some results are directly obtained from

the ones summarized in [15]

Study Structures Features Conversion period N (MCI-NC, MCI-C) Acc Sen Spe AUC

Zhang et al. [12] Whole brain VBM+PET 0–48 months 50, 38 0.78 0.79 0.78 0.77
Wee et al. [20] Cortical Thickness+Volume 0–36 months 111, 89 0.75 0.63 0.84 0.84
Cho et al. [7] Cortex Thickness 0–18 months 131, 72 0.71 0.63 0.76 NA
Chupin et al. [14] Hippocampus Volume 0–18 months 134, 76 0.64 0.6 0.65 NA

and amygdala
Cuingnet et al. [6] Hippocampus Atlas based 0–18 months 134, 76 0.67 0.62 0.69 NA
– Whole brain VBM (grey matter) – – 0.71 0.57 0.78 NA
– Cortex Cortical thickness – – 0.7 0.32 0.91 NA
Davatzikos et al. [8] Whole brain VBM 0–36 months 170, 69 0.56 0.95 0.38 0.73
Koikkalainen et al. [16] Whole brain TBM, combination of

classifiers
0–36 months 215, 154 0.72 0.77 0.71 NA

Misra et al. [10] Whole brain VBM, ROIs 0–36 months 76, 27 0.82 – – 0.77
Querbes et al. [17] Cortex Cortical thickness 0–24 months 50, 72 0.73 0.75 0.69 NA
Westman et al. [18] Cortical and

subcortical
Thickness and volume 0–12 months 256, 62 0.58 0.74 0.56 NA

Wolz et al. [19] Hippocampus Atlas based 0–48 months 238, 167 0.65 0.63 0.67 NA
– Whole brain TBM – – 0.64 0.65 0.62 NA
– Whole brain Manifold learning – – 0.65 0.64 0.66 NA
– Cortex Cortical thickness – – 0.56 0.63 0.45 NA
– Combination Combination – – 0.68 0.67 0.69 NA
Liu et al. [50] Hippocampus,

amygdala, caudate
Volume 0–12 months 79, 21 0.69 0.76 0.68 NA

– Inferior temporal and
lateral orbitofrontal

Thickness – – 0.59 0.62 0.59 NA

Singh et al. [11] Whole brain Volume deformation
Pattern

0–48 months 73, 54 0.66 0.65 0.67 0.72

Leung et al. [9] Hippocampus Shape atrophy rates 0–12 months 128, 86 NA NA NA 0.67
Proposed method Subcortical Shape

diffeomorphometry
0–36 months 87, 135 0.75 0.77 0.71 0.74

structure and lateral
ventricle

Acc, accuracy; Sen, sensitivity; Spe, specificity; AUC, area under the receiver operating characteristic curve; MCI-C, MCI converters; MCI-
NC, MCI non-converters; VBM, voxel-based morphometry; PET, positron emission tomography; NA, not available; TBM, tensor-based
morphometry; ROI, region of interest.

8 MCI subjects that converted within 18 months, 10
MCI subjects that converted within 24 months, 6 MCI
subjects that converted within 36 months, and 3 MCI
subjects that converted within 48 months) makes it
difficult to compare with our proposed method, con-
sidering that at least twice as many MCI-C subjects
were included in our study at each conversion time.
These small numbers of testing subjects are explained
by the use of longitudinal and multimodality data in
the classification in [12], which largely restricted the
number of available subjects. A comprehensive com-
parison between the proposed methods and recent work
on MCI-to-AD predictors is summarized in Table 5.

According to the comparison results illustrated in
Table 3 and results from previous publications [6,19],
the structural definitions can make a difference to
the prediction accuracy; in this case, the hippocampal
volumes produced by different segmentation meth-
ods vary from each other in terms of the MCI-to-AD

prediction accuracy. This observation motivates us in
future to adopt more advanced segmentation methods
for producing more precise subcortical and ventric-
ular structures [56], which may potentially enhance
the prediction power of our shape diffeomorphome-
try biomarker. Another improvement may be found in
looking to the class of structures we analyze. Currently,
many studies are focusing on extracting features from
whole brain regions [6,8,10,11,15,16,19]. It is thus nat-
ural to consider extending the proposed framework
to incorporate the shape diffeomorphometry patterns
from regions other than the fourteen structures ana-
lyzed herein.

In this study, the shape PCs were computed for each
structure separately and then combined directly. This
may potentially ignore important information since
different structures may be correlated. For example, the
expansion of the lateral ventricle is directly related with
the compression of the hippocampus and the amygdala,
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which should be taken into consideration when com-
bining the features from those three structures. Future
work should focus on taking the correlation between
the shape features from different regions into consid-
eration when designing the feature matrix, similar to
the work done in [20]. In addition, instead of directly
grouping the shape features from different structures
and then performing a single LDA, the technique of
multi-kernel learning, such as those demonstrated in
[57,58], may improve the results. It is likely that the
clearest avenue for further exploration in this work lies
in our utilization of only the baseline information. In
the future, an important extension will be to incor-
porate longitudinal information [10,12,13,57] into the
prediction procedure.

In conclusion, we have developed and validated
a novel structural imaging based biomarker, for the
prediction of MCI-to-AD conversion, using patterns
of shape diffeomorphometry in the framework of
LDDMM. These patterns were extracted from a sub-
set of subcortical structures and the lateral ventricles,
based on a training dataset of 210 HC and 175 AD sub-
jects. The optimal combination of structure-specific
shape diffeomorphometry patterns was determined
using 222 MCI subjects. The procedure was validated
on a total of 135 progressive MCI subjects and 87
MCI subjects who remained stable after a follow-up
of 3 years. The prediction accuracy on each subgroup
of MCI-C, grouped according to the conversion time,
was demonstrated to be superior or comparable to pre-
viously reported results.
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