
UC San Diego
UC San Diego Electronic Theses and Dissertations

Title
Word spotting in the wild

Permalink
https://escholarship.org/uc/item/4b8281qq

Author
Wang, Kai

Publication Date
2013

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/4b8281qq
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA, SAN DIEGO

Word spotting in the wild

A dissertation submitted in partial satisfaction of the

requirements for the degree

Doctor of Philosophy

in

Computer Science

by

Kai Wang

Committee in charge:

Professor Serge Belongie, Chair
Professor Virginia de Sa
Professor Charles Elkan
Professor David Kriegman
Professor Mohan Trivedi

2013

Copyright

Kai Wang, 2013

All rights reserved.

The dissertation of Kai Wang is approved, and it is ac-

ceptable in quality and form for publication on microfilm

and electronically:

Chair

University of California, San Diego

2013

iii

DEDICATION

To my parents.

iv

TABLE OF CONTENTS

Signature Page . iii

Dedication . iv

Table of Contents . v

List of Figures . vii

List of Tables . xi

Acknowledgements . xii

Vita . xv

Abstract of the Dissertation . xvii

Chapter 1 Introduction . 1

Chapter 2 Street view text dataset (SVT) 6

Chapter 3 Word-spotting in the wild . 10
3.1 Related work . 12

3.1.1 Scanned document OCR 12
3.1.2 Object recognition 12

3.2 Motivating applications 14
3.3 Word recognition . 14

3.3.1 Character recognition 14
3.3.2 Word configuration 16

3.4 Experiments . 17
3.4.1 Character classification results 18
3.4.2 Word recognition results 19

3.5 Error analysis . 21
3.6 Discussion . 23

Chapter 4 End-to-end Scene Text Recognition 25
4.1 Overview of Full Image Word Recognition 26

4.1.1 Character detection 26
4.1.2 Pictorial Structures 30
4.1.3 Word Re-scoring and NMS 32

4.2 Experiments . 33
4.2.1 Character Classification and Detection 33
4.2.2 Cropped Word Recognition 35

v

4.2.3 Word Detection and Recognition 36
4.3 Discussion . 38

Chapter 5 Scaling Up Scene Text Recognition via Data-driven Synthesis . 43
5.1 Related work . 47
5.2 Data-driven scene text synthesis 49

5.2.1 Training set segmentation 49
5.2.2 Texture transfer 52

5.3 Experimental setup . 54
5.3.1 Data . 56

5.4 Results . 58
5.4.1 Kannada-Full . 58
5.4.2 Kannada-49, Kannada-17, Korean-84, and Korean-

38 . 58
5.5 Discussion . 58

Chapter 6 Conclusion and future directions 60

Bibliography . 62

vi

LIST OF FIGURES

Figure 1.1: The left image a mechanical OCR system created by Jacob Ra-
binow1. The right image is a diagram of another system by
NBS Ordnance Laboratory2. Both are early mechanical tem-
plate matching-based systems. 2

Figure 1.2: This figure shows text at a range of difficulties. In the extreme
cases, the behavior of OCR is well established: there is an ex-
pectation that OCR will perform well on scanned text (far left)
and perform very poorly on purposely obscured text (far right).
In between these two extremes sits text found in the wild. Due
to its unconstrained nature text can appear anywhere in the
spectrum. 3

Figure 2.1: Examples from our Street View Text (SVT) data set and a
histogram of word heights. The words appearing in this data
set have high variability in appearance, suffer effects of cast
shadows, and often have low resolution. The median height is
55 pixels. 7

Figure 2.2: Selected images from our publicly available Street View Text
dataset. This benchmark represents a practical word spotting
application scenario. 8

Figure 3.1: The left figure (a) shows our analogy to the generic object clas-
sification problem. In both cases, individual instances of the
same class can take on vastly different appearances. The right
figure (b) is an illustration of modeling the word ‘PUBLIC’ us-
ing a pictorial structure. 11

Figure 3.2: Word spotting overview. This is an illustration of a word
spotting system with two steps: text detection [12] and word
recognition. In this work, we focus on the latter problem where
the input is an image region and a lexicon of words. In our
Street View Text data set, the lexicon was created out of local
business searches around where the image was acquired. We run
character detectors to discover possible character locations and
then score words in our lexicon by modeling them as pictorial
structures. 13

vii

Figure 3.3: Subfigure (a) shows the performance of our method PICT, and
OCR engines Abbyy FineReader 9.0 (ABBYY) and Tesseract
OCR (TESS) on the ICDAR word benchmark. In this experi-
ment, synthetic lexicons were created out of the ground truth
in each run. We provided custom dictionaries to ABBYY and
TESS and corrected their output to the nearest lexicon word by
edit-distance. The y-axis marks word recognition accuracy and
the x-axis marks the lexicon size. The full test size is 1,065 word
images. In subfigure (b), the examples above the line are those
that PICT only recognizes correctly, and the examples below
are when all methods fail. 20

Figure 3.4: In our analysis, we use a simple and intuitive heuristic based
on edge detection to group images into EASY and HARD. The
EASY examples are typically those whose characters are well
outlined, and the HARD ones typically contain more broken
characters and edges from the background and shadows. This
is a coarse estimate of those images that are more CAPTCHA-like. 22

Figure 3.5: This figure shows some advantages of using part based object
detection. In the images of ‘MARLBORO’ and ‘STUFF’, char-
acter segmentation is extremely challenging because of the cast
shadows and letter designs. Using the character detection ap-
proach allows us to avoid explicit segmentation and instead re-
lies on local peaks from our character detector. The configu-
ration of the word ‘Marriott’ shows how a pictorial structure
model is tolerant of minor errors in the part detections. We can
see that even though the first ‘r’ is not in the correct position,
the total configuration cost for the word is better than that of
the others associated with that image. 24

Figure 4.1: The problem we address in this chapter is that of word detection
and recognition. Input consists of an image and a list of words
(e.g., in the above example the list contains around 50 total
words, and include ‘TRIPLE’ and ‘DOOR’). The output is a set
of bounding boxes labeled with words. 26

Figure 4.2: An overview of our word detection and recognition pipeline.
Starting with an input image and a lexicon, we perform multi-
scale character detection. The words ‘PUFF’ and ‘STUFF’ ap-
pear in the image while the other words in the lexicon can be
thought of as “distractors”. Next we perform word detection
using a Pictorial Structures framework, treating the characters
as “parts” of a word. Finally, we re-score detected words using
features based on their global layout, and perform non-maximal
suppression (NMS) over words. 27

viii

Figure 4.3: Top: synthetic data generated by placing a small random char-
acter (with 1 of 40 different fonts) in the center of a 48 × 48
pixel patch and two neighboring characters, adding Gaussian
noise and a random affine deformation. Bottom: “real” charac-
ters from the ICDAR dataset. To train our character detector
we generated 1000 images for each character. 29

Figure 4.4: An example of a trie data structure built for a lexicon containing
the words {‘ICCV’,‘ECCV’, ‘SPAIN’,‘PAIN’,‘RAIN’}. Every
node in the trie that is the beginning of a word is shaded in gray.
To efficiently perform Pictorial Structures for all words in the
lexicon, we traverse the trie, storing intermediate configuration
solutions at every node. When a shaded node is reached, we
return the optimal configurations for the corresponding word. . 31

Figure 4.5: Character detection performance (F-score) comparing Fern clas-
sifiers trained on synthetic data versus data from ICDAR. . . . 34

Figure 4.6: Precision and recall of end-to-end word detection and recogni-
tion methods on the ICDAR dataset. Results are shown with
lexicons created with 5, 20, and 50 distractor words. F-scores
are shown in brackets next to pipeline name. 39

Figure 4.7: Precision and recall of end-to-end word detection and recogni-
tion methods on the Street View Text dataset. F-scores are
shown in brackets next to pipeline name. 40

Figure 4.8: Selected results of end-to-end methods on the ICDAR dataset
(for a lexicon with K = 20 distractors). Results from PLEX+R
are shown in green and results from SWT+ABBYY are shown
in blue. In the first two images ABBYY has trouble reading
text with noisy image conditions and unusual fonts; the last
image is more well suited for ABBYY as it is more similar to a
scanned document. 41

Figure 4.9: Selected results on the Street View Text dataset. PLEX+R
results are shown in green and words from the corresponding
lexicons are shown in dashed pink (recall that these images can
contain other irrelevant text). 42

Figure 5.1: We address the looming challenge of scaling up text recognition
systems to new languages. We propose to address this through
scene text synthesis. In our approach we take a labeled train-
ing set of scene text in any language and automatically generate
new training for arbitrary languages that retain the visual char-
acteristics of the original scene text. The new data can then be
directly used to train existing text recognition pipelines. Our
proposal represents a painless way to extend supervised scene
text OCR systems to new languages. 44

ix

Figure 5.2: This figure highlights the redundancy between symbols from dif-
ferent character sets. The shared structure is evident. Our mo-
tivation for a data-driven synthesis approach is to re-purpose ex-
isting scene text of a particular language to hallucinate charac-
ters of another by rearranging the sub-structures. Symbols left
to right: Latin ‘E’, Tifinagh ‘yadd’, Greek capital ‘xi’, Russian
capital ‘ie’, and Vai syllable ‘dho’, Cherokee letter ‘gv’, Arme-
nian capital ‘eh’, Euler constant, Canadian syllabics carrier ‘sa’,
and Tai Le letter ‘tone-6’. Source: http://shapecatcher.com/ . 45

Figure 5.3: This figure shows the two main steps for scene text synthe-
sis. 1. Training set segmentation. The first step is to
infer the foreground/background segmentation in our training
data (with character-level bounding boxes). This consists of
producing an initial segmentation of the image (A). After that
we use shape matching to select the best segment within each
character bounding box (B). Then we compute foreground color
similarities between each pair of remaining segments, and per-
form outlier detection to reject spurious segments (C). Char-
acter bounding boxes with rejected segments have their entire
region ignored (colored in gray). 2. Image quilting. After
masks are produced for all the training data, we apply the Image
Quilting [20] to synthesize scene text for an arbitrary font. . . . 47

Figure 5.4: This figure shows the quilt (Q) approach. First, a target mask
is produced using a standard font rendering engine. The stroke
width of this mask is estimated by computing a distance trans-
form on its edge contour map and selecting the maximum value.
We measure the compatibility of the source mask and target
mask for possible rejection. Figure (a) shows a successfully pro-
duced image: the linear substructures are shared between the
source and target masks. Figure (b) shows a quilt result that
is rejected: the curved structures of the target masks are not
well-matched in the source and the result are jagged edges in
the place of curves. 51

Figure 5.5: This figure shows a montage of the data used in our experiments.
The first row are characters from the Kannada experiments and
the second are characters from Korean. From left to right: Bi-
nary masks , Naive (N), Naive + background (N+BG), Quilt
(Q), and real data from the native dataset. Images in Columns
2-4 are created by transforming the same target masks from
column 1. 54

x

LIST OF TABLES

Table 3.1: Results for character classification. Our HOG+NN approach
performs best on the three benchmarks, demonstrating the ben-
efit of using HOG features for character classification. 19

Table 3.2: Number of trials for each lexicon size. 19
Table 3.3: This table shows the breakdown of results after applying our

image diagnostic to categorize images as EASY and HARD. The
proportion of the easy data for ICDAR and SVT data sets were
40% and 33% respectively. 22

Table 3.4: This table shows the breakdown of how often the two OCR en-
gines determine the that image does not contain readable text.
This situation constitutes a large portion of the overall errors in
each engine. 22

Table 4.1: Character classification accuracy of Ferns versus previously pub-
lished results on the Chars74K and ICDAR benchmarks. The
SYNTH+FERNS method was trained on synthetic data while
the NATIVE+FERNS was trained on data from their respective
datasets. 34

Table 4.2: Accuracy of cropped word recognition comparing Pictorial Structures-
based methods (trained on synthetic data and data from ICDAR)
to ABBYY FineReader. 35

Table 5.1: This table lists the performance different training sets on our four
experiments. Section 5.3.1 has the details of our setup. Despite
using the same number of training examples and using the same
set of binary masks to begin with, we see that the quilt method
performs the best among the synthesis methods. This shows
the relative importance of realistic synthetic data on character
classification. 56

Table 5.2: Performance on the 657 category Chars74K-Kannada full Img
dataset. We can observe a significant difference when training
on the data from quilt compared to other synthetic methods.
Through using synthetic data, we are also able to significantly
outperform previously published results on this task. 57

xi

ACKNOWLEDGEMENTS

First, I want to thank my family for all the love and support they have

provided me to reach this point. I thank my parents for trusting in me when I told

them I wanted to spend another five (or more) years in school to train myself as a

researcher. Despite not having a clue of what that road entailed, they have been

infinitely supportive in me reaching my goals – without their support, I hesitate

to think where I would be at this point.

After my family, I want to give the earliest thanks to the people responsible

for jump starting my research career: Donald Patterson and Matthai Philipose.

Don was a graduate student at the University of Washington when he allowed

me to assist on my first research project during my undergraduate studies. This

experience gave me a glimpse into the previously unknown world of academic

research and completely changed my view of what I wanted to pursue after college.

I am in deep gratitude to him for taking a chance on a college sophomore during

a critical time in the completion of his own thesis. I am also thankful that he

introduced me to Matthai, my research mentor for the latter two years of college.

I thank Matthai for all the time he invested advising and preparing me for my own

research during graduate school.

I want thank my Ph.D. adviser, Serge Belongie, for his years of constant

support. His guidance, patience, and open-mindedness have not only allowed me

to investigate topics relevant to Computer Vision but also beyond, to those that

cross over to different research areas. This level of freedom and support from an

adviser is unique, and I’m incredibly grateful to have had him as mine.

I have many colleagues to thank from my time at UC San Diego. Two

people critical to the completion of this dissertation are Boris Babenko and Piotr

Dollar. Boris has been an excellent mentor, collaborator, and friend during my

time as a graduate student. I thank Piotr for his key support and feedback during

the critical early stages of this work.

I want to thank the students in the generation above me – Vincent Rabaud,

Carolina Galleguillos, Andrew Rabinovich, and those preceeding them – for setting

examples of the high quality research contributions that I would later strive for. I

xii

also want to thank the other students in the UCSD Computer Vision Lab for their

countless hours of discussion, collaboration, technical, and moral support: Steve

Branson, Catherine Wah, Oscar Beijbom, Grant Van Horn, Sam Kwak, Tsung-

Yi Lin, Phuc Nguyen, Hani Altwaijry, Mohammad Moghimi, Eric Christensen,

Arturo Flores, and others. I thank Prof. David Kriegman, Prof. Charles Elkan,

Prof. Virginia de Sa, and Prof. Mohan Trivedi for serving on my thesis committee.

In addition to those whose presence contributed to my proper dissertation

work, I also want to thank those with whom I’ve worked with outside of Computer

Vision. I thank Stefan Savage for being the first person to draw me into collabo-

rations with Computer Security researchers. I’m grateful for his mentorship and

the influence he’s had in broadening my concept of research impact. I also thank

Hovav Schacham and David Wagner for their fruitful collaborations in elections

research. I consider my time spent outside of my dissertation work to have been

extremely beneficial to my development as a well-rounded researcher.

Finally, I want to thank some friends I’ve met during my graduate years

that have made this time the most enjoyable of my life: Andrea Lu, Hoang Nhan,

Michael Lee, Chris Kanich, Marti Motoyama, Nakul Verma, Ryan Braud, Daniel

Yee, Kaisen Lin, Alan Leung, Karyn Benson, Ming Wang, and Zach Tatlock.

Portions of this dissertation are either based on, or reprints of, papers that

I have written with others in the past. Listed below are my contributions to each

paper used in this document.

• Chapter 2 and Chapter 3 are based on “Word spotting in the wild” by K.

Wang and S. Belongie [77]. The dissertation author was the primary inves-

tigator and author of this paper.

• Chapter 4 is based on “End-to-end Scene Text Recognition”, K. Wang, B.

Babenko, and S. Belongie [76]. The dissertation author was the primary

investigator, contributed to algorithm development, implementation, and the

writing of the paper.

• Chapter 5, in full, is a reprint of material that has been submitted for pub-

lication: “Scaling Up Scene Text Recognition via Data-driven Synthesis”,

xiii

K. Wang, P. Nguyen, A. Bissacco, and S. Belongie. The dissertation au-

thor was the primary investigator, contributed to algorithm development,

implementation, and was author of the paper.

xiv

VITA

2006 B. S. with College Honors in Computer Science, University
of Washington, Seattle

2010 M. S. in Computer Science, University of California, San
Diego

2013 Ph. D. in Computer Science, University of California, San
Diego

PUBLICATIONS

D. Patterson, L. Liao, K. Gajos, M. Collier, N. Livik, K. Olson, S. Wang, D. Fox,
and H. Kautz, “Opportunity Knocks: a system to provide cognitive assistance
with transportation services”, In International Conference in Ubiquitous Comput-
ing (UBICOMP), 2004.

W. Pentney, H. Kautz, M. Philipose, A.-M. Popescu, and S. Wang, “Sensor-based
understanding of daily life via large-scale use of common sense”, In Association
for the Advancement of Artificial Intelligence (AAAI), 2006.

S. Wang, W. Pentney, A. -M. Popescu, T. Choudhury, and M. Philipose,
“Commonsense-based joint training of human activity recognizers”, In Interna-
tional Joint Conference on Artificial Intelligence (IJCAI), 2007.

B. Laxton, K. Wang, and S. Savage, “Reconsidering physical key secrecy: teledu-
plication via optical decoding”, In ACM Computer and Communications Security
(CCS), 2008.

P. Faymonville, K. Wang, J. Miller, and S. Belongie, “CAPTCHA-based image
labeling on the soylent grid”, In Human Computation Workshop (HCOMP), 2010.

K. Wang and S. Belongie, “Word spotting in the wild”, In European Conference
on Computer Vision (ECCV), 2010.

K. Wang, E. Rescorla, H. Shacham, and S. Belongie, “OpenScan: A fully trans-
parent optical scan voting system”, In USENIX Electronic Voting Workshop
(EVT/WOTE), 2010.

K. Wang, B. Babenko, and S. Belongie, “End-to-end Scene Text Recognition”, In
International Conference on Computer Vision (ICCV), 2011.

K. Wang, E. Kim, N. Carlini, I. Motyashov, D. Nguyen, and D. Wagner, “Operator-
assisted tabulation of optical scan ballots”, In USENIX Electronic Voting Work-
shop (EVT/WOTE), 2012.

xv

E. Kim, N. Carlini, A. Chang, G. Yiu, K. Wang, and D. Wagner, “Improved
Support for Machine-Assisted Ballot-Level Audits”, In USENIX Electronic Voting
Workshop (EVT/WOTE), 2013.

K. Wang, P. Nguyen, A. Bissacco, and S. Belongie, “Scaling Up Scene Text Recog-
nition via Data-driven Synthesis”, Submitted to International Conference on Com-
puter Vision (ICCV), 2013.

P. Nguyen, K. Wang, S. Han, and S. Belongie, “Benchmarking Text Detection in
Video”, Submitted to British Machine Vision Conference (BMVC), 2013.

xvi

ABSTRACT OF THE DISSERTATION

Word spotting in the wild

by

Kai Wang

Doctor of Philosophy in Computer Science

University of California, San Diego, 2013

Professor Serge Belongie, Chair

Text is a fundamental medium for visual communication. Methods to auto-

matically read text, known as Optical Character Recognition (OCR), have a long

history and by the 1960’s found significant commercial application. Though in

the past the focus of OCR technology has been in the domain of scanned books

and documents, there are significant new sources of images resulting from the

widespread use of digital cameras, mobile phones, vehicle-mounted cameras, wear-

able cameras, and more. This new flood of images continues to grow at a rapid

pace and presents the OCR problem with new challenges and opportunities.

In contrast to the well-controlled scanned document environments of the

past, these new data sources present a fundamental technical challenge to existing

OCR engines due to the nature of being acquired in unconstrained environments.

xvii

These factors present us with a unique situation: OCR is historically a desirable

technology, more images are being collected now than ever before, and due to the

nature of this new wave of data, conventional techniques to solve the problem are

unfit.

In a parallel literature, generic object recognition research has emerged to

deal with the challenge of visual recognition in complex real world environments.

While those advances pushed the field’s ability to recognize a wide range of objects,

very little had been done to translate this paradigm to recognition of one of the

most important visual objects: text. In this dissertation, we aim to bridge the gap

between the new learning-based techniques of object recognition to the problem of

recognizing text in the wild. While the expectation of non-practitioners may have

been that text recognition was a solved problem (due to its past success), we both

break that perception and present a path for future progress in this challenging

problem of considerable practical interest.

xviii

Chapter 1

Introduction

Text is a fundamental medium for visual communication. The ability to

read and write is taught to children at a young age and is refined throughout

adulthood. Text is a versatile channel: it is used to convey detailed ideas in long-

form, e.g., through books, and simpler ideas in brief, e.g., signs. To say that text

is ubiquitous in the man-made world is an understatement; reading text is how

humans are able to navigate the man-made world.

Given the prominent position of text in everyday life, it is not surprising

that the technology of automatic text reading, known as Optical Character Recog-

nition (OCR), has a long history [63, 52, 29]. Patents for OCR-like systems to

aide the blind were granted as early as the 1800’s. Figure 1.1 shows an early

mechanical template-matching OCR system. By the 1960’s, OCR technology had

found application for automated data processing in numerous industries including

banking, mail, and government. Today, OCR is now regarded as a mature technol-

ogy. There exist many commercial products (ABBYY1, OmniPage2, Tesseract3,

etc.) and there have been demonstrated successes in large scale book scanning and

digitization (Internet Archive - over 3 Million since 20114, Google book project -

over 20 Million since 20125). OCR for Scanned documents has been a prominent

1http://finereader.abbyy.com/
2http://www.nuance.com/
3http://code.google.com/p/tesseract-ocr/
4http://blog.archive.org/2011/09/17/3-million-texts-for-free/
5http://chronicle.com/article/Google-Begins-to-Scale-Back/131109/

1

2

Figure 1.1: The left image a mechanical OCR system created by Jacob Rabinow8.
The right image is a diagram of another system by NBS Ordnance Laboratory9.
Both are early mechanical template matching-based systems.

success story of applied machine perception.

Though in the past the focus of OCR technology has been on scanned

books and documents, there are significant new sources of images resulting from

the widespread use of digital cameras, mobile phones, vehicle-mounted cameras,

wearable cameras, and more. This new flood of images continues to grow at a

rapid pace and the combined amount of visible text has the potential to surpass

all previous scanned book sources; the rate at which new books are being pro-

duced and scanned will pale in comparison to the rate of images produced through

these new means. The rise of ubiquitous image acquisition and storage has deeply

impacted Computer Vision as a field and is one modality of the phenomenon com-

monly known as Big Data. In contrast to the well-controlled scanned document

environments of the past, these new data sources present a fundamental techni-

cal challenge to existing OCR engines due to their nature of being acquired in

unconstrained environments, or in the wild.

As others have observed, text acquired in unconstrained environments (of-

ten referred to as scene text) present many new challenges relative to scanned doc-

uments [12, 45, 81]. Figure 1 shows examples of text on a spectrum of difficulty

levels. When we consider the extreme cases, the performance of OCR engines is

known to be excellent when given scanned text and very poor on text that is highly

obscured. Indeed, the fact that OCR has difficulty reading such text is the basis

8http://museum.nist.gov/panels/reading/figure1.htm
9http://museum.nist.gov/exhibits/rabinow/exhibits/ocr.html

3

EASY HARD

IMAGE TEXT CAPTCHASCAN

Figure 1.2: This figure shows text at a range of difficulties. In the extreme
cases, the behavior of OCR is well established: there is an expectation that OCR
will perform well on scanned text (far left) and perform very poorly on purposely
obscured text (far right). In between these two extremes sits text found in the
wild. Due to its unconstrained nature text can appear anywhere in the spectrum.

for systems that prevent automated software bots from abusing internet resources,

which are known as CAPTCHAs [75]. Depending on the particular instance, text

found in the wild can appear similar to a scanned page, similar to a CAPTCHA,

or somewhere in-between. The challenges of scene text include increased variation

in the appearance of the text itself, background clutter, variable image quality,

diversity of font, shape, and texture, and general sparseness of text in images. The

sum of this is that the accuracy of conventional OCR methods on scene text is far

worse compared to the accuracy on scanned documents. These factors present us

with a unique situation: OCR is historically a desirable technology, more images

are being collected than ever before, and due to the unconstrained nature of this

new wave of data the existing techniques are unfit.

In a parallel literature, generic object recognition research has emerged to

meet the challenges of visual recognition in complex real world environments. This

branch of computer vision has become one of the primary areas of focus in the field

and has shown many impressive advances. A very small sample of these include

face detection [61, 74] and recognition [72, 2], pedestrian detection [15, 24, 19],

near-duplicate image matching [44, 1], and generic object recognition [22, 17, 31].

These advances demonstrate the great potential in applying ideas from statistical

machine learning [28, 64] along with feature representations that have been well-

engineered [3, 44, 15] or learned [14, 38, 40]. While these advances have pushed

4

our ability to recognize a wide range of objects, surprisingly little had been done to

translate this paradigm to recognition of one of our most common visual objects,

text. In this disseration, we aim to connect the new learning-based techniques of

object recognition to the problem of scene text recognition.

In Chapter 2 we introduce the Street View Text (SVT) dataset, a scene

text dataset collected from Google Streetview. We use this dataset throughout

this work and have made it publicly available to the research community.

In Chapter 3 we examine the state of scene text recognition (circa 2007) and

identify what we observe as the performance bottleneck. Existing work on scene

text had framed the problem as pre-processing: given an image, the challenge

is to detect the text-like image regions so they can be sent to a black-box OCR

engine to be read. This paradigm assumes that the final step of text reading is

easily handled by conventional OCR methods. In our work, we show that the

performance bottleneck to this paradigm is the OCR engine itself and propose a

new approach to text reading that replaces the black box engine using ideas from

the object detection literature.

In Chapter 4 we investigate the challenges of constructing an end-to-end

system for scene text. Previous work had focused on advances to isolated sub-

components. In our work we do two things: (1) construct an end-to-end pipeline

out of state-of-the-art components and (2) construct a much simpler end-to-end

system by extending our work from Chapter 3. We show that we can achieve

comparable accuracy using the latter, simpler method.

In Chapter 5, we take a step back and highlight the looming challenge of

scaling up statistical machine learning-based systems to novel languages. While

recent proposals for scene text recognition have shown promise, they face signifi-

cant challenges for data annotation when considering one of OCR’s killer applica-

tions: text recognition for translation. We propose to address this issue through a

novel data-driven synthesis approach that leverages techniques from the Computer

Graphics literature.

Finally, in Chapter 6, we end with a discussion about future directions for

work in this area. While the expectation of non-practitioners may have been that

5

text recognition was a solved problem (due to its past commercial success), we

hope to both break that perception and outline a path for continued progress in

this problem of great practical interest.

Chapter 2

Street view text dataset (SVT)

Throughout this thesis we perform experiments on a new dataset that we

collected and publicly released: the Street View Text (SVT) dataset. This data

was harvested from Google Street View1. Image text in this data exhibits high

variability and often has low resolution. Figure 2.1 shows examples from the SVT

set and a histogram of word heights. In dealing with outdoor street level imagery,

we note two characteristics. (1) Image text often comes from business signage

and (2) business names are easily available through geographic business searches.

These factors make the SVT set uniquely suited for word spotting in the wild:

given a street view image, the goal is to identify words from nearby businesses.

We used Amazon’s Mechanical Turk2 to harvest and label the images from Google

Street View. To build the data set, we created several Human Intelligence Tasks

(HITs) to be completed on Mechanical Turk. We refer to those that work on these

HITs as workers.

Harvest images. Workers are assigned different cities and are requested to ac-

quire 20 images that contain text from Google Street view. They were instructed

to: (1) perform a Search Nearby:* on their city, (2) examine the businesses in the

search results, and (3) look at the associated street view for images containing text

from the business name. If words are found, they compose the scene to minimize

1http://maps.google.com
2http://mturk.com

6

7

Word height in pixels

Histogram of word heights

W
o
rd

 c
o
u

n
t

Figure 2.1: Examples from our Street View Text (SVT) data set and a histogram
of word heights. The words appearing in this data set have high variability in
appearance, suffer effects of cast shadows, and often have low resolution. The
median height is 55 pixels.

skew, save a screen shot, and record the business name and address.

Image annotation. Workers are presented with an image and a list of candidate

words to label with bounding boxes. This contrasts with the ICDAR Robust

Reading data set in that we only label words associated with businesses. We used

Alex Sorokin’s Annotation Toolkit3 to support bounding box image annotation.

All images were labeled by three workers, and bounding boxes were accepted when

at least two workers agreed with sufficient overlap.

For each image, we obtained a list of local business names using the Search

Nearby:* in Google Maps at the image’s address. We stored the top 20 business

results for each image, typically resulting in 50 unique words. To summarize, the

SVT data set consists of images collected from Google Street View, where each

image is annotated with bounding boxes around words from businesses around

where the image was taken. The data set contains 350 total images (from 20

different cities) and 725 total labeled words. We split the data into a training set

of 100 images and test set of 250 images, resulting in 211 and 514 words in the

train and test sets. In correspondence with ICDAR, we divide our benchmark into

SVT-SPOT (word locating), SVT-WORD (word recognition), and SVT-CHAR

(character recognition). In this work, we address SVT-WORD. In total, the cost

of acquiring the data from Mechanical Turk was under $500 USD. The data was

3http://vision.cs.uiuc.edu/annotation/

8

Figure 2.2: Selected images from our publicly available Street View Text dataset.
This benchmark represents a practical word spotting application scenario.

9

acquired in the first quarter of 2010. The dataset is publicly available4 and has

been used by others in the literature. More examples from the dataset are shown

in Figure 2.2.

Chapter 2 is based on “Word spotting in the wild” by K. Wang and S.

Belongie [77]. The dissertation author was the primary investigator and author of

this paper.

4http://vision.ucsd.edu/content/street-view-text

Chapter 3

Word-spotting in the wild

Finding words in images is a fundamental computer vision problem, and is

especially challenging when dealing with images acquired in the wild. The field

of Optical Character Recognition (OCR) has a long history and has emerged as

one of the most successful practical applications of computer vision. However, text

found in the wild can take on a great variety of appearances, and in many cases

can prove difficult for conventional OCR techniques.

Our use of the phrase in the wild is analogous to Labeled Faces in the Wild

(LFW) [33]: a data set constructed to study face recognition in unconstrained

settings. Similar to text reading, face recognition under controlled settings is a

well understood problem with numerous effective algorithms. However, as LFW

shows, the variation in lighting, pose, imaging device, etc., introduce challenges

for recognition systems. Much as that dataset acted as a catalyst for renewing

progress in face recognition, an important goal of this work is to spur interest in

the problem of spotting words in the wild.

The word spotting problem contrasts with general text reading in that the

goal is to identify specific words. Ideally, there would be no distinction between

the standard text reading and word spotting; spotting words would simply amount

to filtering the output from OCR engines to catch the words of interest. However,

due to the challenges presented by text found in the wild, we approach the word

spotting problem directly, where we are presented with an image and a lexicon

of words to spot. We evaluate the performance of conventional OCR engines and

10

11

Word class:
'door'

Object class:
vehicle

(a) Word recognition.

P U B L I C

(b) Pictorial structure for words.

Figure 3.1: The left figure (a) shows our analogy to the generic object classifi-
cation problem. In both cases, individual instances of the same class can take on
vastly different appearances. The right figure (b) is an illustration of modeling the
word ‘PUBLIC’ using a pictorial structure.

also present a new method rooted in ideas from object recognition. In our new

approach, we treat each word in a lexicon as an object category and perform word

category recognition. Figure 3.1(a) shows an analogy to generic object recognition:

just as instances of the object category vehicle can look vastly different from image

to image, the word ‘door’ can also take on a variety of appearances depending

on the font, lighting, and pose in a scene. In this formulation, we can leverage

techniques that have been designed to be robust for recognizing generic categories

and apply them to word recognition.

Our contributions are the following. (1) We introduce the Street View Text

data set: an outdoor image text data set annotated with a list of local business

names per image. (2) We benchmark conventional OCR engines on our new data

set and the existing ICDAR Robust Reading image text database [45]. (3) We

present a new word spotting approach that imports techniques from generic object

recognition and significantly outperforms conventional OCR based methods.

12

3.1 Related work

3.1.1 Scanned document OCR

The topic of OCR has been well studied [53, 52] and existing commercial

products are in widespread use. One example is Google Book Search1, which

has scanned more than 20 million volumes2 making them accessible for full text

searches. Another example is the Kurzweil National Federation of the Blind

(KNFB) reader3. The KNFB reader is an OCR engine that runs on a mobile

phone and allows a person who is visually impaired to read printed text from an

image taken by the camera. The key to high performance for the KNFB reader is

having a high quality camera built into the mobile phone and a feedback loop to

assist the user in taking pictures in an ideal setting, thereby minimizing the effects

of motion blur, lighting, and skew.

A critical step for OCR accuracy is image binarization for character seg-

mentation. The survey of [10] identifies incorrect segmentation as one of the major

contributors to errors in using conventional OCR on scanned documents. Previous

work on classifying hand written digits from the MNIST data set has shown that

when the correct segmentation is provided, it is possible to achieve recognition

rates nearing that of humans4. The task of separating out individual characters

was also identified in [11] as one of the distinguishing features of CAPTCHAs being

difficult for OCR while remaining manageable for humans. Character segmenta-

tion is a significant challenge that conventional OCR engines face when dealing

with words in the wild.

3.1.2 Object recognition

Existing work on image text typically breaks the process into two subtasks:

text detection and word recognition. Advances have been made in detecting image

text using an AdaBoost-based approach [12]. In that work, detected text regions

1http://books.google.com/
2http://chronicle.com/article/Google-Begins-to-Scale-Back/131109/
3http://www.knfbreader.com/
4http://yann.lecun.com/exdb/mnist/index.html

13

Text
Detection

Character
Recognition

Pictorial
Structure

Candidate character locations

Lexicon

Word recognition

P U B I C

P

P

T

D

E

a

i

D

d

L

Candidate text regions

Figure 3.2: Word spotting overview. This is an illustration of a word
spotting system with two steps: text detection [12] and word recognition. In this
work, we focus on the latter problem where the input is an image region and a
lexicon of words. In our Street View Text data set, the lexicon was created out of
local business searches around where the image was acquired. We run character
detectors to discover possible character locations and then score words in our
lexicon by modeling them as pictorial structures.

are sent to a conventional OCR engine to be decoded. Others have explored the

problem of improving recognition rates by combining outputs of several different

OCR engines to get a more robust reading [73]. In the work of [81] the authors

assumed character bounding boxes were provided, and proposed a model that

incorporated character appearance similarity and dissimilarity within a word.

The works that are most similar to ours are that of [51] and [60]. In [51], the

authors investigated methods of breaking visual CAPTCHAs. In their CAPTCHA

experiments, the problem was also one of word spotting: categorize the image of

a word as one of a list of possible keywords. Our new approach highlights the

similarities between words in the wild and with visual CAPTCHAs. In [60], the

authors performed word spotting in scanned handwritten historical documents.

To perform word spotting, they clustered words together by appearance, manually

provided labels to clusters, and propagated the labels to the cluster members,

allowing them to create a word index to browse a large corpus.

In our methods, we draw on work done using part-based methods for object

recognition; in particular, the modeling of objects using pictorial structures [27, 26].

We also build on the work of [16], who studied the use of various features and

classification methods to classify individually cropped characters.

14

3.2 Motivating applications

Accurate word-spotting plays an important role in systems for image re-

trieval and navigation. Research in Content Based Image Retrieval (CBIR) [68]

has explored different forms of querying large image collections, including queries

by keyword and image example. Integrating a word spotting component enables

queries by word occurrence, returning images in which the specified words appear.

The work of [60] describes a system that allows for retrieval of historical documents

based on handwritten word spotting.

Word spotting is an essential component of a vision based navigation sys-

tem. In our case, this arises in the form of developing assistive technologies for

the blind. Two broad goals of the project are to develop a computer vision system

that can benefit the blind and visually impaired communities, and to study the

challenges of performing vision-based navigation in real world environments. For

navigation, it is important to be able to spot specific keywords in order to guide

a blind user. Detecting keywords on signage can be used, for example, to direct a

user to the correct aisle in a supermarket while detecting words from a shopping

list can be used to locate specific products.

3.3 Word recognition

In our approach, we first perform character detection for every letter in an

alphabet and evaluate the configuration scores for the words in our lexicon to find

the most suitable one. Our method is designed to be used in conjunction with

a text detector. In our description, we use the term ‘input image’ to mean the

cropped out image region around a word provided by a text detector. Figure 3.2

shows a diagram of this pipeline.

3.3.1 Character recognition

Character recognition in images was recently studied in [16]. In their work,

they benchmarked different features and classification algorithms for recognizing

15

cropped characters. In our experiments, we test our character detector using the

same data and methodology, and list accuracies next to those from their work.

For our character detector, we use Histograms of Oriented Gradient (HOG) [15]

features with a nearest neighbor classifier.

Character classification: To compare two images of cropped characters, we

first resize them to take on the same height and aspect ratio, then densely calculate

their HOG features. Each character is now represented as an array of dimension

m×n×d where m and n are the number of rows and columns after spatial binning,

and d is the number of dimensions in each histogram. We measure the similarity

between characters by performing Normalized Cross Correlation (NCC) between

each dimension and averaging the scores. Since the characters were resized to be

the same dimension, the result is a single number. This is the value we use for

nearest neighbor classification.

Character detection: To perform character detection over an input image we

take all the training examples for a particular character class, resize them to the

height of the input image (while maintaining aspect ratio), and compare the char-

acter’s HOG features to those of the input. Between each training example and

the input, we again calculate the NCC between each HOG dimension and combine

them again by averaging. The result will be a list of scores measuring the similarity

of a template to each location in the input image. This is done for all the training

examples of a class, and the results are combined together per class by taking the

max at each location. We perform non-maximum suppression to discover peaks

and consider those as candidate character locations.

This is done for every character class to create a list of character locations

with discrete spatial positions. Next, we use this list of detections to evaluate the

configuration of strings in our lexicon to the input image.

16

3.3.2 Word configuration

After performing character detection, we consider each word in our lexicon

and measure its character configuration within the input image. We represent a

word using a pictorial structure [27, 26]. A pictorial structure is a mass-spring

model that takes into account costs of matching individual parts to image locations

and their relative placement. A word is naturally broken down into character

‘parts’ and takes on a simple chain structure. Figure 3.1(b) shows an example of

a string as a pictorial structure.

We formulate the problem of optimal character placement in an image of

text in the following way. Let G = (V,E) be an undirected graph representing a

string S. The vertices V = {v1, ..., vn} correspond to characters in S where n is the

length of S. Edges (vi, vj) ∈ E connect letters that are adjacent in S. This creates

a conceptual spring between pairs of letters. We use the terms parent and child to

refer to the left and right nodes in a pair of adjacent characters. Let L = (l1, ..., ln)

represent a particular configuration of characters in an image where li is the spatial

[x, y]> coordinate placement of character vi.

We measure cost mi(li) as one minus the similarity score of a character de-

tection calculated in the previous step. To calculate the deformation cost di,j(li, lj),

we use our domain knowledge of character layout. We expect a child character to

appear one character width away from its parent. Let the expressions w(li) and

h(li) represent the width and height of a character detection at location li. Let

l∗i = li + [w(li), 0]> represent the expected position of a child of li. We specify

a covariance matrix that normalizes the deformation cost to the dimensions of

the parent character: Σ =

[
w(li) 0

0 h(li)

]
. Our deformation cost is calculated

as: di,j(li, lj) =
√

(l∗i − lj)>Σ−1(l∗i − lj). The objective function for our optimal

character configuration for a string S is computed as:

L∗ = argmin
L

θ n∑
i=1

mi(li) + (1− θ)
∑

(vi,vj)∈E

dij(li, lj)

 (3.1)

The parameter θ controls the balance between part match cost and defor-

17

mation cost. The result is a configuration L∗ that represents the optimal character

placement for reading S in an image. Solving for L∗ can be done efficiently using

dynamic programming as described in [26]. We refer to this configuration cost as

Dc(L).

The score generated by L∗ can take into account a local measure of coher-

ence between a string and an image, but is uninformed of higher order and global

configuration costs. To supplement the score configuration score, we also incorpo-

rate other domain knowledge-influenced measures into our final match score.

• Horizontal span: Given our input is an image of a cropped word from a

character detector, we assume that a suitable string is one whose characters

span most of the input image. We calculate this as the horizontal range of

the character configurations divided by the width of the input image and call

it Ds(L).

• Character distribution: Character spacing within a single string should be

consistent, and we factor this into the final score by measuring the standard

deviation of the spacing between every pair of adjacent characters in the

string, which we refer to as Dd(L).

The final cost D is a weighted sum of these terms: D(L) = α1Dc(L) +

α2Ds(L) + α3Dd(L) where α1 + α2 + α3 = 1. Through validation on our training

data, we determined reasonable parameters to be θ = .9, α1 = .5, α2 = .4, and

α3 = .1. These parameters were used in both the ICDAR and SVT benchmarks.

3.4 Experiments

We evaluate the performance of our character recognizer in isolation and

our word recognition system as a whole on existing public image text data sets.

The data sets we use are from the ICDAR 2003 Robust Reading challenge [45],

Chars74K [16], and our SVT data set. In our experiments, we compare to results

attained using conventional OCR systems ABBYY FineReader 9.0 and Tesseract

18

OCR5, referred to as ABBYY and TESS. In using the OCR engines, we experi-

mented with pre-thresholding the images using the technique from [12], where they

performed locally adaptive thresholding with a heuristic for a parameter sweep at

each pixel. However, we found that deferring the thresholding task to the individ-

ual OCR engines resulted in better accuracy, and so we only report those results.

In all our experiments, we resized images to take on a height of 50 pixels and used

4× 4 pixel cells with 10 orientation bins for the HOG features.

3.4.1 Character classification results

We benchmarked our character classifier on the Chars74K-5, Chars74K-15,

and ICDAR03-CH data sets. The Chars74K-5 and Chars74K-15 contained 5 and

15 training instances per class, respectively, while the test sets included the same

15 instances of each character class. The ICDAR03-CH data set is the character

classification subproblem from the ICDAR Robust Reading data set. In all data

sets, the characters included upper and lowercase letters, and digits 0 through 9;

in total 62 symbols. Our evaluation methodology mirrored that of [16] and our

results are reported next to theirs in Table 3.4.1.

In Table 3.4.1, our classifier is labeled as HOG+NN and is displayed in

bold in the first row. The next three rows are reproduced from [16]. The first

is Multiple Kernel Learning (MKL), which is a combination of a number of fea-

tures described in [16]. In that work, results for MKL were only reported on the

Chars74K-15, accounting for the dashes in the other two columns. The next two

rows show performance using features from Geometric Blur (GB) [5] and Shape

Context (SC) [3], and classified using Nearest-Neighbor (NN) as reported in [16].

The methods listed were the ones that performed best from [16].

Our HOG+NN classifier outperforms those tested in [16] in all three bench-

marks, and more significantly on the Chars74K-5 and ICDAR03-CH. However, we

note that any suitable classification technique that can produce a list of discrete

character detections can be substituted into the word recognition pipeline.

5http://code.google.com/p/tesseract-ocr/

19

Table 3.1: Results for character classification. Our HOG+NN approach performs
best on the three benchmarks, demonstrating the benefit of using HOG features
for character classification.

Feature Chars74K-5 Chars74K-15 ICDAR03-CH
HOG+NN 45.33 ± .99 57.5 51.5

MKL - 55.26 -
GB+NN 36.9 ± 1.0 47.09 27.81
SC+NN 26.1 ± 1.6 34.41 18.32
ABBYY 18.7 18.7 21.2

TESS 17.3 17.3 17.4

3.4.2 Word recognition results

We ran experiments on the ICDAR03-WORD and SVT-WORD data sets:

the word recognition benchmarks of both data sets. Unlike SVT-WORD, ICDAR03-

WORD is not explicitly structured for word spotting. Therefore, in our experi-

ments, we construct lexicons synthetically using the ground truth. In both bench-

marks, we use the exact same parameter settings and character training data, from

ICDAR. In our comparisons to ABBYY and TESS, we provided the lexicons in

the form of custom dictionaries and corrected OCR output to be the word with

the smallest edit-distance in the lexicon.

ICDAR Robust Reading: Word Recognition.

In this experiment, we compare our approach, labeled as PICT, to the

OCR engines ABBYY and TESS on ICDAR03-WORD. For simplicity, we filtered

out words containing symbols other than letters and numbers, leaving 1,065 testing

images. To formulate this problem as word spotting, we constructed tests of various

sizes where we built synthetic lexicons out of the ground truth words for a particular

test run. We divided the test set according to Table 3.4.2.

Table 3.2: Number of trials for each lexicon size.

Lexicon size 64 128 256 512 1065
Trials 16 8 4 2 1

For each size k, we took all our testing data, randomized the order, and

20

64 128 256 512 1065 (all)

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

Lexicon size

A
cc

ur
ac

y

PICT
ABBYY
TESS

(a) (b)

Figure 3.3: Subfigure (a) shows the performance of our method PICT, and OCR
engines Abbyy FineReader 9.0 (ABBYY) and Tesseract OCR (TESS) on the IC-
DAR word benchmark. In this experiment, synthetic lexicons were created out of
the ground truth in each run. We provided custom dictionaries to ABBYY and
TESS and corrected their output to the nearest lexicon word by edit-distance. The
y-axis marks word recognition accuracy and the x-axis marks the lexicon size. The
full test size is 1,065 word images. In subfigure (b), the examples above the line
are those that PICT only recognizes correctly, and the examples below are when
all methods fail.

tested on contiguous chunks of size k until all of the test data was used. For

example, when k = 64, we randomized the order of the test data and sampled

sections of 64 images at a time (16 sections). We evaluated the three systems on

each group of images where the lexicon consisted of words only from that set.

Figure 3.3 shows the word recognition results. The results are averaged

over all the trials for each lexicon size. In our results, we see that at a lexicon size

of 1,065, PICT significantly outperforms both OCR engines by over 15% and has

more than 30% improvement when limiting the lexicon size to 64.

Street View Text: Word Recognition.

In this benchmark, we tested ABBYY, TESS, and PICT on our Street View

Text benchmark. On the SVT benchmark, PICT used the exact same training data

21

and parameters as used in ICDAR03-WORD. No character training data from SVT

was used. The test size was 514 word images and each image had an associated

list of businesses to categorize from. The accuracies for TESS, ABBYY, and PICT

were 31.5%, 47.7%, and 59.0% respectively. Our PICT approach shows significant

improvement over the OCR engines.

Implementation Details: The system was implemented in C++ using the

OpenCV framework. Average processing time to run PICT was under six sec-

onds on an Intel Core 2 processor.

3.5 Error analysis

In an attempt to better understand the complexity of image text as it

relates to the performance of conventional OCR, we introduce a simple diagnostic

to gauge image difficulty. In both ICDAR and SVT data sets, there are examples

of words that span the difficulty spectrum: some are well-suited for OCR while

others present a challenge approaching that of a CAPTCHA. In our analysis, we

separate the data into two groups, ‘EASY’ and ‘HARD’, based on a simple heuristic

that is independent of either OCR engine. The intuition behind our heuristic is

that easy examples are likely to have continuous edges around each character and

few spurious edges from the background. We ran a Canny edge detector [8] on

the the data and separated the images by calculating the number of continuous

edges divided by the image’s aspect ratio. This value represents approximately the

number of line segments in a space typically occupied by one to two characters.

We placed images with values between 1 and 3.5 into the EASY category, and

all others into the HARD category; see Figure 3.5 for examples of each category.

In the EASY category, we can see that the edges around characters are often

reliably traced, whereas in the HARD category, many edges are picked up from

the background and shadows. Table 3.5 shows the breakdown of results after

separating the data.

While this is not meant to be a definitive method for categorizing the data

– indeed, there could be a more sophisticated heuristic to accurately identify text

22

ESTIMATED EASY ESTIMATED HARD

Figure 3.4: In our analysis, we use a simple and intuitive heuristic based on
edge detection to group images into EASY and HARD. The EASY examples are
typically those whose characters are well outlined, and the HARD ones typically
contain more broken characters and edges from the background and shadows. This
is a coarse estimate of those images that are more CAPTCHA-like.

Table 3.3: This table shows the breakdown of results after applying our image
diagnostic to categorize images as EASY and HARD. The proportion of the easy
data for ICDAR and SVT data sets were 40% and 33% respectively.

ICDAR (1065) SVT
METHOD ALL EASY HARD ALL EASY HARD

TESS 35.0 41.7 30.5 31.5 43.2 25.8
ABBYY 42.8 56.9 33.4 47.7 62.7 40.3
PICT 59.2 65.0 55.3 59.0 63.9 56.8

Table 3.4: This table shows the breakdown of how often the two OCR engines
determine the that image does not contain readable text. This situation constitutes
a large portion of the overall errors in each engine.

ICDAR (1065) SVT
METHOD ALL EASY HARD ALL EASY HARD

TESS 33.8 32.6 34.6 46.5 42.0 48.4
ABBYY 45.2 34.5 52.4 44.6 29.6 51.9

that can be read at scanned document levels – it is a simple and intuitive measure

of image text complexity and provides a coarse estimate of how difficult an image

of text is to segment. We can see all the methods perform significantly better on

the EASY subset and the OCR methods suffer greater reductions on the HARD

subset.

One reason for the significant performance drop of the OCR methods is

23

that proper character segmentation is likely more challenging on the HARD set.

The improvement in performance of the PICT model can be attributed to the fact

that it avoids character segmentation, instead relying on character detection in a

sliding window fashion. These detections are collected using a part based word

model designed that is robust to small errors. Figure 3.5 shows examples of these

situations. In the images for ‘MARLBORO’ and ‘STUFF’, they are complex in

appearance and suffer from cast shadows; as a result, accurate segmentation is

extremely challenging. However, the detection approach focuses on finding local

maxima in the response from the character classifier rather than segmentation.

In the ‘Marriott’ example, a single mis-detected part, the letter ‘r’, still results

in word configuration score that allows it to be categorized correctly. While it

is the case that minor errors in character classification are corrected using edit-

distance for the OCR engines, we see from Table 3.5 that a common failure case is

when the OCR engine returns no reading at all, suggesting that significant errors

in segmentation can result in irrecoverable errors for OCR. The performance of

PICT on the HARD subsets is what sets it apart from the OCR methods.

3.6 Discussion

In this chapter we explored the problem of word spotting and evaluated

different methods to solve the problem. We have shown that approaching word

spotting as a form of object recognition has the benefits of avoiding character

segmentation – a common source of OCR errors – and is robust to small errors in

character detection. When dealing with words in the wild, it is often the case that

accurate segmentation is unattainable, and especially in these cases, our detection

based approach shows significant improvement. Clearly, there is still room for

improvement in performance, but we have shown that framing the word spotting

problem as generic object recognition is a promising new direction.

Chapter 3 is based on “Word spotting in the wild” by K. Wang and S.

Belongie [77]. The disseratation author was the primary investigator and author

of this paper.

24

Figure 3.5: This figure shows some advantages of using part based object de-
tection. In the images of ‘MARLBORO’ and ‘STUFF’, character segmentation is
extremely challenging because of the cast shadows and letter designs. Using the
character detection approach allows us to avoid explicit segmentation and instead
relies on local peaks from our character detector. The configuration of the word
‘Marriott’ shows how a pictorial structure model is tolerant of minor errors in the
part detections. We can see that even though the first ‘r’ is not in the correct
position, the total configuration cost for the word is better than that of the others
associated with that image.

Chapter 4

End-to-end Scene Text

Recognition

The ICDAR Robust Reading challenge [45] was the first public dataset

collected to highlight the problem of detecting and recognizing scene text. In

this benchmark, the organizers identified four subproblems: (1) cropped character

classification, (2) full image text detection, (3) cropped word recognition, and (4)

full image word recognition. The work of [16] addressed the cropped character

classification problem (1) and showed the relative effectiveness of using generic

object recognition methods versus off-the-shelf OCR. The works of [12, 21] intro-

duced methods for text detection (2). The cropped word recognition problem (3)

has also recently received attention by [81] and in our previous work [77]. While

progress has been made on the isolated components, there has been very little work

on the full image word recognition problem (4); the only other work we are aware

of that addresses the problem is [55].

In this chapter, our contributions are two-fold: (1) We evaluate the word

detection and recognition performance of the two-step approach consisting of a

state-of-the-art text detector and a leading OCR engine. (2) We construct a sys-

tem rooted in modern object recognition techniques by extending our work from

Chapter 3. We show that our object recognition-based pipelines perform signifi-

cantly better than one using conventional OCR. We also show that, surprisingly,

an object recognition-based pipeline achieves competitive performance without the

25

26

Figure 4.1: The problem we address in this chapter is that of word detection
and recognition. Input consists of an image and a list of words (e.g., in the above
example the list contains around 50 total words, and include ‘TRIPLE’ and ‘DOOR’

). The output is a set of bounding boxes labeled with words.

need for an explicit text detection step. This result provides a significant simplifi-

cation of the end-to-end pipeline and blurs the line between word recognition and

the more common object recognition problems studied in computer vision.

4.1 Overview of Full Image Word Recognition

We discuss each step in detail. Figure 4.2 shows an overview of our ap-

proach.

4.1.1 Character detection

The first step in our pipeline is to detect potential locations of characters in

an image. We perform multi-scale character detection via sliding window classifi-

cation; this approach has been extremely successful in face [74] and pedestrian [15]

27

NUFF FFUTS

J

I

STUFFPUFF FUN

Lexicon: PUFF,STUFF,FUN,
MARKET,VILLAS,SMOKE,...

Input Image: Character Detection Word Detection Word Rescoring+NMS

UP STUFFPUFF

Figure 4.2: An overview of our word detection and recognition pipeline. Starting
with an input image and a lexicon, we perform multi-scale character detection.
The words ‘PUFF’ and ‘STUFF’ appear in the image while the other words in the
lexicon can be thought of as “distractors”. Next we perform word detection using
a Pictorial Structures framework, treating the characters as “parts” of a word.
Finally, we re-score detected words using features based on their global layout,
and perform non-maximal suppression (NMS) over words.

detection. However, since our problem requires detection of a large number of

categories (62 characters), we must be mindful in our choice of classifier. In this

respect Random Ferns [58, 7, 67] are an appealing choice as they are naturally

multi-class and efficient both to train and test. In the following sections we will

review the basics of Random Ferns and how we use them for detection, and discuss

the details of our training data.

Character Detection with Random Ferns For each location ` in an image

we will extract some feature vector x, and compute a score, u(`, c), that tells us

the likelihood of character c being in this location, as opposed to the background

cbg:

u(`, c) = log

(
p(c|x)

p(cbg|x)

)
(4.1)

= log
(
p(x|c)

)
− log

(
p(x|cbg)

)
+ log

(
p(c)

p(cbg)

)
.

We will assume a uniform prior over categories which means the last term in

the second line becomes a constant and can be ignored for our purposes. For

the simplicity of the model we will assume that our feature space consists of N

binary features (i.e., x ∈ {0, 1}N). Notice that storing a representation of the joint

probability p(x|c) would require a table of size 2N . A common simplification of

28

this model is to assume that all features are conditionally independent (i.e., the

Naive Bayes model [6]):

p(x|c) =
N∏
i=1

p(x[i]|c).

Random Ferns, introduced in [58], can be interpreted as a compromise between

the above oversimplification and a fully joint probability table: the features are

partitioned into M groups, x1, . . . , xM , of size S = N/M , and an independence

assumption is made for these groups rather than individual features. This results

in the following formula for the conditional probability:

p(x|c) =
M∏
i=1

p(xi|c).

Notice that the conditional probability for each group, or Fern, xi can be computed

using a table of size 2S ×M per category. At run time we must simply compute

our binary features, look up the corresponding fern probabilities in stored tables,

and multiply the results (or take a log and add). In our present implementation

the features consist of applying randomly chosen thresholds on randomly chosen

entries in a HOG descriptor [15] computed at the window location. This framework

scales well with the number of categories, and has been incorporated in real-time

systems for keypoint matching [58] and object recognition [67].

The final step of character detection is to perform non-maximal suppression

(NMS). We do this separately for each character using a simple greedy heuristic

(similar to what is described in [25]): we iterate over all windows in the image in

descending order of their score, and if the location has not yet been suppressed,

we suppress all of its neighbors (i.e., windows that have an overlap over some

threshold).

The character detection step can be applied directly to the image or after

a generic text detector has identified regions of interest.

Equipped with this simple but robust classification module we must now

face the task of collecting enough training data to achieve good detection perfor-

mance.

29

Figure 4.3: Top: synthetic data generated by placing a small random character
(with 1 of 40 different fonts) in the center of a 48×48 pixel patch and two neighbor-
ing characters, adding Gaussian noise and a random affine deformation. Bottom:
“real” characters from the ICDAR dataset. To train our character detector we
generated 1000 images for each character.

Synthetic Training Data Collecting a sufficiently large dataset is a typical bur-

den of using a supervised learning method. However, some domains have enjoyed

success by training and/or evaluating on synthetically generated images: finger-

prints [9], fluorescent microscopy images [42], keypoint deformations [58], and even

pedestrians [30, 47]. Beyond the obvious advantage of having limitless amounts

of data, synthesizing training images allows for precise control over alignment of

bounding boxes – an important property that is often critical to learning a good

classifier.

We synthesized about 1000 images per character using 40 fonts. For each

image we add some amount of Gaussian noise, and apply a random affine deforma-

tion. Examples of our synthesized examples are shown in Figure 4.3, along with

examples of “real” characters from the ICDAR dataset.

30

4.1.2 Pictorial Structures

To detect words in the image, we use the Pictorial Structures (PS) [26]

formulation that takes the locations and scores of detected characters as input

and finds an optimal configuration of a particular word. More formally, let w =

(c1, c2, ..., cn) be some word with n characters from our lexicon, Li be the set of

detected locations for the ith character in w, and u(`i, ci) be the score of a particular

detection at `i ∈ Li, computed with Eqn. (4.1). We seek to find a configuration

L∗ = (`∗1, . . . , `
∗
n) by optimizing the following objective function:

L∗ = argmin
∀i,`i∈Li

(
n∑

i=1

−u(`i, ci) +
n−1∑
i=1

d(`i, `i+1)

)
, (4.2)

where d(li, lj) is a pairwise cost that incorporates spatial layout and scale similarity

between two neighboring characters1. In practice, a tradeoff parameter is used to

balance the contributions of the two terms.

The above objective can be optimized efficiently using dynamic program-

ming as follows. Let D(li) be the cost of the optimal placement of characters i+ 1

to n with the location of the ith character fixed at `i:

D(li) = −u(li, ci) + min
li+1∈Li+1

d(li, li+1) +D (li+1) . (4.3)

Notice that total cost of the optimal configuration L∗ is min
`1∈ L1

D(`1). Due to

the recursive nature of D(·) we can find the optimal configuration by first pre-

computing D(`n) = −u(`n, cn) for each `n ∈ Ln and then working backwards

toward the first letter of the word. For improved efficiency we also include a

pruning rule when performing the minimization in Eqn. (4.3) by only considering

locations of `i+1 that are sufficiently spatially close to `i.

Pictorial Structures with a Lexicon. The dynamic programming procedure

for configuring a single word can be extended to finding configurations of multiple

words. Consider for example the scenario where the lexicon contains the two words

{‘ICCV’,‘ECCV’}. The value of D(`2) is the same for both words because they

1The deformation cost measures the deviation of a child character to the expected location
relative to its parent, which is specified as one character-width away, as in [77].

31

N

I

A

P

S

RI E

C

C

V

Figure 4.4: An example of a trie data structure built for a lexicon containing
the words {‘ICCV’,‘ECCV’, ‘SPAIN’,‘PAIN’,‘RAIN’}. Every node in the trie that
is the beginning of a word is shaded in gray. To efficiently perform Pictorial
Structures for all words in the lexicon, we traverse the trie, storing intermediate
configuration solutions at every node. When a shaded node is reached, we return
the optimal configurations for the corresponding word.

share the suffix ‘CCV’, and can therefore be computed once and used for configuring

both words. We leverage this by building a trie structure out of the lexicon, with all

the words reversed. Figure 4.4 shows an example of a trie for five words, with the

shaded nodes marking the beginning of words from the lexicon (the rest of string

is formed by tracing back to the root of the tree). To find configurations of the

lexicon words in the image, we traverse the trie and store intermediate solutions

at every node. When we reach nodes labeled as words (the grayed out nodes), we

return the optimal configurations as word candidates. In practice, since an image

may contain more than one instance of each word, we return a few of the top

configurations for each word. In the worst case, when no two words in the lexicon

share a common suffix, this method is equivalent to performing the optimization

for each word separately. In practice, however, performing the optimization jointly

is typically more efficient. In the remainder of the chapter we will refer to the above

procedure as “PLEX”.

32

4.1.3 Word Re-scoring and NMS

The final step in our pipeline is to perform non-maximal suppression over

all detected words. Unfortunately, there are a couple problems with the scores

returned by PLEX. First, these scores are not comparable for words of different

lengths. The more important issue, however, is that the Pictorial Structures objec-

tive function captures only pairwise relationships and ignores global features of the

configuration. While this allows for an efficient dynamic programming solution to

finding good configurations, we would like to capture some global information in

our final step. We therefore re-score each word returned by PLEX in the following

manner. We compute a number of features given a word and its configuration:

• The configuration score from PLEX (i.e., cost of L∗)

• Mean, median, minimum and standard deviation of character scores (i.e.,

u(`i))

• Standard deviation of horizontal and vertical gaps between consecutive char-

acters

• Number of characters in a word.

These features are fed into an SVM classifier, the output of which becomes the

new score for the word. To train the classifier we simply run our system on the

entire training dataset, label each returned word positive if it matches the ground

truth and negative otherwise, and feed these labels and computed features into a

standard SVM package2. Parameters of the SVM are set using cross validation

on the training data. Once the words receive their new scores, we perform non-

maximal suppression in the same manner as we described for character detection

in Section 4.1.1.

The full system, implemented in Matlab, takes roughly 15 seconds on aver-

age to run on a 800× 1200 resolution image with lexicon size of around 50 words.

We expect the runtime to be much lower with more careful engineering (e.g., [67]

showed real-time performance for Ferns).

2http://www.csie.ntu.edu.tw/˜cjlin/libsvm/

33

4.2 Experiments

In this section we present a detailed evaluation of our PLEX pipeline, as well

as a two-step pipeline consisting of Stroke Width Transform [21] (a state-of-the-art

text detector) and ABBYY FineReader3 (a leading commercial OCR engine). We

used data from the Chars74K4 dataset, introduced in [16] for cropped character

classification; the ICDAR Robust Reading Competition dataset [45], discussed in

Section 4; and Street View Text (SVT), a full image lexicon-driven scene text

dataset introduced in [77]5.

4.2.1 Character Classification and Detection

We begin with an evaluation of character classification on the Chars74K-

15 (where there are 15 training examples per character class) and the ICDAR-

CH (character classification sub-benchmark). We measure performance of Ferns

trained on synthetic data and Ferns trained on the real images from the respective

datasets (labeled ‘NATIVE’). We also compare to previously published results of

HOG+NN and ABBYY [77], as well as MKL [16].

Table 4.2.1 lists the character classification results on the two datasets. We

see that NATIVE+FERNS outperforms other methods on the ICDAR-CH dataset.

However, its performance on the Chars74K-15 benchmark is below that of previous

results using HOG+NN. Upon further inspection, we noticed significant similarity

between the images in the training and testing sets from Chars74K (in some cases

near duplicates) which work to the advantage of a Nearest Neighbor classifier. In

contrast, the training and testing split in ICDAR-CH was done on a per image

basis, making it highly unlikely to have near duplicates across the split – this helps

account for the drop in performance of HOG+NN on ICDAR-CH. Finally, we see

that training on purely synthetic data shows competitive performance to training

on the native data.

While the character classification accuracy of SYNTH+FERNS appears

3http://finereader.abbyy.com
4http://www.ee.surrey.ac.uk/CVSSP/demos/chars74k/
5The dataset has undergone revision since originally benchmarked in Chapter 3.

34

Table 4.1: Character classification accuracy of Ferns versus previously published
results on the Chars74K and ICDAR benchmarks. The SYNTH+FERNS method
was trained on synthetic data while the NATIVE+FERNS was trained on data
from their respective datasets.

Method Chars74K-15 ICDAR-CH
SYNTH+FERNS .47 .52
NATIVE+FERNS .54 .64

HOG+NN [77] .58 .52
MKL [16] .55 -

ABBYY [77] .19 .21

0 1 2 3 4 5 6 7 8 9 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

C
h

a
ra

c
te

r
F

−
s
c
o

re

SYNTH

ICDAR

Figure 4.5: Character detection performance (F-score) comparing Fern classifiers
trained on synthetic data versus data from ICDAR.

lower than NATIVE+FERNS, our end goal is to use this classifier in a sliding win-

dow fashion for character detection. We therefore evaluated the character detection

performance of SYNTH+FERNS and ICDAR+FERNS (trained using real charac-

ters from the ICDAR data) on the full images from ICDAR. Figure 4.5 shows the

F-score, defined as (1
0.5×precision + 1

0.5×recall)
−1, for each character. From this plot we

see that although ICDAR+FERNS performed better on cropped character classifi-

cation, SYNTH+FERNS is more effective when used for sliding window character

detection. A possible explanation for this is that training on synthetic data ben-

efits both from a larger volume of training examples, and from more consistent

alignment of the data.

35

Table 4.2: Accuracy of cropped word recognition comparing Pictorial Structures-
based methods (trained on synthetic data and data from ICDAR) to ABBYY
FineReader.

Method ICDAR(FULL) ICDAR(50) SVT
SYNTH+PLEX .62 .76 .57
ICDAR+PLEX .57 .72 .56

ABBYY .55 .56 .35

4.2.2 Cropped Word Recognition

Next, we evaluate cropped word recognition on the ICDAR-WD and SVT-

WD (the cropped word benchmarks of the respective datasets). This is akin to

measuring recall of a system that has a “perfect” text detector. In the SVT-WD

case, a lexicon of about 50 words is provided with each image as part of the dataset.

For the ICDAR dataset, we measure performance using a lexicon created from

all the words that appear in the test set (we call this ICDAR-WD(FULL)), and

with lexicons consisting of the ground truth words for that image plus 50 random

“distractor” words added from the test set (we call this ICDAR-WD(50)). The

latter benchmark allows for direct comparison to SVT-WD. For simplification, we

ignore all words that contain non-alphanumeric characters, as well as words with

2 or fewer characters.

Table 4.2.2 shows our results for word recognition on cropped images for

three methods: 1) PLEX with Ferns trained on ICDAR-CH data, 2) PLEX with

Ferns trained on synthetic data, and 3) ABBYY. The latter is a generic OCR

system and does not take a lexicon as input. To simulate lexicon driven OCR, we

return the word in the lexicon that has the smallest edit distance to the raw output

of ABBYY (i.e., a type of spell checking). It is important to note that evaluating

the raw output from ABBYY results in poor performance and some form of post-

processing is essential – without spell checking, the accuracy of ABBYY is .21 on

the ICDAR-WD(FULL).

Comparing the results in Table 4.2.2 to our previous results from [77],

we notice that ABBYY performs considerably better on ICDAR-WD(FULL) than

before. This difference was observed after expanding word boxes by 25% in both

36

dimensions.

These results show that training our system with synthetic data indeed leads

to better performance. They also suggest that the SVT dataset is significantly more

challenging than ICDAR.

4.2.3 Word Detection and Recognition

Our main experiment consists of evaluating end-to-end word detection and

recognition on the ICDAR and SVT datasets. We follow the evaluation guidelines

outlined in [45], which are essentially the same as the evaluation guidelines of

other object recognition competitions, like PASCAL VOC [22]. A bounding box is

counted as a match if it overlaps a ground truth bounding box by more than 50%

and the words match (ignoring case).

ICDAR Evaluation We compare performance of several end-to-end pipelines

on the ICDAR dataset. Our first pipeline is a combination of a Stroke Width

Transform (SWT) and ABBYY (naming this pipeline SWT+ABBYY). We ac-

quired a set of bounding boxes returned by SWT from the authors of [21]; these

regions are then fed into ABBYY. As we did before, we correct results from AB-

BYY by converting its output to the word in the lexicon with the smallest edit

distance. In this case, we throw out all bounding boxes for which ABBYY returns

an empty string, or for which the smallest edit distance to a lexicon word is above

some threshold – this helps reduce the number of false positives for this system.

Next, we apply PLEX to full images without a text detection step (named

PLEX). Finally, we combine SWT with PLEX as the reading engine (named

SWT+PLEX). This hybrid pipeline serves as a sanity check to see if text de-

tection improves results of PLEX. To show the effect of the re-scoring technique

presented in Section 4.1.3, we evaluate the latter two pipelines with and without

this step (adding ‘+R’ to the name when re-scoring is used). Motivated by our

earlier experiments, we all PLEX-based systems were trained on synthetic data.

We construct a lexicon for each image by taking the ground truth words

that appear in that image and adding K extra distractor words chosen at random

37

from the test set, as well as filtering short words, as in the previous experiment.

Figure 4.8 shows select examples of output; Figure 4.6 shows precision and

recall plots for different values of K as we sweep over a threshold on scores (or

maximum edit distance for ABBYY, as described above). From these results,

we make the following observations. (1) Re-scoring significantly improves perfor-

mance of PLEX, especially for larger lexicons. (2) The performance of PLEX-based

pipelines is significantly better than SWT+ABBYY. While the gap in F-scores of

these methods shrinks as the lexicon increases, the PLEX based systems obtain

a considerably higher recall at high precision points in all cases. (3) PLEX+R,

a system that does not rely on explicit text detection, is not only comparable to

SWT+PLEX+R, but actually outperforms it for smaller length lexicons.

While an explicit text detection step could in principle improve the preci-

sion of a system, the recall is also limited by that of the text detector. Improving

the recall of such a two stage pipeline would therefore necessitate improving the

recall of text detection. Upon further examination of our results, we found a

strong positive correlation between the words that ABBYY was able to read and

the words that were detected by the SWT detector. Recall that in the cropped

word experiment, ABBYY achieved .56 accuracy on the ICDAR-WD(50) bench-

mark (correctly reading 482 words). In the end-to-end benchmark of ICDAR with

K = 50, SWT+ABBYY correctly read 438 words (very close to its performance

on cropped words, which simulates a “perfect” text detector). This shows that

improving the recall of SWT would not have a big impact on the performance of

SWT+ABBYY, unless ABBYY was improved as well.

While ABBYY is a black box, the PLEX pipeline is constructed using

computer vision techniques that are well understood and constantly improved by

the community. We believe this paves a clearer path towards improving reading

accuracy.

The work of [55] reported word recognition results on the ICDAR dataset

of 0.42/0.39/0.40, for precision, recall and F-score. In our experiments, we created

word lists for every image, however word lists were not provided in the experiments

in [55], making the results not directly comparable. The closest comparison in our

38

framework is to provide the entire ground truth set (> 500) as a word list to each

test image. In that case, our PLEX+R pipeline achieves 0.45/0.54/0.51.

SVT Evaluation For the SVT dataset, we evaluated only PLEX and PLEX+R

because we were unable to obtain SWT output for this data (and the original

implementation is not publicly available). Recall that this dataset comes with a

lexicon for each image (generated from local business searches in Google Maps).

Figure 4.9 shows examples of output and Figure 4.7 shows precision and recall

plots for this experiment. Again we see that re-scoring makes a dramatic improve-

ment in the results. As with the cropped word recognition results, comparing the

performance on the ICDAR(50) to the performance on SVT exposes the relative

difficulty of SVT. One difference between ICDAR and SVT that may contribute

to this difficulty is that for each ICDAR image all of the words in that image are

contained in the lexicon. On the other hand, in SVT, many of the images con-

tain irrelevant text that leads to a higher number of false positives for our system.

Notice, however, that this problem would not be alleviated by the use of a text

detector – the burden still lies with the reading module.

4.3 Discussion

These results establish a baseline for using generic computer vision methods

on end-to-end word recognition in the wild. We show that we can outperform

conventional OCR engines and do so without the explicit use of a text detector.

The latter is a promising new direction, significantly simplifying the recognition

pipeline.

Chapter 4 is based on “End-to-end Scene Text Recognition”, K. Wang, B.

Babenko, and S. Belongie [76]. The dissertation author was the primary investi-

gator, contributed to algorithm development, implementation, and the writing of

the paper.

39

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0.5

0.6

0.7

0.8

0.9

1

K = 5

Recall

P
re

c
is

io
n

SWT+ABBYY [0.62]

SWT+PLEX [0.71]

SWT+PLEX+R [0.71]

PLEX [0.69]

PLEX+R [0.72]

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0.5

0.6

0.7

0.8

0.9

1

K = 20

Recall

P
re

c
is

io
n

SWT+ABBYY [0.61]

SWT+PLEX [0.69]

SWT+PLEX+R [0.70]

PLEX [0.62]

PLEX+R [0.69]

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0.5

0.6

0.7

0.8

0.9

1

K = 50

Recall

P
re

c
is

io
n

SWT+ABBYY [0.60]

SWT+PLEX [0.67]

SWT+PLEX+R [0.68]

PLEX [0.56]

PLEX+R [0.65]

Figure 4.6: Precision and recall of end-to-end word detection and recognition
methods on the ICDAR dataset. Results are shown with lexicons created with 5,
20, and 50 distractor words. F-scores are shown in brackets next to pipeline name.

40

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

0.2

0.4

0.6

0.8

1

Recall

P
re

c
is

io
n

PLEX [0.27]

PLEX+R [0.38]

Figure 4.7: Precision and recall of end-to-end word detection and recognition
methods on the Street View Text dataset. F-scores are shown in brackets next to
pipeline name.

41

Figure 4.8: Selected results of end-to-end methods on the ICDAR dataset (for a
lexicon with K = 20 distractors). Results from PLEX+R are shown in green and
results from SWT+ABBYY are shown in blue. In the first two images ABBYY
has trouble reading text with noisy image conditions and unusual fonts; the last
image is more well suited for ABBYY as it is more similar to a scanned document.

42

Figure 4.9: Selected results on the Street View Text dataset. PLEX+R results
are shown in green and words from the corresponding lexicons are shown in dashed
pink (recall that these images can contain other irrelevant text).

Chapter 5

Scaling Up Scene Text

Recognition via Data-driven

Synthesis

Scene text recognition is a challenging problem area that has received in-

creasing attention from the computer vision community. Much work has been done

on various sub-problems, including: text detection [12, 21], character classifica-

tion [16, 13], word recognition [77, 50, 49, 57], and end-to-end systems [76, 56, 78].

As a result, the domain has enjoyed significant advances on an increasing number

of public scene text benchmarks [45, 80, 16, 77, 49, 41].

A key to many recent advances in scene text has been in the adoption of

supervised learning. For text detection, this problem is posed as binary classifi-

cation between text and non-text (background) [12]. In character classification,

this is a multi-class categorization problem between different symbol classes [16].

With the application of supervised learning, problems in scene text resemble more

specialized versions of the familiar general object recognition problems broadly

studied in the field.

For supervised scene text recognition systems, there is a need for vast

amounts of annotated data. The work of [54] showed that performance of classify-

ing digits taken from house numbers (digits 0-9) continued to improve with 100,000

labeled examples (or about 10,000 per symbol). The need for labeled data is even

43

44

...

Scene text synthesis

Input dataset

Arbitrary output language datasets

Kannada Korean

Figure 5.1: We address the looming challenge of scaling up text recognition
systems to new languages. We propose to address this through scene text synthesis.
In our approach we take a labeled training set of scene text in any language and
automatically generate new training for arbitrary languages that retain the visual
characteristics of the original scene text. The new data can then be directly used
to train existing text recognition pipelines. Our proposal represents a painless way
to extend supervised scene text OCR systems to new languages.

45

Figure 5.2: This figure highlights the redundancy between symbols from different
character sets. The shared structure is evident. Our motivation for a data-driven
synthesis approach is to re-purpose existing scene text of a particular language to
hallucinate characters of another by rearranging the sub-structures. Symbols left to
right: Latin ‘E’, Tifinagh ‘yadd’, Greek capital ‘xi’, Russian capital ‘ie’, and Vai syl-
lable ‘dho’, Cherokee letter ‘gv’, Armenian capital ‘eh’, Euler constant, Canadian
syllabics carrier ‘sa’, and Tai Le letter ‘tone-6’. Source: http://shapecatcher.com/
.

more pronounced when confronting one of this domain’s ‘killer applications’: text

recognition of arbitrary languages for purposes of translation.

To achieve the goal of general language recognition, supervised systems

need a way to scale up their recognition capability to space of all visual symbols.

Though the scene text domain can be viewed as a specialized form of general object

recognition, there are two significant ways in which text differs from other visual

objects that make scaling up a challenge: data acquisition and data annotation.

In many object recognition domains, data acquisition and annotation can be

managed in relatively natural ways. For many popular datasets (Caltech 256 [31],

CUB Birds [82], and ImageNet [17]) images were acquired by crawling the internet.

The data was then cleaned and labeled either through paid human annotation (e.g.,

Amazon Mechanical Turk) or through the help of volunteer citizen scientists (e.g.,

Cornell Lab of Ornithology1 and Zooniverse2).

Unlike with physical objects, large scale scene text acquisition (in stark

contrast to scanned text) is not easily found by crawling the web. It is rare to be

able to perform a web search and obtain even a weakly (or noisy) labeled image for

a scene text of a particular symbol (in contrast to objects like cars or landmarks

like the Eiffel Tower).

Relatively speaking, multi-language scene text annotation is not naturally

amenable to paid human annotation. The ability to interpret visual symbols is

1http://allaboutbirds.org/labs
2http://zooniverse.org

46

learned and culture-specific, rather than learned and universal (like visual objects

in ImageNet). One must find annotators who are literate in a given language.

Additionally, visual symbols are not generally regarded as ‘charismatic’ (like Birds)

making it challenging to appeal to volunteer citizen scientists for free annotation.

In this paper, we focus on the problem of character classification. Most su-

pervised character classification systems require bounding box annotations around

individual characters [16, 77, 13]. To scale this paradigm up to the extreme, con-

sider the Unicode Standard3. This standard supports over 100,000 characters in

over 100 languages. If we require mere 100 bounding box annotations for each

character class then we still need over 10 million bounding boxes to cover this

space of visual symbols. Requiring so many carefully annotated examples for so

many different languages may not be feasible via human annotation alone.

Figure 5.2 highlights the intuition behind our work. Though the space of

visual symbols is vast, we know there is significant redundancy between symbols:

characters in different languages often look similar. There is also redundancy

within symbols: characters are typically formed as a collection of lines, corners,

t-junctions, and other strokes. We approach the fundamental challenge of scaling

up supervised scene text through scene text synthesis: synthetically producing text

that appears to have been taken in the wild for an arbitrary symbol for the end

goal of classification.

Contributions. We present a data-driven technique for scene text synthesis that

produces scene text for an arbitrary, new symbol set. Figure 5 illustrates our

goal. Our technique takes images of scene text from one language (e.g., English)

with standard character bounding box annotations and automatically produces

new images of scene text into any other (Korean, Kannada, etc.) language. We

experimentally show that the synthesized data yields superior classification perfor-

mance (using standard features and learning algorithms) on two public datasets,

Chars74K (Kannada) and KAIST Scene Text (Korean). Our use of synthesis also

enables us to significantly outperform previously published results on the 657-way

3http://www.unicode.org/

47

Scene text training data (A) Initial segmentation

(B) Segment shape matching (C) Segment outlier detection

Source image

Source mask Target mask

Target image

1. Training set segmentation 2. Image quilting

Figure 5.3: This figure shows the two main steps for scene text synthesis.
1. Training set segmentation. The first step is to infer the fore-
ground/background segmentation in our training data (with character-level bound-
ing boxes). This consists of producing an initial segmentation of the image (A).
After that we use shape matching to select the best segment within each char-
acter bounding box (B). Then we compute foreground color similarities between
each pair of remaining segments, and perform outlier detection to reject spurious
segments (C). Character bounding boxes with rejected segments have their entire
region ignored (colored in gray). 2. Image quilting. After masks are produced
for all the training data, we apply the Image Quilting [20] to synthesize scene text
for an arbitrary font.

classification problem for Kannada. Scene text synthesis enables us to scale up

scene text recognition while still benefitting from the performance gains of super-

vised statistical machine learning.

5.1 Related work

Our work represents a convergence of ideas from diverse sources, combined

together to address a practical problem.

Scene text. The creation of the public ICDAR Robust Reading data set by [45]

was a catalyst for much of the emerging scene text research to follow. Though

Optical Character Recognition (OCR) previously diverged into a separate sub-

community, the problem of OCR in the wild has recently seen significant attention

from the object recognition community [45, 12, 80, 81, 16, 77, 21, 55, 76, 69, 56,

50, 57, 49, 83, 4].

48

In [12], the authors demonstrated the promise of using a sliding window-

based classifier for text detection. This is a typical first step in a scene text pipeline.

The work of [16] demonstrated that simple object categorization methods can sig-

nificantly outperform conventional OCR engines on character recognition. In [77],

they demonstrated the feasibility of approaching OCR as a word categorization

problem. This has been extended by [50, 49, 57] who demonstrate the feasibility of

large-lexicon word recognition. The works of [76, 55, 56] demonstrate full image,

end-to-end word recognition systems.

Synthesis for recognition. In certain domains, the use of synthetically gen-

erated data has proven itself an effective and efficient way to train recognition

systems. Notable instances include 3-D pose recognition using depth cameras [66],

pedestrian detection [47, 59], and material texture recognition [43]. We share in

spirit with [43] the goal of ‘scaling up’ the number of recognizable material cate-

gories through synthesis.

Our work is not the first to leverage synthetic data or data augmentation

for scene text systems ([76] and [13] are recent examples); ours is the first that

proposes a data-driven approach for synthesizing training data for recognition of

arbitrary languages. This point is critical for ‘scaling up’ scene text OCR to the

vast number of visual symbols in the world.

Texture synthesis and style. In our work we draw from the influential works

of [79, 32, 20] in texture synthesis. A source of inspiration for our work comes

from [70] who investigate learning to separate style from content. In our problem,

we allow font rendering engines to give us access to content – the symbol category

– while transferring style through texture synthesis. Also related in this vein is the

work of [39].

Domain adaptation. The goals of scene text synthesis are similar to those of

recent works in domain adaptation in object recognition [62, 35]. In our work, we

explicitly adapt data that we can easily generate – binary masks of text – to ones

we cannot – scene text – using techniques from graphics [20].

49

5.2 Data-driven scene text synthesis

Figure 5.3 shows our full pipeline. The core of our pipeline adopts methods

from texture synthesis, specifically, the Image Quilting approach from [20]. The

right side of Figure 5.3 shows a result of using Image Quilting. Given a source

image and mask (left), one can specify an arbitrary target mask and synthesize

a target image (right) that appears visually similar to the source image. In this

example, the target mask is a Korean symbol and the resulting target image is

that same symbol after adopting the foreground and background textures of the

source. The gray region in the source mask is treated as an ‘ignore’ region, which

we further discuss in Section 5.2.1.

In our application, the images and masks have practical meanings. (1) The

source images are examples of real scene text and are what we want our synthesized

text to look like. In practice, many scene text datasets now exist [45, 77, 49] making

source images easy to collect (for a very small set of languages). (2) The source

mask specifies which parts of the image are foreground and background. In our

synthesized images, we want them to have the same foreground and background

as our real scene text. For typical scene text datasets, the masks are not readily

available, but we address this in Section 5.2.1. (3) The target mask is how we direct

the synthesis process to create new data for an arbitrary symbol. Target masks are

easy to produce using standard font rendering engines. Given items 1-3, a target

image can be produced through Image Quilting. (4) The resulting target images

can be used to train character classifiers for the symbol class represented by the

target mask. Target images are exactly the data that is most difficult to collect and

annotate for arbitrary languages and are necessary when using supervised learning

methods. Producing this data is what our work addresses.

5.2.1 Training set segmentation

Prior to applying Image Quilting we must obtain segmentations for our

source images. The left side of Figure 5.3 illustrates our approach. We assume we

are given a training dataset of cropped words with character-level bounding box

50

annotations (e.g., ICDAR [45]). Typically, character segmentation of text in the

wild is a challenging problem and is a leading reason why scene text is so much

more difficult than scanned document OCR [48, 10]. However, our requirements

from segmentation are far simpler than general foreground/background separation

due to our end-goal being synthesis. We observe the following simplifications.

• Segments have known shape. We have character bounding boxes for the

images we are trying to segment, therefore we know approximately the shape

of a correct segment. The upper left image in Figure 5.3 shows a training

image with its ground truth bounding boxes overlaid. A correct segment is

expected to be located within the bounding box with the shape of the ground

truth character.

• Properly segmenting all characters is not required. Our end goal of

training set segmentation is to segment enough foreground and background

to be later used for synthesis. We have the flexibility to detect and exclude

problematic segments (or entire images) in the synthesis stage.

• Within a word, segments have consistent texture. Characters within

the same word ought to have similar foreground appearances. This provides

a powerful cue for automatically detecting if a group of segments all represent

the same foreground.

Given those characteristics of the problem, we describe our segmentation

steps, highlighted in Figure 5.3.

A. Produce initial segmentation. The first step is to produce an initial

segmentation of the training image. We use the graph-based segmentation method

of [23]. Other methods such as [55] can also be used to produce segmentation

candidates. Figure 5.3(A) shows an example of the initial segmentation. While

the initial segmentation is far from perfect, our next steps mitigate the errors.

B. Use shape matching to select most promising segments. Next,

we leverage the available ground truth for each bounding box by selecting the seg-

ment that has the most similar shape to its respective ground truth character. For

51

Source image and maskTarget mask Result and
error mask

(a) Quilt image sets for an accepted result.

Source image and maskTarget mask Result and
error mask

(b) Quilt image sets for a rejected result.

Figure 5.4: This figure shows the quilt (Q) approach. First, a target mask is
produced using a standard font rendering engine. The stroke width of this mask is
estimated by computing a distance transform on its edge contour map and selecting
the maximum value. We measure the compatibility of the source mask and target
mask for possible rejection. Figure (a) shows a successfully produced image: the
linear substructures are shared between the source and target masks. Figure (b)
shows a quilt result that is rejected: the curved structures of the target masks
are not well-matched in the source and the result are jagged edges in the place of
curves.

52

each bounding box, we render the ground truth character in Arial font and com-

pute the Shape Context [3] score between each segment and the rendered character.

Figure 5.3(B) shows the result of selecting the best segmentation component. A

single segment remains for each character bounding box. While relying on a single

font for shape matching is not optimal, we found it sufficient in our experiments.

It’s often the case that no good segmentation exists for a ground truth character.

Our final step attempts to identify and ignore those segments.

C. Filter bad segments as outliers. To filter spurious segments, we

leverage the fact that correct segments within the same word ought to have con-

sistent texture. For each pair of components we compute the χ2 test statistic of

their color histograms. Using these pairwise distances we apply the distance-based

outlier method, DB(p,D) [34], to reject components with dissimilar foreground

color distributions. A segment is a DB(p,D)-outlier if at least a fraction p other

segments within the word are greater than distance D. This technique does not

make any distribution assumptions about the distances, however it requires choos-

ing the p and D parameters. In our experiments, we set p to be 0.5 and D to be

1/3. This means a segment is rejected if at least half of all the other segments

are greater than distance D away. Figure 5.3(C) shows the result after segment

rejection. The remaining segments are treated as foreground with the rest of the

pixels as background. Character bounding boxes with rejected segments have their

entire bounding boxes marked as ignore for the synthesis stage.

5.2.2 Texture transfer

After the training set segmentation is complete, we now have the fore-

ground/background (and ignore) masks to perform synthesis.

1. Generate a target mask. First, we generate a mask of the character

(or word) we want to render using standard font rendering engines. We refer to

this as the target mask. In the parlance of [70] this mask defines the content of our

new object: the symbol class it represents. Next we estimate the stroke width of

this mask. We do this by applying a Canny edge detector to the mask, computing

a distance transform on the edge map, and returning the highest value. We use

53

the stroke width to define the window size during synthesis.

2. Apply image quilting. Next, we want to transform our target mask

to take on the style [70] of the source image. Recall that we have two binary

masks: one from our source image (real scene text) and a binary mask for the

character we wish to produce. Given a source image, its mask, and a target mask,

Image Quilting produces a new target image. The method works by copying image

patches of a fixed size (stroke width of the target mask) in raster scan order from

the source to the target. The regions marked ignore are never matched in this stage.

The quilting method transfers patches that balance correspondences between the

masks and consistency in the image. We refer the reader to the more detailed

description of the algorithm from the original work: [20]. In our experiments, we

set the balance between the two to be 0.5.

3. Test for rejection. After a target image is rendered, we attempt to

detect and reject those with poor mask correspondences. The result of the quilt

is dependent on the suitability of a source image is as a target mask. In Figure

5.4(b), the target mask has many local patches that are curved, while the source is

predominantly made up of patches over straight lines. The quilt method produces

a jaggy, rather than curved, result. In contrast, in Figure 5.4(a), both target

and source are made up of straight line patches, producing a result truer to the

target mask. To test for rejection, we compute the mean error of the sum squared

difference between mask patches. Those with mean errors higher than a threshold

we reject. Because our end goal is to use this data to train a classifier, we can

afford to be selective with results from the generation process.

Scene text generation by data amplification. The power of this approach

is that it can hallucinate the style of any pixel-segmented text into the shape

of any new text. We can painlessly ‘scale up’ scene text recognition systems to

new languages by leveraging the data we already have. Rather than hand tuning

a synthesis engine with some set of parameters, this method creates data that

inherits the complex photometric characteristics of images of real text. The only

parameter of this method is in the selection of a rejection threshold.

54

Binary masks Naive synthesis (N)
Naive synthesis with

real backgrounds (N+BG)
Image quilting for synthesis (Q) Real data

Figure 5.5: This figure shows a montage of the data used in our experiments.
The first row are characters from the Kannada experiments and the second are
characters from Korean. From left to right: Binary masks , Naive (N), Naive +
background (N+BG), Quilt (Q), and real data from the native dataset. Images in
Columns 2-4 are created by transforming the same target masks from column 1.

5.3 Experimental setup

The starting point for our synthesis is the target binary mask that specifies

the symbol class to be produced. In our experiments, we compare our data-driven

synthesis approach to two baseline synthesis methods that also transform a binary

mask. In the experiment section, we refer to our method as Quilt (Q). Figure 5.5

shows examples of all methods transforming the same set of binary masks.

Naive (N). The most obvious synthesis method is to begin with the mask and

apply simple photometric enhancements. We refer to this approach as naive. An

instance of naive is generated by selecting a random color for the background, a

random color for the foreground, a random amount of Gaussian noise, and random

amount of image blur. These are comparable to the training examples synthesized

in [76] and we used the same parameters as the authors in that work4. The major

drawback of this approach is in its requirement of hand-tuning: one must engineer

prior knowledge of the target appearance into the mask. The more complicated

4Source code from: http://vision.ucsd.edu/˜kai/grocr/

55

the appearance model for the characters (as may be necessary to produce realistic

data), the more parameters one must tune.

Naive + background (N+BG). Our other baseline is to use the same naive

method to transform the mask foreground but use a different method for the

background. We use a separate dataset of urban images to define the backgrounds

of the text. To produce an example, we sample a random non-text patch from

our dataset, generate an instance of mask, and superimpose it on top of the patch.

This data is produced in a similar manner as those from [13]. The downside to this

approach is that the appearance of the background patch may not be well-aligned

with the distribution of text in the wild.

We evaluate the different synthesis methods in their ability to train classi-

fiers for new languages. We use two public datasets: the Chars74K-Kannada [16]

and KAIST Scene Text [41]. Our experiments compare performance across our

synthetic methods: naive (N), naive + background (N+BG), and quilt (Q) – while

comparing to performance using real data as a reference point. For each language

we used 6 different fonts (available on a standard PC) for producing target binary

masks. The same binary masks were given to each method, allowing us to examine

the impact of texture on synthetic data while holding shape constant. For both

language experiments we use the same ICDAR Robust Reading [45] as the training

dataset for the quilt method.

Features and classifier. In all our experiments we scaled all characters

to 100× 100 pixels and used HOG [15] features with spatial bins of size 10, and 8

orientation bins5. We used a one-versus-all linear SVM as our classifier6. During

testing, we apply our classifier over a range of scales on the character – scaling the

bounding box from .8× to 1.5× the ground truth size – and keep the maximum

response.

5http://vision.ucsd.edu/˜pdollar/toolbox/doc/
6http://www.csie.ntu.edu.tw/˜cjlin/liblinear/

56

Table 5.1: This table lists the performance different training sets on our four
experiments. Section 5.3.1 has the details of our setup. Despite using the same
number of training examples and using the same set of binary masks to begin with,
we see that the quilt method performs the best among the synthesis methods. This
shows the relative importance of realistic synthetic data on character classification.

Experiment: N N+BG Q Real training data
Kannada-17 51.5% 53.5% 55.6% 72.4%
Kannada-49 45.7% 46.7% 52.2% 56.1%
Korean-38 57.9% 55.9% 58.5% 73.7%
Korean-84 47.8% 48.7% 51.8% 58.4%

5.3.1 Data

Chars74K-Kannada. Chars74K is a scene text dataset for the English and

Kannada languages [16]. These images were taken using various hand held de-

vices. Many previous works have experimented on the English portion of the data,

but due to the high number of character classes (657) and severe imbalance of

data across classes, fewer have worked on Kannada. These barriers are also some

of the motivating factors for our investigation into scene text synthesis. The Kan-

nada dataset comes with cropped characters of Kannada as scene text (Img) and

black/white handwritten text (Hnd). For Chars74K-Kannada, we perform two

experiments: full and balanced.

Full. In this experiment we use the entire Chars74K-Kannada for evalu-

ation. We measure the accuracy of our different synthesis methods for 657-way

categorization. For all synthesis methods we produced 20 examples per character

class. This dataset contains over 4000 characters distributed unevenly across the

categories. Note that for this experiment, there is no real image training baseline

because all real characters are in the evaluation set. This evaluation allows us

to compare to previous results that performed recognition using the handwritten

portion of the dataset [16, 65, 36].

Kannada-49 and Kannada-17. In order to control for complications

from category imbalance, we subsampled data from the full Chars74K-Kannada

dataset to create two balanced experiments. For Kannada-49, we have 49 symbol

categories where each category contains exactly 10 examples for training and 10

57

Table 5.2: Performance on the 657 category Chars74K-Kannada full Img dataset.
We can observe a significant difference when training on the data from quilt com-
pared to other synthetic methods. Through using synthetic data, we are also able
to significantly outperform previously published results on this task.

Method Training Accuracy on Img
HOG+ESVM [65] Hnd 1.76%
Shape Context [16] Hnd 3.49%
Global DCT [36] Hnd 11.4%

HOG+SVM N 4.52%
HOG+SVM N+BG 9.99%
HOG+SVM Q 16.63 %

examples for testing. For Kannada-17, we have 17 symbol categories and each

category contains exactly 20 examples training and 20 examples for testing. The

number of categories used in these experiments were the maximum afforded by

the full dataset. We compare the accuracy between using the various synthetic

methods and use the accuracy of training on the real data as a reference. For all

synthesis methods we produced 300 examples per class.

KAIST Scene Text Database. The KAIST Scene Text Database is a scene

text dataset containing both English and Korean [41] text. Previous work using

this dataset has reported accuracy of text detection while ours is the first to use

it for evaluating character classification. In the same way as for Kannada, we

created two balanced benchmarks: Korean-84 and Korean-38. For Korean-84 we

have 84 Korean symbol categories and 15 examples each for training and testing.

For Korean-38 we have 38 Korean symbol categories and 30 examples each for

training and testing. For all synthesis methods we produced 300 examples per

class.

58

5.4 Results

5.4.1 Kannada-Full

Table 5.3.1 shows our results on the full Kannada dataset. The first three

rows list previously published results on the 657-way classification problem: one

method based on Shape Context [16, 3], one based on Exemplar SVM [65, 46],

and one using a DCT feature representation [36]. The last three rows show re-

sults from training on different synthetic data methods: naive (N), naive + back-

ground (N+BG), and quilt (Q). Despite using the same set of binary masks and

the same amount of training data, the quilt method performs significantly better

than the synthetic baselines, and previously published methods. As suggested in

their works [16, 65], the low performance of existing methods is not surprising

given they were trained using the Hnd data, which has little resemblance to the

real data. The lack of access to real training data is one of the motivators of our

work.

5.4.2 Kannada-49, Kannada-17, Korean-84, and Korean-

38

Table 5.3 shows the results for our balanced experiments. In all experi-

ments we observe the quilt method performing better than the baseline synthesis

methods. In both larger experiments, Kannada-49 and Korean-84, we see an in-

creasing performance gap between the quilt method and the second best performing

method.

5.5 Discussion

We have presented a data-driven approach for producing synthetic scene

text of arbitrary languages. Our approach takes scene text with standard bounding

box annotations from any language (which is readily available) and automatically

produces data for any other language (which is hard to collect). We have shown

59

experimentally that transferring texture to binary masks has a measurable impact

on classification performance. Our approach is a step toward maintaining the

performance benefits enjoyed through statistical machine learning while mitigating

practical issues of ‘scaling up’ OCR.

Chapter 5, in full, is a reprint of material that has been submitted for

publication: “Scaling Up Scene Text Recognition via Data-driven Synthesis”, K.

Wang, P. Nguyen, A. Bissacco, and S. Belongie. The dissertation author was the

primary investigator, contributed to algorithm development, implementation, and

was author of the paper.

Chapter 6

Conclusion and future directions

In this dissertation, we have proposed a new direction for performing text

recognition in the wild. We have approached the problem not in the traditional

OCR sense, but as word spotting: lexicon-constrained word detection. Framing

the problem as word spotting achieves the following goals.

• It creates a bridge to engage the broader Computer Vision research com-

munity. Placing scene text on the object recognition agenda is crucial for

solving the problem because, we argue, that scene text is a form of object

recognition, rather than a separate entity.

• It simplifies the scene text domain enough to stay practically relevant, while

isolating the contribution of Computer Vision component to the system.

This enables meaningful comparisons between different methods. In con-

trast, building a general OCR system may require heavy reliance on language

models and other non-vision processing which can obscure the performance

impact of the vision methods themselves.

• It demonstrates considerably higher accuracy in domain-constrained OCR

than conventional OCR engines. The work in this thesis and those follow-

ing [50, 49, 57] have repeatedly shown this to be the case.

In addition to our work on promoting word spotting, we have taken a broad look

at the implications of supervised learning-based methods on universal language

60

61

recognition. We have argued that data annotation is a looming problem in this

domain and proposed a computer graphics-inspired approach to meet the challenge.

To fully realize the potential of an object-centric approach to scene text

recognition requires further advances. Some areas of further investigation are the

following.

• Efficient sliding-window engineering. Due to their advantage in speed,

component based methods [55, 21] are often used for text detection as a

first stage in a pipeline. However, the tradeoff of this fast first stage is

that low contrast and blurred characters are often missed. On the other

hand, texture-based methods have shown excellent performance on recog-

nizing even the most challenging characters, at a significant cost in speed.

In Chapter 4, we presented an end-to-end method that was fully texture-

based though performed far from real-time (currently 15 seconds to process

an 800×1200 resolution image). Investigation into cascade classifiers, similar

to [18], to develop efficient texture-based pipelines can lead to a significant

advance.

• Integration of synthesis to recognition. In Chapter 5 we presented a

method to synthesize scene text for purposes of character classification. An

unexplored direction is to incorporate synthesis into the word recognition

stage as well. Synthetic scene text at the word level can be potentially

used in a generative model, similar to [71], or in a bag-of-features word-level

recognition approach similar to [37].

Bibliography

[1] Bay, H., Tuytelaars, T., and Gool, L. V. Surf: Speeded up robust
features. In ECCV (2006).

[2] Belhumeur, P., Hespanha, J., and Kriegman, D. Eigenfaces vs. fish-
erfaces: Recognition using class specific linear projection. TPAMI (1997).

[3] Belongie, S., Malik, J., and Puzicha, J. Shape matching and object
recognition using shape contexts. TPAMI (2002).

[4] Ben-Ami, I., Basha, T., and Avidan, S. Racing bib number recognition.
In BMVC (2012).

[5] Berg, A. C., Berg, T. L., and Malik, J. Shape matching and object
recognition using low distortion correspondence. In CVPR (2005).

[6] Bishop, C. Pattern recognition and machine learning. Springer, 2006.

[7] Bosch, A., Zisserman, A., and Munoz, X. Image classification using
random forests and ferns. In ICCV (2007).

[8] Canny, J. A computational approach to edge detection. TPAMI (1986).

[9] Cappelli, R., Maio, D., Maltoni, D., and Erol, A. Synthetic
fingerprint-image generation. In ICPR (2000).

[10] Casey, R. G., and Lecolinet, E. A survey of methods and strategies in
character segmentation. TPAMI (1996).

[11] Chellapilla, K., Larson, K., Simard, P. Y., and Czerwinski, M.
Designing human friendly human interaction proofs (hips). In CHI (2005).

[12] Chen, X., and Yuille, A. L. Detecting and reading text in natural scenes.
In CVPR (2004).

[13] Coates, A., Carpenter, B., Case, C., Satheesh, S., Suresh, B.,
Wang, T., Wu, D., and Ng, A. Text detection and character recognition
in scene images with unsupervised feature learning. In ICDAR (2011).

62

63

[14] Coates, A., and Ng, A. Selecting receptive fields in deep networks. In
NIPS (2011).

[15] Dalal, N., and Triggs, B. Histograms of oriented gradients for human
detection. In ICCV (2005).

[16] de Campos, T., Babu, B., and Varma, M. Character recognition in
natural images. In VISAPP (2009).

[17] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., and Fei-Fei, L.
ImageNet: A Large-Scale Hierarchical Image Database. In CVPR (2009).

[18] Dollar, P., Appel, R., and Kienzle, W. Crosstalk Cascades for Frame-
Rate Pedestrian Detection. In ECCV (2012).

[19] Dollar, P., Wojek, C., Schiele, B., and Perona, P. Pedestrian
detection: A benchmark. In CVPR (2009).

[20] Efros, A., and Freeman, W. Image quilting for texture synthesis and
transfer. In SIGGRAPH (2001).

[21] Epshtein, B., Ofek, E., and Wexler, Y. Detecting text in natural
scenes with stroke width transform. In CVPR (2010).

[22] Everingham, M., Van Gool, L., Williams, C. K. I., Winn, J., and
Zisserman, A. The pascal visual object classes (voc) challenge. IJCV (2010).

[23] Felzenszwalb, P., and Huttenlocher, D. Efficient graph-based image
segmentation. IJCV (2003).

[24] Felzenszwalb, P., McAllester, D., and Ramanan, D. A discrimina-
tively trained, multiscale, deformable part model. In CVPR (2008).

[25] Felzenszwalb, P. F., Girshick, R. B., McAllester, D., and Ra-
manan, D. Object detection with discriminatively trained part based models.
TPAMI (2009).

[26] Felzenszwalb, P. F., and Huttenlocher, D. P. Pictorial structures
for object recognition. IJCV 61 (2005), 55–79.

[27] Fischler, M., and Elschlager, R. The representation and matching of
pictorial structures. IEEE Trans. on Computers (1973).

[28] Freund, Y., and Schapire, R. A decision-theoretic generalization of on-
line learning and an application to boosting. In EuroCOLT (1995).

[29] Fujisawa, H. Forty years of research in character and document recognition
– an industrial perspective. Pattern Recognition (2008).

64

[30] Grauman, K., Shakhnarovich, G., and Darrell, T. Inferring 3d
structure with a statistical image-based shape model. In CVPR (2008).

[31] Griffin, G., Holub, A., and Perona, P. Caltech-256 object category
dataset. Tech. Rep. 7694, California Institute of Technology, 2007.

[32] Hertzmann, A., Jacobs, C., Oliver, N., Curless, B., and Salesin,
D. Image analogies. In SIGGRAPH (2001).

[33] Huang, G. B., Ramesh, M., Berg, T., and Learned-Miller., E.
Labeled faces in the wild: A database for studying face recognition in un-
constrained environments. Tech. Rep. 07-49, University of Massachusetts,
Amherst, 2007.

[34] Knorr, E., and Ng., R. Algorithms for mining distance-based outliers in
large datasets. In VLDB (1998).

[35] Kulis, B., Saenko, K., and Darrell, T. What you saw is not what
you get: Domain adaptation using asymmetric kernel transforms. In CVPR
(2011).

[36] Kumar, D., and Ramakrishnan, A. Recognition of kannada characters
extracted from scenes. In DAR (2012).

[37] Lazebnik, S., Schmid, C., and Ponce, J. Beyond bags of features:
Spatial pyramid matching for recognizing natural scene categories. In CVPR
(2006).

[38] Le, Q., Monga, R., Devin, M., Corrado, G., Chen, K., Ranzato,
M., Dean, J., and Ng, A. Building high-level features using large scale
unsupervised learning. In ICML (2012).

[39] Learned-Miller, E. Data driven image models through continuous joint
alignment. TPAMI (2006).

[40] Lecun, Y. Learning invariant feature hierarchies. In CVPR-BCVI (2012).

[41] Lee, S., Cho, M. S., Jung, K., and Kim, J. H. Scene text extraction
with edge constraint and text collinearity link. In ICPR (2010).

[42] Lehmussola, A., Ruusuvuori, P., Selinummi, J., Huttunen, H., and
Yli-Harja, O. Computational framework for simulating fluorescence micro-
scope images with cell populations. IEEE Trans. Med. Imaging (2007).

[43] Li, W., and Fritz, M. Recognizing materials from virtual examples. In
ECCV (2012).

65

[44] Lowe, D. Distinctive image features from scale-invariant keypoints. IJCV
(2004).

[45] Lucas, S. M., Panaretos, A., Sosa, L., Tang, A., Wong, S., and
Young, R. ICDAR 2003 robust reading competitions. In ICDAR (2003).

[46] Malisiewicz, T., Gupta, A., and Efros, A. A. Ensemble of exemplar-
svms for object detection and beyond. In ICCV (2011).

[47] Marn, J., Vazquez, D., Geronimo, D., and Lopez, A. M. Learning
appearance in virtual scenarios for pedestrian detection. In CVPR (2010).

[48] Mishra, A., Alahari, K., and Jawahar, C. V. An mrf model for
binarization of natural scene text. In ICDAR (2011).

[49] Mishra, A., Alahari, K., and Jawahar, C. V. Scene text recognition
using higher order language priors. In BMVC (2012).

[50] Mishra, A., Alahari, K., and Jawahar, C. V. Top-down and bottom-
up cues for scene text recognition. In CVPR (2012).

[51] Mori, G., and Malik, J. Recognizing objects in adversarial clutter: Break-
ing a visual CAPTCHA. In CVPR (2003).

[52] Mori, S., Suen, C. Y., and Yamamoto, K. Historical review of OCR
research and development. Proceedings of the IEEE (1992).

[53] Nagy, G. At the frontiers of OCR. Proceedings of IEEE (1992).

[54] Netzer, Y., Wang, T., Coates, A., Bissacco, A., Wu, B., and Ng,
A. Y. Reading digits in natural images with unsupervised feature learning. In
NIPS Workshop on Deep Learning and Unsupervised Feature Learning (2011).

[55] Neumann, L., and Matas, J. A method for text localization and recogni-
tion in real-world images. In ACCV (2010).

[56] Neumann, L., and Matas, J. Real-time scene text localization and recog-
nition. In CVPR (2012).

[57] Novikova, T., Barinova, O., Kohli, P., and Lempitsky, V. Large-
lexicon attribute-consistent text recognition in natural images. In ECCV
(2012).

[58] Ozuysal, M., Fua, P., and Lepetit, V. Fast keypoint recognition in ten
lines of code. In CVPR (2007).

66

[59] Pishchulin, L., Jain, A., Wojek, C., Andriluka, M., Thormaehlen,
T., and Schiele, B. Learning people detection models from few training
samples. In CVPR (2011).

[60] Rath, T. M., and Manmatha, R. Word image matching using dynamic
time warping. In CVPR (2003).

[61] Rowley, H., Baluja, S., and Kanade, T. Neural network-based face
detection. TPAMI (1998).

[62] Saenko, K., Kulis, B., Fritz, M., and Darrell, T. Adapting visual
category models to new domains. In ECCV (2010).

[63] Schantz, H. The history of OCR: Optical Character Recognition. Recogni-
tion Technologies Users Association, 1982.

[64] Scholkopf, B., and Smola, A. Learning with Kernels: Support Vector
Machines, Regularization, Optimization and Beyond. MIT Press, 2002.

[65] Sheshadri, K., and Divvala, S. Exemplar driven character recognition
in the wild. In BMVC (2012).

[66] Shotton, J., Fitzgibbon, A., Cook, M., Sharp, T., Finocchio, M.,
Moore, R., Kipman, A., and Blake, A. Real-time human pose recogni-
tion in parts from a single depth image. In CVPR (2011).

[67] Shotton, J., Johnson, M., and Cipolla, R. Semantic texton forests for
image categorization and segmentation. In CVPR (2008).

[68] Smeulders, A. W. M., Worring, M., Santini, S., Gupta, A., and
Jain, R. Content-based image retrieval at the end of the early years. TPAMI
(2000).

[69] Smith, D., Feild, J., and Learned-Miller, E. Enforcing similarity
constraints with integer programming for better scene text recognition. In
CVPR (2011).

[70] Tenenbaum, J., and Freeman, W. Separating style and content with
bilinear models. Neural Computation (2000).

[71] Tu, Z., Chen, X., Yuille, A., and Zhu, S. C. Image parsing: Unifying
segmentation, detection, and recognition. IJCV (2005).

[72] Turk, M. A., and Pentland, A. P. Face recognition using eigenfaces. In
CVPR (1991).

[73] Vanhoucke, V., and Gokturk, S. B. Reading text in consumer digital
photographs. In SPIE (2007).

67

[74] Viola, P., and Jones, M. Rapid object detection using a boosted cascade
of simple features. In CVPR (2001).

[75] von Ahn, L., Blum, M., Hopper, N. J., and Langford, J. Captcha:
Using hard ai problems for security. In Eurocrypt (2003).

[76] Wang, K., Babenko, B., and Belongie, S. End-to-end scene text recog-
nition. In ICCV (2011).

[77] Wang, K., and Belongie, S. Word spotting in the wild. In ECCV (2010).

[78] Wang, T., Wu, D., Coates, A., and Ng, A. End-to-end text recognition
with convolutional neural networks. In ICPR (2012).

[79] Wei, L., and Levoy, M. Fast texture synthesis using tree-structure vector
quantization. In SIGGRAPH (2000).

[80] Weinman, J., and Learned-Miller, E. Improving recognition of novel
input with similarity. In CVPR (2006).

[81] Weinman, J. J., Learned-Miller, E., and Hanson, A. R. Scene
text recognition using similarity and a lexicon with sparse belief propagation.
TPAMI (2009).

[82] Welinder, P., Branson, S., Mita, T., Wah, C., Schroff, F., Be-
longie, S., and Perona, P. Caltech-ucsd birds 200. Tech. Rep. CNS-TR-
2010-001, California Institute of Technology, 2007.

[83] Yao, C., Bai, X., Liu, W., Ma, Y., and Tu, Z. Detecting texts of
arbitrary orientations in natural images. In CVPR (2012).

	Signature Page
	Dedication
	Table of Contents
	List of Figures
	List of Tables
	Acknowledgements
	Vita
	Abstract of the Dissertation
	Introduction
	Street view text dataset (SVT)
	Word-spotting in the wild
	Related work
	Scanned document OCR
	Object recognition

	Motivating applications
	Word recognition
	Character recognition
	Word configuration

	Experiments
	Character classification results
	Word recognition results

	Error analysis
	Discussion

	End-to-end Scene Text Recognition
	Overview of Full Image Word Recognition
	Character detection
	Pictorial Structures
	Word Re-scoring and NMS

	Experiments
	Character Classification and Detection
	Cropped Word Recognition
	Word Detection and Recognition

	Discussion

	Scaling Up Scene Text Recognition via Data-driven Synthesis
	Related work
	Data-driven scene text synthesis
	Training set segmentation
	Texture transfer

	Experimental setup
	Data

	Results
	Kannada-Full
	Kannada-49, Kannada-17, Korean-84, and Korean-38

	Discussion

	Conclusion and future directions
	Bibliography

